JP2010032223A - Method for attaching liquid specimen to probe, liquid specimen container, and tool used for its use - Google Patents

Method for attaching liquid specimen to probe, liquid specimen container, and tool used for its use Download PDF

Info

Publication number
JP2010032223A
JP2010032223A JP2008191549A JP2008191549A JP2010032223A JP 2010032223 A JP2010032223 A JP 2010032223A JP 2008191549 A JP2008191549 A JP 2008191549A JP 2008191549 A JP2008191549 A JP 2008191549A JP 2010032223 A JP2010032223 A JP 2010032223A
Authority
JP
Japan
Prior art keywords
liquid sample
cylindrical main
main body
probe
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008191549A
Other languages
Japanese (ja)
Other versions
JP5360533B2 (en
Inventor
Hideyuki Shinagawa
秀行 品川
Tei Shimizu
禎 清水
Shinobu Oki
忍 大木
Teruaki Fujito
輝昭 藤戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008191549A priority Critical patent/JP5360533B2/en
Publication of JP2010032223A publication Critical patent/JP2010032223A/en
Application granted granted Critical
Publication of JP5360533B2 publication Critical patent/JP5360533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately measure a liquid specimen with the liquid specimen set even on an MAS (Magic Angle Spinning) probe for solid NMR (Nuclear Magnetic Resonance), and to effectively measure even a minute liquid specimen. <P>SOLUTION: In a method for attaching the liquid specimen, the liquid specimen is sealed in a specimen container comprising a tubular body, a bottom part closing one side thereof, and a hermetic stopper closing the other side thereof. The height position of the liquid specimen is adjusted so that the middle part of the liquid specimen corresponds to the center part of an NMR measurement coil with the liquid specimen attached to the probe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、核磁気共鳴(NMR)測定におけるマジックアングルスピニング(MAS)プローブへの液状試料取付方法、特に固体NMR用MASプローブを用いた液状試料の測定を可能にする方法と液状試料容器及びその使用に用いる工具に関する。   The present invention relates to a method for attaching a liquid sample to a magic angle spinning (MAS) probe in nuclear magnetic resonance (NMR) measurement, in particular, a method for enabling measurement of a liquid sample using a MAS probe for solid NMR, a liquid sample container, and It relates to a tool used for use.

非特許文献1に示され公知の固体NMR測定において、特に線幅が広くて観測しにくい四極子核等の測定のときなどに、化学シフトの基準値の取得や測定パルスシーケンスの設定あるいはプローブの調整などのため、既知の標準物質についてMASを必要としない溶液試料のNMR測定を固体NMR用MASプローブで行いたい場合がある。
しかし、本来固体用に設定されたMASプローブに液状試料を装着すること自体が不可能とされていたもので、このようなニーズを達成することは不可能とされていた。
実験化学講座8「NMR・ESR」第5版、日本化学会編、(丸善、2006)
In the known solid-state NMR measurement shown in Non-Patent Document 1, acquisition of a chemical shift reference value, setting of a measurement pulse sequence, or probe setting, particularly when measuring a quadrupole nucleus having a wide line width that is difficult to observe, etc. For adjustment and the like, there is a case where it is desired to perform NMR measurement of a solution sample that does not require MAS for a known standard substance with a MAS probe for solid-state NMR.
However, it was impossible to attach a liquid sample to a MAS probe originally set for a solid, and it was impossible to achieve such a need.
Laboratory Chemistry Lecture 8 "NMR / ESR" 5th edition, The Chemical Society of Japan, (Maruzen, 2006)

本発明は、このような実情に鑑み、固体NMR用MASプローブに対しても液状試料を設定でき適性に測定できるようにすること、および、微小な液状試料をも有効に測定できるようにすることを課題として成されたものである。   In view of such circumstances, the present invention enables setting a liquid sample even for a solid NMR MAS probe so that it can be measured appropriately, and enabling effective measurement of even a small liquid sample. Was made as an issue.

発明1の液状試料取付方法は、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなる試料容器に封入された液状試料の中央部が、前記プローブへの取付状態において、NMR測定コイルの中心部に対応するように、前記液状試料の高さ位置を調整することを特徴とする。   The liquid sample mounting method according to the first aspect of the present invention is such that a central portion of a liquid sample sealed in a sample container comprising a cylindrical main body, a bottom portion for closing one side, and a sealing plug for closing the other side is attached to the probe. The height position of the liquid sample is adjusted so as to correspond to the center of the NMR measurement coil.

発明2は、発明1の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、封入される液状試料の量に対応して、封入された液状試料の中央部が、プローブ取付状態での筒状本体の一定位置に位置するように前記底部を前記筒状本体に対して配置してあることを特徴とする。   Invention 2 is a liquid sample container used in the liquid sample mounting method of Invention 1, comprising a cylindrical main body, a bottom part for closing one of the cylindrical bodies, and a sealing stopper for closing the other, and the amount of the liquid sample to be enclosed Corresponding to the above, the bottom portion is arranged with respect to the cylindrical main body so that the central portion of the sealed liquid sample is located at a fixed position of the cylindrical main body in the probe mounting state. .

発明3は、発明1の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、前記底部の前記筒状本体の長さ方向における固定位置を調整可能にしてあることを特徴とする。   Invention 3 is a liquid sample container used in the liquid sample mounting method of Invention 1, comprising a cylindrical main body, a bottom portion for closing one of the cylindrical main bodies, and a sealing plug for closing the other, and the cylindrical main body of the bottom portion. The fixed position in the length direction is adjustable.

発明4は、発明1の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、前記筒状本体からの頭部の突出長さが調整可能なスペーサボルトが前記底部の外側に設けられており、当該スペーサボルトにより、前記プローブへの取付高さ位置が調整可能にしてあることを特徴とする。   Invention 4 is a liquid sample container used for the method of attaching a liquid sample of Invention 1, comprising a cylindrical main body, a bottom part for closing one of them, and a sealing plug for closing the other, and a head from the cylindrical main body. A spacer bolt capable of adjusting the protruding length of the portion is provided outside the bottom portion, and the height of the attachment to the probe can be adjusted by the spacer bolt.

発明5は、発明2又は3の液状試料容器であって、前記筒状本体からの頭部の突出長さが調整可能なスペーサボルトが前記底部の外側に設けられており、当該スペーサボルトにより、前記プローブへの取付高さ位置が調整可能にしてあることを特徴とする。   Invention 5 is the liquid sample container of Invention 2 or 3, wherein a spacer bolt capable of adjusting the protrusion length of the head from the cylindrical main body is provided outside the bottom, and the spacer bolt The mounting height position to the probe is adjustable.

発明6は、発明1から5の液状試料取付方法に用いる液状試料容器への液状試料の封入量を計測する計測具であって、前記容器を、底部を下にした立ち姿勢にして収納する筒状部材の側面に、前記容器に封入された液状試料の中央部が一定の範囲にあるか否かを示す目盛りが設けてあることを特徴とする。   A sixth aspect of the present invention is a measuring instrument for measuring the amount of liquid sample enclosed in the liquid sample container used in the liquid sample mounting method according to any of the first to fifth aspects of the present invention, wherein the container is stored in a standing posture with the bottom portion down. A scale indicating whether or not the central portion of the liquid sample sealed in the container is in a certain range is provided on the side surface of the shaped member.

発明7は、発明1から5のいずれかの液状試料取付方法に用いる液状試料容器への密封栓取扱具であって、前記密封栓の抜き差し方向を中心線とし、その中心線回りの複数箇所にて前記密封栓の頭部を把持する把持部と、この把持部の内間隔を拡縮する把持部拡縮構造とからなることを特徴とする。   A seventh aspect of the present invention is a seal plug handling tool for a liquid sample container used in the liquid sample mounting method according to any one of the first to fifth aspects, wherein the sealing plug is inserted into and removed from a central line at a plurality of locations around the central line. The gripping portion for gripping the head of the sealing plug and a gripping portion expanding / contracting structure for expanding and contracting the inner space of the gripping portion.

発明1の方法により、試料容器内に封入され、形状が安定化された液状試料は、固体試料と同様に、NMR測定がなされることとなり、固体資料用のプローブを用いながらも液状試料の測定を可能としたものである。
また、このようにして測定することで、試料の量にかかわらず、安定した測定が行えるようになった。
The liquid sample sealed in the sample container and stabilized in shape by the method of the invention 1 is subjected to NMR measurement in the same manner as the solid sample, and the measurement of the liquid sample is performed while using the probe for solid data. Is possible.
Further, by measuring in this way, stable measurement can be performed regardless of the amount of the sample.

発明2の液状試料容器は、封入される液状試料の量に対応して、底部が配置されているので、その容器に予め設定された量の試料を封入することによって、前記発明1の方法を簡単に実施することができるようになる。   Since the bottom of the liquid sample container of the invention 2 is arranged corresponding to the amount of the liquid sample to be sealed, the method of the invention 1 can be performed by sealing a predetermined amount of the sample in the container. It becomes possible to carry out easily.

発明3の液状試料容器は、使用できる液状試料の量に合わせ、適正な位置を維持できるように容器の容量調整を底部の位置調整で行えるようにしたものである。
このようにして、発明2では、容量の異なる容器を複数揃える必要があったが、本発明では、使用できる液状試料の量に個々の容器を対応させることができるようになった。
The liquid sample container of the invention 3 is configured such that the volume of the container can be adjusted by adjusting the position of the bottom so that an appropriate position can be maintained in accordance with the amount of the liquid sample that can be used.
Thus, in the invention 2, it is necessary to prepare a plurality of containers having different capacities, but in the present invention, each container can be made to correspond to the amount of the liquid sample that can be used.

発明4では、スペーサボルトを用いることにより、封入された液状試料の量の相違により生じる液面の違いを、調整するものであり、発明2、3のような容量変更を伴わない分、プローブへの取付時に容易に調整ができる点で有利である。
しかし、その調整可能な範囲は僅かであるので、発明5のように、発明2又は3と併用することで、より高精度の調整を容易に行えるようになる。
In the invention 4, by using the spacer bolt, the difference in the liquid level caused by the difference in the amount of the encapsulated liquid sample is adjusted, and to the probe by the amount not accompanied by the capacity change as in the inventions 2 and 3. This is advantageous in that it can be easily adjusted when mounting.
However, since the adjustable range is very small, it is possible to easily adjust with higher accuracy by using the invention 2 or 3 together as in the invention 5.

発明6の測定具は、液状試料が容器に対して適正な量封入されているかを容易に確認する為の測定具であり、NMRの測定結果を得るまでもなく、正確な測定が可能か否かを容易に予め判別することができる。   The measuring tool of the invention 6 is a measuring tool for easily confirming whether an appropriate amount of the liquid sample is sealed in the container, and whether or not an accurate measurement is possible without obtaining an NMR measurement result. Can be easily determined in advance.

発明7は、当該液状試料容器が、4mm前後の小さい直径のものであるから、その密封栓の取扱は極めて困難であった。特に、体積弾性により密封性を強化するような栓では、手指をもって、筒状本体に出し入れすることは困難である。
これに対して本発明の取扱具を用いると、密封栓の頭部を強く保持するとともに、保持が、筒状本体への出し入れを邪魔しないので、挿入時及び抜き出し時のいずれにおいても利用できるようになった。
In the invention 7, since the liquid sample container has a small diameter of about 4 mm, it is very difficult to handle the sealing stopper. In particular, with a plug that enhances the sealing performance by volume elasticity, it is difficult to put it in and out of the cylindrical body with fingers.
On the other hand, when the handling tool of the present invention is used, the head of the sealing plug is strongly held and the holding does not interfere with the insertion and removal from the cylindrical main body, so that it can be used both when inserting and withdrawing. Became.

NMR測定では、静磁場中に置かれた試料に測定コイルによって高周波磁場を照射し、その間およびそれに引き続く試料の電磁的応答が測定コイルによって観測される。
MASプローブは、円筒状試料管内に収められた固体試料を、静磁場の方向に対して概ね54.7度(MAS角)傾いた軸上で高速回転(MAS)させる機構を有する。通常、静磁場の発生には超電導磁石を用い、磁場の方向は鉛直方向に設定されるため、MASプローブにおいては、試料空間は円筒状で水平に対してやや上向きに傾いて設定されている。
測定に際しては、試料空間の底部から測定コイルの中心(測定中心)までの距離をhとすると、試料はh±aの範囲に、測定中心に対して対称的になるように保持することが要求される。aの値は用いる試料の量に依存して変化するので、液状試料の場合は、aの変化に対応して容器の底部の高さLを調整する必要がある。底の高さと測定中心とは、「L=h−a」に表される式で関係付けられる。測定すべき試料の量は、下記の種々の要因により様々な値をとる。
(1)一般に、試料の量が多くなると、信号強度が大きくなるという利点をもたらす。一方でそれと引き換えに、静磁場の均一度が広い空間で要求されるようになるため、シムコイルによる静磁場の均一度の調整が難しくなる。また、測定コイルの端付近は、コイルの発生する高周波磁場の強度の均一度が悪いので、試料に照射される実効的なパルス磁場強度(パルス強度×パルス幅)の均一度が悪化する。それらの結果、測定信号の線幅や線形が悪化するのが一般的である。よって、測定コイルの長さをbとすると、多くの場合「2a≦b」であることが望ましい。また、線幅や線形を重視する場合は、測定は信号強度が確保できる範囲において、なるべく少量の試料を用いて行いたいので、必要に応じて量と質との兼ね合いをとることが求められる。
(2)試料によっては、合成や分離が困難で、ごく微量にしか得られないことがある。
(3)固体NMR測定に先立っての調整に用いる場合は、aが固体試料の大きさに合うように溶液試料の量を設定することが求められる。
In NMR measurement, a sample placed in a static magnetic field is irradiated with a high-frequency magnetic field by a measurement coil, and the electromagnetic response of the sample during and after that is observed by the measurement coil.
The MAS probe has a mechanism for rotating a solid sample contained in a cylindrical sample tube at a high speed (MAS) on an axis inclined by approximately 54.7 degrees (MAS angle) with respect to the direction of the static magnetic field. Usually, a superconducting magnet is used to generate a static magnetic field, and the direction of the magnetic field is set in the vertical direction. Therefore, in the MAS probe, the sample space is cylindrical and is set slightly inclined upward with respect to the horizontal.
When measuring, if the distance from the bottom of the sample space to the center of the measurement coil (measurement center) is h, the sample must be held in the range of h ± a so as to be symmetrical with respect to the measurement center. Is done. Since the value of a varies depending on the amount of sample used, in the case of a liquid sample, it is necessary to adjust the height L of the bottom of the container corresponding to the variation of a. The height of the bottom and the measurement center are related by an expression represented by “L = ha”. The amount of sample to be measured varies depending on the following various factors.
(1) In general, when the amount of the sample is increased, there is an advantage that the signal intensity is increased. On the other hand, since the uniformity of the static magnetic field is required in a wide space, it is difficult to adjust the uniformity of the static magnetic field by the shim coil. In addition, the uniformity of the strength of the high-frequency magnetic field generated by the coil is poor near the end of the measurement coil, so that the uniformity of the effective pulse magnetic field strength (pulse strength × pulse width) applied to the sample is deteriorated. As a result, the line width and linearity of the measurement signal are generally deteriorated. Therefore, when the length of the measurement coil is b, in many cases, it is desirable that “2a ≦ b”. In addition, when importance is attached to the line width and linearity, the measurement is desired to be performed using as small a sample as possible within a range in which the signal intensity can be ensured. Therefore, it is necessary to balance the quantity and quality as necessary.
(2) Depending on the sample, synthesis and separation may be difficult and may be obtained in very small amounts.
(3) When used for adjustment prior to solid-state NMR measurement, it is required to set the amount of the solution sample so that a matches the size of the solid sample.

図8、図9は、本発明が対象にしたNMR測定におけるMASプローブ(P)を示す写真である。
図9はMASプローブに固体試料を設定した状態を示す。構造を見やすくするためシールド等の外装部品は取り外してある。固体試料は専用の固体MAS試料管内に保持され、試料取付台(H)内に設定される。固体MAS試料管は、回転駆動用のタービン翼と空気軸受の回転子を兼ねる胴体とを備え、プローブ(P)の試料取付台(H)内に保持される太さと長さを有した棒状に設定されている。蓋(X)は、スラスト軸受を兼ねており、固体MAS試料管が高速回転中に外部に飛び出さないよう設定されている。
本発明の容器は、この固体MAS試料管に相当する太さと長さを持つ筒状本体(20)(20b)を基本構成要素とするものである。
そして、当該プローブ(P)では、NMR測定コイルの中心部(測定中心)が、前記固体MAS試料管の長さ方向の概ね中央部の特定の位置に対応するように設定されている。以下の実施例では、これに対応するように液状試料の中央が、筒状本体(20)(20b)のプローブに装着した状態における測定中心に設定されるようにすることを目的としている。また、プローブへの出し入れの便に配慮して、全長を固体MAS試料管よりも少し長めに設定し、その一部が試料取付台(H)より突出するようにしてある。
なお、本発明において、液状試料とは、常温で液体である試料のみならず、微粒の集合試料等も含まれるものである。
8 and 9 are photographs showing the MAS probe (P) in the NMR measurement targeted by the present invention.
FIG. 9 shows a state in which a solid sample is set on the MAS probe. Exterior parts such as shields have been removed to make the structure easier to see. The solid sample is held in a dedicated solid MAS sample tube and set in the sample mount (H). The solid MAS sample tube includes a turbine blade for rotation driving and a body that also serves as a rotor of an air bearing, and is formed into a rod shape having a thickness and a length that are held in the sample mounting base (H) of the probe (P). Is set. The lid (X) also serves as a thrust bearing, and is set so that the solid MAS sample tube does not protrude outside during high-speed rotation.
The container of the present invention has a cylindrical main body (20) (20b) having a thickness and length corresponding to this solid MAS sample tube as a basic component.
And in the said probe (P), the center part (measurement center) of a NMR measurement coil is set so as to correspond to the specific position of the approximate center part of the length direction of the said solid MAS sample tube. In the following embodiments, the objective is to set the center of the liquid sample as the measurement center in a state where the center of the liquid sample is attached to the probe of the cylindrical main body (20) (20b). Further, considering the convenience of loading / unloading to / from the probe, the total length is set slightly longer than the solid MAS sample tube, and a part thereof protrudes from the sample mounting base (H).
In the present invention, the liquid sample includes not only a sample that is liquid at room temperature but also an aggregate sample of fine particles.

また筒状本体の材質は、ガラス、セラミクス、樹脂(ダイフロン:登録商標)などの硬質材料を用い、その密封栓(10)は、テフロン(登録商標)等の硬質ゴムに近い硬さと弾性を有する材質により構成してある。
また、その断面形状の、実施例に示す円筒に限らず、三角、四角或いは六角などの多角柱状であっても、その角が密封栓(10)(筒状本体と同様な断面形状を持つ)の外周が隙間無く入り込むような丸みをもっておれば、何ら問題なく実施可能である。
The cylindrical body is made of a hard material such as glass, ceramics, or resin (Dyflon: registered trademark), and the sealing plug (10) has hardness and elasticity close to a hard rubber such as Teflon (registered trademark). It consists of material.
In addition, the cross-sectional shape is not limited to the cylinder shown in the embodiment, and the corner is hermetically sealed (10) (having a cross-sectional shape similar to that of the cylindrical main body) even if it is a polygonal column shape such as a triangle, square, or hexagon If there is a roundness so that the outer periphery of the can enter without gaps, it can be carried out without any problems.

容器の材質には、NMR測定に影響を与えないように、次のような性質をもつことが要求される。第一に、静磁場の均一度を乱さないこと、すなわち、磁化率が小さいこと。いわゆる非磁製体であるだけでは不十分で、微量な不純物等の影響もないことが求められる。第二に、測定コイルの作る高周波磁場を乱さないこと、すなわち、絶縁体であること、および、誘電損失の少ない材質であること。高周波磁場の周波数は静磁場強度および測定核種に依存して定められ、概ね1〜2000MHzの範囲の値をとる。第三に、測定試料や溶媒に対して化学的に安定であること。第四に、不要なNMR信号(バックグラウンド信号)の原因となる測定核と同じ核種の元素を含まないか含んでいても測定に影響しないこと。これは、測定コイルの内側に設置される筒状本体(20)では特に重要である。
ダイフロン(登録商標:三弗化弗素樹脂)やテフロン(登録商標:四弗化弗素樹脂)に代表される弗素樹脂は、上に挙げた要件をよく満たすばかりではなく、加工性にも優れており、本発明の実施に特に適した材料である。特に、ダイフロン(登録商標)は適度な剛性と透明性をもつため筒状本体(20、20a)に適しており、また、テフロン(登録商標)は適度な弾性をもつため密封栓(10)や可動底部(40、50)に適している。また、水素原子核を測定しない(水素原子核のバックグラウンド信号を許容する)場合は、ダイフロン(登録商標)に換えてより安価な材料であるポリプロピレン等を用いることができる。
測定核によっては、バックグラウンド信号の影響を避けるために、ガラス、あるいは、ジルコニアやアルミナに代表されるセラミクスを用いると良い場合がある。
スペーサボルト(30)は、測定中心から離れているためバックグラウンド信号等の影響が比較的少ない。そのため、加工性や機械的特性を優先して、ポリアセタール(POM)やポリエーテルエーテルケトン(PEEK)に代表される各種のエンジニアリングプラスチック材料を利用することが出来る。
The material of the container is required to have the following properties so as not to affect the NMR measurement. First, it does not disturb the uniformity of the static magnetic field, that is, the magnetic susceptibility is small. It is required that the so-called non-magnetic body is not sufficient, and there is no influence of a minute amount of impurities. Second, it must not disturb the high-frequency magnetic field produced by the measuring coil, that is, it must be an insulator and a material with low dielectric loss. The frequency of the high frequency magnetic field is determined depending on the strength of the static magnetic field and the measurement nuclide, and generally takes a value in the range of 1 to 2000 MHz. Third, it must be chemically stable to the measurement sample and solvent. Fourth, it should not affect the measurement even if it contains or does not contain an element of the same nuclide as the measurement nucleus that causes unnecessary NMR signals (background signal). This is particularly important for the cylindrical body (20) installed inside the measuring coil.
Fluororesin represented by Daiflon (registered trademark: trifluorinated fluororesin) and Teflon (registered trademark: tetrafluorinated fluororesin) not only fulfills the above requirements well, but also has excellent workability. It is a particularly suitable material for the practice of the present invention. In particular, Daiflon (registered trademark) is suitable for the cylindrical body (20, 20a) because it has appropriate rigidity and transparency, and Teflon (registered trademark) is suitable for the sealing plug (10) because it has appropriate elasticity. Suitable for movable bottom (40, 50). Further, when hydrogen nuclei are not measured (a background signal of hydrogen nuclei is allowed), polypropylene or the like, which is a cheaper material, can be used instead of Daiflon (registered trademark).
Depending on the measurement nucleus, in order to avoid the influence of the background signal, it may be preferable to use glass or ceramics typified by zirconia or alumina.
Since the spacer bolt (30) is away from the measurement center, the influence of the background signal and the like is relatively small. Therefore, various engineering plastic materials typified by polyacetal (POM) and polyetheretherketone (PEEK) can be used giving priority to processability and mechanical properties.

使用に際して、容器は底部を下にした立ち姿勢に保持し、溶液試料はシリンジまたは毛細管ピペットを用いて、容器低部に接するようにして所定の量まで注入され、密封栓(10)により密封される。このようにして設定された溶液試料は、容器内壁との間における表面張力により容器低部近傍に保持され、容器を水平近くにまで傾けてもこぼれ落ちることはない。   In use, the container is held in a standing position with the bottom down, and the solution sample is injected to a predetermined amount using a syringe or a capillary pipette so as to be in contact with the lower part of the container and sealed with a sealing stopper (10). The The solution sample set in this way is held in the vicinity of the lower part of the container by the surface tension between the container and the inner wall of the container, and does not spill out even when the container is tilted to near horizontal.

本実施例は、円筒状の筒状本体(20)に底部(22)を一体形成した例である。
筒状本体(20)と底部(22)は射出成形などにより一体形成され、底部(22)は筒状本体(20)の下端からの距離(L)を、規定する試料容量に合わせ、規定量の試料が入れられたときにその深さの中央部が筒状本体(20)の長手方向中央部に位置するように設定してある。
The present embodiment is an example in which a bottom portion (22) is integrally formed with a cylindrical tubular body (20).
The cylindrical main body (20) and the bottom part (22) are integrally formed by injection molding or the like, and the bottom part (22) matches the distance (L) from the lower end of the cylindrical main body (20) with the specified sample volume, and the specified amount. Is set so that the central portion of the depth is located at the central portion in the longitudinal direction of the cylindrical main body (20).

筒状本体(20)の収納空間(21)は、前記底部(22)を下端とし、上端には密封栓(10)が差し込まれて密封されるようにしてある。
この密封栓(10)は、前記筒状本体(20)の外周径と同じ外周径の頭部(11)と、その下端に一体化された栓部(12)とこの栓部(12)の下端に形成された膨出部(13)とを一体成形したものである。
前記栓部(12)は、前記筒状本体(20)の内径(d)と同じ直径を有し、膨出部(13)は、その体積弾性により前記栓部(12)と同じ太さになる程度の量、栓部(12)より太くした部分であり、前記筒状本体(20)に圧入されたとき、前記膨出部(13)の弾性変形による押圧力により、膨出部(13)及び栓部(12)が、前記筒状本体(20)の内面に密着して、内部を密封するようにしてある。
The storage space (21) of the cylindrical main body (20) has the bottom (22) as a lower end, and a sealing plug (10) is inserted into the upper end to be sealed.
The sealing plug (10) includes a head portion (11) having the same outer diameter as the outer diameter of the cylindrical body (20), a plug portion (12) integrated at the lower end thereof, and the plug portion (12). The bulging part (13) formed in the lower end is integrally formed.
The plug portion (12) has the same diameter as the inner diameter (d) of the cylindrical body (20), and the bulge portion (13) has the same thickness as the plug portion (12) due to its volume elasticity. It is a part thicker than the plug part (12), and when it is press-fitted into the cylindrical body (20), the bulging part (13) is pressed by the pressing force due to elastic deformation of the bulging part (13). ) And the plug portion (12) are in close contact with the inner surface of the cylindrical body (20) to seal the inside.

(30)は、スペーサボルトであって、雄ネジ(31)に下端に頭部(32)が一体成形された形状を有している。前記筒状本体(20)の下部(23)には、前記雄ネジ(31)をネジ込むための雌ネジ(24)が形成してある。このようにして、前記スペーサボルト(30)を前記筒状本体(20)の下部にねじ込み、そのねじ込み長さにより、前記頭部(32)の突出長さを調整可能にしてある。
この場合、前記距離(L)は、底部(22)の上部底からスペーサボルト(30)の頭部(32)の下面までの距離とする。
このようにして、前記試料取付台(H)に対する取付高さを調整できるようにしてある。
(30) is a spacer bolt having a shape in which the head (32) is integrally formed at the lower end of the male screw (31). A female screw (24) for screwing the male screw (31) is formed in the lower part (23) of the cylindrical main body (20). Thus, the spacer bolt (30) is screwed into the lower part of the cylindrical main body (20), and the protruding length of the head (32) can be adjusted by the screwed length.
In this case, the distance (L) is a distance from the upper bottom of the bottom (22) to the lower surface of the head (32) of the spacer bolt (30).
In this way, the mounting height with respect to the sample mounting base (H) can be adjusted.

本実施例は、底部(40)の位置を調整可能にした例で、図2、3を参照して以下に説明する。
なお、構成上前記実施例1と同様なものについては、図面に同じ符号を付け詳しい説明は省略した。
円筒状の筒状本体(20b)は、その全長にわたって同じ断面形状を有するストレートな形状を有している。
底部(40)は、前記密封栓(10)と同じ材質で直径が、筒状本体(20b)の内径(d)と同じ軸状に形成してある。上下両面には、受け面(41)(41)が設けてあり、上下中央部には、体積弾性変形にて内径(d)と同様な直径となりうる膨出部(42)が形成してある。
このようにして、棒状部材(図外)を用いて、図2に示すような向きで、前記底部(40)を前記筒状本体(20b)内に押し込むことにより、その膨出部(42)の弾性変形で、前記筒状本体(20b)の内面(21b)との密封性を保ちながら、その長手方向に底部位置を変更調整できるようにしてある。
The present embodiment is an example in which the position of the bottom (40) is adjustable, and will be described below with reference to FIGS.
In addition, about the structure similar to the said Example 1, the same code | symbol was attached | subjected to drawing and detailed description was abbreviate | omitted.
The cylindrical tubular body (20b) has a straight shape having the same cross-sectional shape over its entire length.
The bottom (40) is made of the same material as the sealing plug (10) and has the same diameter as the inner diameter (d) of the cylindrical main body (20b). Receiving surfaces (41) and (41) are provided on the upper and lower surfaces, and a bulging portion (42) that can have a diameter similar to the inner diameter (d) by volume elastic deformation is formed in the upper and lower central portions. .
In this way, by using the rod-like member (not shown) and pushing the bottom portion (40) into the cylindrical main body (20b) in the orientation as shown in FIG. With the elastic deformation, the bottom position can be changed and adjusted in the longitudinal direction while maintaining the sealing property with the inner surface (21b) of the cylindrical main body (20b).

本実施例は、実施例2にの底部の別例(50)を図4を参照して説明する。
底部(50)は上面を底面(51)とし、内部に下方に開放した挿入孔(53)が形成してあるもので、その他の点は前記実施例2の底部(40)と同様なものである。
本実施例の底部は、挿入孔(53)の存在により弾性が適度に調整されているため、膨出部を大きめに設定することができるので、加工精度に対する要求が緩和され、底部(50)の移動に要する力が安定している。また、挿入孔(53)にタッピングネジをねじ込んで把持することにより、底部(50)を底方向に引き出すこともできるようになっている。
In the present embodiment, another example (50) of the bottom of the second embodiment will be described with reference to FIG.
The bottom part (50) has a bottom surface (51) on the top surface and has an insertion hole (53) opened downward in the interior, and the other points are the same as the bottom part (40) of the second embodiment. is there.
Since the elasticity of the bottom portion of the present embodiment is moderately adjusted due to the presence of the insertion hole (53), the bulge portion can be set to be larger, so that the demand for processing accuracy is eased and the bottom portion (50). The force required to move is stable. Further, the bottom portion (50) can be pulled out in the bottom direction by screwing and holding a tapping screw into the insertion hole (53).

本実施例は、太さの違う試料受け部分を持つ試料取付台(H)に対しても適用するための補助筒の例を図5を参照して示す。
なお、対象の容器は実施例1のものを例として示したが、無論実施例2、3を対象にするのに何らの困難性も生じない。
補助筒(60)は、内径が容器の外径(D)と同じ筒状体であり、互い間の摩擦力により容器を内側に保持することができるように設定されている。補助筒(60)の外径は、所定の試料取付台(H)に対応した太さとしてあるもので、材質は、前記容器と同様か、若しくは、〔0020〕に挙げた性質も持つNMR測定に影響しないものを用いたものである。
このようにして、測定目的やNMR装置の違いによって生じるプローブ及び試料取付台の相違にも対応可能にしてある。
The present embodiment shows an example of an auxiliary cylinder to be applied to a sample mounting base (H) having sample receiving portions having different thicknesses with reference to FIG.
In addition, although the object container showed the thing of Example 1 as an example, of course, no difficulty arises in making Example 2 and 3 into object.
The auxiliary cylinder (60) is a cylindrical body having the same inner diameter as the outer diameter (D) of the container, and is set so that the container can be held inside by the frictional force between them. The outer diameter of the auxiliary cylinder (60) has a thickness corresponding to a predetermined sample mounting base (H), and the material is the same as that of the container, or the NMR measurement having the properties listed in [0020]. The one that does not affect is used.
In this way, it is possible to cope with the difference between the probe and the sample mount caused by the difference in measurement purpose and NMR apparatus.

本実施例は、試料の封入量が適切であるか否かを計測する計測具の例を図6を参照して示す。
なお、対象の容器は実施例1のものを例として示したが、無論実施例2、3を対象にするのに何らの困難性も生じない。
計測具(70)は、容器の外直径より大きい内径を有し、底部をもった透明な筒状体からなり、容器(20)を立てて入れることができるようにしてある。
そして、所定の箇所には、容器に封入された試料液(S)の上下中央が位置すべき箇所を示す目盛り(Mc)と、測定コイルの上端に該当する位置を示す目盛り(Ms)と下端に該当する位置を示す目盛り(Mb)が付けてある。
このようにして、試料液(S)が、所定の試料取付台(H)に対応した位置に存在するか否かを予め確認し、必要な場合はスペーサボルト(30)を進退させたり、封入量を調整する目安をあたえることができるようにしてある。
In this embodiment, an example of a measuring tool for measuring whether or not the amount of the sample enclosed is appropriate is shown with reference to FIG.
In addition, although the object container showed the thing of Example 1 as an example, of course, no difficulty arises in making Example 2 and 3 into object.
The measuring tool (70) has an inner diameter larger than the outer diameter of the container, and is made of a transparent cylindrical body having a bottom, so that the container (20) can be put upright.
And in a predetermined location, the scale (Mc) which shows the location where the upper and lower center of the sample liquid (S) enclosed with the container should be located, the scale (Ms) which shows the position applicable to the upper end of a measurement coil, and a lower end A scale (Mb) indicating the position corresponding to is attached.
In this way, it is confirmed in advance whether or not the sample liquid (S) is present at a position corresponding to the predetermined sample mounting base (H), and if necessary, the spacer bolt (30) is advanced or retracted or sealed. A guideline for adjusting the amount can be given.

本実施例は、試料の密封栓(10)を、筒状本体(20)から出し入れする為の密封栓取扱具の例を図7を参照して示す。
内筒(110)は、上半部がスリット(111)により3分割されていて、全体として外側に開くように成形してあり、その上端は、先細状に形成してある。この内筒(110)の根元部分には、雄ネジ(120)が固定してある。この内筒(110)の外側には外筒(130)が配置されていて、前記雄ネジ(120)にねじ込まれる雌ネジ(131)が、前記外筒(130)の根元部分内面に形成してある。
この外筒(130)の先端も先細状に形成してあり、前記ネジの締め付けにより、前記内筒(110)の先端を押して、これをその弾性に抗して内側に締めるようにしてある。
(140)は、前記内筒(110)根元を固定した握りである。
A present Example shows the example of the sealing stopper handling tool for taking in and out the sealing stopper (10) of a sample from a cylindrical main body (20) with reference to FIG.
The inner cylinder (110) has an upper half divided into three by a slit (111) and is shaped to open outward as a whole, and its upper end is formed in a tapered shape. A male screw (120) is fixed to the root portion of the inner cylinder (110). An outer cylinder (130) is disposed outside the inner cylinder (110), and a female screw (131) screwed into the male screw (120) is formed on the inner surface of the root portion of the outer cylinder (130). It is.
The distal end of the outer cylinder (130) is also formed in a tapered shape, and the distal end of the inner cylinder (110) is pushed by tightening the screw and is tightened inward against its elasticity.
(140) is a grip with a fixed root of the inner cylinder (110).

このようにして、前記外筒(130)を開放状態にして、前記内筒(110)の先端に密封栓(10)の頭部(11)を入れ、次に前記外筒(130)を回転して、前記内筒(110)の先端を締め付け、前記頭部(11)をその周囲から締め付け保持するものである。
このようにして、密封栓(10)を保持することで、指で直接持つよりも筒状本体(20)への出し入れが極めて容易に行えるようになった。
また、それ故に力を掛けて密封栓(10)を筒状本体(20)に差し込むことができるので、上記のように膨出部(13)を設けて密封性を高めることが実用上可能になった。
In this way, the outer cylinder (130) is opened, the head (11) of the sealing plug (10) is inserted at the tip of the inner cylinder (110), and then the outer cylinder (130) is rotated. And the front-end | tip of the said inner cylinder (110) is clamp | tightened and the said head (11) is clamped and hold | maintained from the circumference | surroundings.
In this way, by holding the sealing plug (10), the cylindrical main body (20) can be put in and out of the cylindrical main body (20) more easily than directly holding it with a finger.
Moreover, since the sealing plug (10) can be inserted into the cylindrical main body (20) by applying force, it is practically possible to improve the sealing performance by providing the bulging portion (13) as described above. became.

実施例1を示す縦断正面図Longitudinal front view showing Example 1 実施例2を示す縦断正面図Longitudinal front view showing Example 2 実施例2の底部を示す正面図The front view which shows the bottom part of Example 2. 実施例3の底部を示す正面図The front view which shows the bottom part of Example 3 実施例4の補足具を示す縦断正面図Longitudinal front view showing a supplementary tool of Example 4 実施例5の計測具を示す正面図Front view showing a measuring instrument of Example 5 実施例6の密封栓取扱具を示す縦断正面図Longitudinal front view showing the sealing plug handling tool of Example 6 MASプローブの要部を示す写真。The photograph which shows the principal part of a MAS probe. 試料取付台(H)に実施例1を装着した状態を示す写真。The photograph which shows the state which mounted Example 1 on the sample mounting base (H). 実施例1、実施例3の使用状態を示す写真。(A)は実施例1、(B)は実施例3であって、底部(50b)は前記実施例3の外周に周回溝を形成して、挿入を容易にした物である。The photograph which shows the use condition of Example 1 and Example 3. FIG. (A) is Example 1 and (B) is Example 3, and the bottom (50b) is formed by forming a circumferential groove on the outer periphery of Example 3 to facilitate insertion.

符号の説明Explanation of symbols

(D) 外径
(H) 試料取付台
(L) 距離
(a) 試料高さの1/2
(h) 試料空間の底部から測定コイルの中心(測定中心)までの距離
(Mb)(Mc)(Ms) 目盛り
(P) MASプローブ
(S) 試料液
(X) 試料取付台の蓋
(d) 内径
(10) 密封栓
(11) 頭部
(12) 栓部
(13) 膨出部
(20)(20b) 筒状本体
(21) 収納空間
(21b) 内面
(22)(40)(50)(50b) 底部
(23) 下部
(24) 雌ネジ
(30) スペーサボルト
(31) 雄ネジ
(32) 頭部
(40) 底部
(41) 受け面
(42) 膨出部
(50) 底部
(51) 底面
(52) 膨出部
(53) 挿入孔
(60) 補助筒
(70) 計測具
(110) 内筒
(111) スリット
(120) 雄ネジ
(130) 外筒
(131) 雌ネジ
(140) 握り
(D) Outer diameter (H) Sample mount (L) Distance (a) 1/2 of sample height
(H) Distance from the bottom of the sample space to the center of the measurement coil (measurement center) (Mb) (Mc) (Ms) Scale (P) MAS probe (S) Sample liquid (X) Sample mounting base lid (d) Inner diameter (10) Seal plug (11) Head (12) Plug (13) Swelling part (20) (20b) Tubular body (21) Storage space (21b) Inner surface (22) (40) (50) ( 50b) Bottom portion (23) Lower portion (24) Female screw (30) Spacer bolt (31) Male screw (32) Head portion (40) Bottom portion (41) Receiving surface (42) Swelling portion (50) Bottom portion (51) Bottom surface (52) Swelling part (53) Insertion hole (60) Auxiliary cylinder (70) Measuring tool (110) Inner cylinder (111) Slit (120) Male screw (130) Outer cylinder (131) Female screw (140) Grip

Claims (7)

NMR測定におけるMASプローブへの液状試料取付方法であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなる試料容器に封入された液状試料の中央部が、前記プローブへの取付状態において、NMR測定コイルの中心部に対応するように、前記液状試料の高さ位置を調整することを特徴とする液状試料取付方法。   A method for attaching a liquid sample to a MAS probe in NMR measurement, wherein a central portion of a liquid sample enclosed in a sample container comprising a cylindrical main body, a bottom portion for closing one side, and a sealing stopper for closing the other side, A liquid sample mounting method, wherein the height position of the liquid sample is adjusted so as to correspond to the center of the NMR measurement coil in the mounting state to the probe. 請求項1に記載の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、封入される液状試料の量に対応して、封入された液状試料の中央部が、プローブ取付状態での筒状本体の一定位置に位置するように前記底部を前記筒状本体に対して配置してあることを特徴とする液状試料容器。   A liquid sample container for use in the liquid sample mounting method according to claim 1, comprising a cylindrical main body, a bottom portion for closing one of the cylindrical main bodies, and a sealing stopper for closing the other, and the amount of the liquid sample to be enclosed Correspondingly, the liquid is characterized in that the bottom part is arranged with respect to the cylindrical main body so that the central part of the enclosed liquid sample is located at a fixed position of the cylindrical main body in the probe mounting state. Sample container. 請求項1に記載の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、前記底部の前記筒状本体の長さ方向における固定位置を調整可能にしてあることを特徴とする液状試料容器。   A liquid sample container for use in the liquid sample mounting method according to claim 1, comprising a cylindrical main body, a bottom portion that closes one of the cylindrical main bodies, and a sealing plug that closes the other. A liquid sample container characterized in that a fixing position in a length direction can be adjusted. 請求項1に記載の液状試料取付方法に用いる液状試料容器であって、筒状本体と、その一方を閉止する底部と、他方を閉止する密封栓とからなり、前記筒状本体からの頭部の突出長さが調整可能なスペーサボルトが前記底部の外側に設けられており、当該スペーサボルトにより、前記プローブへの取付高さ位置が調整可能にしてあることを特徴とする液状試料容器。   A liquid sample container used in the liquid sample mounting method according to claim 1, comprising a cylindrical main body, a bottom portion for closing one of the cylindrical main bodies, and a sealing plug for closing the other, and a head portion from the cylindrical main body. The liquid sample container is characterized in that a spacer bolt whose projecting length is adjustable is provided outside the bottom portion, and the height of the mounting height to the probe can be adjusted by the spacer bolt. 請求項2又は3に記載の液状試料容器であって、前記筒状本体からの頭部の突出長さが調整可能なスペーサボルトが前記底部の外側に設けられており、当該スペーサボルトにより、前記プローブへの取付高さ位置が調整可能にしてあることを特徴とする液状試料容器。   The liquid sample container according to claim 2 or 3, wherein a spacer bolt capable of adjusting a protruding length of a head from the cylindrical main body is provided outside the bottom portion, and the spacer bolt A liquid sample container characterized in that an attachment height position to a probe can be adjusted. 請求項1から5に記載の液状試料取付方法に用いる液状試料容器への液状試料の封入量を計測する計測具であって、前記容器を、底部を下にした立ち姿勢にして収納する筒状部材の側面に、前記容器に封入された液状試料の中央部が一定の範囲にあるか否かを示す目盛りが設けてあることを特徴とする計測具。   A measuring instrument for measuring the amount of liquid sample enclosed in a liquid sample container used in the liquid sample mounting method according to claim 1, wherein the container is stored in a standing posture with the bottom portion down. A measuring tool, wherein a scale indicating whether or not the central portion of the liquid sample sealed in the container is in a certain range is provided on a side surface of the member. 請求項1から5のいずれかに記載の液状試料取付方法に用いる液状試料容器への密封栓取扱具であって、前記密封栓の抜き差し方向を中心線とし、その中心線回りの複数箇所にて前記密封栓の頭部を把持する把持部と、この把持部の内間隔を拡縮する把持部拡縮構造とからなることを特徴とする密封栓取扱具。   It is a sealing stopper handling tool to the liquid sample container used for the liquid sample attachment method in any one of Claim 1 to 5, Comprising: The insertion / extraction direction of the said sealing stopper is made into a centerline, and it is in several places around the centerline A sealing plug handling tool comprising: a gripping part for gripping a head part of the sealing plug; and a gripping part expansion / contraction structure for expanding and contracting an inner interval of the gripping part.
JP2008191549A 2008-07-25 2008-07-25 Method of attaching liquid sample to probe, liquid sample container, and tool used therefor Expired - Fee Related JP5360533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191549A JP5360533B2 (en) 2008-07-25 2008-07-25 Method of attaching liquid sample to probe, liquid sample container, and tool used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191549A JP5360533B2 (en) 2008-07-25 2008-07-25 Method of attaching liquid sample to probe, liquid sample container, and tool used therefor

Publications (2)

Publication Number Publication Date
JP2010032223A true JP2010032223A (en) 2010-02-12
JP5360533B2 JP5360533B2 (en) 2013-12-04

Family

ID=41736892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191549A Expired - Fee Related JP5360533B2 (en) 2008-07-25 2008-07-25 Method of attaching liquid sample to probe, liquid sample container, and tool used therefor

Country Status (1)

Country Link
JP (1) JP5360533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472139C1 (en) * 2011-08-15 2013-01-10 Общество с ограниченной ответственностью "УНИСИТ" (ООО "УНИСИТ") Cell for spectral measurements by nmr spectroscopy in rotation of substance specimen at magic angle
JP2013238487A (en) * 2012-05-15 2013-11-28 Jeol Resonance Inc Nmr sample tube and nmr apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812556Y1 (en) * 1969-04-18 1973-04-05
JPS6381247U (en) * 1986-11-14 1988-05-28
JPH0725731Y2 (en) * 1989-01-12 1995-06-07 征三 高橋 Sample tube cap
JPH09178829A (en) * 1995-12-26 1997-07-11 Kao Corp Measuring spinner for solid high-resolution nmr
JPH09257899A (en) * 1996-03-22 1997-10-03 Agency Of Ind Science & Technol Hermetically sealable sample tube for measuring nuclear magnetic resonance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812556Y1 (en) * 1969-04-18 1973-04-05
JPS6381247U (en) * 1986-11-14 1988-05-28
JPH0725731Y2 (en) * 1989-01-12 1995-06-07 征三 高橋 Sample tube cap
JPH09178829A (en) * 1995-12-26 1997-07-11 Kao Corp Measuring spinner for solid high-resolution nmr
JPH09257899A (en) * 1996-03-22 1997-10-03 Agency Of Ind Science & Technol Hermetically sealable sample tube for measuring nuclear magnetic resonance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472139C1 (en) * 2011-08-15 2013-01-10 Общество с ограниченной ответственностью "УНИСИТ" (ООО "УНИСИТ") Cell for spectral measurements by nmr spectroscopy in rotation of substance specimen at magic angle
JP2013238487A (en) * 2012-05-15 2013-11-28 Jeol Resonance Inc Nmr sample tube and nmr apparatus

Also Published As

Publication number Publication date
JP5360533B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US5517856A (en) NMR sample holder
KR100926318B1 (en) Holder for measuring electrical resistivity and apparatus for measuring electrical resistivity
US6812706B2 (en) Axially-sealed NMR sample tube assemblies
JP5544616B2 (en) Sealed MAS sample tube
JP5423605B2 (en) Sample tube for solid-state NMR and solid-state NMR measurement method
JP5360533B2 (en) Method of attaching liquid sample to probe, liquid sample container, and tool used therefor
US7728593B2 (en) NMR sample tube size adapter
US20190317038A1 (en) Cartridge, kit comprising cartridge, electric measuring apparatus, and electric measuring method
US6741079B2 (en) NMR microsample holder which allows safe and simple exchanges of the sample tube
JP2008116458A (en) Sample-holding body for nmr measurement capable of uniformizing magnetic field in sample volume by boundary surface of sample-holding body
US20090128151A1 (en) Closure and System for NMR Sample Containers
US20050062474A1 (en) NMR spectrometer with gripping device for handling a sample bushing with outer groove
CN109742006A (en) In-situ low-temperature example of transmission electron microscope bar suitable for high frequency signal transmission
JP6019515B2 (en) NMR sample tube and NMR apparatus
US20180010988A1 (en) Packaging unit for liquid sample loading devices applied in electron microscope and packaging method
CN207318387U (en) Movable low-field nuclear magnetic resonance sample table with scale positioning function
JP2016525211A (en) Sample holder for atomic force microscope
Mazúr et al. Analysis of the radial and longitudinal effect in a double TE104 and a single TE102 rectangular cavity
US20070128086A1 (en) Reduction in eddy current losses in electrically conducting sample materials with the assistance of special NMR sample tubes
CN210440886U (en) Portable PH meter clamping device with adjustable
CN114902034A (en) Graphite tube positioning device and graphite furnace atomic absorption spectrophotometer with same
JP7255801B2 (en) A device that generates shear flow
JP5370728B2 (en) MAS sample tube
CN108027305B (en) Small sample injection bottle tube
CN212432013U (en) Cylinder round hole orifice chamfer measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5360533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees