JP2010034877A - Redundant transmission system in point-to-multipoint system - Google Patents

Redundant transmission system in point-to-multipoint system Download PDF

Info

Publication number
JP2010034877A
JP2010034877A JP2008195286A JP2008195286A JP2010034877A JP 2010034877 A JP2010034877 A JP 2010034877A JP 2008195286 A JP2008195286 A JP 2008195286A JP 2008195286 A JP2008195286 A JP 2008195286A JP 2010034877 A JP2010034877 A JP 2010034877A
Authority
JP
Japan
Prior art keywords
wavelength
onu
unit
transmission
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195286A
Other languages
Japanese (ja)
Other versions
JP5058910B2 (en
Inventor
Mitsumasa Okada
光正 岡田
Junichi Kani
淳一 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008195286A priority Critical patent/JP5058910B2/en
Publication of JP2010034877A publication Critical patent/JP2010034877A/en
Application granted granted Critical
Publication of JP5058910B2 publication Critical patent/JP5058910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a redundant transmission system of an economical PON system by utilizing the band of a spare transmission line system even at usual time. <P>SOLUTION: A center side apparatus (OLT) is provided with a pair of OLTPON terminating parts, a pair of optical transmission/reception parts of different wavelength sets of transmission/reception wavelengths, a pair of optical wavelength demultiplex part for demultiplexing the communication wavelength of each optical transmitter-receiver, and a dynamic SW part for performing the switching control of a transmission line system. A subscriber side apparatus (ONU) is provided with a pair of ONUPON terminating parts, a pair of optical transmission/reception parts communicable using the wavelength of the wavelength set, a pair of optical wavelength demultiplex part for demultiplexing the wavelength of the wavelength set, and a dynamic SW part for performing the switching control of the transmission line system. Between the OLT and the ONU, the wavelength set to be communicated is selected in an ONU unit and the transmission line system is switched. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光分岐素子すなわち光スプリッタを介した光加入者ネットワークにおけるポイント−マルチポイントシステムにおける冗長化伝送システムに関する。   The present invention relates to a redundant transmission system in a point-multipoint system in an optical subscriber network via an optical branching element, that is, an optical splitter.

パッシブ光ネットワーク(PON)システムの冗長化システムに関しては、非特許文献1および非特許文献2で標準勧告化されているが、これまでにこれらを改良した冗長化システムの開発が盛んに行われている。   Regarding the redundant system of the passive optical network (PON) system, the standard recommendation is made in Non-Patent Document 1 and Non-Patent Document 2, but the development of a redundant system that improves these has been actively conducted so far. Yes.

図39は、特許文献1および特許文献2に係る、従来の冗長機能を備えるパッシブ光ネットワーク(PON)システムの構成例である。光伝送路系#0は、加入者側装置(ONU)の光送受信部#0とセンタ側装置(OLT)の光送受信部#0とを接続している。一方、光伝送路系#1は、ONUの送受信部#1とOLTの送受信部#1とを接続している。光伝送路系#0に障害が生じた場合、ONUの系切替SW部とOLTの系切替SW部にて光伝送路系#1へ切替える。しかし、この技術では、特定のONUの送受信部#0が故障した場合や、スプリッタから特定のONU区間で断線等の障害が生じた場合でも、同一の伝送路系に収容されるすべてのシステムを別の伝送路系へ切り替える必要があり、障害による影響を受けていないシステムも切替の対象となってしまう。図39の例では、ONU#2は、ONU#1の障害に伴い伝送路系の切替を行わなければならない。このような系切替では、ONU単位の障害なのか複数のONUに跨る障害なのかを判定するために、同一の伝送路系に収容される全システムの正常性の確認を行った後に切り替える必要があり、収容されているONUの数が増えると切替のための時間がかかる。さらに、伝送路系によってOLTとONU間の距離が変化するため、再度PONの信号制御のためのレンジング処理(ITU−TG.983.1のRanging処理、IEEE Std802.3ahのAuto Discover処理等)を行い、全てのONUの登録をやり直す必要がある。また、予備の伝送路系は、障害が起きた時のためのコールドスタンバイとなっているため、通常利用することがなく、不経済である。さらに、冗長構成を必要としない非冗長ONUを同一のPONに収容すると、冗長構成をとっているONUの切替に伴って通信断が起こり、ONUを予備系へ手作業でつなぎなおす必要があるため、実質的に非冗長ONUの同時収容は不可能である。   FIG. 39 is a configuration example of a passive optical network (PON) system having a conventional redundancy function according to Patent Document 1 and Patent Document 2. The optical transmission line system # 0 connects the optical transmission / reception unit # 0 of the subscriber unit (ONU) and the optical transmission / reception unit # 0 of the center side device (OLT). On the other hand, the optical transmission line system # 1 connects the ONU transceiver unit # 1 and the OLT transceiver unit # 1. When a failure occurs in the optical transmission line system # 0, switching to the optical transmission line system # 1 is performed by the ONU system switching SW unit and the OLT system switching SW unit. However, with this technology, even if the transmitter / receiver # 0 of a specific ONU fails or when a failure such as disconnection occurs in a specific ONU section from the splitter, all systems accommodated in the same transmission line system It is necessary to switch to another transmission line system, and a system that is not affected by a failure is also subject to switching. In the example of FIG. 39, the ONU # 2 has to switch the transmission path system due to the failure of the ONU # 1. In such system switching, it is necessary to perform switching after confirming the normality of all systems accommodated in the same transmission path system in order to determine whether the fault is an ONU unit fault or a fault across multiple ONUs. Yes, as the number of accommodated ONUs increases, it takes time for switching. Further, since the distance between the OLT and the ONU varies depending on the transmission line system, the ranging process for PON signal control (Ranging process of ITU-TG.983.1, Auto Discover process of IEEE Std802.3ah, etc.) is performed again. To register all ONUs again. Further, since the standby transmission line system is a cold standby for when a failure occurs, it is not normally used and is uneconomical. Furthermore, if non-redundant ONUs that do not require a redundant configuration are accommodated in the same PON, communication disconnection occurs due to switching of redundant ONUs, and the ONUs must be manually reconnected to the standby system. Therefore, it is impossible to accommodate non-redundant ONUs at the same time.

図40は、特許文献3に係る、ONU毎に伝送路系の選択が可能なPONシステムの構成例である。OLTには新たにONU登録制御部を実装し、系切替SW部の代わりに分岐結合部を実装している。ONUにはONU登録切替制御部を実装している。ONUでは、障害が発生すると、PON終端部からONU登録切替制御部へ受信信号の異常信号を通知し、系切替SW部において障害が発生している光伝送路から別の光伝送路へ切替を行う。また、ONU登録切替制御部は、PON終端部に対して、ONUの登録を初期化し、未登録状態へ遷移させ、OLTからのレンジング処理と登録処理を待つ。一方、OLTでは、PON終端部において障害を検出すると、PON終端部から受信信号の異常をONU登録制御部へ通知し、該当するONU毎の登録を初期化し、未登録の状態に遷移させて、レンジング処理と登録処理を開始する。なお、強制的に切替が必要である場合は、オペレーションシステム等から強制切替信号をOLTへ送信し、さらにOLTからONUに登録初期化を通知することでONU単位に切替を実行することができる。また、OLT内の分岐結合部は、系を構成するそれぞれの光送受信部の信号を単純に合流分配するものであり、特別な電気信号の変換や信号位置のタイミング調整を必要とするものではないため、安価な機器である。しかしながら、この技術においても、予備の伝送路系を通常時に利用することがなく、不経済である。また、レンジング処理を行うことから、切替時間が長くなってしまう。   FIG. 40 is a configuration example of a PON system according to Patent Document 3 in which a transmission path system can be selected for each ONU. A new ONU registration control unit is implemented in the OLT, and a branch coupling unit is implemented in place of the system switching SW unit. An ONU registration switching control unit is mounted on the ONU. In the ONU, when a failure occurs, an abnormal signal of the received signal is notified from the PON termination unit to the ONU registration switching control unit, and the system switching SW unit switches from the optical transmission line in which the failure has occurred to another optical transmission line. Do. The ONU registration switching control unit initializes ONU registration to the PON termination unit, makes a transition to an unregistered state, and waits for ranging processing and registration processing from the OLT. On the other hand, in the OLT, when a failure is detected in the PON termination unit, the PON termination unit notifies the ONU registration control unit of an abnormality in the received signal, initializes registration for each corresponding ONU, and transitions to an unregistered state. Start the ranging process and registration process. If forced switching is required, a forced switching signal is transmitted from the operation system or the like to the OLT, and further, the switching can be executed on an ONU basis by notifying the ONU of registration initialization. Further, the branch coupling unit in the OLT simply joins and distributes the signals of the respective optical transmission / reception units constituting the system, and does not require special electrical signal conversion or signal position timing adjustment. Therefore, it is an inexpensive device. However, this technique is also uneconomical because a spare transmission line system is not used at normal times. In addition, since the ranging process is performed, the switching time becomes long.

図41は、特許文献4に係る、ATMSWやL2SWなどの動的SW部を用いて上位レイヤにて切替を行う例である。図41では、L2SWを適用した場合について記載する。この方式では、あらかじめ伝送路系#0と伝送路系#1に帯域を確保しておき、障害が発生した時に動的SW部を用いて上位レイヤのパス(例えば、VLAN ID単位)を切り替える。図の例では、伝送路系#0のPONシステムに対し、VLAN#10、VLAN#20のパスを設定し、伝送路系#1のPONシステムに対し、VLAN#11とVLAN#21のパスを設定している。この方式の場合、障害の影響が及ぶシステムのみ切替の対象となる。また、あらかじめ2つのPONシステムの系にONUは登録されているため、切替に伴うレンジング処理は必要ではなく、特許文献1〜3で指摘された問題は生じない。しかし、2つのPONシステムを並列で動作させる必要があり、また、切替のための帯域を予備となる伝送路系にあらかじめ確保する必要がある。したがって、この技術においても、予備の伝送路系を通常時に利用することがないことから、不経済であると言える。
特開平8−242207号公報 特開2004−96734号公報 特開2006−180422号公報 特開2002−218008号公報 ITU-T G.983.5, SERIES G:TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS, Digital sections and digital line system-Optical line systems for local and access networks, A broadband optical access system with enhanced survivability ITU-T G.984.1,S ERIES G:TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS, Digital sections and digital line system-Optical line systems for local and access networks, General characteristics for Gigabit-capable Passive Optical Networks(GPON) ITU-T I.630, SERIES I:INTEGRATED SERVICES DIGITAL NETWORK, Maintenance principles, ATM protection switching ITU-T G.8031/Y.1342, SERIES G:TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS ANDNETWORKS, Ethernet(登録商標) over Transport aspects-General aspect, SERIES Y:GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS, Internet protocol aspect-Transport, Ethernet Protection Switching
FIG. 41 is an example in which switching is performed in an upper layer using a dynamic SW unit such as ATMSW or L2SW according to Patent Document 4. FIG. 41 describes a case where L2SW is applied. In this method, bandwidths are secured in advance in transmission path system # 0 and transmission path system # 1, and when a failure occurs, the upper layer path (for example, VLAN ID unit) is switched using the dynamic SW unit. In the example of the figure, the paths of VLAN # 10 and VLAN # 20 are set for the PON system of transmission path system # 0, and the paths of VLAN # 11 and VLAN # 21 are set for the PON system of transmission path system # 1. It is set. In the case of this method, only the system affected by the failure is subject to switching. Further, since ONUs are registered in advance in the systems of the two PON systems, the ranging process associated with switching is not necessary, and the problems pointed out in Patent Documents 1 to 3 do not occur. However, it is necessary to operate the two PON systems in parallel, and it is necessary to reserve a band for switching in a spare transmission line system in advance. Therefore, it can be said that this technique is also uneconomical because the spare transmission line system is not normally used.
JP-A-8-242207 JP 2004-96734 A JP 2006-180422 A JP 2002-218008 A ITU-T G.983.5, SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS, Digital sections and digital line system-Optical line systems for local and access networks, A broadband optical access system with enhanced survivability ITU-T G.984.1, S ERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS, Digital sections and digital line system-Optical line systems for local and access networks, General characteristics for Gigabit-capable Passive Optical Networks (GPON) ITU-T I.630, SERIES I: INTEGRATED SERVICES DIGITAL NETWORK, Maintenance principles, ATM protection switching ITU-T G.8031 / Y.1342, SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS ANDNETWORKS, Ethernet (registered trademark) over Transport aspects-General aspect, SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS , Internet protocol aspect-Transport, Ethernet Protection Switching

従来の冗長構成を有するPONシステムの場合、通常時は通信に用いない予備の伝送路系に対してOLTにおける予備専用のPON終端部や光送受信部、OLTから光分岐素子までのFeeder区間でのファイバ設置等が必要であり、不経済であった。   In the case of a conventional PON system having a redundant configuration, a spare transmission line system that is not normally used for communication is a spare PON termination unit, an optical transmission / reception unit in the OLT, and a feeder section from the OLT to the optical branching device. It was uneconomical because fiber installation was necessary.

本発明は、上述の問題に鑑みてなされたものであり、通常時においても予備の伝送路系の帯域を活用することにより、経済的なPONシステムにおける冗長化伝送システムを提供することを目的としている。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a redundant transmission system in an economical PON system by utilizing a band of a spare transmission line system even in a normal time. Yes.

上記目的を達成するため、本発明は、光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、前記OLTが、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、各光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、伝送路系の切替制御を行うOLT切替制御手段を備え、前記ONUが、前記波長セットの波長を多重分離する1対の光波長多重分離部と、前記波長セットの波長を用いて通信可能な光送受信器と、ONUPON終端部と、伝送路系の切替制御を行うONU切替制御手段を備え、前記OLTと前記ONU間において、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   In order to achieve the above object, the present invention includes a center side device (OLT) and a plurality of subscriber side devices (ONUs) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium. In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between an OLT and an ONU via a plurality of optical transmission paths, the OLT includes a pair of OLTPON termination units, A pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the communication wavelengths of each optical transmitter / receiver, and OLT switching control means for performing transmission path system switching control The ONU includes a pair of optical wavelength demultiplexing units that demultiplex the wavelengths of the wavelength set, an optical transceiver that can communicate using the wavelengths of the wavelength set, an ONUPON termination unit, It includes an ONU switching control means for switching control of the feed path system, between the said OLT ONU, select the wavelength set that communicates the ONU unit, and performs switching of transmission line system.

また、本発明は、光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、前記OLTが、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、前記ONUが、1対のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、前記OLTPON終端部とONUPON終端部が、各波長セット単位に常時通信し、前記OLT側動的SW部とONU側動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とする。   The present invention also includes a center side device (OLT) and a plurality of subscriber side devices (ONUs) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of optical transmissions. In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between an OLT and an ONU via a path, the OLT includes a pair of OLTPON termination units and a wavelength set of transmission / reception wavelengths. A pair of optical transmission / reception units having different wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength set, management of active and standby connection information set for each wavelength set unit, active and standby A higher layer dynamic SW unit for controlling the switching of the connection, and the ONU is a pair of optical transmission / reception different from the pair of ONUPON termination units in the wavelength set of transmission / reception wavelengths A pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength set, and management of current and backup connection information set for each wavelength set unit and switching control of current and backup connections The layer includes a dynamic SW unit, the OLTPON termination unit and the ONUPON termination unit always communicate with each wavelength set unit, and the OLT side dynamic SW unit and ONU side dynamic SW unit set for each wavelength set unit. By performing switching control between active and backup connections, a wavelength set to be communicated is selected in units of ONUs, and failure recovery is performed.

また、本発明は、光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、前記OLTが、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、前記ONUが、非冗長のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替電気SW部を備え、前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替電気SW部の切替と、切替先のONU側光送受信部の送信波長の光出力開始と、切替元のONU側光送受信部の送信波長の光出力停止と、切替先のOLTPON終端部に対する登録制御を行い、前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とする。   The present invention also includes a center side device (OLT) and a plurality of subscriber side devices (ONUs) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of optical transmissions. In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between an OLT and an ONU via a path, the OLT includes a pair of OLTPON termination units and a wavelength set of transmission / reception wavelengths. A pair of optical transmission / reception units having different wavelengths, a pair of optical wavelength demultiplexing units for demultiplexing wavelengths of the wavelength set, and ONUs that manage ONUs belonging to each OLTPON termination unit and perform system switching control in the OLT A registration control unit, wherein the ONU demultiplexes the non-redundant ONUPON termination unit, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, and wavelengths of the wavelength sets A pair of optical wavelength multiplexing / demultiplexing units, an ONTU registration switching control unit that performs management of the OLPON termination unit to which the own ONU belongs and system switching control in the ONU, and a system switching electrical SW unit, and the OLTPON termination unit and the ONUPON When the termination unit communicates via any wavelength set wavelength, and the ONU registration switching control unit of the ONU receives the reception signal abnormal signal, the switching of the system switching electrical SW unit and the switching destination ONU-side optical transmission / reception unit of the ONU side optical transmission / reception unit, optical transmission stop of the transmission wavelength of the switching source ONU-side optical transmission / reception unit, registration control for the switching destination OLTPON termination unit, and ONU registration control of the OLT By receiving a signal notifying that the reception signal abnormality signal or the registration request from the ONU has been received from the OLTPON termination unit. A registration deletion control in the switching source OLTPON termination for, by performing the registration control in OLTPON end of the switching destination, select the wavelength set that communicates the ONU unit, and performs error recovery.

上記冗長化伝送システムおいて、波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なる場合もあり得る。   In the redundant transmission system, the wavelength set may have the same upstream signal wavelength and different downstream signal wavelengths.

また、本発明は、光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、前記OLTが、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、前記ONUが、非冗長のONUPON終端部と、非冗長の波長可変光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記波長可変光送受信部における切替先のOLTPON終端部の波長セットに対応した送信波長の波長変換と、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行い、前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とする。   The present invention also includes a center side device (OLT) and a plurality of subscriber side devices (ONUs) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of optical transmissions. In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between an OLT and an ONU via a path, the OLT includes a pair of OLTPON termination units and a wavelength set of transmission / reception wavelengths. A pair of optical transmission / reception units having different wavelengths, a pair of optical wavelength demultiplexing units for demultiplexing wavelengths of the wavelength set, and ONUs that manage ONUs belonging to each OLTPON termination unit and perform system switching control in the OLT A pair of optical wavelengths for demultiplexing the wavelengths of the wavelength set and a non-redundant ONUPON termination unit; a non-redundant wavelength tunable optical transceiver unit; A demultiplexing unit, an ONU registration switching control unit that performs management of the OLTPON termination unit to which the own ONU belongs and system switching control in the ONU, and a system switching optical SW unit, and the OLTPON termination unit and the ONUPON termination unit are either The ONU registration switching control unit of the ONU communicates via wavelengths in units of wavelength sets, and receives a reception signal abnormal signal, thereby corresponding to the wavelength set of the switching destination OLTPON termination unit in the wavelength tunable optical transmission / reception unit The wavelength conversion of the transmission wavelength, the switching of the system switching light SW unit, and the registration control for the switching destination OLTPON termination unit are performed, and the ONT registration control unit of the OLT receives the received signal abnormal signal or the signal from the OLTPON termination unit. By receiving a signal notifying that the registration request from the ONU has been received, the switching source OLTPO for the corresponding ONU A registration deletion control in the terminal unit, by performing the registration control in OLTPON end of the switching destination, select the wavelength set that communicates the ONU unit, and performs error recovery.

また、本発明は、光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、前記OLTが、1対のOLTPON終端部と、上り信号の波長が同一で、下り信号の波長のみが異なる1対の光送受信部と、各光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、前記ONUが、非冗長のONUPON終端部と、受信波長のみが異なる非冗長の光送受信部と、光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行い、前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号またはONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とする。   The present invention also includes a center side device (OLT) and a plurality of subscriber side devices (ONUs) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of optical transmissions. In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between an OLT and an ONU via a path, the OLT includes a pair of OLTPON termination units and an upstream signal wavelength. Management of ONUs belonging to a pair of optical transmission / reception units that are the same and differ only in the wavelength of the downstream signal, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the communication wavelengths of each optical transmitter / receiver, and each OLTPON termination unit And an ONU registration control unit that performs system switching control in the OLT, and the ONU includes a non-redundant ONUPON termination unit, a non-redundant optical transmission / reception unit that differs only in reception wavelength, and a communication wave of the optical transceiver A pair of optical wavelength demultiplexing units for demultiplexing, an ONTU registration switching control unit for performing management of the OLTPON termination unit to which the own ONU belongs and system switching control in the ONU, and a system switching optical SW unit, When the termination unit and the ONUPON termination unit communicate with each other through a wavelength in any wavelength set unit, and the ONU registration switching control unit of the ONU receives the reception signal abnormal signal, the switching of the system switching optical SW unit is performed. And the OLT ONU registration control unit of the OLT receives a signal notifying that the reception signal abnormality signal or the registration request from the ONU has been received from the OLTPON termination unit. Therefore, the registration deletion control at the switching source OLTPON termination unit and the registration at the switching destination OLTPON termination unit for the corresponding ONU By performing the control to select the wavelength set that communicates the ONU unit, and performs error recovery.

また、本発明は、複数の光伝送路を介して複数の加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)のセンタ側装置(OLT)において、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、前記OLTPON終端部が、前記ONUと波長セット単位に通信し、前記動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   The present invention also relates to a center side device (OLT) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a plurality of subscriber side devices (ONUs) via a plurality of optical transmission paths. A pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and for each wavelength set unit A higher-layer dynamic SW unit that performs management of set working and spare connection information and switching control between the working and spare connections is provided. The OLTPON termination unit communicates with the ONU in units of wavelength sets, and By switching and controlling the working and backup connections set by the SW unit for each wavelength set unit, the wavelength set for communication is selected for each ONU unit, and the transmission path system is switched. And wherein the Ukoto.

また、本発明は、複数の光伝送路を介して複数の加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)のセンタ側装置(OLT)において、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、前記ONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   The present invention also relates to a center side device (OLT) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a plurality of subscriber side devices (ONUs) via a plurality of optical transmission paths. A pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and each OLTPON termination unit An ONU registration control unit that performs management of ONUs that belong to the system and performs system switching control in the OLT, and notifies that the ONU registration control unit has received a reception signal abnormality signal or a registration request from the ONU from the OLTPON termination unit By receiving the signal to be registered, the registration deletion control at the switching source OLTPON termination unit for the corresponding ONU and the registration at the switching destination OLTPON termination unit are performed. By performing the control to select the wavelength set that communicates the ONU unit, and performs switching of transmission line system.

前記センタ側装置(OLT)おいて、前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なる場合もあり得る。   In the center side apparatus (OLT), the wavelength set may have the same upstream signal wavelength and different downstream signal wavelengths.

また、本発明は、複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、1対のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、前記ONUPON終端部が、前記OLTと波長セット単位に通信し、前記動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   The present invention also relates to a subscriber side device (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) through a plurality of optical transmission paths. A pair of ONUPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and set for each wavelength set A dynamic SW unit of an upper layer that performs management of current and spare connection information and switching control between current and spare connections is provided, and the ONUPON termination unit communicates with the OLT in units of wavelength sets, and the dynamic SW unit By switching the active and standby connections set for each wavelength set unit, the wavelength set to be communicated can be selected for each ONU unit, and the transmission path system can be switched. The features.

また、本発明は、複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、非冗長のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替電気SW部を備え、前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替電気SW部の切替と、切替先の光送受信部の送信波長の光出力開始と、切替元の光送受信部の送信波長の光出力停止と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   In addition, the present invention provides a non-contact unit (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) through a plurality of optical transmission paths. A redundant ONUPON termination unit, a pair of optical transmission / reception units with different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and an OLTPON termination unit to which the own ONU belongs Management and switching control within the ONU, and an ONU registration switching control unit and a system switching electrical SW unit, and the ONU registration switching control unit receives the received signal abnormality signal, so that the system switching electrical SW unit Performs switching, optical output start of the transmission wavelength of the switching destination optical transmission / reception unit, optical output stop of the transmission wavelength of the switching source optical transmission / reception unit, and registration control for the switching destination OLTPON termination unit. It allows to select the wavelength set that communicates the ONU unit, and performs switching of transmission line system.

前記加入者側装置(ONU)システムおいて、前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なる場合もあり得る。   In the subscriber unit (ONU) system, the wavelength set may have the same upstream signal wavelength but different downstream signal wavelengths.

また、本発明は、複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、非冗長のONUPON終端部と、非冗長の波長可変光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記波長可変光送受信部における切替先のOLTPON終端部の波長セットに対応した送信波長の波長変換と、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   In addition, the present invention provides a non-contact unit (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) through a plurality of optical transmission paths. Redundant ONUPON termination unit, non-redundant wavelength tunable optical transmission / reception unit, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength set, management of the OLTPON termination unit to which the own ONU belongs and the ONU An ONU registration switching control unit and a system switching optical SW unit that perform system switching control of the optical switching unit, and when the ONU registration switching control unit receives a reception signal abnormal signal, an OLPON termination of a switching destination in the wavelength tunable optical transceiver unit By performing wavelength conversion of the transmission wavelength corresponding to the wavelength set of the unit, switching of the system switching light SW unit, and registration control for the switching destination OLTPON termination unit. Selects a wavelength set to communicate in ONU unit, and performs switching of transmission line system.

また、本発明は、複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、非冗長のONUPON終端部と、受信波長のみが異なる非冗長の光送受信部と、光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とする。   In addition, the present invention provides a non-contact unit (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) through a plurality of optical transmission paths. A redundant ONUPON termination unit, a non-redundant optical transmission / reception unit that differs only in reception wavelength, a pair of optical wavelength demultiplexing units for demultiplexing the communication wavelength of the optical transceiver, and an OLTPON termination unit to which the own ONU belongs An ONU registration switching control unit that performs management and system switching control in the ONU and a system switching light SW unit are provided. When the ONU registration switching control unit receives a reception signal abnormality signal, the switching of the system switching light SW unit is performed. Then, by performing registration control for the switching destination OLTPON termination unit, a wavelength set to be communicated is selected in units of ONUs, and the transmission path system is switched.

また、本発明は、複数の光伝送路を介して加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送方法において、前記OLTとONUとの間に、現用の伝送路系に収容する現用パスと予備の伝送路系に収容する予備パスを送受信波長が異なる波長セットを用いて設定し、障害時は、ONU毎に現用パスもしくは予備パスを選択し、現用と予備の伝送路系の切替を行うことを特徴とする。
前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なる場合もあり得る。
The present invention also relates to a redundant transmission method in a point-multipoint optical transmission system (PON system) that performs signal transmission with a subscriber unit (ONU) via a plurality of optical transmission paths, Between the ONUs, a working path accommodated in the working transmission line system and a protection path accommodated in the spare transmission line system are set using wavelength sets having different transmission and reception wavelengths. It is characterized in that a protection path is selected and switching between the working and protection transmission line systems is performed.
In the wavelength set, the wavelength of the upstream signal may be the same and only the wavelength of the downstream signal may be different.

以上、説明したように、本発明によれば、従来の冗長構成を有するPONシステムで、通常時に利用できなかった予備の伝送路系を利用することができ、経済的である。
また、動的SW部を用いた冗長化伝送方式では、上位レイヤでの切替処理により、切替処理におけるPONレイヤでのレンジング処理を不要にできることから、切替処理の高速化を図ることができる。
また、本発明によれば、ONU単位の切替制御が可能であるため、非冗長ONUを各PONシステムに収容しても、冗長構成をとっている他のONUの切替に伴う通信断を回避することができる。
また、本発明は、波長レベルで冗長化されているため、光分岐素子とONU間を非冗長の光伝送路で構成する場合においても、ONUにおいて、上り信号の波長と下り信号の波長の組である波長セットのうちのいずれかの波長セットの波長を多重分離可能な波長多重分離部を設置すれば、光分岐素子〜OLTのPON終端部までの冗長化が可能となる。言い換えれば、同一のPONシステム内に、非冗長ONU、光分岐素子〜OLTのPON終端部、ONU〜OLTのPON終端部の3つの異なるプロテクションレベルのONUを混在して提供することができる。
As described above, according to the present invention, it is economical to use a spare transmission line system that could not be used at normal time in a conventional PON system having a redundant configuration.
Further, in the redundant transmission method using the dynamic SW unit, the switching process in the upper layer can eliminate the need for the ranging process in the PON layer in the switching process, so that the switching process can be speeded up.
In addition, according to the present invention, since switching control in units of ONUs is possible, even if a non-redundant ONU is accommodated in each PON system, communication disconnection due to switching of other ONUs having a redundant configuration is avoided. be able to.
In addition, since the present invention is made redundant at the wavelength level, even when the optical branching element and the ONU are configured by a non-redundant optical transmission line, a set of upstream signal wavelengths and downstream signal wavelengths in the ONU. If a wavelength demultiplexing unit capable of demultiplexing the wavelength of any one of the wavelength sets is installed, redundancy from the optical branching element to the PON termination unit of the OLT becomes possible. In other words, in the same PON system, it is possible to provide a mixture of non-redundant ONUs, optical branching elements to OLT PON termination units, and ONU to OLT PON termination units in different protection levels.

本発明の実施の形態について図面を参照して説明する。
本発明は、複数の光伝送路を介してセンタ側装置(OLT)と加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムである。
(第1の実施形態)
以下に、第1の実施形態である、各PONシステムに対して異なる上り方向と下り方向の波長セットを適用する冗長化伝送システムについて説明する。
Embodiments of the present invention will be described with reference to the drawings.
The present invention provides a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission between a center side apparatus (OLT) and a subscriber side apparatus (ONU) through a plurality of optical transmission paths. It is.
(First embodiment)
Hereinafter, a redundant transmission system according to the first embodiment, in which different upstream and downstream wavelength sets are applied to each PON system, will be described.

図1は、第1の実施形態に関わる冗長化伝送システムの基本構成を示す図である。センタ側装置(OLT)は、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部(OLT切替制御手段)を備え、加入者側装置(ONU)は、1対のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部(ONU切替制御手段)を備える。
OLTPON終端部とONUPON終端部は、各波長セット単位に常時通信し、OLT側動的SW部とONU側動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、障害復旧を行う。
FIG. 1 is a diagram illustrating a basic configuration of a redundant transmission system according to the first embodiment. The center side device (OLT) includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, and a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets And an upper layer dynamic SW unit (OLT switching control means) for managing the current and spare connection information set for each wavelength set unit and controlling the switching between the current and spare connections, and the subscriber unit (ONU) Is a pair of ONUPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and for each wavelength set unit An upper layer dynamic SW unit (ONU switching control means) is provided for managing the set current and backup connection information and controlling switching between the current and backup connections.
The OLTPON termination unit and the ONUPON termination unit always communicate with each wavelength set unit, and the OLT-side dynamic SW unit and the ONU-side dynamic SW unit perform switching control between the active and standby connections set for each wavelength set unit. Then, the wavelength set to be communicated is selected in units of ONUs, and failure recovery is performed.

OLTとONUは、2:4n(図1ではn=2)の光分岐素子(光パワースプリッタ)と光伝送路媒体からなる複数の光伝送路で接続されており、図2に示すように、各PONシステムには、上り信号の波長と下り信号の波長の組である波長セット(λu1,λd1)、(λu2,λd2)が割り当てられる。光分岐素子(光パワースプリッタ)と光伝送路の接続構成例を図3、図4に示す。図3は、OLTとONU間を1段の光分岐素子で接続する構成例であり、図4は、2段の光分岐素子で接続する構成例である。光分岐素子の分岐数および段数は、サービス用途に応じて容易に構成を変更可能である。OLTのPON終端部#1を介して通信するPONシステムをPONシステム#1、PON終端部#2を介して通信するPONシステムをPONシステム#2とすると、PONシステム#1には(λu1,λd1)、PONシステム#2には(λu2,λd2)が割り当てられている。ONU#1〜#n(図1では#11、#12)は、図2に示すように、通常時はPONシステム#1に属し、波長セット(λu1,λd1)を現用パス、波長セット(λu2,λd2)を予備パスとして動作し、同様にONU#n+1〜#2n(図1では#21,#22)は、通常時はPONシステム#2に属し、波長セット(λu2,λd2)を現用パス、波長セット(λu1,λd1)を予備パスとして動作する。   The OLT and the ONU are connected by a plurality of optical transmission lines composed of an optical branching element (optical power splitter) of 2: 4n (n = 2 in FIG. 1) and an optical transmission line medium, as shown in FIG. Each PON system is assigned a wavelength set (λu1, λd1), (λu2, λd2), which is a set of the wavelength of the upstream signal and the wavelength of the downstream signal. Examples of the connection configuration of the optical branching element (optical power splitter) and the optical transmission line are shown in FIGS. FIG. 3 is a configuration example in which the OLT and the ONU are connected by a one-stage optical branching element, and FIG. 4 is a configuration example in which the OLT and the ONU are connected by a two-stage optical branching element. The number of branches and the number of stages of the optical branching element can be easily changed according to the service application. Assuming that the PON system that communicates via the PON termination unit # 1 of the OLT is the PON system # 1, and the PON system that communicates via the PON termination unit # 2 is the PON system # 2, the PON system # 1 includes (λu1, λd1 ), (Λu2, λd2) is assigned to the PON system # 2. The ONUs # 1 to #n (# 11 and # 12 in FIG. 1) normally belong to the PON system # 1 as shown in FIG. 2, and the wavelength set (λu1, λd1) is assigned to the working path and the wavelength set (λu2). , Λd2) as backup paths. Similarly, ONUs # n + 1 to # 2n (# 21 and # 22 in FIG. 1) normally belong to the PON system # 2 and use the wavelength set (λu2, λd2) as the working path. The wavelength set (λu1, λd1) operates as a backup path.

PONシステム#1に対するOLT光波長多重分離部#1は、波長セット(λu1,λd1)の波長多重分離が可能であり、波長セット(λu2,λd2)の波長をブロックする。逆にPONシステム#2に対するOLT光波長多重分離部#2は、波長セット(λu2,λd2)の波長多重分離が可能であり、波長セット(λu1,λd1)をブロックする。また、ONUには、波長セット(λu2,λd2)をブロックし、波長セット(λu1,λd1)のみを波長多重分離する光波長多重分離部#1と、波長セット(λu1,λd1)をブロックし、波長セット(λu2,λd2)のみを波長多重分離する光波長多重分離部#2がそれぞれ実装される。これにより、PONシステム#1(#2)では、PONシステム#2(#1)の波長セットの波長に影響されることなく、通信を行うことができる。   The OLT optical wavelength demultiplexing unit # 1 for the PON system # 1 can perform wavelength demultiplexing of the wavelength set (λu1, λd1), and blocks the wavelengths of the wavelength set (λu2, λd2). Conversely, the OLT optical wavelength demultiplexing unit # 2 for the PON system # 2 can perform wavelength demultiplexing of the wavelength set (λu2, λd2), and blocks the wavelength set (λu1, λd1). In addition, the wavelength set (λu2, λd2) is blocked in the ONU, and the wavelength set (λu1, λd1) is blocked, and the wavelength set (λu1, λd1) is blocked. An optical wavelength demultiplexing unit # 2 that performs wavelength demultiplexing on only the wavelength set (λu2, λd2) is mounted. Thereby, in PON system # 1 (# 2), it can communicate without being influenced by the wavelength of the wavelength set of PON system # 2 (# 1).

また、上位レイヤの動的SW部では、コネクションもしくはコネクショングループをONU単位に設定し、コネクション番号から通信先のONUを識別可能である。上位レイヤのコネクションとして、現用と予備のコネクションがそれぞれ静的に設定されており、動的SW部は、ペアとなる現用と予備のコネクション情報の管理と、切替時におけるコネクション情報の更新を行う。PONシステムでは、(λu1,λd1)と(λu2,λd2)の2つの波長セットを介して現用パスと予備パスが設定されており、PONシステムで常時、現用パスと予備パスの通信が確立されているため、通常時には動的SW部は現用のコネクションを介してクライアント信号を送受信し、予備のコネクションを介してCC(Continuous Check)による接続性の確認や切替制御情報の通信を行うことが可能である。   In the upper layer dynamic SW unit, a connection or a connection group is set in units of ONUs, and a communication destination ONU can be identified from the connection number. The working and backup connections are statically set as upper layer connections, and the dynamic SW unit manages the paired working and protection connection information and updates the connection information at the time of switching. In the PON system, the working path and the protection path are set through two wavelength sets (λu1, λd1) and (λu2, λd2), and the communication between the working path and the protection path is always established in the PON system. Therefore, during normal operation, the dynamic SW unit can send and receive client signals via the working connection, and can confirm connectivity and switch control information via CC (Continuous Check) via the spare connection. is there.

図1において、例えば光伝送路#111に障害が発生した場合、ONU#11の動的SW部は、ONUPON終端部#1からのパスレベルの受信信号異常信号の受信、もしくはコネクションレベルでの受信信号の異常検出をトリガーとして、切替制御通信を行いながら、光伝送路#111−#1を経由する現用のコネクションを、光伝送路#112−#2を経由する予備のコネクションに切替を行う。
なお、OLTに実装される動的SW部においてもコネクションレベルでの受信信号の異常検出をトリガーとした切替制御が可能である。
In FIG. 1, for example, when a failure occurs in the optical transmission line # 111, the dynamic SW unit of the ONU # 11 receives a reception signal abnormality signal at the path level from the ONUPON termination unit # 1, or reception at the connection level. Using the detection of signal abnormality as a trigger, the current connection via the optical transmission path # 111- # 1 is switched to the spare connection via the optical transmission path # 112- # 2 while performing switching control communication.
Note that the dynamic SW unit mounted on the OLT can also perform switching control triggered by detection of an abnormality in the received signal at the connection level.

なお、上位レイヤにおけるコネクションの切替方式としては、非特許文献3および非特許文献4に記載の切替方式が代表的であり、適用可能である。
また、オペレータがオペレーションシステムを経由して系を切り替える必要がある場合、オペレーションシステムからOLTへコマンド(系切替信号)を送信し、OLTからONUへコマンドを送信することにより実現可能である。
Note that the switching methods described in Non-Patent Document 3 and Non-Patent Document 4 are representative and applicable as the connection switching method in the upper layer.
Further, when the operator needs to switch the system via the operation system, it can be realized by transmitting a command (system switching signal) from the operation system to the OLT and transmitting a command from the OLT to the ONU.

図5は、図1の構成において、ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例である。OLTおよびONU#11に実装される動的SW部は、PON終端部からの受信信号異常信号の受信もしくは受信信号の異常の検出が可能であるため、現用のコネクションから予備のコネクション、すなわち光伝送路#111−#1の経路から光伝送路#112−#2の経路に切替えることによって障害復旧が可能である。   FIG. 5 is an example in which a failure occurs in the section of ONU # 11 to the optical branching element and switching is performed in the configuration of FIG. The dynamic SW unit implemented in the OLT and ONU # 11 can receive the reception signal abnormality signal from the PON termination unit or detect the reception signal abnormality. Fault recovery is possible by switching from the path # 111- # 1 to the optical transmission path # 112- # 2.

図6に本実施例の切替制御フローを示す。OLTとONUに対向して設置された動的SW部は、現用および予備のコネクション上で常時、CC(Continuous Check)により接続性の確認を行っている。現用のコネクション上に障害が発生すると、対向する動的SW部において現用→予備のコネクションに切替を行う。なお、対向する動的SW部に対して、障害検出から切替完了前の状態では、切替要求=信号断(SF:Signal Failure)、選択系=1系(現用パス)の切替制御情報を送信し、切替完了後に切替要求=信号断(SF:Signal Failure)、選択系=2系(予備パス)の切替制御情報を送信する。切替完了後は、対向する動的SW部から受信する選択系の切替情報を参照し、選択系に不一致が生じていないことを確認する。なお、図6において、切替要求=XX(Xは任意の値)は、例えば正常(NR:No Request)、信号断、信号品質劣化、(オペレータによる)強制切替中/手動切替中など自装置内で最も優先順位の高い切替制御における要求を対向する切替装置に伝達するためのメッセージ(切替制御情報)であり、選択系=X系(Xは任意の値)は、自装置内で実際に選択している系(現用パス(0系)、予備パス(1系))を示すメッセージ(切替制御情報)である。   FIG. 6 shows a switching control flow of this embodiment. The dynamic SW unit installed facing the OLT and the ONU always confirms the connectivity by CC (Continuous Check) on the working and backup connections. When a failure occurs on the current connection, switching from the current connection to the spare connection is performed in the opposing dynamic SW unit. Note that switching control information of switching request = signal failure (SF: Signal Failure) and selection system = 1 system (working path) is transmitted to the opposing dynamic SW unit in the state before the completion of switching after failure detection. After the switching is completed, switching control information of switching request = signal failure (SF: Signal Failure) and selection system = 2 system (backup path) is transmitted. After the switching is completed, the switching information of the selection system received from the opposing dynamic SW unit is referred to and it is confirmed that no mismatch occurs in the selection system. In FIG. 6, switching request = XX (X is an arbitrary value) is, for example, normal (NR: No Request), signal interruption, signal quality degradation, forced switching (by operator), manual switching, etc. Is a message (switching control information) for transmitting a request for switching control with the highest priority to the opposite switching device, and the selection system = X system (X is an arbitrary value) is actually selected within the own device. This message (switching control information) indicates the active system (working path (system 0), backup path (system 1)).

図7は、図1の構成において、光分岐素子〜OLTの区間で障害が発生し、切替を行う例である。OLTおよびONU#11、#12に実装される動的SW部は、上記同様、PON終端部からの受信信号異常信号の受信もしくは受信信号の異常の検出が可能であるため、OLT〜ONU#11の区間とOLT〜ONU#12の区間において現用のコネクションから予備のコネクションに切り替えることによって障害復旧が可能である。なお、本実施例の切替制御フローは、図6と同様となる。   FIG. 7 is an example in which a failure occurs in the section of the optical branching element to the OLT and switching is performed in the configuration of FIG. Since the dynamic SW unit mounted on the OLT and the ONUs # 11 and # 12 can receive the reception signal abnormal signal from the PON termination unit or detect the reception signal abnormality as described above, the OLT to the ONU # 11 It is possible to recover from the failure by switching from the current connection to the spare connection in the section of OLT and ONU # 12. Note that the switching control flow of this embodiment is the same as that shown in FIG.

(第2の実施形態)
図8は、第2の実施形態に関わる冗長化伝送システムの基本構成を示す図である。第2の実施の形態における光分岐素子と光伝送路の構成、および波長セットの割当ては第1の実施形態と同じである。ただし、現用パスもしくは予備パスのいずれか一方のみしかOLTPON終端部とONUPON終端部の間に確立できず、PONシステムレベルでの切替制御によって障害状況に応じていずれかのコネクションを選択的に確立する必要がある。なお、OLTのONU登録制御部は、PONシステム内の切替制御に連動させて、上位レイヤの動的SW部においてONU単位に設定されたコネクションもしくはコネクショングループをOLTPON終端部#1もしくはOLTPON終端部#2に切り替えるため、上位レイヤの動的SW部に対して切替要求信号を送信する必要がある。
(Second Embodiment)
FIG. 8 is a diagram illustrating a basic configuration of a redundant transmission system according to the second embodiment. The configuration of the optical branching element and the optical transmission line, and the assignment of the wavelength set in the second embodiment are the same as those in the first embodiment. However, only one of the working path and the backup path can be established between the OLTPON termination unit and the ONUPON termination unit, and either connection is selectively established according to the failure status by switching control at the PON system level. There is a need. The ONT registration control unit of the OLT links the connection or connection group set in the ONU unit in the dynamic SW unit of the upper layer in conjunction with the switching control in the PON system. The OLTPON termination unit # 1 or the OLTPON termination unit # In order to switch to 2, it is necessary to transmit a switching request signal to the dynamic SW unit of the upper layer.

第2の実施の形態では、OLTは、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の切替制御を行うONU登録制御部(OLT切替制御手段)を備え、ONUは、非冗長のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の切替制御を行うONU登録切替制御部および系切替電気SW部(ONU切替制御手段)を備える。   In the second embodiment, the OLT includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, and a pair of optical wavelength multiplexing for demultiplexing the wavelengths of the wavelength sets. A separation unit and an ONU registration control unit (OLT switching control means) for managing ONUs belonging to each OLTPON termination unit and switching control within the OLT are provided. The ONU includes a non-redundant ONUPON termination unit and a wavelength set of transmission and reception wavelengths. ONU registration switching for managing a pair of optical transmission / reception units having different wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength set, and an OLTPON termination unit to which the own ONU belongs and switching control within the ONU A control unit and a system switching electric SW unit (ONU switching control means) are provided.

ONUでは、ONU登録切替制御部は、ONUPON終端部より受信信号異常信号を受信する。この受信信号異常信号は、ONUPON終端部が受信信号の信号断や伝送品質劣化(例えば、ビットエラー)、選択している系の異常信号を示す監視制御信号などを検出した場合、ONUPON終端部より送信される信号である。この信号をONU登録切替制御部が受信すると、系切替電気SW部に系切替制御信号を送信し、系切替電気SW部は、系切替を行い、切替元となる光送受信部の光出力を停止し、切替先となる光送受信部の光出力を開始する。また、上記の系切替および光出力制御の完了後、ONU登録切替制御部は、ONU登録初期化信号をONUPON終端部へ送信し、ONUを未登録状態に遷移させ、OLTからのレンジング処理と登録処理を待つ。   In the ONU, the ONU registration switching control unit receives the reception signal abnormality signal from the ONUPON termination unit. This received signal abnormality signal is detected by the ONUPON termination unit when the ONUPON termination unit detects a signal interruption of the received signal, transmission quality degradation (for example, bit error), or a monitoring control signal indicating an abnormal signal of the selected system. A signal to be transmitted. When this signal is received by the ONU registration switching control unit, a system switching control signal is transmitted to the system switching electrical SW unit, and the system switching electrical SW unit performs system switching and stops the optical output of the optical transmission / reception unit serving as the switching source. Then, the optical transmission / reception unit to be switched to starts optical output. In addition, after the above system switching and optical output control are completed, the ONU registration switching control unit transmits an ONU registration initialization signal to the ONUPON termination unit, transitions the ONU to an unregistered state, and performs ranging processing and registration from the OLT. Wait for processing.

OLTでは、切替先のOLTPON終端部において、該当するONUに対するレンジング処理と登録処理を行うとともに、切替元のOLTPON終端部において該当するONUの登録削除処理を行う。また、上位レイヤの動的SW部における該当するONUのコネクションを切替えるために、切替要求信号を動的SW部に送信する。   In the OLT, ranging processing and registration processing for the corresponding ONU are performed in the switching destination OLTPON termination unit, and registration deletion processing of the corresponding ONU is performed in the switching source OLTPON termination unit. Further, a switching request signal is transmitted to the dynamic SW unit in order to switch the connection of the corresponding ONU in the upper layer dynamic SW unit.

一方、OLT側において、ONU登録制御部がOLTPON終端部より受信信号異常信号を受信した場合、該当ONUへ系切替信号を送信し、ONU登録初期化信号をOLTPON終端部へ送信し、切替元のOLTPON終端部において該当ONUを未登録の状態に遷移させ、切替先のOLTPON終端部においてレンジング処理と登録処理を開始する。また、上位レイヤの動的SW部における該当するONUのコネクションを切替えるために、切替要求信号を動的SW部に送信する。   On the other hand, on the OLT side, when the ONU registration control unit receives a reception signal abnormality signal from the OLTPON termination unit, it transmits a system switching signal to the corresponding ONU, transmits an ONU registration initialization signal to the OLTPON termination unit, and The corresponding ONU is transitioned to an unregistered state at the OLTPON termination unit, and ranging processing and registration processing are started at the switching destination OLTPON termination unit. Further, a switching request signal is transmitted to the dynamic SW unit in order to switch the connection of the corresponding ONU in the upper layer dynamic SW unit.

なお、オペレータがオペレーションシステムを経由して系を切り替える必要がある場合、オペレーションシステムからOLTへコマンド(系切替信号)を送信し、OLTからONUへコマンド(系切替信号)を送信することにより実現可能である。   If the operator needs to switch the system via the operation system, it can be realized by sending a command (system switch signal) from the operation system to the OLT and a command (system switch signal) from the OLT to the ONU. It is.

図9は、図8の構成において、ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例である。
図10に本実施例の切替制御フローを示す。ONU#11は、ONUPON終端部にて障害を検出するため、ONU登録切替制御部へ受信信号の異常通知を行う。ONU登録切替制御部は、系切替電気SW部の系切替、光送受信部#1の光出力停止と光送受信部#2の光出力開始を行い、各機能部からの制御完了の応答を受信後、ONUPON終端部に対してONU登録初期化を行う。
FIG. 9 is an example in which a failure occurs in the section of ONU # 11 to the optical branching element and switching is performed in the configuration of FIG.
FIG. 10 shows a switching control flow of this embodiment. ONU # 11 notifies the ONU registration switching control unit of the abnormality of the received signal in order to detect a failure at the ONUPON termination unit. The ONU registration switching control unit performs system switching of the system switching electrical SW unit, stops the optical output of the optical transmission / reception unit # 1 and starts the optical output of the optical transmission / reception unit # 2, and receives a control completion response from each functional unit , ONU registration initialization is performed for the ONUPON terminal.

次に、ONUPON終端部は、切替先のOLTPON終端部#2から受信するDiscovery信号に応じて、OLTに登録要求であるRanging Request信号を送信する。OLTPON終端部#2は、Ranging Request信号の受信をONU登録制御部へ通知し、ONU登録制御部は、PON終端部#1→PON終端部#2への当該ONU情報の転写、PON終端部#1における当該ONUの未登録処理を行うとともに、上位の動的SW部に対してPON終端部#2を経由してPON終端部#1→PON終端部#2への切替要求を送信する。ONU登録制御部は、ONU情報転写、ONU未登録処理、上位の動的SW部からの完了応答を受信し、OLTの切替処理の完了を確認する。   Next, the ONUPON terminator transmits a ranging request signal, which is a registration request, to the OLT in response to the Discovery signal received from the switching destination OLTPON terminator # 2. The OLTPON termination unit # 2 notifies the ONU registration control unit of reception of the ranging request signal. The ONU registration control unit transfers the ONU information from the PON termination unit # 1 to the PON termination unit # 2, and the PON termination unit # 2. In addition to performing the unregistering process of the ONU in 1, a switching request from the PON termination unit # 1 to the PON termination unit # 2 is transmitted to the upper dynamic SW unit via the PON termination unit # 2. The ONU registration control unit receives the completion response from the ONU information transfer, the ONU unregistered process, and the upper dynamic SW unit, and confirms the completion of the OLT switching process.

この後、OLTのONU登録制御部からPON終端部#2を経由して、当該ONUへ登録完了(Register)通知を送信する。登録完了を受信したONUPON終端部は、ONU登録切替制御部へ登録完了通知を送信すると共に、切替先のOLTPON終端部#2に対して、応答(Ack)を送信する。なお、必要に応じて、切替先となる光伝送の伝送品質を確認するための導通試験を行っても良い。   Thereafter, a registration completion (Register) notification is transmitted from the ONT registration control unit of the OLT to the ONU via the PON terminal unit # 2. The ONUPON termination unit that has received the registration completion transmits a registration completion notification to the ONU registration switching control unit and also transmits a response (Ack) to the switching destination OLTPON termination unit # 2. If necessary, a continuity test for confirming the transmission quality of the optical transmission to be switched may be performed.

以上により、全ての切替処理が完了し、主信号がPONシステム#2系の光伝送路を介して伝送が再開される。なお、図10には図示しないが、上り方向の全ての信号は、OLTから割り当てられたタイミングと帯域に従って送信を行っている。また、本実施例は、あくまでも一例であり、一部処理の省略もしくは実施タイミングの変更が可能であることは言うまでもない。
さらに、OLTとONU間の定期的な接続性確認の実施の有無は、実装に依存しており、上記の実施例は、定期的な接続性確認を実施しない場合について記載している。この場合、OLT側では、本区間の障害によりデータ送受信が不可の状態に陥っているのか、あるいは正常状態で単にONUから送信すべきデータがないのかを区別することができないため、OLT側で障害発生を検出できず、ONU側での障害検出となる。
As described above, all the switching processes are completed, and the transmission of the main signal is resumed via the optical transmission line of the PON system # 2. Although not shown in FIG. 10, all signals in the uplink direction are transmitted according to the timing and band assigned from the OLT. In addition, this embodiment is merely an example, and it is needless to say that some processes can be omitted or the execution timing can be changed.
Further, whether or not the periodic connectivity check between the OLT and the ONU is performed depends on the implementation, and the above embodiment describes the case where the periodic connectivity check is not performed. In this case, the OLT side cannot determine whether data transmission / reception is disabled due to a failure in this section or whether there is no data to be transmitted from the ONU in a normal state. The occurrence cannot be detected, and the failure is detected on the ONU side.

図11は、図8の構成において、光分岐素子〜OLTの区間で障害が発生し、切替を行う例である。この場合、OLT、ONU#11、ONU#12の双方において光入力レベルの低下等によって障害を検出できるため、OLTはONUからのレンジング処理の要求を待つことなく、OLT〜ONU#11の区間とOLT〜ONU#12の区間の切替制御を開始できる。   FIG. 11 is an example in which a failure occurs in the section of the optical branching element to the OLT and switching is performed in the configuration of FIG. In this case, since the failure can be detected due to a decrease in the optical input level or the like in both the OLT, ONU # 11, and ONU # 12, the OLT does not wait for the ranging processing request from the ONU and The switching control of the section from OLT to ONU # 12 can be started.

図12に本実施例の切替制御フローを示す。本実施例の図10との差分は、OLT側の切替処理の開始のタイミングのみであり、図10では、切替処理開始のトリガはONUからの登録要求の受信となるが、本実施例では、OLTPON終端部からの受信信号の異常通知となる。   FIG. 12 shows a switching control flow of this embodiment. The difference between this embodiment and FIG. 10 is only the timing of starting the switching process on the OLT side. In FIG. 10, the trigger for starting the switching process is reception of a registration request from the ONU. This is a notification of abnormality in the received signal from the OLTPON terminal.

(第3の実施形態)
図13は、第3の実施形態に関わる冗長化伝送方式の基本構成である。第3の実施の形態における光分岐素子と光伝送路の構成、および波長セットの割当ては、第1の実施形態および第2の実施形態と同じである。第2の実施形態と同様、PONシステムレベルでは、現用パスもしくは予備パスのいずれか一方のみしかOLTPON終端部とONUPON終端部の間に確立できないため、障害状況に応じていずれかを選択的に確立する必要がある。
(Third embodiment)
FIG. 13 shows a basic configuration of a redundant transmission system according to the third embodiment. The configuration of the optical branching element and the optical transmission line and the allocation of the wavelength set in the third embodiment are the same as those in the first embodiment and the second embodiment. As in the second embodiment, at the PON system level, only one of the working path and the backup path can be established between the OLTPON termination unit and the ONUPON termination unit, and either one is selectively established depending on the failure status. There is a need to.

第3の実施形態では、OLTは、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の切替制御を行うONU登録制御部(OLT切替制御手段)を備え、ONUは、非冗長のONUPON終端部と、非冗長の波長可変光送受信部と、波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の切替制御を行うONU登録切替制御部および系切替光SW部(ONU切替制御手段)を備える。   In the third embodiment, the OLT includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, and a pair of optical wavelength multiplexing / demultiplexing for demultiplexing the wavelengths of the wavelength sets. And an ONU registration control unit (OLT switching control means) for managing ONUs belonging to each OLTPON termination unit and switching control within the OLT. The ONU includes a non-redundant ONUPON termination unit and a non-redundant wavelength tunable light. A transmission / reception unit, a pair of optical wavelength demultiplexing units for demultiplexing wavelengths of a wavelength set, an ONU registration switching control unit for performing management of the OLTPON termination unit to which the own ONU belongs and switching control within the ONU, and system switching light An SW unit (ONU switching control means) is provided.

ONU登録切替制御部は、ONUPON終端部より受信信号異常信号を受信すると、系切替制御信号を系切替光SW部に送信し、系切替光SW部は、系切替を行い、波長可変光送受信部は、送信波長を切替先のOLTPON終端部の波長セットに波長変換を行う。また、ONU登録切替制御部は、上記の系切替および波長変換の完了後、ONU登録初期化信号をONUPON終端部へ送信し、ONUを未登録状態に遷移させ、OLTからのレンジング処理と登録処理を待つ。以降のOLTでの切替制御は、第2の実施形態と同様となる。
一方、OLT側において、ONU登録制御部がOLTPON終端部より受信信号異常信号を受信した場合も、OLT内の切替制御は第2の実施形態と同じとなる。
When the ONU registration switching control unit receives a reception signal abnormality signal from the ONUPON termination unit, the ONU registration switching control unit transmits a system switching control signal to the system switching light SW unit, and the system switching light SW unit performs system switching, and a wavelength tunable optical transceiver unit Performs wavelength conversion of the transmission wavelength to the wavelength set of the switching destination OLTPON termination unit. The ONU registration switching control unit transmits an ONU registration initialization signal to the ONUPON termination unit after the above system switching and wavelength conversion is completed, transitions the ONU to an unregistered state, and ranging processing and registration processing from the OLT. Wait for. The subsequent switching control in the OLT is the same as that in the second embodiment.
On the other hand, on the OLT side, when the ONU registration control unit receives a reception signal abnormality signal from the OLTPON termination unit, the switching control in the OLT is the same as in the second embodiment.

図14は、図13の構成において、ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例である。
図15に本実施例の切替制御フローを示す。図10との差分は、ONUの切替処理における光出力制御のみである。本実施例では、波長可変光送受信部を用いるため、切替元の光送受信部の光出力停止と切替先の光送受信部の光出力開始の手順が、波長可変光送受信部における波長変換となる。その他の処理については、図10の切替制御フローと同一となる。
FIG. 14 is an example in which a fault occurs in the section of ONU # 11 to the optical branching element and switching is performed in the configuration of FIG.
FIG. 15 shows a switching control flow of this embodiment. The difference from FIG. 10 is only the light output control in the ONU switching process. In this embodiment, since the wavelength tunable optical transceiver is used, the procedure for stopping the optical output of the switching source optical transceiver and starting the optical output of the switching destination optical transceiver is wavelength conversion in the wavelength tunable optical transceiver. Other processing is the same as the switching control flow of FIG.

図16は、図13の構成において、光分岐素子〜OLTの区間で障害が発生し、切替を行う例である。
図17に本実施例の切替制御フローを示す。この場合、OLT、ONU#11、ONU#12の双方において光入力レベルの低下等によって障害を検出できるため、OLTはONUからのレンジング処理の要求を待つことなく、OLT〜ONU#11の区間とOLT〜ONU#12の区間の切替制御を開始できる。したがって、本実施例の図15との差分は、OLT側の切替処理の開始のタイミングのみであり、図15では切替処理開始のトリガはONUからの登録要求の受信となるが、本実施例では、OLTPON終端部からの受信信号の異常通知となる。
FIG. 16 is an example in which a failure occurs in the section of the optical branching element to the OLT and switching is performed in the configuration of FIG.
FIG. 17 shows a switching control flow of this embodiment. In this case, since the failure can be detected due to a decrease in the optical input level or the like in both the OLT, ONU # 11, and ONU # 12, the OLT does not wait for the ranging processing request from the ONU, and the section between OLT and ONU # 11. The switching control of the section from OLT to ONU # 12 can be started. Therefore, the difference between this embodiment and FIG. 15 is only the timing of starting the switching process on the OLT side. In FIG. 15, the trigger for starting the switching process is reception of a registration request from the ONU. , It becomes a notification of an abnormality in the received signal from the OLTPON terminal.

なお、第1、第2および第3の実施形態に示す冗長化伝送システムは、双方のPONシステム#1、#2で伝送帯域をフルに使用している場合、障害復旧時においてPONシステムに収容されるONU数がnから2nに増加するため、ONU毎の保障帯域が通常時の50%程度に低減してしまう問題がある。このため、各PONシステムにおいて切替により障害復旧を図る高優先クラスのデータトラヒックの収容率を伝送帯域の50%とする必要がある。   The redundant transmission systems shown in the first, second, and third embodiments are accommodated in the PON system at the time of failure recovery when both PON systems # 1 and # 2 are fully using the transmission band. Since the number of ONUs to be increased increases from n to 2n, there is a problem that the guaranteed bandwidth for each ONU is reduced to about 50% of the normal time. For this reason, in each PON system, it is necessary to set the accommodation rate of the high-priority class data traffic to be restored by switching to 50% of the transmission band.

次に、図18に示すようにPONシステム#1、#2に対して上り方向の波長を共有し、下り方向の波長のみが異なる波長セットを適用する冗長化伝送システムについて説明する。上り信号の波長の共有は、上り方向の伝送帯域が下り方向と比較して小さく、伝送帯域が非対称となる場合に適用が可能である。この場合、各PONシステムのOLTPON終端部#1、#2における制御タイミング(IEEE Std802.3ahのMPCPタイミング等)を同期させ、PONシステム#1、#2における上り方向の帯域割り当てスロットを固定的なタイミングにて設定するなどの制御が必要となる。   Next, a redundant transmission system in which an upstream wavelength is shared with respect to the PON systems # 1 and # 2 and a wavelength set in which only the downstream wavelength is different as shown in FIG. 18 will be described. Sharing the wavelength of the upstream signal is applicable when the upstream transmission band is smaller than the downstream direction and the transmission band is asymmetric. In this case, the control timings (such as IEEE Std802.3ah MPCP timing) in the OLPON termination units # 1 and # 2 of each PON system are synchronized, and the uplink bandwidth allocation slots in the PON systems # 1 and # 2 are fixed. Control such as setting at timing is required.

図19は、上り方向の波長を共有したときの第1の実施形態(図1)に対するONU構成例を示す図である。図1と同じ構成であるが、上り方向の波長が同じであるため、ONUの対となる光送受信器は、同一の送信波長の光送受信器となる。
図20および図21に、上り方向の波長を共有したときの第1の実施形態に対する上り方向の帯域割り当てスロットの例を示す。
図中のLLID(Logical Link IDentifier)は論理リンクの識別子である。図中の符号は、ONUとLLIDが1対1に対応している場合について示している。
FIG. 19 is a diagram illustrating an ONU configuration example for the first embodiment (FIG. 1) when an upstream wavelength is shared. Although the configuration is the same as in FIG. 1, the wavelength in the upstream direction is the same, so the optical transceivers that are paired with the ONU are optical transceivers having the same transmission wavelength.
20 and 21 show examples of uplink band allocation slots for the first embodiment when uplink wavelengths are shared.
LLID (Logical Link IDentifier) in the figure is an identifier of a logical link. The reference numerals in the figure indicate the case where ONUs and LLIDs have a one-to-one correspondence.

第1の実施形態では、各ONUの現用パスおよび予備パスの両パスの通信が確立されているため、PONシステム#1の帯域割り当てスロットにはONU#1〜#nの現用パス、ONU#n+1〜#2nの予備パスに対する帯域が割り当てられ、PONシステム#2の帯域割り当てスロットにはONU#1〜#nの予備パス、ONU#n+1〜#2nの現用パスに対する帯域が割り当てられる。各スロット内のONUに対する帯域の割当ては、各ONUPON終端部の要求に従ってOLTPON終端部が一元的かつ動的に割り当てを行う。通常時は、図20に示すように、予備パスでは切替制御情報やCCによる接続性の確認しか実施されないため、予備パスに対する割り当て帯域は小さくなる。図21は、PONシステム#1の伝送品質劣化(ビットエラー)の障害によりONU#1〜#nをPONシステム#2に切り替え、PONシステム#2を経由して全ONUとデータ通信を行う場合である。この場合、PONシステム#2で割り当てるONU数が増加するため、ONU毎の割当て帯域が通常時と比較して小さくなる。   In the first embodiment, since the communication of both the working path and the backup path of each ONU is established, the working path of ONU # 1 to #n, ONU # n + 1 is included in the bandwidth allocation slot of PON system # 1. Bands for the backup paths # 1 to # 2n are allocated, and band allocation slots of the PON system # 2 are allocated bands for the backup paths of the ONUs # 1 to #n and the working paths of the ONUs # n + 1 to # 2n. Bandwidth allocation to ONUs in each slot is performed centrally and dynamically by the OLTPON termination unit according to the request of each ONUPON termination unit. Normally, as shown in FIG. 20, only the switching control information and the connectivity confirmation by the CC are performed on the protection path, so that the allocated bandwidth for the protection path is reduced. FIG. 21 shows a case where ONUs # 1 to #n are switched to the PON system # 2 due to a transmission quality deterioration (bit error) failure in the PON system # 1, and data communication is performed with all ONUs via the PON system # 2. is there. In this case, since the number of ONUs to be allocated by the PON system # 2 increases, the allocated bandwidth for each ONU becomes smaller than that at the normal time.

第1の実施形態では、上り方向の波長(同一波長)を双方のPONシステムで共有する場合においても、図20および図21に示すように、上り方向の帯域割り当てスロットを各PONシステム単位に固定的に割り当てることで、動的SW部における現用と予備のコネクションにおいても経路の独立性を確保できるため切替制御が可能である。   In the first embodiment, even when the upstream wavelength (the same wavelength) is shared by both PON systems, as shown in FIGS. 20 and 21, the upstream bandwidth allocation slot is fixed to each PON system unit. Therefore, switching control is possible because the independence of the path can be ensured even in the active and backup connections in the dynamic SW unit.

図22は、上り方向の波長を共有したときの第2の実施形態(図8)に対するONU構成例を示す図であり、図23は、上り方向の波長を共有したときの第3の実施形態(図13)に対するONU構成例を示す図である。図24および図25に、上り方向の波長を共有したときの第2の実施形態および第3の実施形態に対する上り方向の帯域割り当てスロットの例を示す。
第2の実施形態および第3の実施形態では、通常時は、各ONUの現用パスのみの通信が確立されているため、図24に示すように、PONシステム#1の帯域割り当てスロットにはONU#1〜#nの現用パスに対する帯域が割り当てられ、PONシステム#2の帯域割り当てスロットにはONU#n+1〜#2nの現用パスに対する帯域が割り当てられる。図25は、PONシステム#1の障害によりONU#1〜#nをPONシステム#2に切り替え、PONシステム#2を経由して全ONUとデータ通信を行う場合である。この場合も、第1の実施形態と同様に、PONシステム#2で割り当てるONU数が増加するため、ONU毎の割当て帯域が通常時と比較して小さくなる。
FIG. 22 is a diagram illustrating an ONU configuration example for the second embodiment (FIG. 8) when the upstream wavelength is shared, and FIG. 23 is a third embodiment when the upstream wavelength is shared. It is a figure which shows the example of ONU structure with respect to (FIG. 13). FIG. 24 and FIG. 25 show examples of uplink band allocation slots for the second and third embodiments when the uplink wavelength is shared.
In the second and third embodiments, since communication of only the working path of each ONU is normally established, as shown in FIG. 24, the ONU is placed in the band allocation slot of the PON system # 1. Bands for the working paths # 1 to #n are allocated, and bands for the working paths of ONUs # n + 1 to # 2n are allocated to the band allocation slots of the PON system # 2. FIG. 25 shows a case where ONUs # 1 to #n are switched to the PON system # 2 due to a failure of the PON system # 1, and data communication is performed with all ONUs via the PON system # 2. Also in this case, as in the first embodiment, the number of ONUs to be allocated by the PON system # 2 increases, so that the allocated bandwidth for each ONU becomes smaller than in the normal case.

第2の実施形態および第3の実施形態では、上り方向の波長(同一波長)を双方のPONシステムで上り共有する場合においても、図24および図25に示すように、上り方向の帯域割り当てスロットを各PONシステム単位に固定的に割り当てることで、PONシステムにおける現用パスと予備パスの経路の独立性を確保できるため切替制御が可能である。なお、第3の実施形態の場合、当然のことながら、ONUからの送信波長は、切替前と切替後で同一波長を用いるため、波長可変光送受信器における波長変換処理は不要となる。   In the second embodiment and the third embodiment, as shown in FIG. 24 and FIG. 25, even in the case where the upstream wavelength (same wavelength) is upstream shared by both PON systems, the upstream bandwidth allocation slot Is fixedly assigned to each PON system unit, so that the independence of the working path and the backup path in the PON system can be ensured, so that switching control is possible. In the case of the third embodiment, as a matter of course, since the same wavelength is used as the transmission wavelength from the ONU before switching and after switching, wavelength conversion processing in the wavelength tunable optical transceiver is not necessary.

なお、各OLTPON終端部は、自分宛の上り方向の帯域割り当てスロットから受信するデータのみを通過させ、自分宛以外の上り方向の帯域割り当てスロットから受信するデータは破棄する。   Each OLTPON terminator passes only data received from the upstream bandwidth allocation slot addressed to itself, and discards data received from upstream bandwidth allocation slots other than itself.

上述したように、各PONシステムにおいて上り信号の波長を共有する場合、第1の実施形態および第2の実施形態に関わる冗長化伝送システムでは、波長セットに応じた光送受信部および光波長多重分離部を設置し、上り方向の帯域割当てスロットを通信するPONシステムに応じて選択することによって障害復旧が実現可能である。
さらに、第3の実施形態に関わる冗長化伝送システムでは、波長セットに応じた光送受信部および光波長多重分離部を設置し、上り方向の帯域割当てスロットを通信するPONシステムに応じて選択することによって障害復旧が実現可能である。ただし、ONUにおける波長可変光送受信部は、固定波長を出力する光送受信部への交換が可能であるため、図23に示すようなONUに固定波長の光送受信部を実装したONU構成による実現が経済的である。
As described above, when the wavelength of the upstream signal is shared in each PON system, in the redundant transmission system according to the first embodiment and the second embodiment, the optical transmission / reception unit and the optical wavelength multiplexing / demultiplexing according to the wavelength set are used. The failure recovery can be realized by installing a section and selecting an upstream bandwidth allocation slot according to the PON system that communicates.
Further, in the redundant transmission system according to the third embodiment, an optical transmission / reception unit and an optical wavelength multiplexing / demultiplexing unit corresponding to the wavelength set are installed, and an uplink band allocation slot is selected according to the PON system that communicates. Failure recovery can be realized. However, since the wavelength tunable optical transmission / reception unit in the ONU can be replaced with an optical transmission / reception unit that outputs a fixed wavelength, an ONU configuration in which an optical transmission / reception unit of a fixed wavelength is mounted on the ONU as shown in FIG. Economical.

(第4の実施形態)
第4の実施形態は、第1、第2および第3の実施形態の構成において、ONU〜光分岐素子の区間の光伝送路が冗長化されていない構成である。
本発明は、現用パスと予備パスに対して別波長を割り当てることにより波長レベルで経路が冗長化されているため、光伝送路が一部区間で非冗長であっても適用が可能である。図26に上り信号の波長と下り信号の波長が異なる波長セット(λu1,λd1),(λu2,λd2)に対する波長割当て、図27に上り信号の波長を共有する波長セット(λu1,λd1),(λu1,λd2)に対する波長割当てを示す。なお、本実施例では物理構成のみの変更であることから、切替処理のシーケンスフローへの影響・変更は発生しない。
(Fourth embodiment)
The fourth embodiment is a configuration in which the optical transmission line in the section from the ONU to the optical branching element is not made redundant in the configurations of the first, second, and third embodiments.
Since the path is made redundant at the wavelength level by assigning different wavelengths to the working path and the backup path, the present invention can be applied even if the optical transmission path is non-redundant in some sections. FIG. 26 shows wavelength assignments for wavelength sets (λu1, λd1) and (λu2, λd2) in which the wavelength of the uplink signal and the wavelength of the downlink signal are different, and FIG. 27 shows wavelength sets (λu1, λd1), ( The wavelength assignment for λu1, λd2) is shown. In the present embodiment, since only the physical configuration is changed, there is no influence or change on the sequence flow of the switching process.

第4の実施形態におけるファイバの接続構成例を図28〜図30に示す。図28は光分岐素子を1段で構成する場合のファイバ接続構成例、図29は光分岐素子を2段で構成する場合のファイバ接続構成例、図30は光分岐素子を2段で構成し、1段目から2段目の光分岐素子間の光伝送路についても冗長化する場合のファイバ接続構成例である。   Examples of the fiber connection configuration in the fourth embodiment are shown in FIGS. 28 shows an example of a fiber connection configuration when the optical branching element is configured in one stage, FIG. 29 is an example of a fiber connection configuration when the optical branching element is configured in two stages, and FIG. 30 shows an optical branching element configured in two stages. This is an example of a fiber connection configuration in the case where the optical transmission path between the first to second stage optical branching elements is also made redundant.

第4の実施形態におけるONUの構成例を図31〜図33に示す。図31は第1の実施形態(図1)に対するONU構成例、図32は第2の実施形態(図8)に対するONU構成例、図33は第3の実施形態(図13)に対するONU構成例である。各構成例に示すように、ONUにおける光波長多重分離部を、2芯ファイバに対する1対の光波長多重分離部から1芯ファイバに対する光波長多重分離部に交換するだけで、第4の実施形態に対しても冗長化が可能である。   A configuration example of the ONU in the fourth embodiment is shown in FIGS. 31 shows an ONU configuration example for the first embodiment (FIG. 1), FIG. 32 shows an ONU configuration example for the second embodiment (FIG. 8), and FIG. 33 shows an ONU configuration example for the third embodiment (FIG. 13). It is. As shown in each configuration example, the fourth embodiment can be achieved by simply replacing the optical wavelength demultiplexing unit in the ONU with a pair of optical wavelength demultiplexing units for the two-core fiber from an optical wavelength demultiplexing unit for the one-core fiber. Redundancy is also possible.

なお、上り方向の波長(同一波長)を双方のPONシステムで共有する場合においても、上り方向の帯域割り当てスロットを各PONシステム単位に固定的に割り当てることで、PONシステムにおける現用パスと予備パスの経路の独立性を確保できる。
上り方向の波長を共有したときのONUの構成例を図34〜図36に示す。図34は第1の実施形態(図1)に対するONU構成例、図35は第2の実施形態(図8)に対するONU構成例、図36は第3の実施形態(図13)に対するONU構成例である。
Even when the upstream wavelength (the same wavelength) is shared by both PON systems, the upstream path allocation slot is fixedly assigned to each PON system unit, so that the working path and the backup path in the PON system are allocated. Independence of the route can be secured.
Examples of the configuration of the ONU when sharing the upstream wavelength are shown in FIGS. FIG. 34 shows an ONU configuration example for the first embodiment (FIG. 1), FIG. 35 shows an ONU configuration example for the second embodiment (FIG. 8), and FIG. 36 shows an ONU configuration example for the third embodiment (FIG. 13). It is.

(第5の実施形態)
第5の実施形態は、非冗長ONU、光分岐素子〜OLTPON終端部、ONU〜OLTPON終端部の3つの異なるプロテクションレベルのONUを混在させた構成である。図37は、光分岐素子を1段で構成するファイバ接続構成例、図38は、光分岐素子を2段で構成するファイバ接続構成例である。なお、本実施例では物理構成のみの変更であることから、切替処理のシーケンスフローへの影響・変更は発生しない。
(Fifth embodiment)
In the fifth embodiment, ONUs having three different protection levels of non-redundant ONUs, optical branching elements to OLTPON termination units, and ONU to OLTPON termination units are mixed. FIG. 37 is a fiber connection configuration example in which the optical branching element is configured in one stage, and FIG. 38 is a fiber connection configuration example in which the optical branching element is configured in two stages. In the present embodiment, since only the physical configuration is changed, there is no influence or change on the sequence flow of the switching process.

図37では、ONU#11およびONU#23を非冗長ONUとし、ONU#12およびONU#22をOLTPON終端部から光分岐素子までの光伝送路を冗長化するONUとし、ONU#13およびONU#21をOLTPON終端部からONUまでの光伝送路までを冗長化するONUとする。ONU#11、#23は、PONシステム#1に属する非冗長ONUであるため、PONシステム#2の波長を遮断するための光波長多重分離部が必要となる。また、PONシステム#1、#2において上り信号の波長と下り信号の波長の波長セットが異なる波長セットを割り当てた場合、ONU#12、#22には図31〜33のONU構成が適用可能であり、ONU#13、#21には図1、図8、図13のONU構成が適用可能である。ただし、全てのONUは、OLTの構成に応じたONU構成を選択して配置する必要があるため、例えば、図1と図13のような異なる制御方式のONUを組合わせて配置することはできない。また、前記記載の通り、ONU#12、#22とONU#13、#21は、構成する光波長多重分離部が異なるだけであるため、同一の切替制御方法によってONU単位に異なるプロテクションレベルを提供することが可能である。   In FIG. 37, ONU # 11 and ONU # 23 are non-redundant ONUs, ONU # 12 and ONU # 22 are ONUs that make the optical transmission path from the OLTPON termination unit to the optical branching element redundant, and ONU # 13 and ONU # 21 is an ONU that makes the optical transmission path from the OLTPON terminal to the ONU redundant. Since ONUs # 11 and # 23 are non-redundant ONUs belonging to the PON system # 1, an optical wavelength demultiplexing unit for blocking the wavelength of the PON system # 2 is required. Also, in the PON systems # 1 and # 2, when wavelength sets having different wavelength sets for upstream and downstream signals are assigned, the ONU configurations of FIGS. 31 to 33 can be applied to the ONUs # 12 and # 22. Yes, the ONU configurations of FIGS. 1, 8, and 13 can be applied to the ONUs # 13 and # 21. However, since all ONUs need to be arranged by selecting an ONU configuration according to the OLT configuration, for example, it is not possible to arrange ONUs having different control methods as shown in FIG. 1 and FIG. . Also, as described above, ONU # 12, # 22 and ONU # 13, # 21 differ only in the optical wavelength multiplexing / demultiplexing section, and therefore provide different protection levels for each ONU by the same switching control method. Is possible.

図38は、ONU#11およびONU#12を非冗長ONUとし、ONU#13およびONU#14をOLTPON終端部から光分岐素子までの光伝送路を冗長化するONUとし、ONU#15およびONU#16をOLTPON終端部からONUまでの光伝送路までを冗長化するONUとしたときの構成例である。光分岐素子を2段で構成し、1段目と2段目の光分岐素子間の光伝送路故障に対しても障害復旧が可能である。しかしながら、本構成例では、波長による衝突を防止するため、2段目の光分岐素子を2種類に区分し、光分岐素子からONU間の光伝送路が非冗長となるONU#13、#14用の光分岐素子と、同区間の光伝送路が冗長となるONU#15、#16用の光分岐素子を区別して配置しなければならない。なお、非冗長ONUは、いずれの光分岐素子にも収容が可能である。図38では、前者の光分岐素子を#1、後者の光分岐素子を#2として記載しており、光分岐素子#1は、1段目の光分岐素子との間の光伝送路が冗長となるように接続し、光分岐素子#2は、同区間の光伝送路を非冗長とし、光分岐素子#2とONU間の光伝送路が冗長となるように接続を行う。図38では、光分岐素子#1にはONU#11、#13、#14を収容し、光分岐素子#2にはONU#12、#15、#16を収容している。
したがって、第5の実施形態では、ファイバの接続構成に応じて異なるプロテクションレベルをONUに対して同時に提供することが可能である。
In FIG. 38, ONU # 11 and ONU # 12 are non-redundant ONUs, ONU # 13 and ONU # 14 are ONUs that make the optical transmission path from the OLTPON termination unit to the optical branching element redundant, and ONU # 15 and ONU # This is an example of a configuration in which 16 is an ONU that provides redundancy from the optical transmission terminal to the ONU. The optical branching element is composed of two stages, and it is possible to recover from a failure in the event of an optical transmission line failure between the first and second stage optical branching elements. However, in this configuration example, in order to prevent collision due to wavelength, the second-stage optical branching element is divided into two types, and ONUs # 13 and # 14 in which the optical transmission path between the optical branching element and the ONU is non-redundant. Therefore, the optical branching device for ONUs # 15 and # 16 in which the optical transmission line in the same section becomes redundant must be distinguished from each other. The non-redundant ONU can be accommodated in any optical branching element. In FIG. 38, the former optical branching element is described as # 1, and the latter optical branching element is described as # 2, and the optical transmission path between the optical branching element # 1 and the first stage optical branching element is redundant. The optical branching element # 2 is connected so that the optical transmission path in the same section is non-redundant and the optical transmission path between the optical branching element # 2 and the ONU is redundant. In FIG. 38, ONUs # 11, # 13, and # 14 are accommodated in the optical branching element # 1, and ONUs # 12, # 15, and # 16 are accommodated in the optical branching element # 2.
Therefore, in the fifth embodiment, different protection levels can be simultaneously provided to the ONU according to the fiber connection configuration.

第1の実施形態に関わる冗長化伝送システムの基本構成を示す図である。It is a figure which shows the basic composition of the redundant transmission system in connection with 1st Embodiment. 上り波長非共有の場合の波長パスの構成を示す図である。It is a figure which shows the structure of the wavelength path in case of uplink wavelength non-sharing. 光伝送路の接続構成例を示す図である。It is a figure which shows the example of a connection structure of an optical transmission line. 光伝送路の接続構成例を示す図である。It is a figure which shows the example of a connection structure of an optical transmission line. ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of ONU # 11-optical branching element, and switches. 第1の実施形態の切替制御フローを示す図である。It is a figure which shows the switching control flow of 1st Embodiment. 光分岐素子〜OLTの区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of optical branching element-OLT, and switches. 第2実施形態に関わる冗長化伝送システムの基本構成を示す図である。It is a figure which shows the basic composition of the redundant transmission system in connection with 2nd Embodiment. ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of ONU # 11-optical branching element, and switches. ONU#11〜光分岐素子の区間で障害が発生したときの切替制御フローを示す図である。It is a figure which shows the switching control flow when a failure generate | occur | produces in the area of ONU # 11-optical branching element. 光分岐素子〜OLTの区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of optical branching element-OLT, and switches. 光分岐素子〜OLTの区間で障害が発生したときの切替制御フローを示す図である。It is a figure which shows the switching control flow when a failure generate | occur | produces in the area of an optical branching element-OLT. 第3実施形態に関わる冗長化伝送システムの基本構成を示す図である。It is a figure which shows the basic composition of the redundant transmission system in connection with 3rd Embodiment. ONU#11〜光分岐素子の区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of ONU # 11-optical branching element, and switches. ONU#11〜光分岐素子の区間で障害が発生したときの切替制御フローを示す図である。It is a figure which shows the switching control flow when a failure generate | occur | produces in the area of ONU # 11-optical branching element. 光分岐素子〜OLTの区間で障害が発生し、切替を行う例を示す図である。It is a figure which shows the example which a failure generate | occur | produces in the area of optical branching element-OLT, and switches. 光分岐素子〜OLTの区間で障害が発生したときの切替制御フローを示す図である。It is a figure which shows the switching control flow when a failure generate | occur | produces in the area of an optical branching element-OLT. 上り波長共有の場合の波長パスの構成を示す図である。It is a figure which shows the structure of the wavelength path in the case of uplink wavelength sharing. 上り波長共有の場合の第1の実施形態に対するONU構成例を示す図である。It is a figure which shows the example of ONU structure with respect to 1st Embodiment in the case of uplink wavelength sharing. 上り波長共有の場合の通常時における第1の実施形態に対する上り方向の帯域割り当てスロットの例を示す図である。It is a figure which shows the example of the band allocation slot of the uplink direction with respect to 1st Embodiment in the normal time in case of uplink wavelength sharing. 上り波長共有の場合の障害時における第1の実施形態に対する上り方向の帯域割り当てスロットの例を示す図である。It is a figure which shows the example of the band allocation slot of the up direction with respect to 1st Embodiment at the time of the failure in the case of uplink wavelength sharing. 上り波長共有の場合の第2の実施形態に対するONU構成例を示す図である。It is a figure which shows the example of ONU structure with respect to 2nd Embodiment in the case of uplink wavelength sharing. 上り波長共有の場合の第3の実施形態に対するONU構成例を示す図である。It is a figure which shows the example of ONU structure with respect to 3rd Embodiment in the case of uplink wavelength sharing. 上り波長共有の場合の通常時における第2の実施形態および第3の実施形態に対する上り方向の帯域割り当てスロットの例を示す図である。It is a figure which shows the example of the band allocation slot of the uplink direction with respect to 2nd Embodiment and 3rd Embodiment in the normal time in case of uplink wavelength sharing. 上り波長共有の場合の障害時における第2の実施形態および第3の実施形態に対する上り方向の帯域割り当てスロットの例を示す図である。It is a figure which shows the example of the band allocation slot of the uplink direction with respect to 2nd Embodiment and 3rd Embodiment at the time of the failure in the case of uplink wavelength sharing. 第4の実施形態における上り波長非共有の場合の波長パスの構成を示す図である。It is a figure which shows the structure of the wavelength path in the case of uplink wavelength non-sharing in 4th Embodiment. 第4の実施形態における上り波長共有の場合の波長パスの構成を示す図である。It is a figure which shows the structure of the wavelength path in the case of uplink wavelength sharing in 4th Embodiment. 第4の実施形態における光伝送路の接続構成例を示す図である。It is a figure which shows the example of a connection structure of the optical transmission path in 4th Embodiment. 第4の実施形態における光伝送路の接続構成例を示す図である。It is a figure which shows the example of a connection structure of the optical transmission path in 4th Embodiment. 第4の実施形態における光伝送路の接続構成例を示す図である。It is a figure which shows the example of a connection structure of the optical transmission path in 4th Embodiment. 第4の実施形態におけるONUの構成例を示す図である。It is a figure which shows the structural example of ONU in 4th Embodiment. 第4の実施形態におけるONUの構成例を示す図である。It is a figure which shows the structural example of ONU in 4th Embodiment. 第4の実施形態におけるONUの構成例を示す図である。It is a figure which shows the structural example of ONU in 4th Embodiment. 上り波長共有の場合のONUの構成例を示す図である。It is a figure which shows the structural example of ONU in the case of uplink wavelength sharing. 上り波長共有の場合のONUの構成例を示す図である。It is a figure which shows the structural example of ONU in the case of uplink wavelength sharing. 上り波長共有の場合のONUの構成例を示す図である。It is a figure which shows the structural example of ONU in the case of uplink wavelength sharing. 第5の実施形態における光伝送路の接続構成例を示す図である。It is a figure which shows the connection structural example of the optical transmission path in 5th Embodiment. 第5の実施形態における光伝送路の接続構成例を示す図である。It is a figure which shows the connection structural example of the optical transmission path in 5th Embodiment. 従来の冗長機能を備えるPONシステムの構成例を示す図である。It is a figure which shows the structural example of the PON system provided with the conventional redundant function. 従来の冗長機能を備えるPONシステムの構成例を示す図である。It is a figure which shows the structural example of the PON system provided with the conventional redundant function. 従来の冗長機能を備えるPONシステムの構成例を示す図である。It is a figure which shows the structural example of the PON system provided with the conventional redundant function.

Claims (16)

光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、
前記OLTは、1対のOLTPON終端部と、上り信号の波長と下り信号の波長の組である波長セットが異なる1対の光送受信部と、各光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、伝送路系の切替制御を行うOLT切替制御手段を備え、
前記ONUは、前記波長セットの波長を多重分離する1対の光波長多重分離部と、前記波長セットの波長を用いて通信可能な光送受信器と、ONUPON終端部と、伝送路系の切替制御を行うONU切替制御手段を備え、
前記OLTと前記ONU間において、通信する波長セットをONU単位に選択し、伝送路系の切替を行う
ことを特徴とするPONシステムにおける冗長化伝送システム。
A center side device (OLT) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of subscriber side devices (ONUs), and the OLT via the plurality of optical transmission lines In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission with an ONU,
The OLT is for demultiplexing the communication wavelength of each optical transmitter / receiver, a pair of OLTPON termination units, a pair of optical transmitter / receiver units having different wavelength sets, which is a set of wavelengths of upstream and downstream signals A pair of optical wavelength demultiplexing units and an OLT switching control means for performing switching control of the transmission line system;
The ONU includes a pair of optical wavelength demultiplexing units that demultiplex the wavelengths of the wavelength set, an optical transceiver that can communicate using the wavelengths of the wavelength set, an ONUPON termination unit, and transmission path system switching control. ONU switching control means for performing
A redundant transmission system in a PON system, wherein a wavelength set to be communicated is selected for each ONU unit between the OLT and the ONU, and a transmission path system is switched.
光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、
前記OLTは、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、
前記ONUは、1対のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、
前記OLTPON終端部とONUPON終端部が、各波長セット単位に常時通信し、前記OLT側動的SW部とONU側動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とするPONシステムにおける冗長化伝送システム。
A center side device (OLT) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of subscriber side devices (ONUs), and the OLT via the plurality of optical transmission lines In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission with an ONU,
The OLT includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength sets, and each wavelength It includes a dynamic SW unit of an upper layer that performs management of current and backup connection information set in units of units and switching control between current and backup connections,
The ONU includes a pair of ONUPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength sets, and each wavelength It includes a dynamic SW unit of an upper layer that performs management of current and backup connection information set in units of units and switching control between current and backup connections,
The OLTPON termination unit and the ONUPON termination unit always communicate with each wavelength set unit, and the OLT-side dynamic SW unit and the ONU-side dynamic SW unit switch and control the working and backup connections set for each wavelength set unit. Accordingly, a redundant transmission system in a PON system is characterized in that a wavelength set to be communicated is selected in units of ONUs, and failure recovery is performed.
光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、
前記OLTは、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、
前記ONUは、非冗長のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替電気SW部を備え、
前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、
前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替電気SW部の切替と、切替先のONU側光送受信部の送信波長の光出力開始と、切替元のONU側光送受信部の送信波長の光出力停止と、切替先のOLTPON終端部に対する登録制御を行い、
前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とするPONシステムにおける冗長化伝送システム。
A center side device (OLT) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of subscriber side devices (ONUs), and the OLT via the plurality of optical transmission lines In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission with an ONU,
The OLT includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and each OLTPON An ONU registration control unit that performs management of ONUs belonging to the terminal unit and system switching control within the OLT is provided.
The ONU includes a non-redundant ONUPON termination unit, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength sets, and an own ONU Comprising an ONU registration switching control unit and a system switching electrical SW unit that perform management of the OLPON termination unit to which the system belongs and system switching control within the ONU,
The OLTPON terminator and the ONUPON terminator communicate with each other through the wavelength of any wavelength set unit,
When the ONU registration switching control unit of the ONU receives the reception signal abnormality signal, the switching of the system switching electrical SW unit, the start of optical output of the transmission wavelength of the ONU side optical transmission / reception unit of the switching destination, and the switching source Stop the optical output of the transmission wavelength of the ONU side optical transceiver and perform registration control for the switching destination OLPON termination unit,
The ONT registration control unit of the OLT receives a signal notifying that the reception signal abnormality signal or the registration request from the ONU has been received from the OLTPON termination unit. A redundant transmission system in a PON system, wherein registration deletion control and registration control in an OLTPON termination unit of a switching destination are performed to select a wavelength set for communication in units of ONUs and perform fault recovery.
前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なることを特徴とする請求項1、2または3に記載のPONシステムにおける冗長化伝送システム。   4. The redundant transmission system in the PON system according to claim 1, wherein the wavelength sets have the same upstream signal wavelength and different downstream signal wavelengths. 5. 光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、
前記OLTは、1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、
前記ONUは、非冗長のONUPON終端部と、非冗長の波長可変光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、
前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、
前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記波長可変光送受信部における切替先のOLTPON終端部の波長セットに対応した送信波長の波長変換と、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行い、
前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とするPONシステムにおける冗長化伝送システム。
A center side device (OLT) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of subscriber side devices (ONUs), and the OLT via the plurality of optical transmission lines In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission with an ONU,
The OLT includes a pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and each OLTPON An ONU registration control unit that performs management of ONUs belonging to the terminal unit and system switching control within the OLT is provided.
The ONU includes a non-redundant ONUPON termination unit, a non-redundant wavelength tunable optical transmission / reception unit, a pair of optical wavelength demultiplexing units for demultiplexing wavelengths of the wavelength set, and an OLTPON termination unit to which the own ONU belongs. An ONU registration switching control unit and a system switching light SW unit for managing the system and controlling the system switching in the ONU,
The OLTPON terminator and the ONUPON terminator communicate with each other through the wavelength of any wavelength set unit,
When the ONU registration switching control unit of the ONU receives the reception signal abnormality signal, the wavelength conversion of the transmission wavelength corresponding to the wavelength set of the switching destination OLTPON termination unit in the wavelength tunable optical transmission / reception unit, and the system switching light Perform switching control of SW part and registration control for OLPON terminal part of switching destination,
The ONT registration control unit of the OLT receives a signal notifying that the reception signal abnormality signal or the registration request from the ONU has been received from the OLTPON termination unit. A redundant transmission system in a PON system, wherein registration deletion control and registration control in an OLTPON termination unit of a switching destination are performed to select a wavelength set for communication in units of ONUs and perform fault recovery.
光分岐素子および光伝送路媒体からなる複数の光伝送路に接続されるセンタ側装置(OLT)と複数の加入者側装置(ONU)とを有し、複数の光伝送路を介してOLTとONUとの間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送システムにおいて、
前記OLTは、1対のOLTPON終端部と、上り信号の波長が同一で、下り信号の波長のみが異なる1対の光送受信部と、各光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、
前記ONUは、非冗長のONUPON終端部と、受信波長のみが異なる非冗長の光送受信部と、光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、
前記OLTPON終端部とONUPON終端部が、いずれかの波長セット単位の波長を介して通信し、
前記ONUのONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行い、
前記OLTのONU登録制御部が、前記OLTPON終端部から、受信信号異常信号またはONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、障害復旧を行うことを特徴とするPONシステムにおける冗長化伝送システム。
A center side device (OLT) connected to a plurality of optical transmission lines composed of an optical branching element and an optical transmission line medium, and a plurality of subscriber side devices (ONUs), and the OLT via the plurality of optical transmission lines In a redundant transmission system in a point-multipoint optical transmission system (PON system) that performs signal transmission with an ONU,
The OLT is a pair of OLTPON termination units, a pair of optical transmission / reception units having the same upstream signal wavelength and different downstream signal wavelengths, and a pair for demultiplexing the communication wavelength of each optical transceiver. And an ONU registration control unit that performs management of ONUs belonging to each OLTPON termination unit and system switching control in the OLT,
The ONU includes a non-redundant ONUPON termination unit, a non-redundant optical transmission / reception unit that differs only in reception wavelength, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the communication wavelength of the optical transceiver, An ONU registration switching control unit and a system switching optical SW unit that perform management of an OLTPON termination unit and system switching control in the ONU,
The OLTPON terminator and the ONUPON terminator communicate with each other through the wavelength of any wavelength set unit,
When the ONU registration switching control unit of the ONU receives a reception signal abnormality signal, the ONU registration switching control unit performs switching control of the system switching optical SW unit and registration control for the switching destination OLPON termination unit,
The ONT registration control unit of the OLT receives a signal notifying that the received signal abnormality signal or the registration request from the ONU has been received from the OLTPON termination unit, so that the registration at the switching source OLTPON termination unit for the corresponding ONU A redundant transmission system in a PON system, wherein deletion control and registration control at a switching destination OLTPON termination unit are performed to select a wavelength set for communication in units of ONUs and perform failure recovery.
複数の光伝送路を介して複数の加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)のセンタ側装置(OLT)において、
1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、
前記OLTPON終端部が、前記ONUと波長セット単位に通信し、前記動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのOLT。
In a center side device (OLT) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a plurality of subscriber side devices (ONUs) via a plurality of optical transmission paths,
A pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and set for each wavelength set A higher layer dynamic SW unit for managing the current and spare connection information and controlling the switching between the current and spare connections,
The OLTPON termination unit communicates with the ONU in units of wavelength sets, and the dynamic SW unit switches between active and standby connections set for each wavelength set unit, thereby selecting a wavelength set for communication in units of ONUs. PON system OLT characterized by switching transmission line systems.
複数の光伝送路を介して複数の加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)のセンタ側装置(OLT)において、
1対のOLTPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各OLTPON終端部に属するONUの管理とOLT内の系切替制御を行うONU登録制御部を備え、
前記ONU登録制御部が、前記OLTPON終端部から、受信信号異常信号または前記ONUからの登録要求を受信したことを通知する信号を受信することにより、該当ONUに対する切替元のOLTPON終端部における登録削除制御と、切替先のOLTPON終端部における登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのOLT。
In a center side device (OLT) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a plurality of subscriber side devices (ONUs) via a plurality of optical transmission paths,
A pair of OLTPON termination units, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength sets, and each OLTPON termination unit An ONU registration control unit that performs ONU management and system switching control within the OLT is provided.
When the ONU registration control unit receives from the OLTPON termination unit a signal indicating that the received signal abnormality signal or the registration request from the ONU has been received, the registration deletion at the switching source OLTPON termination unit for the corresponding ONU An OLT for a PON system, which performs control and registration control at the switching destination OLPON termination unit, selects a wavelength set for communication in units of ONUs, and switches a transmission path system.
前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なることを特徴とする請求項7または8に記載のPONシステムのOLT。   9. The OLT of a PON system according to claim 7, wherein the wavelength set has the same upstream signal wavelength, and only the downstream signal wavelength is different. 複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、
1対のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、各波長セット単位に設定した現用と予備のコネクション情報の管理と現用と予備のコネクションの切替制御を行う上位レイヤの動的SW部を備え、
前記ONUPON終端部が、前記OLTと波長セット単位に通信し、前記動的SW部が各波長セット単位に設定した現用と予備のコネクションを切替制御することによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのONU。
In a subscriber side device (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) via a plurality of optical transmission paths,
A pair of ONUPON termination units, a pair of optical transmission / reception units having different wavelength sets for transmission / reception wavelengths, a pair of optical wavelength demultiplexing units for demultiplexing the wavelengths of the wavelength sets, and set for each wavelength set A higher layer dynamic SW unit for managing the current and spare connection information and controlling the switching between the current and spare connections,
The ONUPON termination unit communicates with the OLT in units of wavelength sets, and the dynamic SW unit switches between active and standby connections set for each wavelength set unit, thereby selecting a wavelength set for communication in units of ONUs. The ONU of the PON system is characterized by switching the transmission path system.
複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、
非冗長のONUPON終端部と、送受信波長の波長セットが異なる1対の光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替電気SW部を備え、
前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替電気SW部の切替と、切替先の光送受信部の送信波長の光出力開始と、切替元の光送受信部の送信波長の光出力停止と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのONU。
In a subscriber side device (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) via a plurality of optical transmission paths,
Non-redundant ONUPON termination unit, a pair of optical transmission / reception units having different wavelength sets of transmission / reception wavelengths, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength set, and an OLTPON termination to which the own ONU belongs Comprising an ONU registration switching control unit and a system switching electric SW unit for managing the system and controlling the system switching in the ONU,
When the ONU registration switching control unit receives the reception signal abnormality signal, the switching of the system switching electrical SW unit, the start of optical output of the transmission wavelength of the switching destination optical transmission / reception unit, and the switching source optical transmission / reception unit An ONU of a PON system, wherein a transmission wavelength system is switched by selecting a wavelength set to be communicated in units of ONUs by stopping optical output of a transmission wavelength and performing registration control for a switching destination OLTPON termination unit.
前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なることを特徴とする請求項10または11に記載のPONシステムのONU。   12. The ONU of the PON system according to claim 10, wherein the wavelength sets have the same upstream signal wavelength and different downstream signal wavelengths. 複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、
非冗長のONUPON終端部と、非冗長の波長可変光送受信部と、前記波長セットの波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、
前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記波長可変光送受信部における切替先のOLTPON終端部の波長セットに対応した送信波長の波長変換と、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのONU。
In a subscriber side device (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) via a plurality of optical transmission paths,
Non-redundant ONUPON termination unit, non-redundant wavelength tunable optical transmission / reception unit, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing wavelengths of the wavelength set, and management and ONU of the OLTPON termination unit to which the own ONU belongs An ONU registration switching control unit and a system switching light SW unit that perform system switching control in the system,
When the ONU registration switching control unit receives the reception signal abnormality signal, the wavelength conversion of the transmission wavelength corresponding to the wavelength set of the OLTPON termination unit of the switching destination in the wavelength tunable optical transmission / reception unit, and the system switching light SW unit The ONU of the PON system is characterized in that the wavelength set to be communicated is selected in units of ONUs and the transmission path system is switched by performing registration control on the switching destination OLTPON termination unit.
複数の光伝送路を介してセンタ側装置(OLT)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)の加入者側装置(ONU)において、
非冗長のONUPON終端部と、受信波長のみが異なる非冗長の光送受信部と、光送受信器の通信波長を多重分離するための1対の光波長多重分離部と、自ONUが属するOLTPON終端部の管理とONU内の系切替制御を行うONU登録切替制御部および系切替光SW部を備え、
前記ONU登録切替制御部が、受信信号異常信号を受信することにより、前記系切替光SW部の切替と、切替先のOLTPON終端部に対する登録制御を行うことによって、通信する波長セットをONU単位に選択し、伝送路系の切替を行うことを特徴とするPONシステムのONU。
In a subscriber side device (ONU) of a point-multipoint optical transmission system (PON system) that performs signal transmission with a center side device (OLT) via a plurality of optical transmission paths,
Non-redundant ONUPON termination unit, non-redundant optical transmission / reception unit that differs only in reception wavelength, a pair of optical wavelength multiplexing / demultiplexing units for demultiplexing the communication wavelength of the optical transceiver, and an OLPON termination unit to which the own ONU belongs An ONU registration switching control unit and a system switching light SW unit for managing the system and controlling the system switching in the ONU,
When the ONU registration switching control unit receives the reception signal abnormality signal, the switching of the system switching optical SW unit and the registration control for the switching destination OLTPON termination unit are performed, so that the wavelength set to be communicated is set on an ONU basis. An ONU of the PON system, characterized by selecting and switching the transmission path system.
複数の光伝送路を介して加入者側装置(ONU)との間で信号伝送を行うポイント−マルチポイント光伝送システム(PONシステム)における冗長化伝送方法において、
前記OLTとONUとの間に、現用の伝送路系に収容する現用パスと予備の伝送路系に収容する予備パスを送受信波長が異なる波長セットを用いて設定し、障害時は、ONU毎に現用パスもしくは予備パスを選択し、現用と予備の伝送路系の切替を行うことを特徴とするPONシステムにおける冗長化伝送方法。
In a redundant transmission method in a point-multipoint optical transmission system (PON system) that performs signal transmission with a subscriber unit (ONU) via a plurality of optical transmission paths,
Between the OLT and the ONU, the working path accommodated in the working transmission line system and the protection path accommodated in the backup transmission line system are set using wavelength sets having different transmission and reception wavelengths, and each ONU at the time of failure is set. A redundant transmission method in a PON system, wherein a working path or a backup path is selected and switching between a working path and a backup transmission line system is performed.
前記波長セットは、上り信号の波長が同一で、下り信号の波長のみが異なることを特徴とする請求項15に記載のPONシステムにおける冗長化伝送方法。   16. The redundant transmission method in the PON system according to claim 15, wherein the wavelength sets have the same upstream signal wavelength and different downstream signal wavelengths.
JP2008195286A 2008-07-29 2008-07-29 Redundant transmission system in point-multipoint system Expired - Fee Related JP5058910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195286A JP5058910B2 (en) 2008-07-29 2008-07-29 Redundant transmission system in point-multipoint system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195286A JP5058910B2 (en) 2008-07-29 2008-07-29 Redundant transmission system in point-multipoint system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012066038A Division JP5335952B2 (en) 2012-03-22 2012-03-22 Redundant transmission system in point-multipoint system

Publications (2)

Publication Number Publication Date
JP2010034877A true JP2010034877A (en) 2010-02-12
JP5058910B2 JP5058910B2 (en) 2012-10-24

Family

ID=41738858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195286A Expired - Fee Related JP5058910B2 (en) 2008-07-29 2008-07-29 Redundant transmission system in point-multipoint system

Country Status (1)

Country Link
JP (1) JP5058910B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160938A (en) * 2011-02-01 2012-08-23 Nec Corp Path switching control system and path switching control method
JP2013229743A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Optical communication system
JP2014072545A (en) * 2012-09-27 2014-04-21 Oki Electric Ind Co Ltd Station side device for wdm/tdm-pon mode and optical communication network system
JP2014078797A (en) * 2012-10-09 2014-05-01 O F Networks Co Ltd Redundant system, optical communication device and master station device
WO2015063956A1 (en) * 2013-11-01 2015-05-07 三菱電機株式会社 Slave station device, master station device, control device, communication system and wavelength switching method
WO2016013616A1 (en) * 2014-07-24 2016-01-28 日本電信電話株式会社 Optical communication system, station-side device, subscriber device, and optical communication method
JP2017515327A (en) * 2014-03-05 2017-06-08 華為技術有限公司Huawei Technologies Co.,Ltd. Link switching method, apparatus and system
JP2017147743A (en) * 2017-04-10 2017-08-24 沖電気工業株式会社 Redundant system, master station device, and slave station device
US9794018B2 (en) 2013-03-08 2017-10-17 Fujitsu Limited Optical network system and optical communication method
JP2018500844A (en) * 2014-12-30 2018-01-11 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method, apparatus, and system applied to multi-wavelength passive optical network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242207A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Multi-stage light branching point/multi-point optical transmission system
JPH11122172A (en) * 1997-10-20 1999-04-30 Fujitsu Ltd Optical subscriber network system
WO2004107626A1 (en) * 2003-05-28 2004-12-09 Nippon Telegraph And Telephone Corporation Optical wavelength multiplex access system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242207A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Multi-stage light branching point/multi-point optical transmission system
JPH11122172A (en) * 1997-10-20 1999-04-30 Fujitsu Ltd Optical subscriber network system
WO2004107626A1 (en) * 2003-05-28 2004-12-09 Nippon Telegraph And Telephone Corporation Optical wavelength multiplex access system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160938A (en) * 2011-02-01 2012-08-23 Nec Corp Path switching control system and path switching control method
JP2013229743A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Optical communication system
JP2014072545A (en) * 2012-09-27 2014-04-21 Oki Electric Ind Co Ltd Station side device for wdm/tdm-pon mode and optical communication network system
JP2014078797A (en) * 2012-10-09 2014-05-01 O F Networks Co Ltd Redundant system, optical communication device and master station device
US9794018B2 (en) 2013-03-08 2017-10-17 Fujitsu Limited Optical network system and optical communication method
JPWO2015063956A1 (en) * 2013-11-01 2017-03-09 三菱電機株式会社 Master station apparatus and communication system
CN105684326A (en) * 2013-11-01 2016-06-15 三菱电机株式会社 Slave station device, master station device, control device, communication system and wavelength switching method
JP6072285B2 (en) * 2013-11-01 2017-02-01 三菱電機株式会社 Master station apparatus and communication system
US9768862B2 (en) 2013-11-01 2017-09-19 Mitsubishi Electric Corporation Slave station apparatus, master station apparatus, control device, communication system, and wavelength switching method
WO2015063956A1 (en) * 2013-11-01 2015-05-07 三菱電機株式会社 Slave station device, master station device, control device, communication system and wavelength switching method
JP2017515327A (en) * 2014-03-05 2017-06-08 華為技術有限公司Huawei Technologies Co.,Ltd. Link switching method, apparatus and system
WO2016013616A1 (en) * 2014-07-24 2016-01-28 日本電信電話株式会社 Optical communication system, station-side device, subscriber device, and optical communication method
JPWO2016013616A1 (en) * 2014-07-24 2017-04-27 日本電信電話株式会社 Optical communication system, station side device, subscriber device, and optical communication method
US10009137B2 (en) 2014-07-24 2018-06-26 Nippon Telegraph And Telephone Corporation Optical communication system, station-side device, subscriber device, and optical communication method
JP2018500844A (en) * 2014-12-30 2018-01-11 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method, apparatus, and system applied to multi-wavelength passive optical network
US10123101B2 (en) 2014-12-30 2018-11-06 Huawei Technologies Co., Ltd. Communication method applied to multi-wavelength passive optical network, apparatus, and system
JP2017147743A (en) * 2017-04-10 2017-08-24 沖電気工業株式会社 Redundant system, master station device, and slave station device

Also Published As

Publication number Publication date
JP5058910B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5058910B2 (en) Redundant transmission system in point-multipoint system
JP5204234B2 (en) PON system and redundancy method
US7174096B2 (en) Method and system for providing protection in an optical communication network
US8280244B2 (en) Optical ring network system
WO2009145118A1 (en) Wavelength path communication node device, wavelength path communication control method, program, and recording medium
US20030169470A1 (en) Method and system for bi-directional path switched network
JP5335952B2 (en) Redundant transmission system in point-multipoint system
JP6094666B2 (en) Optical network system and optical communication method
JP2013243559A (en) Optical transmission node and path switching method
EP3130096A1 (en) Rogue optical network unit mitigation in passive optical networks
JP6285611B2 (en) Station side device and wavelength switching monitoring method
Kanungoe et al. A new protection scheme for a combined ring-star based hybrid WDM/TDM PON architecture
JP2011217298A (en) Pon system, station-side device and terminal-side device thereof, and rtt correction method
JP4905076B2 (en) Station side equipment
JP2002185485A (en) Optical ring network system, optical node unit, method of making optical ring network system redundant
JP2015173384A (en) Communication system, subscriber device, station side device and uninterruptible switching method
JP2009088785A (en) Optical access network system
JP4367708B2 (en) Redundant transmission system in point-multipoint system
JP6296834B2 (en) Parent station device, control device, optical communication system, and fault switching method
EP2517390B1 (en) Method and device for data protection in an optical communication network
KR101013722B1 (en) communication channel switching system and method for WDM-PON
KR20180110344A (en) WDM-based PON Reach Extender Providing Redundant Line
WO2016157238A1 (en) Station-side device and communication system
JP2008028718A (en) Subscriber device, station device and passive optical network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees