JP2010032204A - Auger-type ice making machine - Google Patents

Auger-type ice making machine Download PDF

Info

Publication number
JP2010032204A
JP2010032204A JP2009156368A JP2009156368A JP2010032204A JP 2010032204 A JP2010032204 A JP 2010032204A JP 2009156368 A JP2009156368 A JP 2009156368A JP 2009156368 A JP2009156368 A JP 2009156368A JP 2010032204 A JP2010032204 A JP 2010032204A
Authority
JP
Japan
Prior art keywords
auger
ice making
ice
refrigeration casing
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009156368A
Other languages
Japanese (ja)
Other versions
JP5421673B2 (en
Inventor
Yasuoki Mizutani
保起 水谷
Akihiko Hirano
明彦 平野
Naoshi Kondo
直志 近藤
Yasumitsu Watanabe
泰光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009156368A priority Critical patent/JP5421673B2/en
Publication of JP2010032204A publication Critical patent/JP2010032204A/en
Application granted granted Critical
Publication of JP5421673B2 publication Critical patent/JP5421673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve rotating efficiency of an auger by a driving means. <P>SOLUTION: The ice making mechanism 30 has a cylindrical refrigerating casing 64 provided with an ice making face 64a cooled by a refrigerating mechanism on its inner peripheral face, and an auger 50 provided with a separating blade 54 on an outer peripheral face 52a faced to the ice making face 64a, and disposed inside of a refrigerating casing 64 rotatably on a line vertically extending. The ice making mechanism 30 is constituted to separate and convey the ice produced on the ice making face 64a by the separating blade 54 of the auger 50 rotated and driven by a driving means 76. A driving means 76 is disposed at an upper part of the refrigerating casing 64, and an output shaft 77 of the driving means 76 is connected to a power transmitting section 58 from an upper side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、冷却される製氷面を設けた冷凍ケーシングと、該製氷面に臨む剥離刃を設けたオーガを有する製氷機構を備えたオーガ式製氷機に関するものである。   The present invention relates to an auger type ice making machine provided with an ice making mechanism having an refrigeration casing provided with an ice making surface to be cooled and an auger provided with a peeling blade facing the ice making surface.

製氷機として、チップアイスやフレークアイス等の氷を多量に製造し得るオーガ式製氷機が知られている(例えば、特許文献1参照)。図32に示すように、オーガ式製氷機の製氷機構10は、ギヤードモータ等の駆動手段12の横方向に並んでベース11に配設されている。製氷機構10は、円筒形のハウジング13の上部に同軸的に配設された円筒形の冷凍ケーシング14と、冷凍ケーシング14の内側に収容されたオーガ16とを備えている。オーガ16は、下側の軸部16aがハウジング13の内部に収容されて該ハウジング13に設けた下軸受18で支持され、上側の軸部16bが冷凍ケーシング14の上部に設けられた上軸受19に支持される。オーガ16における下側の軸部16aは、ベース11における駆動手段12の側方に突出するよう配置されて、ギヤ等の伝達手段を介して駆動手段12により回転される金属製の出力軸に対して金属製のカップリング(何れも図示せず)を介して接続され、駆動手段12により回転駆動されるようになっている。またオーガ16は、全体がステンレス等の金属材料で構成されて、円柱状本体の外周面に螺旋状に突設された剥離刃17を備え、この剥離刃17の刃先が冷凍ケーシング14の内周面で構成される製氷面14aに非接触状態で臨んでいる。   As an ice making machine, an auger type ice making machine capable of producing a large amount of ice such as chip ice or flake ice is known (see, for example, Patent Document 1). As shown in FIG. 32, the ice making mechanism 10 of the auger type ice making machine is arranged on the base 11 side by side in the lateral direction of the driving means 12 such as a geared motor. The ice making mechanism 10 includes a cylindrical refrigeration casing 14 coaxially disposed on an upper portion of a cylindrical housing 13 and an auger 16 accommodated inside the refrigeration casing 14. The auger 16 has a lower shaft portion 16 a housed in the housing 13 and supported by a lower bearing 18 provided in the housing 13, and an upper shaft portion 16 b provided in the upper portion of the refrigeration casing 14. Supported by The lower shaft portion 16a of the auger 16 is arranged so as to protrude to the side of the driving means 12 in the base 11, and is against a metal output shaft that is rotated by the driving means 12 via a transmission means such as a gear. Are connected via a metal coupling (both not shown) and are driven to rotate by the drive means 12. In addition, the auger 16 includes a peeling blade 17 that is entirely made of a metal material such as stainless steel and is spirally provided on the outer peripheral surface of the cylindrical main body. The cutting edge of the peeling blade 17 is the inner circumference of the refrigeration casing 14. It faces the ice making surface 14a constituted by a surface in a non-contact state.

前記冷凍ケーシング14は、ステンレス等の金属材料からなり、図示しない冷凍回路の蒸発器を構成する冷却パイプ20が外周面に螺旋状に巻き掛けられ、冷却パイプ20を流通する冷媒との熱交換により冷凍ケーシング14が冷却されるようになっている。また、冷凍ケーシング14の下部には、製氷水タンク21に連通する給水パイプ22が接続されて、製氷水タンク21から供給された製氷水が冷凍ケーシング14の内部に満たされるよう構成される。そして、製氷機構10は、冷凍ケーシング14に製氷水が満たされるので、冷凍ケーシング14とハウジング13との接続部分にオーガ16の回転を許容するメカニカルシール23を設け、出力軸側に製氷水が漏出しないよう構成される。   The refrigeration casing 14 is made of a metal material such as stainless steel, and a cooling pipe 20 that constitutes an evaporator of a refrigeration circuit (not shown) is spirally wound around the outer peripheral surface, and heat exchange with a refrigerant flowing through the cooling pipe 20 is performed. The refrigeration casing 14 is cooled. Further, a water supply pipe 22 communicating with the ice making water tank 21 is connected to the lower part of the freezing casing 14 so that the ice making water supplied from the ice making water tank 21 is filled inside the freezing casing 14. In the ice making mechanism 10, since the ice making water is filled in the refrigeration casing 14, a mechanical seal 23 that allows the auger 16 to rotate is provided at the connection portion between the refrigeration casing 14 and the housing 13, and the ice making water leaks to the output shaft side. Configured not to.

前記製氷機構10は、製氷水タンク21の製氷水を給水パイプ22を介して冷凍ケーシング14の内部に供給したもとで、冷却パイプ20により冷凍ケーシング14を冷却することで、製氷面14aに氷が生成される。そして、駆動手段12を駆動してオーガ16を回転させると、剥離刃17が冷凍ケーシング14の製氷面14aに生成された氷を剥離して、この氷をオーガ16の外周面と製氷面14aとの間の隙間を介して剥離刃17で上方へ搬送する。そして上方へ搬送された氷は、連続して搬送される下方の氷に押されて、冷凍ケーシング14の上部に設けた固定刃24で圧縮された後、製氷機構10の上方に連結された氷放出シュート26に押し出されて該氷放出シュート26を介して図示しない貯氷室へ移送される。   The ice making mechanism 10 supplies ice making water in the ice making water tank 21 to the inside of the refrigeration casing 14 through the water supply pipe 22 and then cools the refrigeration casing 14 by the cooling pipe 20, so that the ice making surface 14 a has ice. Is generated. When the auger 16 is rotated by driving the driving means 12, the peeling blade 17 peels off the ice generated on the ice making surface 14 a of the refrigeration casing 14, and this ice is separated from the outer peripheral surface of the auger 16 and the ice making surface 14 a. It conveys upward with the peeling blade 17 through the clearance gap between. The ice conveyed upward is pushed by the downwardly conveyed ice and compressed by the fixed blade 24 provided on the upper part of the refrigeration casing 14, and then connected to the upper side of the ice making mechanism 10. It is pushed out by the discharge chute 26 and transferred to an ice storage chamber (not shown) through the ice discharge chute 26.

実公平8−3897号公報Japanese Utility Model Publication 8-3897

前記製氷機構10では、オーガ16の回転により剥離した氷を押し上げる構成であり、冷凍ケーシング14の上部になるほど氷の搬送量が多くなってオーガ16の回転負荷が高くなる。すなわち、オーガ16を冷凍ケーシング14の下側から回転駆動すると、回転負荷が高い部分を適切に駆動することができず、効率が悪かった。   The ice making mechanism 10 is configured to push up the ice peeled off by the rotation of the auger 16, and the amount of ice transport increases and the rotational load of the auger 16 increases as it goes upward of the refrigeration casing 14. That is, when the auger 16 is rotationally driven from the lower side of the refrigeration casing 14, a portion having a high rotational load cannot be appropriately driven, and the efficiency is poor.

すなわち本発明は、従来の技術に係るオーガ式製氷機に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、オーガを効率よく回転駆動し得るオーガ式製氷機を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the auger type ice making machine according to the prior art, and an auger type ice making machine capable of efficiently rotating the auger is provided. The purpose is to provide.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明のオーガ式製氷機は、
冷却される製氷面が周面に設けられた円筒形の冷凍ケーシングと、軸線を上下に延在させて冷凍ケーシングに対し回転可能に配設されたオーガとを有する製氷機構を備え、該製氷機構に製氷水を供給して製氷面に氷を生成し、駆動手段により回転駆動されるオーガの剥離刃により氷を剥離して搬送するオーガ式製氷機において、
前記オーガは、前記冷凍ケーシングの製氷面に臨む第1の周面より突出させて前記剥離刃が設けられる円筒形のオーガ本体と、このオーガ本体の上端面に設けられた動力伝達部とを備え、
前記駆動手段が、前記冷凍ケーシングの上方に配置されて、該駆動手段の出力軸が前記動力伝達部に対し上側から連結されるよう構成したことを特徴とする。
請求項1に係る発明によれば、駆動手段をオーガの上方に設け、回転負荷が一番高いオーガ本体の上側に連結した動力伝達部を介して回転駆動力を伝達している。すなわち、製氷機構は、オーガ本体の回転負荷が大きい側から駆動手段の回転力を付与することで、オーガをスムーズに回転駆動することができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, an auger type ice making machine according to claim 1 of the present application is
An ice making mechanism comprising: a cylindrical refrigeration casing having an ice making surface to be cooled provided on a peripheral surface; and an auger having an axis extending vertically to be rotatable with respect to the refrigeration casing. In an auger type ice making machine that supplies ice making water to generate ice on the ice making surface, peels off the ice with a peeling blade of an auger that is rotationally driven by a driving means, and conveys it,
The auger includes a cylindrical auger body that protrudes from a first peripheral surface facing the ice making surface of the refrigeration casing and is provided with the peeling blade, and a power transmission unit provided on an upper end surface of the auger body. ,
The driving means is arranged above the refrigeration casing, and an output shaft of the driving means is connected to the power transmission unit from above.
According to the first aspect of the present invention, the driving means is provided above the auger, and the rotational driving force is transmitted via the power transmission unit connected to the upper side of the auger body having the highest rotational load. That is, the ice making mechanism can smoothly rotate the auger by applying the rotational force of the driving means from the side where the rotational load of the auger body is large.

請求項2に係る発明では、前記剥離刃により前記冷凍ケーシングの上部に搬送された氷を前記製氷機構外に案内する氷放出路が、前記オーガ本体の内側に設けられ、
前記動力伝達部は、前記出力軸が挿入される軸溝を囲んで上方に突設された仕切り壁を備えていることを要旨とする。
請求項2に係る発明によれば、出力軸を伝って流下する水等を仕切り壁で受止めて、氷放出路への流出を防止し得る。
In the invention which concerns on Claim 2, the ice discharge path which guides the ice conveyed by the said peeling blade to the upper part of the said freezing casing out of the said ice making mechanism is provided inside the said auger main body,
The power transmission unit includes a partition wall that protrudes upward around a shaft groove into which the output shaft is inserted.
According to the invention which concerns on Claim 2, the water etc. which flow down along an output shaft can be received by a partition wall, and the outflow to an ice discharge path can be prevented.

請求項3に係る発明では、前記駆動手段は、前記冷凍ケーシングの上側に設置された架台で支持され、
前記架台は、前記冷凍ケーシングの外周面に整合する下側開口部と駆動手段を載置する上端面に出力軸の挿通を許容する孔部とを備えた円筒形に形成され、下側開口部を冷凍ケーシングの上部に嵌め合わせて固定されることを要旨とする。
請求項3に係る発明によれば、架台が冷凍ケーシングの上部に位置決めされるので、出力軸とオーガとの軸ずれを防止できる。
In the invention which concerns on Claim 3, the said drive means is supported by the mount installed in the upper side of the said freezing casing,
The gantry is formed in a cylindrical shape having a lower opening that aligns with the outer peripheral surface of the refrigeration casing and a hole that allows insertion of the output shaft on the upper end surface on which the driving means is placed. The gist is to be fitted and fixed to the upper part of the refrigeration casing.
According to the invention which concerns on Claim 3, since a mount frame is positioned in the upper part of a freezing casing, the axial shift of an output shaft and an auger can be prevented.

本発明に係るオーガ式製氷機によれば、オーガを効率よく回転駆動し得る。   According to the auger type ice making machine according to the present invention, the auger can be efficiently rotated.

本発明の好適な実施例に係るオーガ式製氷機の製氷機構および給水機構を示す縦断面図である。1 is a longitudinal sectional view showing an ice making mechanism and a water supply mechanism of an auger type ice making machine according to a preferred embodiment of the present invention. 実施例の製氷機構を示す斜視図である。It is a perspective view which shows the ice making mechanism of an Example. 実施例の製氷機構を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the ice making mechanism of an Example. 実施例のオーガを収容した冷凍ケーシングを示す斜視図である。It is a perspective view which shows the freezing casing which accommodated the auger of the Example. 実施例のオーガを収容した冷凍ケーシングを縦断して示す斜視図である。It is a perspective view which cuts and shows the freezing casing which accommodated the auger of the Example. 実施例の製氷機構の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the ice making mechanism of an Example. 実施例のオーガを示す斜視図である。It is a perspective view which shows the auger of an Example. 実施例のオーガを示す平面図である。It is a top view which shows the auger of an Example. 実施例のオーガの縦断面図である。It is a longitudinal cross-sectional view of the auger of an Example. 実施例のオーガの剥離刃を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the peeling blade of the auger of an Example. 実施例の冷凍ケーシングを分解して示す縦断面図である。It is a longitudinal cross-sectional view which decomposes | disassembles and shows the frozen casing of an Example. 製氷機構の変更例を示す縦断面図であるIt is a longitudinal cross-sectional view which shows the example of a change of an ice making mechanism. 軸受構造の第1変更例を示す縦断面図であるIt is a longitudinal cross-sectional view which shows the 1st modification of a bearing structure. 軸受構造の第2変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd modification of a bearing structure. 軸受構造の第3変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 3rd modification of a bearing structure. 軸受構造の第4変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 4th modification of a bearing structure. オーガの第1変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st modification of an auger. オーガの第2変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd modification of an auger. 給水構造の変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a change of a water supply structure. 駆動手段の支持構造の変更例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a change of the support structure of a drive means. 案内部材の変更例の示す平面図である。It is a top view which shows the example of a change of a guide member. 動力伝達部の第1変更例を示す斜視図であって、(a)はスポーク部および接続ボス部を分解した状態を示し、(b)はスポーク部および接続ボス部をオーガ本体に組み付けた状態を示す。It is a perspective view which shows the 1st modification of a power transmission part, (a) shows the state which decomposed | disassembled the spoke part and the connection boss | hub part, (b) is the state which assembled | attached the spoke part and the connection boss | hub part to the auger main body Indicates. 動力伝達部の第2変更例を示す斜視図であって、(a)は接続ボス部を分解した状態を示し、(b)は接続ボス部をスポーク部に組み付けた状態を示す。It is a perspective view which shows the 2nd modification of a power transmission part, Comprising: (a) shows the state which decomposed | disassembled the connection boss | hub part, (b) shows the state which assembled | attached the connection boss | hub part to the spoke part. 動力伝達部の第3変更例を示す斜視図である。It is a perspective view which shows the 3rd modification of a power transmission part. 動力伝達部の第4変更例を示す斜視図であって、(a)は調節部および接続ボス部を分解した状態を示し、(b)は調節部および接続ボス部をスポーク部に組み付けた状態を示す。It is a perspective view which shows the 4th example of a power transmission part, Comprising: (a) shows the state which decomposed | disassembled the adjustment part and the connection boss | hub part, (b) is the state which assembled | attached the adjustment part and the connection boss | hub part to the spoke part Indicates. 動力伝達部の第5変更例を示す斜視図であって、(a)は接続ボス部を分解した状態を示し、(b)は接続ボス部をスポーク部に組み付けた状態を示す。It is a perspective view which shows the 5th example of a power transmission part, Comprising: (a) shows the state which decomposed | disassembled the connection boss | hub part, (b) shows the state which assembled | attached the connection boss | hub part to the spoke part. 別の変更例に係る製氷機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ice making mechanism which concerns on another example of a change. 別の変更例に係る製氷機構を示す分解して示す斜視図ある。It is a perspective view which decomposes | disassembles and shows the ice making mechanism which concerns on another example of a change. 別の変更例に係る製氷機構を、案内部材、架台および駆動手段を取り外した状態で示す斜視図ある。It is a perspective view which shows the ice making mechanism which concerns on another modified example in the state which removed the guide member, the mount frame, and the drive means. 別の変更例に係る製氷機構の架台を示す斜視図あって、(a)は窓部を塞いだ状態であり、(b)は窓部を開放した状態を示す。It is a perspective view which shows the mount frame of the ice making mechanism which concerns on another modification, Comprising: (a) is the state which closed the window part, (b) shows the state which opened the window part. 別の変更例に係る製氷機構の案内部材を示す斜視図あって、(a)は蓋体が閉じた状態にあり、(b)は蓋体が開放した状態を示す。It is a perspective view which shows the guide member of the ice making mechanism which concerns on another modification, Comprising: (a) is in the state which closed the cover, (b) shows the state which the cover opened. 従来のオーガ式製氷機の製氷機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ice making mechanism of the conventional auger type ice making machine.

次に、本発明に係るオーガ式製氷機につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, an auger type ice making machine according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

図1に示すように、実施例に係るオーガ式製氷機は、氷を生成する製氷機構30と、外部水源に接続する給水手段Wから給水される製氷水を製氷機構30に供給する給水機構80と、製氷機構30の冷凍ケーシング64を冷却する冷凍回路を構成する図示しない冷凍機構とを備えている。製氷機構30は、製氷機本体に内部画成された図示しない貯氷室の上方に配置され、製氷機構30から落下した氷が貯氷室で貯留されるようになっている。   As shown in FIG. 1, the auger type ice making machine according to the embodiment includes an ice making mechanism 30 that generates ice, and a water supply mechanism 80 that supplies ice making water supplied from a water supply means W connected to an external water source to the ice making mechanism 30. And a refrigeration mechanism (not shown) that constitutes a refrigeration circuit that cools the refrigeration casing 64 of the ice making mechanism 30. The ice making mechanism 30 is disposed above an ice storage chamber (not shown) defined in the ice making machine body, and ice falling from the ice making mechanism 30 is stored in the ice storage chamber.

前記製氷機構30は、製氷機本体の内部に固定されたベース32に配設される(図1または図2参照)。図3に示すように、製氷機構30は、給水機構80から供給される製氷水を受ける給水パーツ34と、この給水パーツ34に載置固定された軸受部44と、この軸受部44に、軸線を上下に延在させて冷凍ケーシング64に対し回転可能に配設されたオーガ50と、このオーガ50の外側に配置された円筒形の冷凍ケーシング64と、この冷凍ケーシング64の上部を覆う案内部材74とを組合わせて本体部分が基本的に構成される。ここで、実施例の製氷機構30では、円筒形の冷凍ケーシング64の内部に画成される収容空間65にオーガ50が回転可能に収容され、オーガ50の外周面(第1の周面)52aが冷凍ケーシング64における収容空間65を画成する製氷面(冷凍ケーシング64の内周面)64aに臨むようになっている(図5または図6参照)。また製氷機構30は、オーガ50を回転駆動するギヤードモータ等の駆動手段76を備え、駆動手段76によりオーガ50が冷凍ケーシング64の収容空間65で回転される。   The ice making mechanism 30 is disposed on a base 32 fixed inside the ice making machine main body (see FIG. 1 or FIG. 2). As shown in FIG. 3, the ice making mechanism 30 includes a water supply part 34 that receives the ice making water supplied from the water supply mechanism 80, a bearing portion 44 that is placed and fixed on the water supply part 34, and an axis line on the bearing portion 44. The auger 50 is arranged so as to be rotatable with respect to the refrigeration casing 64, the cylindrical refrigeration casing 64 is disposed outside the auger 50, and a guide member that covers the upper portion of the refrigeration casing 64. 74 and the main body portion are basically configured. Here, in the ice making mechanism 30 of the embodiment, the auger 50 is rotatably accommodated in the accommodating space 65 defined in the cylindrical refrigeration casing 64, and the outer peripheral surface (first peripheral surface) 52a of the auger 50 is accommodated. Faces the ice making surface (inner peripheral surface of the freezing casing 64) 64a that defines the housing space 65 in the freezing casing 64 (see FIG. 5 or FIG. 6). Further, the ice making mechanism 30 includes driving means 76 such as a geared motor that rotationally drives the auger 50, and the auger 50 is rotated in the accommodation space 65 of the refrigeration casing 64 by the driving means 76.

前記製氷機構30は、給水機構80から供給された製氷水が、冷凍機構により冷却された冷凍ケーシング64の製氷面64aで氷結し、駆動手段76で回転されるオーガ50の剥離刃54により製氷面64aの氷を剥離するよう構成される。また製氷機構30は、剥離した氷をオーガ50の回転下に製氷面64aとオーガ50の外周面52aとの間の搬送空間57を剥離刃54により上方に押し上げ、冷凍ケーシング64と案内部材74との間に設けられた氷収集部Sにおいて、氷を案内部材74により回転中心側に案内して、オーガ50の回転中心に開口するよう設けられた氷放出路35aを介して貯氷室に放出するようになっている(図6参照)。なお、製氷機構30は、冷凍ケーシング64の外周面をポリウレタンフォーム等の断熱材(図示せず)で覆って、冷凍ケーシング64の内外において熱の出入りを抑制している。   In the ice making mechanism 30, the ice making water supplied from the water supply mechanism 80 freezes on the ice making surface 64 a of the refrigeration casing 64 cooled by the refrigeration mechanism, and the ice making surface is formed by the peeling blade 54 of the auger 50 rotated by the driving means 76. Configured to peel 64a ice. Further, the ice making mechanism 30 pushes up the transported space 57 between the ice making surface 64 a and the outer peripheral surface 52 a of the auger 50 upward by the peeling blade 54 while the auger 50 rotates, and the freezing casing 64, the guide member 74, In the ice collecting section S provided between the two, the guide member 74 guides the ice to the rotation center side and discharges the ice into the ice storage chamber through the ice discharge path 35a provided to open to the rotation center of the auger 50. (See FIG. 6). In addition, the ice making mechanism 30 covers the outer peripheral surface of the refrigeration casing 64 with a heat insulating material (not shown) such as polyurethane foam, and suppresses heat in and out of the refrigeration casing 64.

前記ベース32は、製氷機構30が設置される設置部32aの両側縁に下垂した脚部32b,32bが設けられた台形に形成され、脚部32b,32bを製氷機本体の内部に固定することで貯氷室の上部に配設される。また、ベース32における設置部32aの中央部には、上下に貫通する通過口32cが設けられ、製氷機構30の氷放出路35aから放出される氷が通過口32cを介して貯氷室に落下するようになっている。なお、実施例のベース32は、金属の板材を折り曲げて形成される。   The base 32 is formed in a trapezoidal shape with legs 32b and 32b hanging from both side edges of the installation part 32a where the ice making mechanism 30 is installed, and the legs 32b and 32b are fixed inside the ice making machine main body. It is arranged at the upper part of the ice storage room. In addition, a passage port 32c penetrating vertically is provided in the central portion of the installation portion 32a in the base 32, and ice discharged from the ice discharge path 35a of the ice making mechanism 30 falls into the ice storage chamber via the passage port 32c. It is like that. Note that the base 32 of the embodiment is formed by bending a metal plate material.

前記給水パーツ34は、合成樹脂の成形品であって、給水機構80からの製氷水の導入部分として機能すると共に、軸受部44および該軸受部44を介してオーガ50および冷凍ケーシング64が載置される基礎部分としても機能する(図1参照)。給水パーツ34は、図3に示すように、上下の端面が開口する中空の円筒本体35と、この円筒本体35の下端に該円筒本体35の半径方向外側に延出するフランジ部36とが一体的に設けられている。給水パーツ34は、円筒本体35の下側開口をベース32の通過口32cに整合させて立設され、ベース32の設置部32aに載置したフランジ部36が該設置部32aに固定される。また給水パーツ34には、円筒本体35の上下に貫通する中空部分により、オーガ50で剥離して冷凍ケーシング64の上方に押し上げられた氷を氷収集部Sから貯氷室に案内する氷放出路35aが形成される。   The water supply part 34 is a molded product of synthetic resin and functions as an introduction part of ice making water from the water supply mechanism 80, and the auger 50 and the freezing casing 64 are placed via the bearing part 44 and the bearing part 44. It also functions as a basic part (see FIG. 1). As shown in FIG. 3, the water supply part 34 includes a hollow cylindrical main body 35 whose upper and lower end surfaces are open, and a flange portion 36 that extends outward in the radial direction of the cylindrical main body 35 at the lower end of the cylindrical main body 35. Provided. The water supply part 34 is erected with the lower opening of the cylindrical main body 35 aligned with the passage port 32c of the base 32, and the flange portion 36 placed on the installation portion 32a of the base 32 is fixed to the installation portion 32a. The water supply part 34 has an ice discharge path 35a for guiding the ice peeled off by the auger 50 and pushed up above the refrigeration casing 64 from the ice collecting section S to the ice storage chamber by a hollow portion penetrating up and down of the cylindrical main body 35. Is formed.

図6に示すように、フランジ部36には、該フランジ部36の外周縁全周に亘って立ち上げ形成された堰部37と、この堰部37の内側に離間して立ち上げ形成された位置決め突片38とが設けられている。堰部37は、位置決め突片38より高く形成され、堰部37と位置決め突片38との間に形成される排水溝36aの底面が、位置決め突片38の内側領域に設けられる軸受部44が載置される載置面36bより低くなっている。また、位置決め突片38は、フランジ部36の載置面36bに載置される軸受部44に載置した冷凍ケーシング64の外周面に整合して、冷凍ケーシング64の半径方向の移動を規制するよう構成される。更に、フランジ部36の載置面36bには、Oリングや角リング等のシール材39が収容されるシール溝36cが、円筒本体35を囲んで凹設されている。   As shown in FIG. 6, the flange portion 36 is formed with a dam portion 37 that is formed to rise over the entire outer periphery of the flange portion 36, and is formed to be spaced apart from the inside of the dam portion 37. A positioning protrusion 38 is provided. The weir portion 37 is formed higher than the positioning protrusion 38, and the bottom surface of the drain groove 36 a formed between the weir 37 and the positioning protrusion 38 has a bearing portion 44 provided in the inner region of the positioning protrusion 38. It is lower than the placement surface 36b to be placed. The positioning protrusion 38 is aligned with the outer peripheral surface of the refrigeration casing 64 placed on the bearing portion 44 placed on the placement surface 36b of the flange portion 36, and restricts the movement of the refrigeration casing 64 in the radial direction. It is configured as follows. Further, a sealing groove 36 c that accommodates a sealing material 39 such as an O-ring or a square ring is recessed on the mounting surface 36 b of the flange portion 36 so as to surround the cylindrical main body 35.

前記フランジ部36には、シール溝36cの内側に前記載置面36bより低く凹んだ給水凹部36dが、円筒本体35の下端全周に接して形成されている。そして、フランジ部36の底部には、給水機構80の製氷水タンク81に接続する給水管83が接続される給水部40が設けられ、この給水部40の給水口40aは、給水凹部36dに開口するよう配置される。また、フランジ部36の堰部37には、該堰部37と位置決め突片38との間の排水溝36aに連通する排水部41が外側方へ突出形成され、該排水部41の突出端に図示しない排水管が接続されるようになっている。ここで、実施例の給水パーツ34は、給水部40と排水部41とが円筒本体35を挟んで対称な位置関係で配置されている(図1参照)。なお、ベース32の設置部32aには、給水パーツ34の給水部40および排水部41に対応して切欠32d,32dが設けられ、給水部40に対する給水管83の接続および排水部41に対する排水管の接続が行ない易くなっている。   In the flange portion 36, a water supply recess 36d that is recessed below the placement surface 36b is formed inside the seal groove 36c in contact with the entire lower end of the cylindrical body 35. And the water supply part 40 to which the water supply pipe | tube 83 connected to the ice making water tank 81 of the water supply mechanism 80 is connected is provided in the bottom part of the flange part 36, and the water supply opening 40a of this water supply part 40 opens to the water supply recessed part 36d. Arranged to do. In addition, a drainage portion 41 communicating with a drainage groove 36 a between the weir portion 37 and the positioning protrusion 38 is formed on the dam portion 37 of the flange portion 36 so as to protrude outward. A drain pipe (not shown) is connected. Here, in the water supply part 34 of the embodiment, the water supply part 40 and the drainage part 41 are arranged in a symmetrical positional relationship with the cylindrical main body 35 interposed therebetween (see FIG. 1). In addition, the installation part 32a of the base 32 is provided with notches 32d and 32d corresponding to the water supply part 40 and the drainage part 41 of the water supply part 34, and the connection of the water supply pipe 83 to the water supply part 40 and the drainage pipe to the drainage part 41. Is easy to connect.

前記軸受部44は、オーガ50を回転自在に支持する剛性を有する部材であって、実施例ではステンレス等の金属材料から形成されている。図5に示すように、軸受部44は、上下の端面が開口する中空円筒形の軸部45と、この軸部45の下端に設けられ、軸部45の半径方向内側から外側に向かうにつれて下方傾斜するテーパ部46と、このテーパ部46の傾斜下端に半径方向外側に延出形成された載置部47とを備えている。また、軸部45の下部には、該軸部45の内外方向に貫通する給水孔48が、該軸部45の周方向に離間して複数(実施例では90°間隔で4ヶ所)設けられている。そして、軸受部44は、軸部45を給水パーツ34の円筒本体35の外周面を覆うように被せて、フランジ部36の載置面36bに載置した載置部47を該フランジ部36に対して固定することで、給水パーツ34に対して同軸的に取り付けられる。ここで、軸受部44は、給水パーツ34に取り付けた際に、給水パーツ34における円筒本体35の外周面と軸受部44における軸部45の内周面との間に、給水孔48および給水凹部36dに連通する戻し空間42が画成される(図6参照)。そして、給水パーツ34の給水部40から導入した製氷水は、給水凹部36d、戻し空間42および給水孔48を介して軸受部44の外側へ流通するよう構成される。なお、軸受部44の載置部47とフランジ部36の載置面36bとの間は、シール溝36cに収容されたシール材39により封水されている。また軸受部44は、給水パーツ34に取り付けた際に、軸部45の上端が給水パーツ34における円筒本体35の上端と略同一高さになるよう構成される。   The bearing portion 44 is a rigid member that rotatably supports the auger 50, and is formed of a metal material such as stainless steel in the embodiment. As shown in FIG. 5, the bearing portion 44 is provided at a hollow cylindrical shaft portion 45 whose upper and lower end faces are open, and a lower end of the shaft portion 45, and is lowered as it goes from the radially inner side to the outer side of the shaft portion 45. The taper part 46 which inclines, and the mounting part 47 extended and formed in the radial direction outer side at the inclination lower end of this taper part 46 are provided. In addition, a plurality of water supply holes 48 penetrating in the inner and outer directions of the shaft portion 45 are provided in the lower portion of the shaft portion 45 so as to be spaced apart in the circumferential direction of the shaft portion 45 (in the embodiment, four locations at intervals of 90 °). ing. The bearing portion 44 covers the shaft portion 45 so as to cover the outer peripheral surface of the cylindrical main body 35 of the water supply part 34, and the mounting portion 47 mounted on the mounting surface 36 b of the flange portion 36 is attached to the flange portion 36. By fixing to the water supply part 34, it is attached coaxially. Here, when the bearing portion 44 is attached to the water supply part 34, the water supply hole 48 and the water supply recess are provided between the outer peripheral surface of the cylindrical body 35 in the water supply part 34 and the inner peripheral surface of the shaft portion 45 in the bearing portion 44. A return space 42 communicating with 36d is defined (see FIG. 6). And the ice making water introduced from the water supply part 40 of the water supply part 34 is comprised so that it may distribute | circulate to the outer side of the bearing part 44 through the water supply recessed part 36d, the return space 42, and the water supply hole 48. FIG. The space between the mounting portion 47 of the bearing portion 44 and the mounting surface 36b of the flange portion 36 is sealed with a sealing material 39 accommodated in the seal groove 36c. Further, the bearing portion 44 is configured such that, when attached to the water supply part 34, the upper end of the shaft portion 45 is substantially the same height as the upper end of the cylindrical body 35 in the water supply part 34.

図5または図7に示すように、前記オーガ50は、冷凍ケーシング64の製氷面64aに臨む外周面(第1の周面)52aに剥離刃54を有し、軸受部44に回転自在に保持されたオーガ本体52と、このオーガ本体52の上部に設けられ、駆動手段76との接続部分となる動力伝達部58とを備えている。ここで実施例のオーガ50は、剥離刃54の後述する刃先部56を除くオーガ本体52および動力伝達部58が合成樹脂から一体成形されている。   As shown in FIG. 5 or 7, the auger 50 has a peeling blade 54 on an outer peripheral surface (first peripheral surface) 52 a facing the ice making surface 64 a of the refrigeration casing 64, and is rotatably held by the bearing portion 44. The auger body 52 is provided, and a power transmission unit 58 provided on the upper portion of the auger body 52 and serving as a connection portion with the driving means 76. Here, in the auger 50 according to the embodiment, an auger main body 52 and a power transmission portion 58 excluding a blade edge portion 56 described later of the peeling blade 54 are integrally formed from a synthetic resin.

図5に示すように、前記オーガ本体52は、上下に開口する中空の円筒形を基本とした形状であって、該円筒形の軸方向に貫通する軸空間52cを内側に備えると共に、外周面52aに剥離刃54が螺旋状に設けられている。オーガ本体52の軸空間52cは、軸受部44の軸部45の外径に整合する寸法に設定され、軸部45に軸空間52cを嵌め合わせることで、オーガ50が軸受部44に対して同軸的に取り付けられる。また、オーガ本体52の下端外周には、半径方向外側に延出する載置片52dが全周に亘って設けられ、オーガ50を軸受部44に取り付けた際に、載置片52dが軸受部44の載置部47に載置されるようになっている。更に、オーガ本体52の下端内周(軸空間52cの下側開口縁)には、半径方向内側から外側に向かうにつれて下方傾斜するよう斜めに形成された傾斜部52eが設けられ、オーガ50を軸受部44に取り付けた際に、傾斜部52eが軸受部44のテーパ部46の上側に重なるようになっている。オーガ50は、軸受部44の載置部47に載置される構成であり、回転軸等が給水パーツ34を貫通して下方に突出していない。更にまた、オーガ本体52の上端内周には、半径方向内側に延出する庇状片52fが全周に亘って設けられ、オーガ50を軸受部44に取り付けた際に、軸受部44の軸部45上方を庇状片52fで覆うようになっている。ここで、庇状片52fの内周縁で画成される軸空間52cの上側開口縁は、軸受部44の軸部45と給水パーツ34の円筒本体35との間に設けられる戻し空間42の直上に位置するよう構成される(図6参照)。これにより、庇状片52fの内周縁から滴下する融氷水等が戻し空間42で受容され、貯氷室への滴下を防止できる。   As shown in FIG. 5, the auger main body 52 has a shape based on a hollow cylindrical shape that opens up and down, and has an axial space 52c that penetrates in the axial direction of the cylindrical shape on the inside, and an outer peripheral surface. A peeling blade 54 is spirally provided on 52a. The shaft space 52 c of the auger body 52 is set to a size that matches the outer diameter of the shaft portion 45 of the bearing portion 44, and the auger 50 is coaxial with the bearing portion 44 by fitting the shaft space 52 c to the shaft portion 45. Attached. A mounting piece 52d extending radially outward is provided on the outer periphery of the lower end of the auger main body 52 over the entire periphery. When the auger 50 is attached to the bearing portion 44, the mounting piece 52d is mounted on the bearing portion. 44 is placed on the placement portion 47. Furthermore, an inclined portion 52e formed obliquely so as to incline downward from the inner side in the radial direction to the outer side is provided on the inner periphery of the lower end of the auger body 52 (lower opening edge of the axial space 52c). When attached to the portion 44, the inclined portion 52 e overlaps the upper side of the tapered portion 46 of the bearing portion 44. The auger 50 is configured to be mounted on the mounting portion 47 of the bearing portion 44, and the rotating shaft or the like does not protrude downward through the water supply part 34. Furthermore, a flange-like piece 52f extending radially inward is provided on the inner periphery of the upper end of the auger body 52 over the entire circumference, and when the auger 50 is attached to the bearing portion 44, the shaft of the bearing portion 44 is provided. The upper portion of the portion 45 is covered with a hook-shaped piece 52f. Here, the upper opening edge of the shaft space 52 c defined by the inner peripheral edge of the bowl-shaped piece 52 f is directly above the return space 42 provided between the shaft portion 45 of the bearing portion 44 and the cylindrical body 35 of the water supply part 34. (Refer to FIG. 6). Thereby, melted ice water or the like dripping from the inner peripheral edge of the bowl-shaped piece 52f is received in the return space 42, and dripping into the ice storage chamber can be prevented.

このように、製氷機構30は、オーガ50が軸受部44に対して摺動するすべり軸受構造になっている。すなわち、オーガ50は、製氷機構30の製氷運転に際して、冷凍ケーシング64の製氷面に氷結した氷を剥離する剥離刃54からオーガ本体52に対して半径方向内側に向けて負荷されるラジアル荷重が、オーガ本体52における軸空間52cを画成する内周面(第2の周面)52bに摺接している軸受部44の軸部45で支持される。ここで、軸受部44の軸部45は、オーガ本体52における内周面52bの上下に亘って延在するよう構成され、オーガ本体52における外周面52a側の剥離刃54から負荷されるラジアル荷重が、オーガ本体52を挟んで内周面52b側にラジアル荷重の入力方向と交差して延在している軸部45で適切に受止められる。すなわち、製氷運転に際して、オーガ本体52が変形することなく、剥離刃54により製氷面64aの氷を好適に剥離し得る。また、オーガ本体52にかかるラジアル荷重を軸部45で支持する構成とすることで、オーガ本体52自体に要求される剛性を小さくすることができる。更に、オーガ本体52と軸受部44とが面で摺接し、互いの接触面積を大きくすることができるので、面圧を下げて互いの摩耗を抑制することができる。従って、オーガ本体52を合成樹脂で形成しても、十分に使用に耐え得るのである。またオーガ50は、オーガ50自体の自重、および製氷機構30の製氷運転に際して、オーガ本体52の外周面52aと冷凍ケーシング64の製氷面64aとの間に画成される搬送空間57を介して剥離刃54により氷を上方に押し上げるときに軸方向に負荷されるスラスト荷重が、載置片52dを載置している載置部47で支持されるようになっている。   Thus, the ice making mechanism 30 has a sliding bearing structure in which the auger 50 slides with respect to the bearing portion 44. That is, the auger 50 is subjected to a radial load applied radially inward from the peeling blade 54 that peels ice formed on the ice making surface of the refrigeration casing 64 to the auger body 52 during the ice making operation of the ice making mechanism 30. The auger body 52 is supported by the shaft portion 45 of the bearing portion 44 that is in sliding contact with the inner peripheral surface (second peripheral surface) 52b that defines the shaft space 52c. Here, the shaft portion 45 of the bearing portion 44 is configured to extend over the inner peripheral surface 52b of the auger main body 52, and is loaded from the peeling blade 54 on the outer peripheral surface 52a side of the auger main body 52. However, it is appropriately received by the shaft portion 45 that extends on the inner peripheral surface 52b side across the auger body 52 so as to intersect the radial load input direction. That is, during the ice making operation, the ice on the ice making surface 64a can be suitably peeled off by the peeling blade 54 without the auger body 52 being deformed. Further, by adopting a configuration in which the radial load applied to the auger main body 52 is supported by the shaft portion 45, the rigidity required for the auger main body 52 itself can be reduced. Furthermore, since the auger body 52 and the bearing portion 44 are in sliding contact with each other and the mutual contact area can be increased, the surface pressure can be reduced and the mutual wear can be suppressed. Therefore, even if the auger main body 52 is formed of a synthetic resin, it can be fully used. Further, the auger 50 is peeled off via a conveyance space 57 defined between the outer peripheral surface 52a of the auger body 52 and the ice making surface 64a of the refrigeration casing 64 during the ice making operation of the ice making mechanism 30 and the auger 50 itself. A thrust load applied in the axial direction when the ice is pushed upward by the blade 54 is supported by the mounting portion 47 on which the mounting piece 52d is mounted.

前記オーガ50は、オーガ本体52の傾斜部52eが、上から下に向かうにつれて末広がりに傾斜するテーパ部46で支持される構成であるので、傾斜部52eにおける半径方向の移動と下方への移動とがテーパ部46により規制される(図5参照)。すなわち、オーガ50は、前述したスラスト荷重およびラジアル荷重の両方が軸受部44のテーパ部46で支持されるようになっている。オーガ50は、オーガ本体52の内周面52bと軸受部44の軸部45との摺接部分が摩耗して両者間に隙間が生じたとしても、オーガ本体52の傾斜部52eがテーパ部46の傾斜に案内されるので、軸受部44の軸中心に対してオーガ本体52の回転中心が同一になるよう変位させることができる。このように、実施例のすべり軸受構造は、軸受部44に対するオーガ50の軸ずれが生じ難く、オーガ50の軸ずれによる冷凍ケーシング64の製氷面64aと剥離刃54との干渉等の不具合を回避し得る。また実施例のすべり軸受構造は、軸受部44の軸部45に軸空間52cを嵌合することでオーガ50と軸受部44との軸を簡単に合わせることができ、組み付け作業性に優れている。   The auger 50 is configured such that the inclined portion 52e of the auger body 52 is supported by the tapered portion 46 that inclines toward the bottom from the top, so that the radial movement and the downward movement of the inclined portion 52e are as follows. Is regulated by the tapered portion 46 (see FIG. 5). That is, the auger 50 is configured such that both the thrust load and the radial load described above are supported by the tapered portion 46 of the bearing portion 44. In the auger 50, even if the sliding contact portion between the inner peripheral surface 52b of the auger main body 52 and the shaft portion 45 of the bearing portion 44 is worn and a gap is generated between them, the inclined portion 52e of the auger main body 52 is the tapered portion 46. Therefore, the rotation center of the auger main body 52 can be displaced so as to be the same as the axis center of the bearing portion 44. As described above, in the slide bearing structure of the embodiment, the axial shift of the auger 50 with respect to the bearing portion 44 hardly occurs, and problems such as interference between the ice making surface 64a of the refrigeration casing 64 and the peeling blade 54 due to the axial shift of the auger 50 are avoided. Can do. Further, the sliding bearing structure of the embodiment can easily align the shafts of the auger 50 and the bearing portion 44 by fitting the shaft space 52c to the shaft portion 45 of the bearing portion 44, and is excellent in assembling workability. .

前記オーガ本体52において軸受部44に摺接する部位は、自己潤滑性を有する材料で形成される。これにより、オーガ50は、オーガ本体52が軸受部44に直接支持されて、製氷運転に際して軸受部44を摺動する構成であるが、オーガ本体52と軸受部44との摺動負荷を軽減して、発熱や両者の摩耗を抑制し得ると共に、駆動手段76にかかる駆動負荷を軽減し得る。ここで、実施例のオーガ本体52は、剥離刃54の刃先部56を除く全体が自己潤滑性を有する合成樹脂材料から成形されている。ここで、合成樹脂材料としては、例えばPOM(ポリアセタール)、PA(ポリアミド)、PC(ポリカーボネート)、PTFE(ポリテトラフルオロエチレン)、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)、PEEK(ポリエーテルエーテルケトン)またはPE(ポリエチレン)等が採用され、実施例のオーガ本体52はPPSが用いられている。   The portion of the auger body 52 that is in sliding contact with the bearing portion 44 is formed of a self-lubricating material. Accordingly, the auger 50 is configured such that the auger body 52 is directly supported by the bearing portion 44 and slides on the bearing portion 44 during the ice making operation, but the sliding load between the auger body 52 and the bearing portion 44 is reduced. Thus, heat generation and wear of both can be suppressed, and the driving load on the driving means 76 can be reduced. Here, the auger main body 52 of the embodiment is formed of a synthetic resin material having self-lubricating properties as a whole except for the cutting edge portion 56 of the peeling blade 54. Here, as synthetic resin materials, for example, POM (polyacetal), PA (polyamide), PC (polycarbonate), PTFE (polytetrafluoroethylene), PPS (polyphenylene sulfide), PBT (polybutylene terephthalate), PEEK (polyether) Etherketone) or PE (polyethylene) is used, and the auger body 52 of the embodiment uses PPS.

前記オーガ本体52には、内周面52b下部における軸受部44の給水孔48と径方向に重なる位置に、該内周面52bを凹ませて供給凹部52gが全周に亘って設けられている(図6参照)。またオーガ本体52は、該オーガ本体52の内外方向に貫通する供給孔53が、供給凹部52gに対応する位置に開口させて、周方向に離間して複数設けられている。なお、実施例のオーガ本体52では、供給孔53がオーガ本体52の周方向に60°づつ離間させて6ヶ所配置され、各供給孔53が剥離刃54の延在位置から外れた外周面52aに開口している(図7参照)。そして、軸受部44の給水孔48と供給凹部52gとが連通すると共に、供給凹部52gと供給孔53とが連通するよう構成され、製氷水がオーガ本体52の外周面52aと冷凍ケーシング64の製氷面64aとの間に供給される。   In the auger body 52, a supply recess 52g is provided over the entire circumference by denting the inner peripheral surface 52b at a position overlapping the water supply hole 48 of the bearing portion 44 in the lower portion of the inner peripheral surface 52b. (See FIG. 6). The auger body 52 is provided with a plurality of supply holes 53 penetrating in the inner and outer directions of the auger body 52 so as to open at positions corresponding to the supply recesses 52g and spaced in the circumferential direction. In the auger main body 52 of the embodiment, the supply holes 53 are arranged at six positions spaced apart by 60 ° in the circumferential direction of the auger main body 52, and each of the supply holes 53 is out of the extending position of the peeling blade 54. (See FIG. 7). The water supply hole 48 of the bearing portion 44 and the supply recess 52g communicate with each other, and the supply recess 52g and the supply hole 53 communicate with each other, so that the ice making water is formed on the outer peripheral surface 52a of the auger body 52 and the ice casing 64. Supplied between the surface 64a.

図8に示すように、前記オーガ本体52には、複数(実施例では2本)の剥離刃54,54が、冷凍ケーシング64の製氷面64aに臨む外周面52aに設けられている。オーガ本体52は、冷凍ケーシング64における収容空間65の内径より氷の搬送空間57分を見込んで外径が小さく設定され、冷凍ケーシング64の製氷面64aとオーガ本体52における剥離刃54を除く外周面52aとの間に搬送空間57が画成される(図5参照)。一方、各剥離刃54は、オーガ本体52の外周面52aから突出するように設けられ、オーガ50を軸受部44に組み付けた際に、剥離刃54における氷剥離位置となる刃先56aと冷凍ケーシング64の製氷面64aとが僅かなクリアランスをあけて対向するようになっている。   As shown in FIG. 8, the auger body 52 is provided with a plurality of (two in the embodiment) peeling blades 54, 54 on the outer peripheral surface 52 a facing the ice making surface 64 a of the refrigeration casing 64. The auger body 52 has an outer diameter set to be smaller than the inner diameter of the storage space 65 in the refrigeration casing 64 in consideration of the ice transfer space 57, and the outer peripheral surface excluding the ice making surface 64a of the refrigeration casing 64 and the peeling blade 54 in the auger body 52. A conveyance space 57 is defined between the two and 52a (see FIG. 5). On the other hand, each peeling blade 54 is provided so as to protrude from the outer peripheral surface 52 a of the auger main body 52, and when the auger 50 is assembled to the bearing portion 44, the cutting edge 56 a and the refrigeration casing 64 that become the ice peeling position in the peeling blade 54. The ice making surface 64a is opposed to the ice making surface 64a with a slight clearance.

前記各剥離刃54は、オーガ本体52の外周面52aにおいて上から下に向かうにつれてオーガ50の回転方向前側から後側へ巻き付くように、適宜のリード角αを持たせて螺旋状に設けられている(図7参照)。なお、実施例の剥離刃54は、オーガ本体52の外周面52aにおおよそ半周(約180°)に亘って形成されている(図8参照)。実施例のオーガ本体52は、2本の剥離刃54,54が180°位相をずらした関係で配置され、各剥離刃54の上端が、オーガ本体52の上端面において動力伝達部58の後述するスポーク部59が接続する部位の回転方向前側近傍に位置している。前述した如く製氷機構30は、オーガ50の剥離刃54により冷凍ケーシング64の製氷面64aの氷を剥離すると共に、螺旋状の剥離刃54によりオーガ50の回転に伴って氷を搬送空間57を介して上方に搬送している。従って、オーガ本体52の上部では、搬送する氷の量が多くなり、オーガ本体52の下部と比べて剥離刃54に負荷がかかる。そこで、各剥離刃54の上端を、オーガ本体52における動力伝達部58のスポーク部59が接続する部位の回転方向前側近傍に配置して、剥離刃54における負荷がかかる上部に対応して動力を伝達することで、氷を適切に剥離・搬送することができる。   Each of the peeling blades 54 is provided in a spiral shape with an appropriate lead angle α so as to wind from the front side to the rear side in the rotational direction of the auger 50 as it goes from top to bottom on the outer peripheral surface 52a of the auger body 52. (See FIG. 7). In addition, the peeling blade 54 of an Example is formed in the outer peripheral surface 52a of the auger main body 52 over substantially half circumference (about 180 degrees) (refer FIG. 8). In the auger body 52 of the embodiment, the two peeling blades 54, 54 are arranged so as to be 180 ° out of phase, and the upper end of each peeling blade 54 will be described later on the upper end surface of the auger body 52. It is located in the vicinity of the front side in the rotational direction of the part to which the spoke part 59 is connected. As described above, the ice making mechanism 30 peels the ice on the ice making surface 64a of the refrigeration casing 64 by the peeling blade 54 of the auger 50, and also causes the spiral peeling blade 54 to pass ice through the transport space 57 as the auger 50 rotates. Are transported upward. Accordingly, the amount of ice to be conveyed increases in the upper part of the auger body 52, and a load is applied to the peeling blade 54 as compared with the lower part of the auger body 52. Therefore, the upper end of each peeling blade 54 is arranged in the vicinity of the front side in the rotational direction of the portion to which the spoke portion 59 of the power transmission portion 58 of the auger body 52 is connected, and the power corresponding to the upper portion where the load on the peeling blade 54 is applied. By transmitting, the ice can be appropriately peeled and transported.

前記リード角αとは、オーガ本体52に螺旋状に連設された剥離刃54における刃先56aの延在ラインと水平ラインとがなす角度であって、剥離刃54により剥離された氷の搬送に関連するパラメータである(図7参照)。すなわち、剥離刃54のリード角αが大きくなると(剥離刃54が縦方向に立った状態)、剥離刃54にかかるスラスト荷重が小さくなるものの、氷を上方へ搬送するために必要とされる回転抑止力が大きくなる。これに対して、剥離刃54のリード角αが小さくなると(剥離刃54が横方向に倒れ込んだ状態)、剥離刃54にかかるスラスト荷重が大きくなるものの、氷を上方へ搬送するために必要とされる回転抑止力が小さくなる。剥離刃54のリード角αは、23°〜68°の範囲に設定するのが望ましく、実施例では45°に設定してある。ここで、回転抑止力とは、オーガ50の回転に伴って氷が周方向に共回りすることを抑えるよう作用する力であって、氷をオーガ50の回転につれて搬送空間57を介して上方へ搬送するために必要となる。なお、回転抑止力は、冷凍ケーシング64の製氷面64aに設けられる後述する凹凸により、氷に対して付与される。   The lead angle α is an angle formed by an extension line of the cutting edge 56a and a horizontal line in the peeling blade 54 spirally connected to the auger body 52, and is used for transporting ice peeled by the peeling blade 54. Related parameters (see FIG. 7). That is, when the lead angle α of the peeling blade 54 increases (the peeling blade 54 stands in the vertical direction), the thrust load applied to the peeling blade 54 decreases, but the rotation required to transport ice upward. Deterrence increases. On the other hand, when the lead angle α of the peeling blade 54 is small (the peeling blade 54 is tilted in the lateral direction), the thrust load applied to the peeling blade 54 increases, but it is necessary for conveying ice upward. Rotation deterrence force is reduced. The lead angle α of the peeling blade 54 is desirably set in a range of 23 ° to 68 °, and is set to 45 ° in the embodiment. Here, the rotation deterring force is a force that acts to prevent the ice from co-rotating in the circumferential direction with the rotation of the auger 50, and the ice is moved upward through the transport space 57 as the auger 50 rotates. Necessary for transportation. The rotation deterring force is applied to the ice by the irregularities described later provided on the ice making surface 64a of the refrigeration casing 64.

図9に示すように、前記剥離刃54は、オーガ本体52の外周面52aから半径方向外側に突出するにつれて先が細くなるよう隆起させた断面山形に形成され、刃先56aとなる稜線を挟んで対向する支持面55a,55bの裾が該オーガ本体52の外周面52aに滑らかに連なるよう形成されている。換言すると、剥離刃54は、製氷面64aに臨む刃先56aを挟んで上下に対向する支持面55a,55bが、該刃先56aからオーガ本体52の外周面52aに向かうにつれて互いに離間して該外周面52aに曲線的に連なるよう構成される。そして、各支持面55aは、剥離刃54の刃先面と製氷面64aとがなす刃先角度βで刃先56aを通るラインより製氷面64a側または当該ラインに沿って延在するよう形成される。   As shown in FIG. 9, the peeling blade 54 is formed in a cross-sectional chevron shape that is tapered so as to protrude radially outward from the outer peripheral surface 52 a of the auger body 52, and sandwiches a ridge line that becomes the blade edge 56 a The skirts of the opposing support surfaces 55 a and 55 b are formed so as to be smoothly connected to the outer peripheral surface 52 a of the auger body 52. In other words, the peeling blade 54 is separated from each other as the support surfaces 55a and 55b facing vertically with the blade edge 56a facing the ice making surface 64a are spaced from the blade edge 56a toward the outer peripheral surface 52a of the auger body 52. 52a is configured to be continuous with the curve. And each support surface 55a is formed so that it may extend along the ice-making surface 64a side or the said line from the line which passes along the blade edge 56a with the blade edge angle (beta) which the blade edge surface of the peeling blade 54 and the ice-making surface 64a make.

ここで実施例の剥離刃54は、オーガ本体52に連なる基礎部55と別体の刃先部56で刃先56aが構成されている。実施例の剥離刃54は、基礎部55における上側の支持面55aの一部に稜線にかけて設置凹部が設けられ、刃先部56が設置凹部に嵌め合わせてネジ、インサート成形、接着、カシメまたはこれらの複合による適宜の手段で固定されている。図10に示すように、刃先部56は、ステンレス等の金属製の板状体であって、該刃先部56の下縁が上側の支持面55aと下側の支持面55bとがなす稜線と整合するように配置され、該刃先部56下縁における製氷面64aに臨む角部が刃先56aとなっている。すなわち、剥離刃54において、製氷面64aの氷を剥離する刃先56aを含む部分を耐摩耗性に優れた金属材料で構成する一方、基礎部55およびオーガ本体52を合成樹脂で形成することで、剥離刃54の寿命を向上し得ると共に、オーガ本体52全体として軽量化を図ることができる。しかも、刃先部56だけを取り替え可能に構成することで、メンテナンスコストを低減でき、刃先56aの信頼性を適切に維持できる。   Here, in the peeling blade 54 of the embodiment, a blade edge 56 a is configured by a base portion 55 that is continuous with the auger body 52 and a separate blade edge portion 56. In the peeling blade 54 of the embodiment, an installation concave portion is provided over a ridge line on a part of the upper support surface 55a of the base portion 55, and the blade edge portion 56 is fitted into the installation concave portion so that screws, insert molding, adhesion, caulking, or these It is fixed by an appropriate means by combination. As shown in FIG. 10, the blade edge portion 56 is a plate-like body made of metal such as stainless steel, and the lower edge of the blade edge portion 56 is a ridge line formed by the upper support surface 55a and the lower support surface 55b. A corner portion facing the ice making surface 64a at the lower edge of the blade edge portion 56 is the blade edge 56a. That is, in the peeling blade 54, the portion including the cutting edge 56a for peeling the ice on the ice making surface 64a is made of a metal material having excellent wear resistance, while the base portion 55 and the auger body 52 are formed of a synthetic resin. The life of the peeling blade 54 can be improved, and the auger body 52 as a whole can be reduced in weight. In addition, since only the blade edge portion 56 can be replaced, the maintenance cost can be reduced, and the reliability of the blade edge 56a can be appropriately maintained.

図10に示すように、前記剥離刃54は、鉛直方向に延在する冷凍ケーシング64の製氷面64aと、刃先面(刃先56aと、基礎部55における上側の斜辺において刃先56aに近接する極限の点とを結んだ面であって、実施例では刃先部56の上面)とがなす刃先角度βが、製氷面64aに生成した氷を安定的に剥離できるように適宜角度で設定される。なお、刃先角度βは、鋭角に設定されて、実施例では15°程度になっている。   As shown in FIG. 10, the peeling blade 54 includes an ice making surface 64 a of the refrigeration casing 64 extending in the vertical direction, a cutting edge surface (the cutting edge 56 a, and the extreme oblique side close to the cutting edge 56 a on the upper oblique side of the base portion 55. The blade edge angle β formed by the surface connecting the points and the upper surface of the blade edge portion 56 in the embodiment is set at an appropriate angle so that the ice formed on the ice making surface 64a can be peeled stably. The cutting edge angle β is set to an acute angle, and is about 15 ° in the embodiment.

前記剥離刃54は、基礎部55の各支持面55a,55bと冷凍ケーシング64の製氷面64aとがなす角度を、刃先角度βと同一または刃先角度βより小さくなるように構成されている(図10参照)。すなわち、基礎部55の各支持面55a,55bは、刃先56aを製氷面64aに対する刃先角度βで通るラインと同一または当該ラインより製氷面64a側に偏倚して延在するよう形成されている。なお、実施例の剥離刃54は、上下の支持面55a,55bが刃先56aを挟んで対称な関係で延在するよう形成されている。ところで、剥離刃54には、製氷面64aから氷を剥離する際に、該剥離刃54の表面の垂直方向に荷重が負荷される。仮に、基礎部55の支持面55a,55bを刃先角度βより大きく設定すると、支持面55a,55bに応力が集中する部分が存在し、製氷面64aから氷を剥離する際に負荷される荷重をモーメント荷重として支持する部分が生じる。剥離刃54に対しモーメント荷重が負荷されると、圧縮荷重よりも高い応力が発生することになる。これに対して、実施例の如く、基礎部55の各支持面55a,55bの延在ラインを刃先角度βに対応して応力集中部が存在しないように形成することで、剥離刃54で製氷面64aの氷を剥離する際に、モーメント荷重が負荷されず、剥離刃54にかかる応力の向きに交差する位置に基礎部55が延在して、基礎部55で応力を圧縮荷重として適切に支持することができる。また、基礎部55の各支持面55a,55bには、剥離刃54で製氷面64aの氷を剥離する際に、剥離刃54にかかる応力が集中する隅角形状や凹形状等の部位がないので、基礎部55を合成樹脂で形成しても剥離刃54の剛性を確保し得る。   The peeling blade 54 is configured such that the angle formed between the support surfaces 55a and 55b of the base portion 55 and the ice making surface 64a of the refrigeration casing 64 is the same as or smaller than the blade edge angle β (see FIG. 10). That is, each support surface 55a, 55b of the base portion 55 is formed to be the same as a line passing through the blade edge 56a at the blade edge angle β with respect to the ice making surface 64a or to be extended from the line toward the ice making surface 64a. In addition, the peeling blade 54 of an Example is formed so that the upper and lower support surfaces 55a and 55b may be extended in a symmetrical relationship across the blade edge 56a. By the way, when peeling ice from the ice making surface 64a, a load is applied to the peeling blade 54 in a direction perpendicular to the surface of the peeling blade 54. If the support surfaces 55a and 55b of the base portion 55 are set to be larger than the cutting edge angle β, there are portions where stress concentrates on the support surfaces 55a and 55b, and a load applied when the ice is peeled off from the ice making surface 64a. A supporting part is generated as a moment load. When a moment load is applied to the peeling blade 54, a stress higher than the compressive load is generated. On the other hand, as in the embodiment, the extending lines of the support surfaces 55a and 55b of the base portion 55 are formed so that there is no stress concentration portion corresponding to the blade edge angle β, so that the peeling blade 54 makes ice. When the ice on the surface 64a is peeled off, a moment load is not applied, and the base portion 55 extends to a position intersecting the direction of the stress applied to the peeling blade 54, and the stress is appropriately applied as a compressive load at the base portion 55. Can be supported. Further, each support surface 55a, 55b of the base portion 55 does not have a portion such as a corner shape or a concave shape where stress applied to the peeling blade 54 is concentrated when the ice on the ice making surface 64a is peeled off by the peeling blade 54. Therefore, the rigidity of the peeling blade 54 can be ensured even if the base portion 55 is formed of a synthetic resin.

実施例の刃先部56は、プレスで形成される。前述した如く、剥離刃54は、オーガ本体52の上端から下端に至るまでに外周面52aを約半周に亘って巻き付くよう形成されている。このように、オーガ本体52の平面視において剥離刃54がオーガ本体52の外周面に延在している角度である巻き付き角度γを、180°以下に設定することで、刃先部56をプレス成形する際に、プレス型を簡単にすることができる(図8参照)。これに対し、剥離刃54の巻き付き角度γが180°を越えると、刃先部56をプレス成形する際に、プレス型の分割が複雑になり、コストがかかる弊害が生じる。ここで、剥離刃54の巻き付き角度γは、剥離刃54のリード角α、オーガ本体52における剥離刃54の刃先56a,56a間の外径dおよびオーガ本体52の上下寸法hに関係し、巻き付き角度γを180°以下に設定するための条件を、以下の式1の如く表すことができる。
tanα>2h/πd …式1
α:リード角
h:オーガ本体52の上下寸法
π:円周率
d:オーガ本体52における剥離刃54の刃先56a,56a間の外径
The blade edge portion 56 of the embodiment is formed by pressing. As described above, the peeling blade 54 is formed so as to wind the outer peripheral surface 52a over about a half circumference from the upper end to the lower end of the auger body 52. Thus, the cutting edge portion 56 is press-molded by setting the winding angle γ, which is the angle at which the peeling blade 54 extends to the outer peripheral surface of the auger body 52 in a plan view of the auger body 52, to 180 ° or less. In doing so, the press die can be simplified (see FIG. 8). On the other hand, when the winding angle γ of the peeling blade 54 exceeds 180 °, when the blade edge portion 56 is press-molded, the press die is complicated to be divided, resulting in a costly problem. Here, the winding angle γ of the peeling blade 54 is related to the lead angle α of the peeling blade 54, the outer diameter d between the blade edges 56 a and 56 a of the peeling blade 54 in the auger body 52, and the vertical dimension h of the auger body 52. A condition for setting the angle γ to 180 ° or less can be expressed as the following Expression 1.
tan α> 2h / πd Equation 1
α: Lead angle h: Vertical dimension of the auger body 52 π: Circumference d: Outer diameter between the blade edges 56 a and 56 a of the peeling blade 54 in the auger body 52

図4に示すように、動力伝達部58は、オーガ本体52の上端に設けられたスポーク部59と、このスポーク部59に設けられ、駆動手段76の出力軸77への接続部分となる接続ボス部60とから構成される。スポーク部59は、オーガ本体52の軸中心を通って該オーガ本体52の径方向に延在する中央連結片59aと、この中央連結片59aの両端に夫々設けられ、該中央連結片59aに対しオーガ50の回転方向に角度を変えて延在してオーガ本体52の上端面に接続する一対の側部連結片59b,59bとを備える屈曲形状に形成される(図8参照)。ここで、スポーク部59は、各側部連結片59bが中央連結片59aの延在方向に対して半径方向内側から外側へ向かうにつれてオーガ50の回転方向前側に偏倚するよう延在し、両側部連結片59b,59bが互いに180°位相をずらした位置関係になっている。なお、スポーク部59には、各側部連結片59bの半径方向外側の上角部が斜めに切り欠かれた斜面部59cが設けられている。このように、スポーク部59の両側部連結片59b,59bを、オーガ50の回転中心を通る半径方向のラインに対して角度を設けて延在させる構成とすることで、オーガ50の回転につれて氷を半径方向内側へ向けて円滑に案内することができる。   As shown in FIG. 4, the power transmission part 58 includes a spoke part 59 provided at the upper end of the auger body 52 and a connection boss provided on the spoke part 59 and serving as a connection part to the output shaft 77 of the drive means 76. Part 60. The spoke portions 59 are provided at the central connecting piece 59a extending in the radial direction of the auger body 52 through the axial center of the auger main body 52, and at both ends of the central connecting piece 59a. The auger 50 is formed in a bent shape including a pair of side connection pieces 59b and 59b that extend at different angles in the rotation direction and connect to the upper end surface of the auger body 52 (see FIG. 8). Here, the spoke portion 59 extends so that each side connecting piece 59b is biased toward the front side in the rotational direction of the auger 50 as it goes from the radially inner side to the outer side with respect to the extending direction of the central connecting piece 59a. The connecting pieces 59b and 59b are in a positional relationship in which the phases are shifted from each other by 180 °. The spoke portion 59 is provided with an inclined surface portion 59c in which the upper corner portion on the radially outer side of each side connecting piece 59b is cut obliquely. As described above, the both-side connecting pieces 59b and 59b of the spoke part 59 are configured to extend at an angle with respect to the radial line passing through the rotation center of the auger 50, so that the ice as the auger 50 rotates. Can be smoothly guided radially inward.

前記接続ボス部60は、スポーク部59における中央連結片59aの上部に設けられ、オーガ本体52の軸中心に配置されている(図7参照)。接続ボス部60は、外形が円形に形成されて、中央に上方に開口する軸溝60aが設けられると共に、軸溝60aの内周面から半径方向外側に凹ませたキー溝60bが軸溝60aの上下に亘って設けられている。なお、接続ボス部60の上部外周縁には、仕切り壁60cが全周に亘って立設され、軸溝60aに挿入した駆動手段76の出力軸77を伝って流下する水等の流体を仕切り壁60cにより受止めて、オーガ本体52の内側中央に設けた氷放出路35aを介して流体が貯氷室に落下しないようになっている(図9参照)。   The connection boss portion 60 is provided on the upper portion of the central connecting piece 59a in the spoke portion 59, and is disposed at the axial center of the auger body 52 (see FIG. 7). The connection boss part 60 is formed in a circular shape, and is provided with a shaft groove 60a that opens upward in the center, and a key groove 60b that is recessed radially outward from the inner peripheral surface of the shaft groove 60a. It is provided over the upper and lower sides. A partition wall 60c is erected over the entire outer periphery of the connection boss 60 to partition the fluid such as water flowing down through the output shaft 77 of the drive means 76 inserted into the shaft groove 60a. The fluid is prevented from falling into the ice storage chamber through the ice discharge passage 35a provided in the center of the auger body 52, received by the wall 60c (see FIG. 9).

前記動力伝達部58は、接続ボス部60において中央連結片59aから半径方向外側に延出した底部に、上から下に向かうにつれて半径方向内側に傾斜して、中央連結片59aの側面に接続する案内面61を備えている。動力伝達部58は、製氷運転に際して、駆動手段76により回転するスポーク部59の両側部連結片59b,59bが、搬送空間57を介してオーガ本体52の上方に案内部材74との間に設けられた氷収集部Sに搬送された氷を半径方向内側(回転中心側)に向けて案内するようになっている。また、スポーク部59の中央連結片59aおよび案内面61は、駆動手段76により回転したもとで、両側部連結片59b,59bで移動された氷を、剥離刃54による氷剥離位置となる製氷面に対してオーガ50の回転中心側に偏倚して設けられた氷放出路35aの氷放出口(給水パーツ34における円筒本体35の上側開口)35bに向けて下方へ案内するようになっている。このように、動力伝達部58は、駆動手段76と着脱容易に接続する機能だけでなく、オーガ本体52の剥離刃54により搬送空間57を介して上方に案内された氷を、氷放出口35bに向けて案内する氷案内部としても機能する。   The power transmission portion 58 is inclined inward in the radial direction from the top to the bottom at the connecting boss portion 60 extending radially outward from the central coupling piece 59a and connected to the side surface of the central coupling piece 59a. A guide surface 61 is provided. The power transmission portion 58 is provided between the guide member 74 above the auger main body 52 via the conveyance space 57 with both side connecting portions 59b, 59b of the spoke portion 59 rotated by the driving means 76 during the ice making operation. The ice transported to the ice collecting section S is guided radially inward (rotation center side). Further, the central connecting piece 59a and the guide surface 61 of the spoke part 59 are rotated by the driving means 76, and the ice moved by the two side connecting parts 59b and 59b is converted into an ice making position by the peeling blade 54. It guides downward toward an ice discharge port (upper side opening of the cylindrical main body 35 in the water supply part 34) 35b of an ice discharge path 35a provided to be biased toward the rotation center side of the auger 50 with respect to the surface. . As described above, the power transmission unit 58 not only has a function of easily connecting to the drive unit 76 but also the ice guided through the conveying space 57 by the peeling blade 54 of the auger body 52 through the ice discharge port 35b. It also functions as an ice guide that guides you towards

前記オーガ50の動力伝達部58は、剥離刃54が製氷面64aに引っ掛かる等の何らかの原因でオーガ本体52の回転に対して過剰な負荷がかかった際に、駆動手段76をオーガ50のロックから保護する保護手段としても機能するように構成される。例えばオーガ50は、オーガ本体52に過負荷がかかった際に、スポーク部59、オーガ本体52とスポーク部59との連結部分またはスポーク部59と接続ボス部60との連結部分が破断するように設定されている。なお、オーガ50は、スポーク部59や前述した連結部分に切欠等により脆弱部を予め設けて、オーガ50のロックに際して脆弱部で破断させるよう構成してもよい。このように、オーガ50の動力伝達部58を保護手段として機能する構成とすることで、駆動手段76の過負荷を回避して、オーガ50と比較して高価な駆動手段76や冷凍ケーシング64等の故障を防止できる。   The power transmission unit 58 of the auger 50 moves the driving means 76 from the lock of the auger 50 when an excessive load is applied to the rotation of the auger main body 52 due to some reason such as the peeling blade 54 being caught on the ice making surface 64a. It is also configured to function as a protection means for protecting. For example, in the auger 50, when an overload is applied to the auger body 52, the spoke part 59, the connection part between the auger body 52 and the spoke part 59, or the connection part between the spoke part 59 and the connection boss part 60 are broken. Is set. In addition, the auger 50 may be configured such that a weak portion is provided in advance in the spoke portion 59 or the connecting portion described above by a notch or the like, and the auger 50 is broken when the auger 50 is locked. As described above, the power transmission unit 58 of the auger 50 is configured to function as protection means, so that overload of the driving means 76 is avoided, and the driving means 76 and the refrigeration casing 64 that are more expensive than the auger 50 are used. Can be prevented.

このように、オーガ50は、オーガ本体52および動力伝達部58を金属と比べて熱伝導率が低い合成樹脂から一体成形しているので、駆動手段76の出力軸77と動力伝達部58を直接接続しても出力軸77と動力伝達部58との間の熱伝導を抑制することができる。すなわち、駆動手段76の熱によるオーガ50の昇温を避けることができるので、冷凍ケーシング64の製氷面64aでの氷の生成を妨げることなく、製氷機構30における製氷効率を向上し得る。また、オーガ50による駆動手段76の冷却を避けることができるので、駆動手段76での結露を抑制して、駆動手段76の故障を回避し得る。更にオーガ50は、オーガ本体52および動力伝達部58を合成樹脂から一体成形することで、軽く、加工が容易で、しかもコストを低減し得る。更にオーガ本体52を合成樹脂で形成することで、氷放出路35a側から冷凍ケーシング64の製氷面64a側に侵入する熱を抑制することができる。   Thus, since the auger 50 integrally forms the auger body 52 and the power transmission unit 58 from a synthetic resin having a lower thermal conductivity than metal, the output shaft 77 of the drive means 76 and the power transmission unit 58 are directly connected. Even if connected, heat conduction between the output shaft 77 and the power transmission unit 58 can be suppressed. That is, since the temperature rise of the auger 50 due to the heat of the driving means 76 can be avoided, the ice making efficiency in the ice making mechanism 30 can be improved without hindering the generation of ice on the ice making surface 64a of the refrigeration casing 64. Moreover, since the cooling of the drive means 76 by the auger 50 can be avoided, dew condensation on the drive means 76 can be suppressed, and failure of the drive means 76 can be avoided. Furthermore, the auger 50 is light, easy to process, and can reduce costs by integrally forming the auger body 52 and the power transmission unit 58 from synthetic resin. Furthermore, by forming the auger main body 52 from a synthetic resin, heat that enters the ice making surface 64a side of the refrigeration casing 64 from the ice discharge path 35a side can be suppressed.

前記冷凍ケーシング64は、上下に開口する収容空間65を備えた円筒体であって、オーガ50を収容空間65に収容して、給水パーツ34におけるフランジ部36の載置面36bに載置された軸受部44の載置部47に載置される(図1参照)。冷凍ケーシング64は、軸受部44の載置部47に載置した際に、該冷凍ケーシング64における周壁66の下端面外周縁に突設された規制片66bが軸受部44における載置部47の外周縁に外嵌し、軸受部44および軸受部44に保持されたオーガ50と軸が一致するよう位置決めされる。つまり、冷凍ケーシング64の製氷面64aとオーガ50における剥離刃54の刃先56aとの間のクリアランスが一定に保たれる。そして、実施例の製氷機構30は、ベース32の下方から給水パーツ34のフランジ部36、軸受部44の載置部47および冷凍ケーシング64の下端とをネジ(図示せず)で螺着することで互いに固定されている。この際、冷凍ケーシング64は、給水パーツ34の位置決め突片38が外周面に当接し、該冷凍ケーシング64の半径方向の移動が規制されると共に、冷凍ケーシング64に対して規制片66bにより同軸的に位置決めされた軸受部44の軸部45と給水パーツ34の円筒本体35とが位置合わせされる。これにより、給水パーツ34における円筒本体35の外周面と軸受部44における軸部45の内周面との間の戻し空間42が、一定のクリアランスを保持して設けられる。また、冷凍ケーシング64は、該冷凍ケーシング64の下端内周に全周に亘って設けたシール凹部64bにOリングや角リング等のシール材63が配設されて、冷凍ケーシング64と載置部47との間が封水される。   The refrigeration casing 64 is a cylindrical body having an accommodation space 65 that opens up and down. The auger 50 is accommodated in the accommodation space 65 and placed on the placement surface 36 b of the flange portion 36 in the water supply part 34. It mounts on the mounting part 47 of the bearing part 44 (refer FIG. 1). When the refrigeration casing 64 is placed on the placement portion 47 of the bearing portion 44, the restricting piece 66 b that protrudes from the outer peripheral edge of the lower end surface of the peripheral wall 66 of the refrigeration casing 64 is formed on the placement portion 47 of the bearing portion 44. The outer periphery is fitted so that the shaft is aligned with the bearing 44 and the auger 50 held by the bearing 44. That is, the clearance between the ice making surface 64 a of the refrigeration casing 64 and the cutting edge 56 a of the peeling blade 54 in the auger 50 is kept constant. And the ice making mechanism 30 of an Example screws the flange part 36 of the water supply part 34, the mounting part 47 of the bearing part 44, and the lower end of the freezing casing 64 from the lower side of the base 32 with a screw (not shown). Are fixed to each other. At this time, in the refrigeration casing 64, the positioning projection piece 38 of the water supply part 34 comes into contact with the outer peripheral surface, the movement of the refrigeration casing 64 in the radial direction is restricted, and the restriction piece 66b is coaxial with the refrigeration casing 64. The shaft portion 45 of the bearing portion 44 and the cylindrical main body 35 of the water supply part 34 are aligned with each other. Thereby, the return space 42 between the outer peripheral surface of the cylindrical main body 35 in the water supply part 34 and the inner peripheral surface of the shaft portion 45 in the bearing portion 44 is provided with a certain clearance. Further, the refrigeration casing 64 is provided with a sealing material 63 such as an O-ring or a square ring in a seal recess 64b provided on the entire inner periphery of the lower end of the refrigeration casing 64, so that the refrigeration casing 64 and the mounting portion are disposed. 47 is sealed with water.

前記冷凍ケーシング64は、金属と比べて熱伝導性が低い合成樹脂製の給水パーツ34に載置される構成であるので、ベース32との間の熱伝導を抑制することができる。すなわち、ベース32の熱が冷凍ケーシング64に伝わることによる製氷効率の悪化や、ベース32が冷却されることによるベース32での結露の発生を防止できる。更に、冷凍ケーシング64の外周面を伝って流下する結露水等は、給水パーツ34の排水溝36aで回収されて、排水部41に接続された排水管を介して外部に排出される。このように、製氷機構30では、給水パーツ34が冷凍ケーシング64を流下する結露水等を受止めるドレンパンとして機能すると共に、冷凍ケーシング64とベース32との間の断熱部材として機能する。   Since the refrigeration casing 64 is configured to be placed on the water supply part 34 made of a synthetic resin having a lower thermal conductivity than that of metal, heat conduction between the refrigeration casing 64 and the base 32 can be suppressed. That is, it is possible to prevent the ice making efficiency from deteriorating due to the heat of the base 32 being transmitted to the refrigeration casing 64 and the dew condensation on the base 32 due to the base 32 being cooled. Furthermore, the dew condensation water or the like flowing down along the outer peripheral surface of the refrigeration casing 64 is collected by the drain groove 36 a of the water supply part 34 and discharged outside through a drain pipe connected to the drain part 41. In this way, in the ice making mechanism 30, the water supply part 34 functions as a drain pan that receives the dew condensation water flowing down the refrigeration casing 64 and also functions as a heat insulating member between the refrigeration casing 64 and the base 32.

前記冷凍ケーシング64は、収容空間65を画成する周壁66の内部に冷媒流路67が設けられ、この冷媒流路67に連通する導入部68および導出部69が該冷凍ケーシング64の外周面に突出して設けられている。実施例の冷凍ケーシング64は、周壁66の下部に導入部68が設けられ、周壁66の上部に導出部69が設けられ、導入部68および導出部69が冷媒流路67を介して連通している(図1または図5参照)。なお、導入部68と導出部69とは、 冷凍ケーシング64を挟んで対称な位置関係で配置されている(図4参照)。また、冷凍ケーシング64は、導入部68および導出部69に冷凍機構に接続する図示しない冷媒配管が連結され、冷凍機構の圧縮機、凝縮器および膨張弁等の減圧手段により構成される冷媒循環式の冷凍回路の中で蒸発器として機能するようになっている。すなわち、冷凍ケーシング64は、冷凍機構から供給された冷媒が冷媒流路67を流通する過程で該冷媒との熱交換により製氷面64aが冷却されて、製氷面64aに氷が生成される。   In the refrigeration casing 64, a refrigerant channel 67 is provided inside a peripheral wall 66 that defines an accommodation space 65, and an introduction part 68 and a lead-out part 69 communicating with the refrigerant channel 67 are provided on the outer peripheral surface of the refrigeration casing 64. Protrusively provided. In the refrigeration casing 64 of the embodiment, an introduction part 68 is provided at the lower part of the peripheral wall 66, a lead-out part 69 is provided at the upper part of the peripheral wall 66, and the lead-in part 68 and the lead-out part 69 communicate with each other via the refrigerant channel 67. (See FIG. 1 or FIG. 5). In addition, the introducing | transducing part 68 and the derivation | leading-out part 69 are arrange | positioned by the symmetrical positional relationship on both sides of the freezing casing 64 (refer FIG. 4). In the refrigeration casing 64, a refrigerant pipe (not shown) connected to the refrigeration mechanism is connected to the introduction part 68 and the lead-out part 69, and a refrigerant circulation type constituted by decompression means such as a compressor, a condenser and an expansion valve of the refrigeration mechanism. It functions as an evaporator in the refrigeration circuit. That is, in the refrigeration casing 64, the ice making surface 64a is cooled by heat exchange with the refrigerant in the process in which the refrigerant supplied from the refrigeration mechanism flows through the refrigerant flow path 67, and ice is generated on the ice making surface 64a.

前記冷凍ケーシング64は、熱伝導性に優れた金属材料で形成され、実施例ではアルミニウムが採用されている。図11に示すように、冷凍ケーシング64は、本体ブロック70と、この本体ブロック70の下部に組み付けられる下部ブロック71と、本体ブロック70の上部に組み付けられる上部ブロック72とから構成されている。本体ブロック70は、製氷面64aを含む冷凍ケーシング64の大部分を構成し、円筒形状の内部に軸方向に沿って直線的に貫通する収容空間65が設けられ、この収容空間65を画成する本体ブロック70の内周面だけで製氷面64aが構成されている。また本体ブロック70は、冷凍ケーシング64の外周面を構成する中間部分と比べて上部および下部の外径が小さく形成されて、上部外周縁および下部外周縁の夫々に階段状に切り欠かれた差し込み部70a,70bが設けられている。更に本体ブロック70には、上下の差し込み部70a,70b間の中間部分に、上下に貫通する冷媒流路67の直管部67aが、周方向に一定間隔で離間して複数設けられている。各直管部67aは、本体ブロック70の中間部分において差し込み部70a,70bの外周面より半径方向外側に配置されている。そして、各直管部67aは、本体ブロック70における中間部分を上下に貫通するよう設けられ、本体ブロック70において上下の差し込み部70a,70bにより形成される段部に開口するようになっている。   The refrigeration casing 64 is made of a metal material having excellent thermal conductivity, and aluminum is adopted in the embodiment. As shown in FIG. 11, the refrigeration casing 64 includes a main body block 70, a lower block 71 assembled to the lower portion of the main body block 70, and an upper block 72 assembled to the upper portion of the main body block 70. The main body block 70 constitutes a large part of the refrigeration casing 64 including the ice making surface 64 a, and an accommodation space 65 that penetrates linearly along the axial direction is provided inside the cylindrical shape, thereby defining the accommodation space 65. The ice making surface 64a is constituted only by the inner peripheral surface of the main body block 70. Further, the main body block 70 is formed such that the outer diameter of the upper part and the lower part is smaller than the intermediate part constituting the outer peripheral surface of the refrigeration casing 64, and is inserted into the upper outer peripheral edge and the lower outer peripheral edge in a stepped manner. Portions 70a and 70b are provided. Further, the main body block 70 is provided with a plurality of straight pipe portions 67a of the refrigerant flow passage 67 penetrating vertically in the middle portion between the upper and lower insertion portions 70a and 70b, spaced apart at a constant interval in the circumferential direction. Each straight pipe portion 67a is disposed on the outer side in the radial direction from the outer peripheral surfaces of the insertion portions 70a and 70b in the intermediate portion of the main body block 70. Each straight pipe portion 67a is provided so as to vertically penetrate an intermediate portion of the main body block 70, and opens in a step portion formed by the upper and lower insertion portions 70a and 70b in the main body block 70.

前記下部ブロック71は、リング状の部材であって、内径が本体ブロック70における下側の差し込み部70aの外径と略同一に設定されると共に、外径が本体ブロック70における中間部分の外径と略同一に設定されている。下部ブロック71は、本体ブロック70における下側の差し込み部70aを内側に挿入することで、該差し込み部70aの外側を覆って組み付けられ、下部ブロック71の外周面が本体ブロック70における中間部分の外周面と整合し、冷凍ケーシング64の下部外周面を構成する。また下部ブロック71は、上部内周縁の全周に亘って分配凹部71aが凹設されて、本体ブロック70に組み付けた際に、分配凹部71aと下側の差し込み部70aとの間に本体ブロック70の直管部67aに連通する分配部67bが画成されるようになっている。ここで、導入部68は、分配凹部71a(分配部67b)に連通するよう下部ブロック71に設けられている。   The lower block 71 is a ring-shaped member, and the inner diameter is set to be substantially the same as the outer diameter of the lower insertion portion 70 a in the main body block 70, and the outer diameter is the outer diameter of the intermediate portion in the main body block 70. Are set to be approximately the same. The lower block 71 is assembled so as to cover the outside of the insertion portion 70a by inserting the lower insertion portion 70a in the main body block 70 inside, and the outer peripheral surface of the lower block 71 is the outer periphery of the intermediate portion in the main body block 70. It aligns with the surface and constitutes the lower outer peripheral surface of the refrigeration casing 64. Further, the lower block 71 has a distribution recess 71a formed over the entire circumference of the upper inner periphery, and when assembled to the main body block 70, the main body block 70 is interposed between the distribution recess 71a and the lower insertion portion 70a. A distribution portion 67b communicating with the straight pipe portion 67a is defined. Here, the introduction part 68 is provided in the lower block 71 so as to communicate with the distribution recess 71a (distribution part 67b).

前記上部ブロック72は、リング状の部材であって、内径が本体ブロック70における上側の差し込み部70bの外径と略同一に設定されると共に、外径が本体ブロック70における中間部分の外径と略同一に設定されている。上部ブロック72は、本体ブロック70における上側の差し込み部70bを内側に挿入することで、該差し込み部70bの外側を覆って組み付けられ、上部ブロック72の外周面が本体ブロック70における中間部分の外周面と整合し、冷凍ケーシング64の上部外周面を構成する。また上部ブロック72は、下部内周縁の全周に亘って回収凹部72aが凹設されて、本体ブロック70に組み付けた際に、回収凹部72aと上側の差し込み部70bとの間に本体ブロック70の直管部67aに連通する回収部67cが画成されるようになっている。ここで、導出部69は、回収凹部72a(回収部67c)に連通するよう上部ブロック72に設けられている。   The upper block 72 is a ring-shaped member, and the inner diameter is set to be substantially the same as the outer diameter of the upper insertion portion 70 b in the main body block 70, and the outer diameter is the same as the outer diameter of the intermediate portion in the main body block 70. It is set almost the same. The upper block 72 is assembled so as to cover the outer side of the insertion portion 70b by inserting the upper insertion portion 70b in the main body block 70 inside, and the outer peripheral surface of the upper block 72 is the outer peripheral surface of the intermediate portion in the main body block 70. The upper outer peripheral surface of the refrigeration casing 64 is configured. Further, the upper block 72 has a recovery recess 72a formed over the entire inner periphery of the lower portion, and when the upper block 72 is assembled to the main body block 70, the main block 70 is located between the recovery recess 72a and the upper insertion portion 70b. A recovery part 67c communicating with the straight pipe part 67a is defined. Here, the derivation | leading-out part 69 is provided in the upper block 72 so that it may connect with the collection | recovery recessed part 72a (collection part 67c).

このように、冷凍ケーシング64は、本体ブロック70に下部ブロック71および上部ブロック72を組み付けることで、直管部67aに対して分配部67bおよび回収部67cが連通して、導入部68から導出部69に冷媒が流通する冷媒流路67が構成される(図5参照)。すなわち、冷凍ケーシング64を冷媒流路67に合わせて3つのブロック70,71,72に分割して形成することで、夫々のブロック70,71,72を押し出し成形により成形することができる。従って、冷凍ケーシング64の製造コストを低減できる。   As described above, the refrigeration casing 64 has the lower block 71 and the upper block 72 assembled to the main body block 70, so that the distribution portion 67b and the collection portion 67c communicate with the straight pipe portion 67a. A refrigerant passage 67 through which the refrigerant flows is formed in 69 (see FIG. 5). That is, by forming the refrigeration casing 64 into three blocks 70, 71, 72 according to the refrigerant flow path 67, the blocks 70, 71, 72 can be formed by extrusion molding. Therefore, the manufacturing cost of the refrigeration casing 64 can be reduced.

ここで、冷凍ケーシング64は、3つのブロック70,71,72から構成されるが、本体ブロック70の外側に上下のブロック71,72を被着させて組み付ける構造として、本体ブロック70の内周面だけで製氷面64aを形成している。すなわち、冷凍ケーシング64は、本体ブロック70と上下のブロック71,72との間の継ぎ目が、冷凍ケーシング64の上下の端面および外周面に現れるものの、製氷面64aに現れない。そして、冷凍ケーシング64における製氷面64aの寸法精度が、3つのブロック70,71,72の組み付け精度に左右されることはなく、製氷面64aとオーガ50における剥離刃54の刃先56aとの間のクリアランスを適切に設定し得る。   Here, the refrigeration casing 64 is composed of three blocks 70, 71, 72, but the inner peripheral surface of the main body block 70 has a structure in which the upper and lower blocks 71, 72 are attached to the outside of the main body block 70 and assembled. Only the ice making surface 64a is formed. That is, in the refrigeration casing 64, the seam between the main body block 70 and the upper and lower blocks 71 and 72 appears on the upper and lower end surfaces and the outer peripheral surface of the refrigeration casing 64, but does not appear on the ice making surface 64a. The dimensional accuracy of the ice making surface 64 a in the refrigeration casing 64 is not affected by the assembling accuracy of the three blocks 70, 71, 72, and the space between the ice making surface 64 a and the cutting edge 56 a of the peeling blade 54 in the auger 50. Clearance can be set appropriately.

前記冷凍ケーシング64は、オーガ50の剥離刃54で剥離した氷に対して回転抑制力を付与するために、製氷面64aに凹凸が形成される。この凹凸は、剥離刃54で剥離して得られる氷より細かく設定されている。実施例の冷凍ケーシング64では、本体ブロック70の軸方向に延在すると共に周方向に互いに離間する複数の細溝(図示せず)を該本体ブロック70の内周面に形成することで、該本体ブロック70の内周面で構成される製氷面64aに凹凸を設けている。すなわち、本体ブロック70の押し出し成形と同時に、複数の細溝を形成することができ、本体ブロック70を成形した後に別工程で凹凸を形成するものではないので、製造工程を簡略化できる。このように、製氷面64aに凹凸を設けることで、氷の硬さ等を調整することができると共に、製氷面64aに生成される氷の表面を凹凸にして、オーガ50の剥離刃54による氷の剥離を円滑に行なうことができる。また、製氷面64aの凹凸または製氷面64aに生成した氷の凹凸が、オーガ50の回転方向に移動する氷に対して抵抗となって、氷のオーガ本体52の周方向への移動を抑えて、オーガ本体52の外周面に螺旋状に延在する剥離刃54で押し上げて氷を上方に効率よく搬送することができる。   The refrigeration casing 64 is provided with irregularities on the ice making surface 64a in order to impart a rotation suppressing force to the ice peeled off by the peeling blade 54 of the auger 50. The unevenness is set finer than ice obtained by peeling with the peeling blade 54. In the refrigeration casing 64 of the embodiment, a plurality of narrow grooves (not shown) extending in the axial direction of the main body block 70 and spaced apart from each other in the circumferential direction are formed on the inner peripheral surface of the main body block 70, The ice making surface 64 a formed by the inner peripheral surface of the main body block 70 is provided with irregularities. That is, a plurality of fine grooves can be formed simultaneously with the extrusion molding of the main body block 70, and the unevenness is not formed in a separate process after the main body block 70 is molded, so that the manufacturing process can be simplified. In this way, by providing irregularities on the ice making surface 64a, the hardness and the like of the ice can be adjusted, and the surface of the ice generated on the ice making surface 64a is made irregular so that the ice by the peeling blade 54 of the auger 50 can be obtained. Can be smoothly peeled off. Further, the unevenness of the ice making surface 64a or the unevenness of the ice generated on the ice making surface 64a becomes resistance to the ice moving in the rotation direction of the auger 50, and the movement of the ice in the circumferential direction of the auger body 52 is suppressed. The ice can be efficiently conveyed upward by being pushed up by the peeling blade 54 extending spirally on the outer peripheral surface of the auger body 52.

前記案内部材74は、冷凍ケーシング64の上部を覆う円盤状の部材であって、外径寸法が冷凍ケーシング64の外径と略同一に設定されている(図2または図3参照)。案内部材74は、外周部分が冷凍ケーシング64の周壁66上端面に取り付けられ、収容空間65の上部を覆う部位が、中央に動力伝達部58の接続ボス部60が挿通する挿通孔74aを設けた平面部分と、この平面部分および外周部分を接続する傾斜部分とからなる外周部分より上方に膨出した裁頭円錐形状に形成される。また、案内部材74は、冷凍ケーシング64にスポーク部59の上方を覆うようにネジ等で取り付けた際に、平面部分がスポーク部59の上端面に平行に延在し、傾斜部分がスポーク部59の斜面部59cに対して平行に延在するよう構成される。なお、実施例の案内部材74は、冷凍ケーシング64の周壁66外周縁に立設された保持片66aにより半径方向への位置規制がされるようになっている。そして、冷凍ケーシング64に案内部材74を取り付けると、挿通孔74aを挿通して接続ボス部60が案内部材74の上面に突出すると共に、案内部材74の下面がスポーク部59の上面に対して氷より小さい間隔で対向し、オーガ50の回転と共にスポーク部59が案内部材74の下面に沿って移動するよう構成される。   The guide member 74 is a disk-shaped member that covers the upper portion of the refrigeration casing 64, and has an outer diameter dimension substantially the same as the outer diameter of the refrigeration casing 64 (see FIG. 2 or FIG. 3). The guide member 74 has an outer peripheral portion attached to the upper end surface of the peripheral wall 66 of the refrigeration casing 64, and a portion covering the upper portion of the accommodation space 65 is provided with an insertion hole 74a through which the connection boss 60 of the power transmission unit 58 is inserted. It is formed in a truncated conical shape that bulges upward from an outer peripheral portion composed of a flat portion and an inclined portion connecting the flat portion and the outer peripheral portion. Further, when the guide member 74 is attached to the refrigeration casing 64 with screws or the like so as to cover the upper portion of the spoke portion 59, the planar portion extends in parallel to the upper end surface of the spoke portion 59, and the inclined portion has the spoke portion 59. It is comprised so that it may extend in parallel with respect to the slope part 59c. Note that the guide member 74 of the embodiment is configured such that its position in the radial direction is restricted by a holding piece 66a erected on the outer peripheral edge of the peripheral wall 66 of the refrigeration casing 64. When the guide member 74 is attached to the refrigeration casing 64, the connection boss portion 60 protrudes from the upper surface of the guide member 74 through the insertion hole 74a, and the lower surface of the guide member 74 is iced against the upper surface of the spoke portion 59. The spoke portions 59 are configured to move along the lower surface of the guide member 74 as the auger 50 rotates and face each other at a smaller interval.

前記製氷機構30には、冷凍ケーシング64と案内部材74との間に氷収集部Sが設けられ、冷凍ケーシング64の製氷面64aとオーガ本体52の外周面52aとの間の搬送空間57が氷収集部Sの外周部分に連通する。また製氷機構30では、収容空間65の中央に配置された給水パーツ34の円筒本体35で画成される氷放出路35aの氷放出口35bが、氷収集部Sの中央部に開口するようになっている。そして、オーガ50の回転により冷凍ケーシング64の上方に搬送されて氷収集部Sに到来した氷は、案内部材74により上方への移動が阻まれて、案内部材74の傾斜部分により半径方向内側(回転中心側)に変向するよう案内される。また氷は、スポーク部59によっても半径方向内側へ案内されて、オーガ50の回転中心に上下に貫通して設けられた氷放出路35aを介して貯氷室に落下する。   The ice making mechanism 30 is provided with an ice collecting portion S between the refrigeration casing 64 and the guide member 74, and the conveyance space 57 between the ice making surface 64 a of the refrigeration casing 64 and the outer peripheral surface 52 a of the auger body 52 is iced. It communicates with the outer peripheral part of the collecting unit S. In the ice making mechanism 30, the ice discharge port 35 b of the ice discharge path 35 a defined by the cylindrical body 35 of the water supply part 34 disposed in the center of the accommodation space 65 is opened at the center of the ice collecting unit S. It has become. Then, the ice that has been conveyed above the refrigeration casing 64 by the rotation of the auger 50 and arrived at the ice collecting section S is prevented from moving upward by the guide member 74, and is radially inward by the inclined portion of the guide member 74 ( Guided to turn to the center of rotation). The ice is also guided inward in the radial direction by the spokes 59 and falls into the ice storage chamber via an ice discharge path 35 a provided vertically through the rotation center of the auger 50.

図2に示すように、前記駆動手段76は、冷凍ケーシング64の上部に固定された架台78を介して取り付けられ、冷凍ケーシング64で駆動手段76の荷重が支持されるようになっている。架台78は、駆動手段76が載置固定される平坦な台部78aと、この台部78aの両側縁から下垂する支持脚部78b,78bとからなる台状に形成されている。また架台78は、支持脚部78b,78bの下端部を冷凍ケーシング64の周壁66上端面に取り付けた案内部材74の外周部に載置して、該案内部材74を挟んで周壁66に対してネジ等により固定される。また、架台78における台部78aの中央には、案内部材74の挿通孔74aから上方に突出した接続ボス部60が挿通される孔部78cが設けられている。孔部78cは、接続ボス部60の外径と略同一寸法に設定されて、孔部78cに挿通した接続ボス部60と隙間なく整合するように構成される。駆動手段76は、出力軸77が下方に向けて突出するよう構成され、出力軸77の下端に半径方向外側に突出するキー(図示せず)が設けられている。駆動手段76は、キーを接続ボス部60のキー溝60bに合わせて出力軸77を軸溝60aに上方から嵌合することで、出力軸77とオーガ50の動力伝達部58とが接続される。このように、製氷機構30は、駆動手段76の出力軸77によりオーガ50を上から押えるよう構成されている。   As shown in FIG. 2, the driving means 76 is attached via a gantry 78 fixed to the upper part of the refrigeration casing 64, and the load of the driving means 76 is supported by the refrigeration casing 64. The gantry 78 is formed in a trapezoid shape including a flat pedestal portion 78a on which the driving means 76 is placed and fixed, and support leg portions 78b and 78b hanging from both side edges of the pedestal portion 78a. Further, the gantry 78 is placed on the outer peripheral portion of the guide member 74 attached to the upper end surface of the peripheral wall 66 of the refrigeration casing 64 with the lower ends of the support legs 78b and 78b, and with respect to the peripheral wall 66 across the guide member 74. It is fixed with screws. In addition, a hole 78c through which the connection boss 60 protruding upward from the insertion hole 74a of the guide member 74 is provided at the center of the base 78a of the gantry 78. The hole 78c is set to have substantially the same size as the outer diameter of the connection boss 60, and is configured to align with the connection boss 60 inserted through the hole 78c without a gap. The drive means 76 is configured such that the output shaft 77 protrudes downward, and a key (not shown) protruding radially outward is provided at the lower end of the output shaft 77. The drive unit 76 connects the output shaft 77 and the power transmission unit 58 of the auger 50 by fitting the output shaft 77 into the shaft groove 60a from above with the key aligned with the key groove 60b of the connection boss 60. . Thus, the ice making mechanism 30 is configured to press the auger 50 from above by the output shaft 77 of the driving means 76.

実施例の製氷機構30では、接続ボス部60の軸溝60aおよびキー溝60bを出力軸77およびキーの外形に完全に一致する寸法で形成するのではなく、軸溝60aおよびキー溝60bが出力軸77およびキーの外形より若干大きな相似形状で形成されている。すなわち、駆動手段76の出力軸77とオーガ50の動力伝達部58との接続構造は、遊びを持たせてあり、出力軸77の位置ずれを吸収し得る構成となっている。前述した如く製氷機構30は、オーガ本体52を軸受部44で保持してオーガ50の回転中心を位置合わせする構成であるから、駆動手段76の回転駆動が伝達できればよく、駆動手段76の出力軸77を動力伝達部58に接続する際に、オーガ50の回転中心と出力軸77とを厳密に位置合わせする必要がなく、寸法精度を低く設定し得る。また、製氷運転において、オーガ50にかかるスラスト荷重およびラジアル荷重は、軸受部44で支持されるので、駆動手段76に対するオーガ50からの負荷を軽減し得る。すなわち、駆動手段76を支持する架台78や、出力軸77と動力伝達部58との接続構造は、要求される強度が小さくなるので、簡易な構造を採用してコストを低減できる。   In the ice making mechanism 30 of the embodiment, the shaft groove 60a and the key groove 60b of the connection boss 60 are not formed with dimensions that completely match the outer shape of the output shaft 77 and the key, but the shaft groove 60a and the key groove 60b are output. It is formed in a similar shape slightly larger than the outer shape of the shaft 77 and the key. In other words, the connection structure between the output shaft 77 of the drive means 76 and the power transmission portion 58 of the auger 50 is configured to allow play and absorb the displacement of the output shaft 77. As described above, the ice making mechanism 30 has a configuration in which the auger body 52 is held by the bearing portion 44 and the rotation center of the auger 50 is aligned, so that the rotation drive of the drive means 76 can be transmitted. When connecting 77 to the power transmission part 58, it is not necessary to strictly align the rotation center of the auger 50 and the output shaft 77, and the dimensional accuracy can be set low. Further, in the ice making operation, the thrust load and the radial load applied to the auger 50 are supported by the bearing portion 44, so that the load from the auger 50 on the driving means 76 can be reduced. That is, since the frame 78 that supports the driving unit 76 and the connection structure between the output shaft 77 and the power transmission unit 58 require less strength, the cost can be reduced by adopting a simple structure.

製氷運転において、オーガ本体52および冷凍ケーシング64に負荷される荷重は、剥離した氷を搬送空間57で上方に搬送する際に徐々に蓄積されるので、搬送空間57の上端で最も大きくなり、下になるほど小さくなる。ここで、製氷機構30は、駆動手段76をオーガ50の上方に設け、回転負荷が一番高いオーガ本体52の上側に連結した動力伝達部58を介して回転駆動力を伝達している。すなわち、製氷機構30は、オーガ本体52の回転負荷が大きい側から駆動手段76によりオーガ50をスムーズに回転駆動することができ、オーガ本体52および冷凍ケーシング64にかかる荷重(特にモーメント荷重)が大きくなる部分を上部だけの最小限に抑えることができる。従って、オーガ本体52および冷凍ケーシング64の下側の比較的荷重がかからない部分に要求される剛性が小さくなり、オーガ本体52を金属と比べて許容応力が低い合成樹脂で形成することが可能となる。また、冷凍ケーシング64についても、ステンレスと比べて許容応力が低いアルミニウムを採用して、負荷される荷重に応じて周壁66の厚みを薄くすることが可能となる。従って、冷凍ケーシング64は、周壁66を薄く設定することで、製氷面64aへの冷媒からの熱伝導性がよくなり、またオーガ50を軽量化して駆動手段76への負荷を軽減し得るので、オーガ50が円滑に回転される。その結果、製氷機構30では、製氷効率が向上する。   In the ice making operation, the load applied to the auger body 52 and the refrigeration casing 64 is gradually accumulated when the peeled ice is transported upward in the transport space 57, so that it becomes the largest at the upper end of the transport space 57, and the lower Becomes smaller. Here, the ice making mechanism 30 is provided with a driving means 76 above the auger 50 and transmits a rotational driving force via a power transmission unit 58 connected to the upper side of the auger body 52 having the highest rotational load. That is, the ice making mechanism 30 can smoothly rotate the auger 50 from the side where the rotational load of the auger body 52 is large by the driving means 76, and the load (particularly moment load) applied to the auger body 52 and the refrigeration casing 64 is large. Can be kept to a minimum at the top only. Accordingly, the rigidity required for a portion of the auger body 52 and the lower side of the refrigeration casing 64 that is not relatively loaded is reduced, and the auger body 52 can be formed of a synthetic resin having a lower allowable stress than that of metal. . In addition, for the refrigeration casing 64, aluminum having a lower allowable stress than stainless steel is adopted, and the thickness of the peripheral wall 66 can be reduced according to the applied load. Therefore, in the refrigeration casing 64, by setting the peripheral wall 66 thin, the thermal conductivity from the refrigerant to the ice making surface 64a can be improved, and the auger 50 can be lightened to reduce the load on the driving means 76. The auger 50 is smoothly rotated. As a result, the ice making mechanism 30 improves the ice making efficiency.

図1に示すように、前記給水機構80は、製氷水を貯留する製氷水タンク81と、この製氷水タンク81に貯留した製氷水の水位を検知する水位検知手段82とを備えている。製氷水タンク81の上部には、水道等の外部水源に接続する給水手段Wの給水口が臨み、該給水手段Wに設けられた管路を開閉可能な給水弁WVを開放することで、製氷水を製氷水タンク81に供給するようになっている。製氷水タンク81は、製氷機構30の側方に配置され、底部に設けた導出口81aに接続した給水管83を製氷機構30の底部に設けた給水部40に接続することで、製氷機構30の内部に設けられる製氷水貯留空間と連通するよう構成される。実施例の水位検知手段82は、製氷水タンク81に貯留した製氷水の水位変動に応じてフロートが上下変位するフロート式が採用され、水位検知手段82の水位検知信号によって給水手段Wの給水弁WVを開閉制御している。実施例の給水機構80では、製氷水タンク81の水位が低下して水位検知手段82が下限水位を検知すると、給水弁WVを開放して給水手段Wから製氷水が製氷水タンク81に供給され、製氷水タンク81の水位が上昇して水位検知手段82が上限水位を検知すると、給水弁WVを閉成して製氷水の供給が停止される。   As shown in FIG. 1, the water supply mechanism 80 includes an ice making water tank 81 for storing ice making water, and a water level detecting means 82 for detecting the water level of the ice making water stored in the ice making water tank 81. A water supply port of a water supply means W connected to an external water source such as a water supply faces the upper part of the ice making water tank 81, and by opening a water supply valve WV that can open and close a pipe line provided in the water supply means W, ice making Water is supplied to the ice making water tank 81. The ice making water tank 81 is disposed on the side of the ice making mechanism 30 and connects the water supply pipe 83 connected to the outlet 81 a provided at the bottom to the water supply 40 provided at the bottom of the ice making mechanism 30, thereby making the ice making mechanism 30. It is comprised so that it may communicate with the ice-making water storage space provided in the inside. The water level detection means 82 of the embodiment employs a float type in which the float moves up and down in accordance with the fluctuation of the water level of the ice making water stored in the ice making water tank 81, and the water supply valve of the water supply means W by the water level detection signal of the water level detection means 82. WV is controlled to open and close. In the water supply mechanism 80 of the embodiment, when the water level of the ice making water tank 81 decreases and the water level detecting means 82 detects the lower limit water level, the water supply valve WV is opened and ice making water is supplied from the water supplying means W to the ice making water tank 81. When the water level of the ice making water tank 81 rises and the water level detecting means 82 detects the upper limit water level, the water supply valve WV is closed and the supply of ice making water is stopped.

前記製氷機構30は、給水パーツ34とこの給水パーツ34のフランジ部36に載置される冷凍ケーシング64との間に製氷水貯留空間が画成され、この製氷水貯留空間に貯留された製氷水に浸漬した状態でオーガ50のオーガ本体52が配設されている。そして、製氷機構30は、製氷水タンク81の横に配置されて、給水管83により製氷水タンク81の底部と製氷水貯留空間の底部とが接続されて、製氷水タンク81の水位と製氷水貯留空間の水位とが一致する構成となっている。   In the ice making mechanism 30, an ice making water storage space is defined between the water supply part 34 and the refrigeration casing 64 placed on the flange portion 36 of the water supply part 34, and the ice making water stored in the ice making water storage space is defined. The auger body 52 of the auger 50 is disposed in a state of being immersed in the water. The ice making mechanism 30 is arranged beside the ice making water tank 81, and the bottom of the ice making water tank 81 and the bottom of the ice making water storage space are connected by a water supply pipe 83 so that the water level of the ice making water tank 81 and the ice making water are The water level in the storage space is the same.

前記製氷機構30は、冷凍ケーシング64と給水パーツ34との間の製氷水貯留空間にオーガ50のオーガ本体52を浸漬するよう配置する構成であり、オーガ50を回転させるための回転軸が製氷水貯留空間を貫通していないので、メカニカルシールを必要としない。また、製氷水貯留空間から漏水するおそれが小さい。製氷水貯留空間の上方は、大気に開放されているので、空気の噛み込みがなく、製氷水貯留空間に対し給水機構80から安定して製氷水を供給し得る。更に、オーガ本体52と軸受部44との摺動面に製氷水が存在しているので、この製氷水が潤滑剤として機能して摺動面の摩耗を抑制し、摺動面間の異物を排出することができる。そして、製氷機構30は、断熱部材としても機能する給水パーツ34に設けた給水部40を介して製氷水貯留空間に製氷水を供給しているので、製氷面64a以外での製氷水の凍結を防ぎ、安定して供給することができる。   The ice making mechanism 30 is configured to immerse the auger body 52 of the auger 50 in an ice making water storage space between the refrigeration casing 64 and the water supply part 34, and a rotating shaft for rotating the auger 50 has ice making water. Since it does not penetrate the storage space, no mechanical seal is required. Moreover, there is little possibility of water leaking from the ice making water storage space. Since the upper part of the ice-making water storage space is open to the atmosphere, air is not caught, and ice-making water can be stably supplied from the water supply mechanism 80 to the ice-making water storage space. Further, since ice making water exists on the sliding surfaces of the auger body 52 and the bearing portion 44, the ice making water functions as a lubricant to suppress wear of the sliding surfaces, and to remove foreign matter between the sliding surfaces. Can be discharged. And since the ice making mechanism 30 is supplying ice making water to the ice making water storage space via the water supply part 40 provided in the water supply part 34 which functions also as a heat insulation member, freezing of ice making water other than the ice making surface 64a is carried out. It can prevent and supply stably.

前記製氷機構30は、オーガ50における回転中心側に該オーガ本体52の軸方向に上下に貫通する氷放出路35aを設け、この氷放出路35aが給水パーツ34の円筒本体35で兼用される構成であるので、部品点数を少なくすることができ、また製氷機構30を小型化することができる。また、製氷機構30は、出力軸77が動力伝達部58の軸溝60aに上方から挿入される構成であり、駆動手段76を上方に引き上げるだけで出力軸77と動力伝達部58との接続を簡単に解除できる。そして製氷機構30は、駆動手段76、架台78および案内部材74を冷凍ケーシング64から取り外すことで、オーガ50を軸受部44から簡単に上方に引き抜くことができる。しかも、製氷機構30は、製氷水貯留空間から製氷水を排水することなくオーガ50を取り外すことができる。すなわち、製氷機構30は、オーガ50の洗浄や取り替え等のメンテナンス作業が行ない易い。   The ice making mechanism 30 is provided with an ice discharge passage 35 a penetrating vertically in the axial direction of the auger body 52 on the rotation center side of the auger 50, and the ice discharge passage 35 a is also used as the cylindrical body 35 of the water supply part 34. Therefore, the number of parts can be reduced, and the ice making mechanism 30 can be downsized. Further, the ice making mechanism 30 is configured such that the output shaft 77 is inserted into the shaft groove 60a of the power transmission unit 58 from above, and the connection between the output shaft 77 and the power transmission unit 58 can be established simply by pulling the drive means 76 upward. It can be easily released. The ice making mechanism 30 can easily pull the auger 50 upward from the bearing portion 44 by removing the driving means 76, the gantry 78, and the guide member 74 from the refrigeration casing 64. Moreover, the ice making mechanism 30 can remove the auger 50 without draining the ice making water from the ice making water storage space. That is, the ice making mechanism 30 can easily perform maintenance work such as cleaning and replacement of the auger 50.

(変更例)
本発明は、実施例の構成に限定されず、以下の如く変更することも可能である。なお、以下の変更例において参照する図面は、実施例の製氷機構と同様の構成には同一の符号を付してある。
(Example of change)
The present invention is not limited to the configuration of the embodiment, and can be modified as follows. In the drawings referred to in the following modifications, the same reference numerals are given to the same components as those of the ice making mechanism of the embodiment.

(1)実施例の製氷機構30は、冷凍ケーシング64の内側にオーガ50を配置する構成であるが、図12に示す変更例の製氷機構90の如く、冷凍ケーシング91の外側を中空円筒形のオーガ本体93で覆うようにオーガ92を配置し、冷凍ケーシング91の外周面がなす製氷面91aに臨ませてオーガ92の内周面に剥離刃94を設ける構成であってもよい。変更例の製氷機構90は、下部に半径方向内側に突出する載置部95aを設けた中空円筒形の軸受部95を備え、軸受部95の内側にオーガ92を配置してオーガ本体93の外周面を支持すると共に、オーガ本体93の下端を載置部95aで支持するようになっている。また、冷凍ケーシング91は、軸受部95の載置部95aに載置される。変更例の製氷機構90によれば、駆動手段76により回転されたオーガ92の剥離刃94によって冷凍ケーシング91の製氷面91aの氷を剥離し、製氷面91aとオーガ本体93の内周面との間を氷が上方に搬送される。そして、冷凍ケーシング91の上方の氷収集部Sに到来した氷は、半径方向内側(回転中心側)に案内されて、冷凍ケーシング91の内部に上下に貫通するように設けられた氷放出路35aを介して貯氷室に放出される。 (1) The ice making mechanism 30 of the embodiment has a configuration in which the auger 50 is disposed inside the refrigeration casing 64. However, like the ice making mechanism 90 of the modified example shown in FIG. 12, the outside of the refrigeration casing 91 has a hollow cylindrical shape. The auger 92 may be disposed so as to be covered with the auger body 93, and the peeling blade 94 may be provided on the inner peripheral surface of the auger 92 so as to face the ice making surface 91 a formed by the outer peripheral surface of the refrigeration casing 91. The ice making mechanism 90 of the modified example includes a hollow cylindrical bearing portion 95 provided with a mounting portion 95a protruding inward in the radial direction at the lower portion, and an auger 92 is disposed inside the bearing portion 95 to provide an outer periphery of the auger body 93. While supporting a surface, the lower end of the auger main body 93 is supported by the mounting part 95a. The refrigeration casing 91 is placed on the placement portion 95 a of the bearing portion 95. According to the ice making mechanism 90 of the modified example, the ice on the ice making surface 91a of the refrigeration casing 91 is peeled off by the peeling blade 94 of the auger 92 rotated by the driving means 76, and the ice making surface 91a and the inner peripheral surface of the auger body 93 are separated. Ice is transported upward between them. Then, the ice that has arrived at the ice collecting section S above the refrigeration casing 91 is guided radially inward (rotation center side), and an ice discharge path 35 a provided so as to penetrate vertically inside the refrigeration casing 91. To the ice storage room.

(2)実施例の軸受部44は、軸部45の下端にテーパ部46を設けたが、図13に示す第1変更例の軸受部96の如く、軸部45の中間部にテーパ部46を設ける構成であってもよい。なお、テーパ部は、軸受部における軸部の外側にオーガ本体を配置する構成であれば下から上に向かうにつれて縮径するように斜めに形成され、これに対し、軸部の内側にオーガ本体を配置する構成であれば、下から上に向かうにつれて拡径するように斜めに形成される。
(3)また図14に示す第2変更例の軸受部98の如く、軸部45を下から上に向かうにつれて径が狭まるよう形成し、この軸部45に対応してオーガ本体52の内周面52bを斜めに形成することで、軸部45に実施例で説明したテーパ部46としての機能を持たせることができる。
(2) In the bearing portion 44 of the embodiment, the tapered portion 46 is provided at the lower end of the shaft portion 45. However, like the bearing portion 96 of the first modified example shown in FIG. The structure which provides may be sufficient. If the auger body is arranged outside the shaft part in the bearing part, the taper part is formed obliquely so that the diameter decreases from the bottom to the top, whereas the auger body is formed inside the shaft part. If it is the structure which arrange | positions, it forms diagonally so that it may expand in diameter as it goes up from the bottom.
(3) Further, like the bearing portion 98 of the second modification shown in FIG. 14, the shaft portion 45 is formed so that the diameter becomes narrower from the bottom to the top, and the inner periphery of the auger body 52 corresponding to the shaft portion 45. By forming the surface 52b obliquely, the shaft portion 45 can have the function as the tapered portion 46 described in the embodiment.

(4)実施例の軸受部44は、下部にオーガ50のスラスト荷重を支持する載置部47を設けたが、図15に示す第3変更例の軸受部100の如く、軸部45の中間部に載置部47を設けて、この載置部47に対応してオーガ本体52に形成された段部102を載置部47に載置するよう構成してもよい。このように、載置部47でオーガ50のスラスト荷重を支持する構成とすることで、オーガ50の下方に突出する軸を省略でき、従来例で説明したオーガ16の如く下側に軸部16aが突出することはない。また、オーガ50の下端面と軸受部100との間に、冷凍ケーシング64の製氷面64aとオーガ50における第1の周面52aとの間に連通する空間を設けることができ、給水パーツ34を介するオーガ50側からの給水がより行ない易くなる。
(5)また、図16に示す第4変更例の軸受部101の如く、軸部45の上端に載置部47を設け、オーガ本体52の上端に設けられた庇状部52fを載置部47に載置する構成も採用し得る。このように、載置部47でオーガ50のスラスト荷重を支持する構成とすることで、オーガ50の下方に突出する軸を省略でき、従来例で説明したオーガ16の如く下側に軸部16aが突出することはない。また、オーガ50の下端面と軸受部101との間に、冷凍ケーシング64の製氷面64aとオーガ50における第1の周面52aとの間に連通する空間を設けることができ、給水パーツ34を介するオーガ50側からの給水がより行ない易くなる。
(4) Although the bearing portion 44 of the embodiment is provided with a placement portion 47 that supports the thrust load of the auger 50 at the lower portion, like the bearing portion 100 of the third modified example shown in FIG. A mounting portion 47 may be provided in the unit, and the stepped portion 102 formed on the auger body 52 corresponding to the mounting portion 47 may be mounted on the mounting portion 47. As described above, by supporting the thrust load of the auger 50 with the mounting portion 47, the shaft protruding downward from the auger 50 can be omitted, and the shaft portion 16a is formed on the lower side like the auger 16 described in the conventional example. Will not protrude. Further, a space communicating between the ice making surface 64a of the refrigeration casing 64 and the first peripheral surface 52a of the auger 50 can be provided between the lower end surface of the auger 50 and the bearing portion 100. It becomes easier to perform water supply from the auger 50 side.
(5) Further, like the bearing portion 101 of the fourth modified example shown in FIG. 16, the mounting portion 47 is provided at the upper end of the shaft portion 45, and the hook-shaped portion 52 f provided at the upper end of the auger body 52 is replaced with the mounting portion. The structure mounted on 47 can also be adopted. As described above, by supporting the thrust load of the auger 50 with the mounting portion 47, the shaft protruding downward from the auger 50 can be omitted, and the shaft portion 16a is formed on the lower side like the auger 16 described in the conventional example. Will not protrude. Further, a space communicating between the ice making surface 64a of the refrigeration casing 64 and the first peripheral surface 52a of the auger 50 can be provided between the lower end surface of the auger 50 and the bearing portion 101. It becomes easier to perform water supply from the auger 50 side.

(6)図17に示す第1変更例のオーガ104の如く、オーガ本体105を基本的に合成樹脂から構成し、剥離刃106の刃先を構成する薄い金属材料107でオーガ本体105の外周面を一体的に被覆する構成であってもよい。これによりオーガ本体105の剛性および耐久性を向上することができる。
(7)図18に示す第2変更例のオーガ110の如く、金属製の補強用の芯材112と、この芯材112から半径方向に突出して設けられ、剥離刃115の刃先を構成する刃先部113と、芯材112を覆うと共に該芯材112および刃先部113の間を埋める合成樹脂部分114とからオーガ本体111を構成してもよい。これにより、オーガ本体111の剛性および耐久性を向上することができる。
(6) Like the auger 104 of the first modification shown in FIG. 17, the auger body 105 is basically made of synthetic resin, and the outer peripheral surface of the auger body 105 is made of a thin metal material 107 constituting the cutting edge of the peeling blade 106. The structure which coat | covers integrally may be sufficient. Thereby, the rigidity and durability of the auger main body 105 can be improved.
(7) Like the auger 110 of the second modified example shown in FIG. 18, a metal reinforcing core material 112 and a cutting edge that protrudes from the core material 112 in the radial direction and constitutes the cutting edge of the peeling blade 115 The auger body 111 may be constituted by the portion 113 and the synthetic resin portion 114 that covers the core material 112 and fills the space between the core material 112 and the blade edge portion 113. Thereby, the rigidity and durability of the auger main body 111 can be improved.

(8)実施例の製氷機構30は、軸受部44の内側に配置した給水パーツ34から製氷水を供給し、冷凍ケーシング64の内周面と給水パーツ34の間に製氷水を貯留する構成であるが、図19に示す給水構造の如く、給水パーツを省略する構成であってもよい。変更例の給水構造を備えた製氷機構120は、冷凍ケーシング64の周壁66下部に給水部40を設け、この給水部40に給水機構80の給水管83が接続される。変更例の給水構造は、給水管83より製氷水が冷凍ケーシング64とオーガ本体52の外周面52aとの間に供給され、冷凍ケーシング64の製氷面64aと軸受部44との間に製氷水が貯留される。すなわち、軸受部44が製氷水貯留空間を画成する部材として兼用される。なお、図19に示す製氷機構120には、実施例の給水パーツ34から円筒本体35を除いた形状のフランジ部材121が冷凍ケーシング64とベース32との間に配設され、このフランジ部材121が実施例の給水パーツ34のフランジ部36と同様に断熱材およびドレンパンとしての機能を有している。 (8) The ice making mechanism 30 of the embodiment is configured to supply ice making water from the water supply part 34 disposed inside the bearing portion 44 and store the ice making water between the inner peripheral surface of the refrigeration casing 64 and the water supply part 34. However, the structure which abbreviate | omits water supply parts like the water supply structure shown in FIG. 19 may be sufficient. The ice making mechanism 120 having the water supply structure of the modified example is provided with a water supply unit 40 below the peripheral wall 66 of the refrigeration casing 64, and the water supply pipe 83 of the water supply mechanism 80 is connected to the water supply unit 40. In the water supply structure of the modified example, ice making water is supplied from the water supply pipe 83 between the refrigeration casing 64 and the outer peripheral surface 52a of the auger body 52, and the ice making water is provided between the ice making surface 64a of the refrigeration casing 64 and the bearing portion 44. Stored. That is, the bearing portion 44 is also used as a member that defines the ice-making water storage space. In the ice making mechanism 120 shown in FIG. 19, a flange member 121 having a shape obtained by removing the cylindrical main body 35 from the water supply part 34 of the embodiment is disposed between the refrigeration casing 64 and the base 32. It has the function as a heat insulating material and a drain pan like the flange part 36 of the water supply part 34 of an Example.

(9)実施例では、冷凍ケーシング64の上面に取り付けた架台78により駆動手段76を支持したが、図20に示すように、変更例に係る架台124の如く、該架台124における台部124aの両縁に設けた支持脚部124b,124bをベース32の設置部32aに載置して、冷凍ケーシング64に駆動手段76の荷重がかからないよう構成してもよい。変更例の架台124によれば、駆動手段76の荷重をベース32で支持するので、冷凍ケーシング64に要求される剛性が低くなり、冷凍ケーシング64の厚みを更に薄くできる。 (9) In the embodiment, the driving means 76 is supported by the gantry 78 attached to the upper surface of the refrigeration casing 64. However, as shown in FIG. The support legs 124b and 124b provided on both edges may be placed on the installation portion 32a of the base 32 so that the load of the driving means 76 is not applied to the refrigeration casing 64. According to the gantry 124 of the modified example, since the load of the driving means 76 is supported by the base 32, the rigidity required for the refrigeration casing 64 is reduced, and the thickness of the refrigeration casing 64 can be further reduced.

(10)図21に示す案内部材126の変更例の如く、氷の半径方向内側への円滑な移動を補助する回転規制部127を該案内部材126の下面に設けてもよい。変更例の案内部材126は、平面部分の下面に、半径方向に対して交差するように斜めに延在すると共に下方に突出して回転規制部127が複数設けられ、変更例では90°づつ位相をずらして4つの回転規制部127が設けられている。変更例の回転規制部127は、半径方向内側から外側に向かうについてオーガ50の回転方向前側から後側に延在するよう形成されている。この際、動力伝達部58のスポーク部59を途中で屈曲する形状ではなく、直線的な形状としてもよい。なお、回転規制部127と動力伝達部58のスポーク部59とは干渉しないよう構成されている。 (10) As in the modified example of the guide member 126 shown in FIG. 21, a rotation restricting portion 127 that assists the smooth movement of ice in the radial direction may be provided on the lower surface of the guide member 126. The guide member 126 of the modified example is provided with a plurality of rotation restricting portions 127 extending obliquely so as to intersect the radial direction on the lower surface of the flat surface portion and projecting downward, and in the modified example, the phase is shifted by 90 °. Four rotation restricting portions 127 are provided while being shifted. The rotation restricting portion 127 of the modified example is formed so as to extend from the front side in the rotational direction of the auger 50 to the rear side from the inner side in the radial direction toward the outer side. At this time, the spoke portion 59 of the power transmission portion 58 may have a linear shape instead of a shape that is bent halfway. The rotation restricting portion 127 and the spoke portion 59 of the power transmission portion 58 are configured not to interfere with each other.

(11)冷凍ケーシングの製氷面に形成される凹凸は、切削加工やショットピーニング等の加工方法により設けてもよい。
(12)オーガの動力伝達部は、全体を合成樹脂で形成する構成に限定されず、金属材料で適宜に補強してもよい。すなわち、接続ボス部の外面を金属材料で被覆したり、接続ボス部およびスポーク部に芯材として金属材料を配設する構成が採用される。これにより、動力伝達部の耐久性を向上させることができる。なお、動力伝達部の合成樹脂部分と金属材料部分の接合は、インサート成形、ネジ止め、接着またはカシメ等、またはこれらを組合わせて行なわれる。
(13)冷凍ケーシングに設けられる冷媒流路は、本体ブロックにおける隣り合う直管部を下部ブロックおよび上部ブロックの凹部で交互に連通し、該凹部で折り返して周方向に蛇行する一本の経路が連続する構成であってもよい。
(14)駆動手段を支持する架台を、下方に開口する箱状に形成し、架台を冷凍ケーシングの上部に取り付けた際に、架台により冷凍ケーシングの上側を異物が侵入しないように密閉する構成としてもよい。
(11) The unevenness formed on the ice making surface of the refrigeration casing may be provided by a processing method such as cutting or shot peening.
(12) The power transmission part of the auger is not limited to a structure formed entirely of synthetic resin, and may be appropriately reinforced with a metal material. That is, a configuration is adopted in which the outer surface of the connection boss portion is covered with a metal material, or a metal material is disposed as a core material on the connection boss portion and the spoke portion. Thereby, durability of a power transmission part can be improved. The synthetic resin portion and the metal material portion of the power transmission unit are joined by insert molding, screwing, adhesion, caulking, or the like, or a combination thereof.
(13) The refrigerant flow path provided in the refrigeration casing has a single path in which adjacent straight pipe portions in the main body block are alternately communicated by the concave portions of the lower block and the upper block, and are folded at the concave portions to meander in the circumferential direction. It may be a continuous configuration.
(14) A structure that supports the driving means is formed in a box shape that opens downward, and when the frame is attached to the upper part of the refrigeration casing, the upper side of the refrigeration casing is sealed by the frame so that foreign matter does not enter. Also good.

(15)動力伝達部は、駆動手段の出力軸とオーガ本体とを連結し、出力軸の回転駆動によりオーガ本体を回転し得る構成であれば、後述する第1〜第5変更例の動力伝達部の如く、出力軸とオーガの回転中心との間の半径方向の位置ずれを吸収する構成としてもよい。前述した如く、オーガは、軸受部により回転中心を合わせて位置決めされる構成であるので、駆動手段の出力軸をオーガの回転中心と厳密に位置合わせする必要はない。すなわち、動力伝達部を、出力軸とオーガの回転中心との間の半径方向の位置ずれを吸収する構成とすることで、出力軸と動力伝達部との組み付けが容易になり、駆動手段の組み付け精度および動力伝達部の寸法精度を低く設定することができる。また、駆動手段にかかる負荷を軽減することもできる。出力軸とオーガの回転中心との間の半径方向の位置ずれを吸収する動力伝達部の構成について、以下に具体例を挙げて説明する。 (15) If the power transmission unit is configured to connect the output shaft of the driving means and the auger body and to rotate the auger body by rotational driving of the output shaft, the power transmission of first to fifth modified examples to be described later It is good also as a structure which absorbs the position shift of the radial direction between an output shaft and the rotation center of an auger like a part. As described above, the auger is positioned by aligning the rotation center with the bearing portion, and therefore it is not necessary to strictly align the output shaft of the driving means with the rotation center of the auger. In other words, the power transmission unit is configured to absorb the positional deviation in the radial direction between the output shaft and the rotation center of the auger, so that the assembly of the output shaft and the power transmission unit is facilitated, and the drive means is assembled. The accuracy and the dimensional accuracy of the power transmission unit can be set low. In addition, the load on the driving means can be reduced. The configuration of the power transmission unit that absorbs the radial displacement between the output shaft and the rotation center of the auger will be described below with a specific example.

(16)図22に示す第1変更例の動力伝達部130は、オーガ本体52の上端部に開口する軸空間(開口)52cを挟んで設けられた一対の溝部129,129に側端部が夫々挿入されるスポーク部131と、このスポーク部131に整合する挿入溝132bを有し、該スポーク部131に挿入溝132bを合わせて載置される接続ボス部132とを備えている。各溝部129は、上方に開放すると共に、オーガ本体52の内周面52b側から外周面52a側に亘って内外方向に連通するよう形成される。スポーク部131は、両側端部を溝部129,129に夫々挿入した際に、該溝部129,129により周方向への移動が規制されてオーガ本体52に出力軸77の回転を伝達し得る一方、半径方向の移動が許容されるようになっている。接続ボス部132には、上方に開口する軸溝132aが設けられ、この軸溝132aに出力軸77が嵌合して該出力軸77の回転が伝達されるようになっている。また接続ボス部132の挿入溝132bは、水平方向に連通すると共に下方に開放するよう形成される。そして接続ボス部132は、スポーク部131に挿入溝132bを整合させて載置した際に、スポーク部131により接続ボス部132の周方向の移動が規制されてスポーク部131に出力軸77の回転を伝達し得る一方、接続ボス部132におけるスポーク部131に沿う半径方向の移動が許容される。第1変更例の動力伝達部130は、スポーク部131がオーガ本体52に対し半径方向に移動し、接続ボス部132がスポーク部131に対し半径方向に移動することで、出力軸77とオーガ本体52との位置ずれを吸収するようになっている。 (16) The power transmission unit 130 of the first modification shown in FIG. 22 has side end portions in a pair of groove portions 129 and 129 provided with an axial space (opening) 52c opened at the upper end portion of the auger body 52. Each of the spoke portions 131 includes an insertion groove 132b that is aligned with the spoke portion 131, and a connection boss portion 132 that is placed on the spoke portion 131 so that the insertion groove 132b is aligned therewith. Each groove portion 129 is formed to open upward and to communicate inward and outward from the inner peripheral surface 52b side to the outer peripheral surface 52a side of the auger body 52. The spoke portion 131 can transmit the rotation of the output shaft 77 to the auger body 52 by restricting the movement in the circumferential direction by the groove portions 129 and 129 when both end portions are inserted into the groove portions 129 and 129, respectively. Radial movement is allowed. The connection boss 132 is provided with a shaft groove 132a that opens upward, and an output shaft 77 is fitted into the shaft groove 132a so that the rotation of the output shaft 77 is transmitted. Further, the insertion groove 132b of the connection boss 132 is formed to communicate in the horizontal direction and open downward. When the connection boss 132 is placed with the insertion groove 132 b aligned with the spoke 131, the movement of the connection boss 132 in the circumferential direction is restricted by the spoke 131, and the output shaft 77 rotates on the spoke 131. While the connection boss 132 is allowed to move in the radial direction along the spoke 131. In the power transmission unit 130 of the first modification, the spoke portion 131 moves in the radial direction with respect to the auger body 52, and the connection boss portion 132 moves in the radial direction with respect to the spoke portion 131. The position shift with respect to 52 is absorbed.

(17)図23に示す第2変更例の動力伝達部134は、オーガ本体52の上端部に開口する軸空間(開口)52cに架設してオーガ本体52に固定されたスポーク部135と、このスポーク部135に整合する挿入溝136bを有し、該スポーク部135に挿入溝136bを合わせて載置される接続ボス部136とを備えている。接続ボス部136には、矩形状の出力軸133より長手方向が長尺に形成されて上方に開口する矩形状の軸溝136aが設けられ、この軸溝136aに挿入した出力軸133の該軸溝136aの長手方向への移動を許容するよう構成される。なお、接続ボス部136は、出力軸133の回転方向に対しては出力軸133に嵌合して該出力軸133の回転が伝達されるようになっている。また接続ボス部136の挿入溝136bは、水平方向に連通すると共に下方に開放するよう形成される。そして接続ボス部136は、スポーク部135に挿入溝136bを整合させて載置した際に、スポーク部135により接続ボス部136の周方向の移動が規制されてスポーク部135に出力軸133の回転を伝達し得る一方、接続ボス部136におけるスポーク部135に沿う半径方向の移動が許容される。このように、第2変更例の動力伝達部134は、出力軸133に対して軸溝136aに半径方向に遊びが設けられると共に、接続ボス部136がスポーク部135に対し半径方向に移動することで、出力軸133とオーガ本体52との位置ずれを吸収するようになっている。 (17) The power transmission unit 134 of the second modified example shown in FIG. 23 includes a spoke part 135 that is installed in an axial space (opening) 52c that opens at the upper end of the auger body 52 and is fixed to the auger body 52. It has an insertion groove 136b that aligns with the spoke part 135, and a connection boss part 136 that is placed on the spoke part 135 with the insertion groove 136b. The connecting boss 136 is provided with a rectangular shaft groove 136a that is longer in the longitudinal direction than the rectangular output shaft 133 and opens upward, and the shaft of the output shaft 133 inserted into the shaft groove 136a. The groove 136a is configured to be allowed to move in the longitudinal direction. Note that the connection boss 136 is fitted to the output shaft 133 in the rotational direction of the output shaft 133 so that the rotation of the output shaft 133 is transmitted. The insertion groove 136b of the connection boss portion 136 is formed to communicate with the horizontal direction and open downward. When the connection boss 136 is placed with the insertion groove 136b aligned with the spoke 135, the movement of the connection boss 136 in the circumferential direction is restricted by the spoke 135 and the output 135 is rotated by the spoke 135. While the connection boss 136 is allowed to move in the radial direction along the spokes 135. As described above, in the power transmission unit 134 of the second modified example, the axial groove 136a is provided with play in the radial direction with respect to the output shaft 133, and the connection boss portion 136 moves in the radial direction with respect to the spoke portion 135. Thus, the positional deviation between the output shaft 133 and the auger body 52 is absorbed.

(18)図24に示す第3変更例の動力伝達部138は、オーガ本体52の上端部に開口する軸空間(開口)52cに架設してオーガ本体52に固定されたスポーク部135と、このスポーク部135の側面に当接可能な突片140b,140bを有し、スポーク部135に載置される接続ボス部140とから構成される。接続ボス部140には、上方に開口する軸溝140aが設けられ、この軸溝140aに出力軸77が嵌合して該出力軸77の回転が伝達されるようになっている。また、接続ボス部140には、スポーク部135を挟んで該スポーク部135の側面に当接する対になった突片140b,140bが設けられている。一対の突片140b,140bは、該接続ボス部140の下面において軸溝140aの回転中心から半径方向外側に夫々位置させて該回転中心を挟んで対称に配置されると共に、下方に突出するよう形成されている。そして接続ボス部140は、スポーク部135に載置した際に、一対の突片140b,140bがスポーク部135に当接することで接続ボス部140の周方向の移動が規制されてスポーク部135に出力軸77の回転を伝達し得る一方、接続ボス部140におけるスポーク部135に沿う半径方向の移動が許容される。このように、第2変更例の動力伝達部138は、接続ボス部140がスポーク部135に対し半径方向に移動することで、出力軸77とオーガ本体52との位置ずれを吸収するようになっている。なお、突片140bは、2本に限定されず、1本であっても3本以上であってもよい。 (18) The power transmission portion 138 of the third modification shown in FIG. 24 includes a spoke portion 135 that is installed in an axial space (opening) 52c that opens at the upper end portion of the auger body 52 and is fixed to the auger body 52. It has projecting pieces 140 b and 140 b that can come into contact with the side surface of the spoke part 135, and includes a connection boss part 140 placed on the spoke part 135. The connection boss 140 is provided with a shaft groove 140a that opens upward, and an output shaft 77 is fitted into the shaft groove 140a so that the rotation of the output shaft 77 is transmitted. In addition, the connection boss 140 is provided with a pair of projecting pieces 140b and 140b that come into contact with the side surface of the spoke part 135 with the spoke part 135 interposed therebetween. The pair of projecting pieces 140b and 140b are positioned symmetrically on the lower surface of the connecting boss 140 on the outer side in the radial direction from the center of rotation of the shaft groove 140a, and are disposed symmetrically with respect to the center of rotation so as to protrude downward. Is formed. When the connecting boss part 140 is placed on the spoke part 135, the pair of projecting pieces 140 b and 140 b abut against the spoke part 135 so that the movement of the connecting boss part 140 in the circumferential direction is restricted. While the rotation of the output shaft 77 can be transmitted, movement in the radial direction along the spoke part 135 in the connection boss part 140 is allowed. As described above, the power transmission unit 138 according to the second modified example absorbs the positional deviation between the output shaft 77 and the auger body 52 when the connection boss 140 moves in the radial direction with respect to the spoke 135. ing. In addition, the number of protrusions 140b is not limited to two, and may be one or three or more.

(19)図25に示す第4変更例の動力伝達部142は、オーガ本体52の上端部に開口する軸空間(開口)52cに架設してオーガ本体52に固定されたスポーク部135と、このスポーク部135に挿入溝132bを合わせて載置される接続ボス部132とを備えている。接続ボス部132には、上方に開口する軸溝132aが設けられ、この軸溝132aに出力軸77が嵌合して該出力軸77の回転が伝達されるようになっている。また接続ボス部132の挿入溝132bは、水平方向に連通すると共に下方に開放するよう形成される。第4変更例の動力伝達部142は、接続ボス部132の挿入溝132bとスポーク部135との間に、接続ボス部132のスポーク部135に対する変位を許容する調節部144が設けられている。調節部144は、下方に開放した断面コ字状の部材であって、スポーク部135の上面および両側面を覆って被着され、この調整部144を覆うように挿入溝132bを嵌め合わせて接続ボス部132がスポーク部135に組み付けられる。また調節部144は、ゴムや発泡体等の弾力性を有する材料から形成され、この調節部144が半径方向に変形することで、出力軸77とオーガ本体52との位置ずれを吸収するようになっている。 (19) The power transmission unit 142 of the fourth modified example shown in FIG. 25 includes a spoke portion 135 that is installed in an axial space (opening) 52c that opens to the upper end portion of the auger body 52 and is fixed to the auger body 52. And a connecting boss portion 132 placed on the spoke portion 135 with the insertion groove 132b. The connection boss 132 is provided with a shaft groove 132a that opens upward, and an output shaft 77 is fitted into the shaft groove 132a so that the rotation of the output shaft 77 is transmitted. Further, the insertion groove 132b of the connection boss 132 is formed to communicate in the horizontal direction and open downward. In the power transmission unit 142 of the fourth modified example, an adjustment unit 144 that allows displacement of the connection boss 132 with respect to the spoke 135 is provided between the insertion groove 132b of the connection boss 132 and the spoke 135. The adjustment portion 144 is a member having a U-shaped cross section that opens downward, and is attached to cover the upper surface and both side surfaces of the spoke portion 135, and is connected by fitting the insertion groove 132b so as to cover the adjustment portion 144. The boss part 132 is assembled to the spoke part 135. The adjusting portion 144 is formed of a material having elasticity such as rubber or foam, and the adjusting portion 144 is deformed in the radial direction so as to absorb the positional deviation between the output shaft 77 and the auger body 52. It has become.

(20)図26に示す第5変更例の動力伝達部146は、オーガ本体52の上端部に開口する軸空間(開口)52cに架設してオーガ本体52に固定されたスポーク部135と、このスポーク部135に挿入溝148bを合わせて載置される接続ボス部148とを備えている。接続ボス部148には、上方に開口する軸溝148aが設けられ、この軸溝148aに出力軸77が嵌合して該出力軸77の回転が伝達されるようになっている。また接続ボス部148の挿入溝148bは、水平方向に連通すると共に下方に開放するよう形成される。更に、接続ボス部148は、軸溝148aと挿入溝148bとの間に、接続ボス部148の軸溝148a側のスポーク部135に対する変位を許容する調節部148cが設けられている。調節部148cは、バネを介挿することやベローズ形状とすること等により、半径方向に変位可能に構成され、この調節部148cが半径方向に変形することで、出力軸77とオーガ本体52との位置ずれを吸収するようになっている。 (20) The power transmission unit 146 of the fifth modified example shown in FIG. 26 includes a spoke part 135 that is installed in an axial space (opening) 52c that opens at the upper end of the auger body 52 and is fixed to the auger body 52. And a connecting boss portion 148 mounted on the spoke portion 135 with the insertion groove 148b. The connecting boss 148 is provided with a shaft groove 148a that opens upward, and an output shaft 77 is fitted into the shaft groove 148a so that the rotation of the output shaft 77 is transmitted. Further, the insertion groove 148b of the connection boss 148 is formed so as to communicate with the horizontal direction and open downward. Further, the connecting boss portion 148 is provided with an adjusting portion 148c that allows displacement of the connecting boss portion 148 relative to the spoke portion 135 on the shaft groove 148a side between the shaft groove 148a and the insertion groove 148b. The adjusting portion 148c is configured to be displaceable in the radial direction by inserting a spring or having a bellows shape. The adjusting portion 148c is deformed in the radial direction, so that the output shaft 77, the auger body 52, and the like. It is designed to absorb misalignment.

(21)オーガ本体と動力伝達部とを合成樹脂から一体成形したオーガを実施例に挙げたが、これに限定されず、動力伝達部を合成樹脂から成形し、この動力伝達部を金属製のオーガ本体に取り付ける構成であってもよい。またオーガ本体を合成樹脂から成形し、金属製の動力伝達部をこのオーガ本体に取り付ける構成も採用し得る。このように、オーガ本体または動力伝達部の何れか一方を、金属と比べて熱伝導率が低い合成樹脂から成形することで、駆動手段と冷凍ケーシングとの間の熱伝導を抑制することができる。 (21) An auger in which an auger body and a power transmission unit are integrally molded from a synthetic resin has been described as an example. However, the present invention is not limited thereto, and the power transmission unit is molded from a synthetic resin. The structure attached to an auger main body may be sufficient. Further, a configuration in which the auger body is molded from a synthetic resin and a metal power transmission unit is attached to the auger body can be employed. In this way, by forming either one of the auger body or the power transmission unit from a synthetic resin having a lower thermal conductivity than metal, heat conduction between the drive means and the refrigeration casing can be suppressed. .

(22)オーガは、オーガ本体における軸受部に臨む第2の周面および下端面に、オーガ本体と軸受部との摺動面から異物を排出するための溝を設けてもよい。また、軸受部は、軸部および載置部のオーガ本体に臨む面に、オーガ本体と軸受部との摺動面から異物を排出するための溝を設けてもよい。 (22) The auger may be provided with a groove for discharging foreign matter from the sliding surface between the auger body and the bearing portion on the second peripheral surface and the lower end surface facing the bearing portion in the auger body. In addition, the bearing portion may be provided with a groove for discharging foreign matter from the sliding surface between the auger body and the bearing portion on the surface of the shaft portion and the mounting portion facing the auger body.

(23)図27〜図31を参照して、別の変更例に係る製氷機構200について説明する。なお、以下では、前述した実施例の製氷機構30との相違する構成を主に説明し、別の変更例に係る製氷機構200に関して実施例と同様の構成は同一の符号を用いて説明を省略する。 (23) An ice making mechanism 200 according to another modification will be described with reference to FIGS. In the following, the configuration that is different from the ice making mechanism 30 of the above-described embodiment will be mainly described, and the same configurations as those of the embodiment regarding the ice making mechanism 200 according to another modified example will be omitted using the same reference numerals. To do.

実施例では、製氷機構30を製氷機本体に対して支持固定するベース32と、冷凍ケーシング64やオーガ50が載置される基礎部分となる給水パーツ34とを別体に構成したが、図27〜図29に示す別の変更例に係る製氷機構200の如く、ベース202と給水パーツ204とを樹脂等により一体形成してもよい。別の変更例の製氷機構200では、上方に開口する箱状に形成されたベース202の内側に実施例1で前述した給水パーツ34においてフランジ部36に対応する台状部分206を設け、この台状部分206の中央部分に上下方向に貫通する円筒形の円筒本体208が設けられる。別の変更例の製氷機構200は、円筒形の軸部210aの下端に半径方向外側に延出する載置部210bを備えた軸受部210が、軸部210aで円筒本体208を囲うと共に載置部210bで台状部分206の上側を覆って取り付けられている。このように、ベース202と給水パーツ204とを一体とすることで、部品点数を減らすことができる。また、ベース202において、台状部分206と外壁202aとの間が露受けとして機能する。   In the embodiment, the base 32 that supports and fixes the ice making mechanism 30 with respect to the ice making machine main body and the water supply part 34 that is a base portion on which the refrigeration casing 64 and the auger 50 are placed are configured separately. The base 202 and the water supply part 204 may be integrally formed of resin or the like as in an ice making mechanism 200 according to another modification shown in FIG. In the ice making mechanism 200 of another modified example, a base portion 206 corresponding to the flange portion 36 in the water supply part 34 described in the first embodiment is provided inside a base 202 formed in a box shape that opens upward. A cylindrical body 208 having a cylindrical shape penetrating in the vertical direction is provided at the central portion of the shaped portion 206. Another example of the ice making mechanism 200 includes a bearing portion 210 having a mounting portion 210b extending radially outward at the lower end of a cylindrical shaft portion 210a. The shaft portion 210a surrounds the cylindrical body 208 and is mounted. It is attached so as to cover the upper side of the table-like portion 206 with the portion 210b. Thus, by integrating the base 202 and the water supply part 204, the number of parts can be reduced. Further, in the base 202, the space between the base portion 206 and the outer wall 202a functions as a dew tray.

実施例の製氷機構30では、オーガ50の内側から製氷水を供給したが、図27に示す別の変更例に係る製氷機構200の給水構造の如く、冷凍ケーシング64の内周面とオーガ50の外周面との間に下側から製氷水を供給してもよい。図28に示すように、給水パーツ204には、台状部分206に円筒本体208を囲んで該円筒本体208と同心円状に溝206a,206bが二重に設けられ、外側に位置する給水溝206aが冷凍ケーシング64の内周面とオーガ50の外周面との間に対応して配置されている。また、給水溝206aは、上側が軸受部210の載置部210bで覆われている(図27参照)。なお、載置部210bには、給水溝206aに対応して給水孔210cが複数開設されている。給水溝206aには、図示しない製氷水タンクに接続する給水部207が接続され、給水部207を介して製氷水が製氷水タンクから供給されて、給水孔210cを介して冷凍ケーシング64の製氷面64aとオーガ本体52との間に製氷水が満たされる。   In the ice making mechanism 30 of the embodiment, ice making water is supplied from the inside of the auger 50. However, like the water supply structure of the ice making mechanism 200 according to another modification shown in FIG. You may supply ice-making water from lower side between outer peripheral surfaces. As shown in FIG. 28, the water supply part 204 is provided with double grooves 206a and 206b concentrically with the cylindrical body 208 surrounding the cylindrical body 208 in the base portion 206, and the water supply groove 206a located outside. Is disposed between the inner peripheral surface of the refrigeration casing 64 and the outer peripheral surface of the auger 50. Further, the upper side of the water supply groove 206a is covered with the mounting portion 210b of the bearing portion 210 (see FIG. 27). Note that a plurality of water supply holes 210c are formed in the mounting portion 210b corresponding to the water supply grooves 206a. A water supply unit 207 connected to an ice making water tank (not shown) is connected to the water supply groove 206a, and ice making water is supplied from the ice making water tank through the water supply unit 207, and the ice making surface of the refrigeration casing 64 is supplied through the water supply hole 210c. The ice making water is filled between the 64a and the auger body 52.

図27に示すように、前記台状部分206において給水溝206aと区画して該給水溝206aと円筒本体208との間に設けられた排水溝206bは、円筒本体208と軸受部210の軸部210aとの間の隙間の下側に位置し、該隙間を介して流下する製氷水や結露水等を受容するようになっている。排水溝206bには、台状部分206の下側に抜ける排水部209が接続され、この排水部209から排水溝206bで受けた製氷水が排出される。なお、別の変更例の製氷機構200では、軸受部210とオーガ本体52との間に潤滑性を有する軸受材212が設けられている(図28参照)。軸受材212は、軸受部210の軸部210aとオーガ本体52の内周面との間に挟まれる円筒部分と、この円筒部分の下端から半径方向外側に延出し、オーガ本体52の下端面と軸受部210の載置部210bとの間に挟まる延出部分とを備えている(図27参照)。   As shown in FIG. 27, the drainage groove 206b that is partitioned from the water supply groove 206a in the base portion 206 and is provided between the water supply groove 206a and the cylindrical body 208 is formed between the cylindrical body 208 and the shaft portion of the bearing portion 210. It is located below the gap between 210a and receives ice-making water, condensed water, etc. flowing down through the gap. The drainage groove 209 is connected to a drainage part 209 that passes through the lower side of the base portion 206, and the ice-making water received by the drainage groove 206 b is discharged from the drainage part 209. In the ice making mechanism 200 of another modified example, a bearing material 212 having lubricity is provided between the bearing portion 210 and the auger body 52 (see FIG. 28). The bearing member 212 has a cylindrical portion sandwiched between the shaft portion 210a of the bearing portion 210 and the inner peripheral surface of the auger body 52, and extends radially outward from the lower end of the cylindrical portion. And an extending portion sandwiched between the bearing portion 210 and the mounting portion 210b (see FIG. 27).

実施例では、オーガ50のロック時に駆動手段76の過負荷を防止する保護機構として、動力伝達部58における接続ボス部60とスポーク部59との連結部分やスポーク部59に設けた脆弱部を挙げたが、動力伝達部において出力軸77に連結する部分を他の部分と比べて脆弱にしたり、その他の構成も採用可能である。図27に示す別の変更例の製氷機構200において、動力伝達部214は、出力軸77に連結する連結体220を、接続ボス部(接続部)216およびスポーク部218と別体に有している(図29参照)。動力伝達部214では、接続ボス部216に設けられた軸溝(溝部)216aに対して連結体220が嵌り込むよう構成されている。連結体220は、軸溝216aに合わせて外周寸法が設定された円筒形の本体部220aと、この本体部220aの上端に外方に延出形成されたフランジ220bと、本体部220aの中央に上下方向に貫通形成された軸挿入孔220cとを備えている(図27参照)。また、連結体220には、軸挿入孔220cの内周面から半径方向外側に凹ませたキー溝220dが、軸挿入孔220cの上下に亘って設けられると共に、本体部220aの外周面に半径方向外側に突出形成した突状部220eが、上下方向に延在するように設けられる(図29参照)。なお、本体部220aの外周面には、2条の突状部220e,220eが対称な関係で配置されている。そして、接続ボス部216の軸溝216aには、内周面から半径方向外側に凹む凹部216bが、連結体220の2つの突状部220e,220eに合わせて形成されている。   In the embodiment, as a protection mechanism for preventing the overload of the driving means 76 when the auger 50 is locked, a connection portion between the connection boss portion 60 and the spoke portion 59 in the power transmission portion 58 and a weak portion provided in the spoke portion 59 are given. However, a portion connected to the output shaft 77 in the power transmission portion can be made weaker than other portions, or other configurations can be employed. In the ice making mechanism 200 of another modified example shown in FIG. 27, the power transmission unit 214 has a coupling body 220 coupled to the output shaft 77 separately from the connection boss portion (connection portion) 216 and the spoke portion 218. (See FIG. 29). The power transmission unit 214 is configured such that the coupling body 220 is fitted into a shaft groove (groove portion) 216 a provided in the connection boss portion 216. The coupling body 220 includes a cylindrical main body 220a having an outer peripheral dimension set in accordance with the shaft groove 216a, a flange 220b that extends outward from the upper end of the main body 220a, and a center of the main body 220a. The shaft insertion hole 220c is formed so as to penetrate in the vertical direction (see FIG. 27). Further, the connecting body 220 is provided with a key groove 220d that is recessed radially outward from the inner peripheral surface of the shaft insertion hole 220c over the top and bottom of the shaft insertion hole 220c, and has a radius on the outer peripheral surface of the main body 220a. A protruding portion 220e that protrudes outward in the direction is provided so as to extend in the vertical direction (see FIG. 29). Two protruding portions 220e and 220e are arranged in a symmetrical relationship on the outer peripheral surface of the main body 220a. A concave portion 216b that is recessed radially outward from the inner peripheral surface is formed in the shaft groove 216a of the connection boss portion 216 in accordance with the two protruding portions 220e and 220e of the coupling body 220.

前記連結体220は、出力軸77の下端に半径方向外側に突出形成したキー(図示せず)をキー溝220dに合わせて、出力軸77を軸挿入孔220cに嵌め合わせることで、出力軸77の回転に追随するようになっている。また、連結体220は、2つの突状部220e,220eを接続ボス部216の凹部216bに合わせて軸溝216aに嵌め合わせることで、動力伝達部214が出力軸77に接続されて、出力軸77の回転につれてオーガ本体52が回転される。連結体220は、接続ボス部216およびスポーク部218より剛性が低く形成されて、動力伝達部214の中でオーガ本体52の回転に対し過負荷がかかった際に破損する脆弱部となるよう構成される。すなわち、連結体220は、オーガ本体52がロックしているのにかかわらず出力軸77が回転すると、連結体220自体が破損して出力軸77と接続ボス部216との間の接続状態が解除される。このように、オーガ本体52のロック時に動力伝達部214が出力軸77の回転を伝達しない構成とすることで、駆動手段76の過負荷を回避して、オーガ50と比較して高価な駆動手段76や冷凍ケーシング64等の故障や破損等を防止できる。また、動力伝達部214は、接続ボス部216の軸溝216aの中に連結体220が収容される構成であるので、連結体220が破損しても、連結体220が接続ボス部216の下方に位置する氷放出路35aを介して落下することはなく、製造した氷への異物の混入を防止し得る(図27参照)。   The connecting body 220 is configured such that a key (not shown) that protrudes radially outward from the lower end of the output shaft 77 is aligned with the key groove 220d, and the output shaft 77 is fitted into the shaft insertion hole 220c. It comes to follow the rotation of. In addition, the connecting body 220 has the two projecting portions 220e and 220e fitted in the shaft groove 216a in alignment with the recess 216b of the connection boss portion 216, whereby the power transmission portion 214 is connected to the output shaft 77, and the output shaft The auger body 52 is rotated as 77 rotates. The coupling body 220 is formed to have a lower rigidity than the connection boss portion 216 and the spoke portion 218, and is configured to be a fragile portion that is damaged when an overload is applied to the rotation of the auger body 52 in the power transmission portion 214. Is done. That is, when the output shaft 77 rotates despite the auger body 52 being locked, the connecting body 220 is broken and the connection state between the output shaft 77 and the connecting boss portion 216 is released. Is done. In this way, the power transmission unit 214 does not transmit the rotation of the output shaft 77 when the auger body 52 is locked, so that the driving unit 76 is prevented from being overloaded, and the driving unit is more expensive than the auger 50. Failure, damage, etc. of 76, refrigeration casing 64, etc. can be prevented. Further, since the power transmission unit 214 is configured such that the coupling body 220 is accommodated in the shaft groove 216 a of the connection boss portion 216, the coupling body 220 remains below the connection boss portion 216 even if the coupling body 220 is damaged. It does not fall through the ice discharge path 35a located in the area, and foreign matter can be prevented from entering the manufactured ice (see FIG. 27).

図28または図30に示すように、別の変更例の製氷機構200では、駆動手段76を支持する架台222が下方に開口する円筒形状に形成されて、下側開口部222aが冷凍ケーシング64の上部外周に整合する大きさに設定されている。架台222は、下側開口部222aの内側に冷凍ケーシング64の上部を嵌め合わせて固定される。架台222は、冷凍ケーシング64の上部が内側に挿入されるので、冷凍ケーシング64に対して半径方向(横方向)への移動規制される。すなわち、架台222は、冷凍ケーシング64に対して正確に位置決めできるので、架台222で支持する駆動手段76の出力軸77とオーガ50との芯ずれを抑制できる。また、架台222の上端面には、該上端面に載置される駆動手段76の出力軸77が挿通可能な孔部222bが設けられ、該孔部222bを介して架台222の内部に挿入された出力軸77がオーガ50の動力伝達部214に接続される。更に、架台222には、窓部222cが周面に設けられ(図27または図30参照)、この窓部222cを介して出力軸77やオーガ50の回転状況等を確認したり、架台222の内部や後述する案内部材224に配設されるセンサ等の配線が配設される。なお、窓部222cには、着脱可能な蓋223を設けてある(図30参照)。   As shown in FIG. 28 or FIG. 30, in the ice making mechanism 200 of another modified example, the pedestal 222 that supports the driving means 76 is formed in a cylindrical shape that opens downward, and the lower opening 222 a of the refrigeration casing 64. The size is set to match the upper outer periphery. The gantry 222 is fixed by fitting the upper part of the refrigeration casing 64 inside the lower opening 222a. Since the upper portion of the refrigeration casing 64 is inserted inside, the gantry 222 is restricted from moving in the radial direction (lateral direction) with respect to the refrigeration casing 64. That is, since the gantry 222 can be accurately positioned with respect to the refrigeration casing 64, misalignment between the output shaft 77 of the driving means 76 supported by the gantry 222 and the auger 50 can be suppressed. Further, a hole 222b through which the output shaft 77 of the driving means 76 placed on the upper end surface can be inserted is provided in the upper end surface of the gantry 222, and is inserted into the gantry 222 through the hole 222b. The output shaft 77 is connected to the power transmission unit 214 of the auger 50. Further, a window 222c is provided on the circumferential surface of the gantry 222 (see FIG. 27 or FIG. 30), and the rotation state of the output shaft 77 and the auger 50 are confirmed via the window 222c, and the gantry 222 Wirings for sensors and the like disposed in the inside and a guide member 224 described later are disposed. The window 222c is provided with a detachable lid 223 (see FIG. 30).

別の変更例に係る製氷機構200は、図27または図31に示すように、氷収集部Sにおいて氷の半径方向内側への円滑な移動を補助する回転規制部226を内周面に備えた案内部材224を採用している。案内部材224は、上下に開口する円筒形状の筒本体部(本体部)224aを基本として、この筒本体部224aの上端面を塞ぐ蓋体228に動力伝達部214の接続ボス部216が挿通される挿通口228aが開設されている。案内部材224における筒本体部224aの下端部は、冷凍ケーシング64の内側に整合するよう形成され、案内部材224は、筒本体部224aの下端部を冷凍ケーシング64の収容空間65に嵌め合わせて固定される(図27参照)。これにより、製氷機構200には、冷凍ケーシング64の上側に、オーガ50で冷凍ケーシング64の製氷面64aに沿って掻き上げられた氷を、冷凍ケーシング64の中心側に給水パーツ204における円筒本体208で画成された氷放出路35aに案内する氷収集部Sが案内部材224により形成される(図27参照)。筒本体部224aの内周面には、周方向に所要間隔離間させて複数の回転規制部226が突出形成されている。各回転規制部226は、筒本体部224aの内周面の上下に亘って延在し、内周面から離間するにつれて狭まるように面を組み合わせた平断面略三角形状に形成されている。回転規制部226は、冷凍ケーシング64の上側に案内部材224で画成される氷収集部Sにおいて、筒本体部224aの内周面に沿って動力伝達部214のスポーク部218で押送された氷を、該内周面から突出した面で内側に位置する氷放出路35aの氷放出口35bに向けて案内している。なお、動力伝達部214のスポーク部218は、筒本体部224aの内周面から離間させて配設されて、回転規制部226とは干渉しないよう構成されている。   As shown in FIG. 27 or FIG. 31, the ice making mechanism 200 according to another modified example includes a rotation restricting portion 226 that assists smooth movement of the ice radially inward in the ice collecting portion S on the inner peripheral surface. A guide member 224 is employed. The guide member 224 is based on a cylindrical tube main body portion (main body portion) 224a that opens up and down, and a connection boss portion 216 of the power transmission portion 214 is inserted into a lid 228 that closes the upper end surface of the cylinder main body portion 224a. The insertion port 228a is established. A lower end portion of the cylinder main body portion 224a of the guide member 224 is formed so as to align with the inside of the refrigeration casing 64, and the guide member 224 is fixed by fitting the lower end portion of the cylinder main body portion 224a into the accommodation space 65 of the refrigeration casing 64. (See FIG. 27). As a result, the ice making mechanism 200 receives the ice scraped along the ice making surface 64a of the refrigeration casing 64 by the auger 50 on the upper side of the refrigeration casing 64, and the cylindrical body 208 in the water supply part 204 on the center side of the refrigeration casing 64. An ice collecting portion S that guides to the ice discharge path 35a defined in (5) is formed by the guide member 224 (see FIG. 27). A plurality of rotation restricting portions 226 project from the inner peripheral surface of the cylinder main body 224a so as to be spaced apart from each other in the circumferential direction. Each rotation restricting portion 226 extends in the upper and lower directions of the inner peripheral surface of the cylinder main body portion 224a, and is formed in a substantially triangular cross-sectional shape in which the surfaces are combined so as to narrow as the distance from the inner peripheral surface increases. The rotation restricting part 226 is the ice pushed by the spoke part 218 of the power transmission part 214 along the inner peripheral surface of the cylinder body part 224a in the ice collecting part S defined by the guide member 224 on the upper side of the refrigeration casing 64. Is guided toward the ice discharge port 35b of the ice discharge path 35a located inside by the surface protruding from the inner peripheral surface. In addition, the spoke part 218 of the power transmission part 214 is arrange | positioned spaced apart from the internal peripheral surface of the cylinder main-body part 224a, and is comprised so that it may not interfere with the rotation control part 226.

図31に示すように、案内部材224には、筒本体部224aの外周面に半径方向外側に延出する露受け230を設けてもよい。露受け230は、外周縁に上方に立設する壁を有する上側が開口した半樋状に形成されており、筒本体部224aの外周面全周に亘って設けられている。また、露受け230は、半径方向外側に突出する排出部230aを、筒本体部224aを挟んで対称な位置関係で2つ備えている。案内部材224は、冷凍ケーシング64の上端に取り付けた架台222の内側に収容されて、露受け230で案内部材224の外周面に付着した結露水を受けて、架台222の周面に開設された排水開口222dを介して外方に突出する排出部230aから結露水を排出するようになっている。案内部材224は、下部を冷凍ケーシング64の上部内側に嵌め合わせた際に、露受け230が冷凍ケーシング64の上端面に載置され、これにより案内部材224の上下方向の位置決めがされる(図27参照)。排出部230aの排出端には、ホースや配管等を接続したり、該排出端をベース202のドレン部分の直上に配置することで結露水を回収するようになっている。このように、案内部材224の外周面に露受け230を設けることで、冷凍ケーシング64の内側に結露水が流入しないようになっている。   As shown in FIG. 31, the guide member 224 may be provided with a dew receptacle 230 that extends radially outward on the outer peripheral surface of the tube main body 224a. The dew receptacle 230 is formed in a semi-cylindrical shape with an upper opening having a wall standing upward at the outer peripheral edge, and is provided over the entire outer peripheral surface of the cylinder main body 224a. In addition, the dew receptacle 230 includes two discharge portions 230a that protrude outward in the radial direction with a symmetrical positional relationship across the cylinder main body portion 224a. The guide member 224 is accommodated inside the pedestal 222 attached to the upper end of the refrigeration casing 64, receives dew condensation water adhering to the outer peripheral surface of the guide member 224 by the dew receiver 230, and is opened on the peripheral surface of the pedestal 222. Condensed water is discharged from a discharge portion 230a protruding outward through the drain opening 222d. When the lower portion of the guide member 224 is fitted to the upper inner side of the refrigeration casing 64, the dew receptacle 230 is placed on the upper end surface of the refrigeration casing 64, thereby positioning the guide member 224 in the vertical direction (see FIG. 27). Condensed water is collected by connecting a hose, piping, or the like to the discharge end of the discharge portion 230a or by disposing the discharge end directly above the drain portion of the base 202. Thus, by providing the dew receptacle 230 on the outer peripheral surface of the guide member 224, the dew condensation water does not flow into the inside of the refrigeration casing 64.

図31に示すように、前記案内部材224は、筒本体部224aの上側開口を開閉可能な蓋体228で塞ぐ構成になっている。案内部材224は、筒本体部224aの上端に対してヒンジ232で開閉可能に接続された蓋体228と、ヒンジ232と筒本体部224aを挟んで反対側に設けられ、蓋体228の開放側を係脱可能に保持する係止手段234とを備えている。蓋体228は、通常使用状態において係止手段234で筒本体部224aの上側開口を塞ぐように保持されている(図31(a)参照)。係止手段234は、蓋体228側に設けた磁石229と筒本体部224a側の鉄等の強磁性体からなる金属材との磁着(図31参照)や、爪と溝との凹凸関係による引っ掛け構造等が採用される。また、係止手段234は、蓋体228を筒本体部224aに保持した状態において、蓋体228に対して所定の押圧力以上の力が下側から加わると蓋体228の係止状態を解除するように構成される。すなわち、係止手段234として磁石229を用いた場合には、蓋体228に磁石229の磁力以上の押圧力が加わると、磁力に抗して蓋体228の開放が許容される。なお、係止手段として引っ掛け構造を用いた場合には、蓋体228に爪の弾性力以上の押圧力が加わると、爪が溝から抜けて蓋体228の開放が許容される。案内部材224は、氷放出路35aが詰まった場合等、冷凍ケーシング64と案内部材224との間の氷収集部Sから氷が放出されない際に、蓋体228を押し上げる氷の押圧力が係止手段234の係止力を越えると係止手段234が解除されて蓋体228が開放される。このように、案内部材224は、蓋体228が開放されることで筒本体部224aの上側開口から氷を逃すことが可能であり、氷の詰まりに起因する駆動手段76やオーガ50等への過負荷を防止することができる。なお、案内部材は、蓋体を開放規制する規制手段を設けず、蓋体を自重により閉成する構成であってもよい。   As shown in FIG. 31, the guide member 224 is configured to close the upper opening of the cylinder main body 224a with a lid 228 that can be opened and closed. The guide member 224 is provided on the opposite side of the lid 228 with the hinge 232 and the cylinder body 224a sandwiched between the lid 228 connected to the upper end of the cylinder body 224a by a hinge 232 and the hinge 232. And a locking means 234 that holds the handle in a detachable manner. The lid 228 is held so as to close the upper opening of the cylinder main body 224a by the locking means 234 in the normal use state (see FIG. 31A). The locking means 234 includes magnetic attachment (see FIG. 31) between the magnet 229 provided on the lid 228 side and a metal material made of a ferromagnetic material such as iron on the cylinder body 224a side, and the uneven relationship between the claw and the groove. A hooking structure or the like is adopted. The locking means 234 releases the locked state of the lid 228 when a force greater than a predetermined pressing force is applied to the lid 228 from the lower side in a state where the lid 228 is held by the cylinder main body 224a. Configured to do. That is, in the case where the magnet 229 is used as the locking means 234, when the pressing force greater than the magnetic force of the magnet 229 is applied to the lid 228, the opening of the lid 228 is allowed against the magnetic force. In the case where a hook structure is used as the locking means, when a pressing force equal to or greater than the elastic force of the claw is applied to the lid 228, the claw is pulled out of the groove and the lid 228 is allowed to open. When the ice discharge path 35a is clogged, the guide member 224 is locked by the ice pressing force that pushes up the lid 228 when ice is not released from the ice collecting portion S between the refrigeration casing 64 and the guide member 224. When the locking force of the means 234 is exceeded, the locking means 234 is released and the lid 228 is opened. In this way, the guide member 224 can release ice from the upper opening of the cylinder main body 224a by opening the lid body 228, and the guide member 224 can access the driving means 76, the auger 50, and the like caused by the clogging of ice. Overload can be prevented. Note that the guide member may be configured to close the lid body by its own weight without providing any restriction means for regulating the opening of the lid body.

前記案内部材224には、蓋体228の開放を検知する蓋開放センサ236が設けられ、製氷機構200は、蓋体228の開放検知に応じて駆動手段76の駆動や冷凍ケーシング64の冷却等の製氷運転を停止するようになっている。別の変更例に係る製氷機構200では、蓋開放センサ236として、蓋体228に設けられた磁石229の磁界を検知する近接センサが採用されているが、これに限定されず、蓋体228との接離により蓋体228の開放を検知する機械的なスイッチやフォトセンサ等の検知手段も採用できる。製氷機構200は、蓋体228が開放した際に蓋開放センサ236の検知により製氷運転を停止するので、駆動手段76やオーガ50等への過負荷を防止することができ、異常発生時に製氷機構200を構成する部材の破損を回避できる。   The guide member 224 is provided with a lid opening sensor 236 for detecting the opening of the lid body 228, and the ice making mechanism 200 performs driving of the driving means 76 and cooling of the refrigeration casing 64 in response to the detection of the opening of the lid body 228. The ice making operation is stopped. In the ice making mechanism 200 according to another modified example, a proximity sensor that detects the magnetic field of the magnet 229 provided on the lid 228 is employed as the lid opening sensor 236. However, the present invention is not limited to this, and the lid 228 Detection means such as a mechanical switch or a photo sensor that detects the opening of the lid 228 by the contact and separation of each other can also be employed. Since the ice making mechanism 200 stops the ice making operation by the detection of the lid opening sensor 236 when the lid body 228 is opened, it is possible to prevent overloading to the driving means 76, the auger 50, etc., and the ice making mechanism when an abnormality occurs. It is possible to avoid breakage of the members constituting 200.

図27に示すように、氷放出路35aに貯氷検知センサ238を設けてもよい。製氷機構200は、氷放出路35aを画成する給水パーツ204の円筒本体208の内周面下部に、貯氷検知センサ238として赤外線センサを設け、氷放出路35aを介して製氷機構200から該製氷機構200の下方に設けられた貯氷室(図示せず)に放出された氷の貯蔵上端を検知するようになっている。製氷機構200は、貯氷検知センサ238で氷の存在を検知した際に、駆動手段76および冷凍機構が停止されて、貯氷室の氷が消費されるまで製氷運転を停止するようになっている。なお、貯氷検知センサ238としては、氷との接離により氷の存在を検知する機械的なスイッチ、近接センサやフォトセンサ等の検知手段も採用できる。   As shown in FIG. 27, an ice storage detection sensor 238 may be provided in the ice discharge path 35a. The ice making mechanism 200 is provided with an infrared sensor as an ice storage detection sensor 238 at the lower part of the inner peripheral surface of the cylindrical body 208 of the water supply part 204 that defines the ice discharge path 35a, and from the ice making mechanism 200 via the ice discharge path 35a. The upper end of storage of ice discharged into an ice storage chamber (not shown) provided below the mechanism 200 is detected. When the ice storage detection sensor 238 detects the presence of ice, the ice making mechanism 200 stops the ice making operation until the driving means 76 and the refrigeration mechanism are stopped and the ice in the ice storage chamber is consumed. As the ice storage detection sensor 238, a detection means such as a mechanical switch, a proximity sensor, a photo sensor, or the like that detects the presence of ice by contact with or separation from ice can be employed.

30,90,120 製氷機構、35a 氷放出路、50 オーガ、
52 オーガ本体、52a 外周面(第1の周面)、54 剥離刃、
58 動力伝達部、60c 仕切り壁、64 冷凍ケーシング、
64a 製氷面、76 駆動手段、77 出力軸、222 架台、
222a 下側開口部、222b 孔部
30, 90, 120 ice making mechanism, 35a ice discharge path, 50 auger,
52 auger body, 52a outer peripheral surface (first peripheral surface), 54 peeling blade,
58 power transmission part, 60c partition wall, 64 refrigeration casing,
64a ice making surface, 76 driving means, 77 output shaft, 222 frame,
222a lower opening, 222b hole

Claims (3)

冷却される製氷面(64a)が周面に設けられた円筒形の冷凍ケーシング(64)と、軸線を上下に延在させて冷凍ケーシング(64)に対し回転可能に配設されたオーガ(50)とを有する製氷機構(30,90,120)を備え、該製氷機構(30,90,120)に製氷水を供給して製氷面(64a)に氷を生成し、駆動手段(76)により回転駆動されるオーガ(50)の剥離刃(54)により氷を剥離して搬送するオーガ式製氷機において、
前記オーガ(50)は、前記冷凍ケーシング(64)の製氷面(64a)に臨む第1の周面(52a)より突出させて前記剥離刃(54)が設けられる円筒形のオーガ本体(52)と、このオーガ本体(52)の上端面に設けられた動力伝達部(58)とを備え、
前記駆動手段(76)が、前記冷凍ケーシング(64)の上方に配置されて、該駆動手段(76)の出力軸(77)が前記動力伝達部(58)に対し上側から連結されるよう構成した
ことを特徴とするオーガ式製氷機。
A cylindrical refrigeration casing (64) having an ice-making surface (64a) to be cooled provided on its peripheral surface, and an auger (50) that is rotatably arranged with respect to the refrigeration casing (64) with its axis extending vertically. ) And an ice making mechanism (30, 90, 120), supplying ice making water to the ice making mechanism (30, 90, 120) to generate ice on the ice making surface (64a), and being rotated by a driving means (76) In an auger type ice making machine that peels and conveys ice with the peeling blade (54) of the auger (50),
The auger (50) is a cylindrical auger body (52) provided with the peeling blade (54) protruding from the first peripheral surface (52a) facing the ice making surface (64a) of the refrigeration casing (64). And a power transmission portion (58) provided on the upper end surface of the auger body (52),
The drive means (76) is disposed above the refrigeration casing (64), and the output shaft (77) of the drive means (76) is connected to the power transmission unit (58) from above. An auger type ice maker characterized by
前記剥離刃(54)により前記冷凍ケーシング(64)の上部に搬送された氷を前記製氷機構(30,120)外に案内する氷放出路(35a)が、前記オーガ本体(52)の内側に設けられ、
前記動力伝達部(58)は、前記出力軸(77)が挿入される軸溝(60a)を囲んで上方に突設された仕切り壁(60c)を備えている請求項1記載のオーガ式製氷機。
An ice discharge path (35a) for guiding the ice conveyed to the upper part of the refrigeration casing (64) by the peeling blade (54) to the outside of the ice making mechanism (30, 120) is provided inside the auger body (52). ,
The auger type ice making device according to claim 1, wherein the power transmission section (58) includes a partition wall (60c) projecting upwardly surrounding a shaft groove (60a) into which the output shaft (77) is inserted. Machine.
前記駆動手段(76)は、前記冷凍ケーシング(64)の上側に設置された架台(222)で支持され、
前記架台(222)は、前記冷凍ケーシング(64)の外周面に整合する下側開口部(222a)と駆動手段(76)を載置する上端面に出力軸(77)の挿通を許容する孔部(222b)とを備えた円筒形に形成され、下側開口部(222a)を冷凍ケーシング(64)の上部に嵌め合わせて固定される請求項1または2記載のオーガ式製氷機。
The drive means (76) is supported by a pedestal (222) installed on the upper side of the refrigeration casing (64),
The pedestal (222) has a hole that allows the output shaft (77) to be inserted into the lower opening (222a) aligned with the outer peripheral surface of the refrigeration casing (64) and the upper end surface on which the driving means (76) is placed. The auger type ice making machine according to claim 1 or 2, wherein the auger type ice making machine is formed in a cylindrical shape having a portion (222b) and is fixed by fitting the lower opening (222a) to the upper portion of the refrigeration casing (64).
JP2009156368A 2008-07-04 2009-06-30 Auger ice machine Expired - Fee Related JP5421673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156368A JP5421673B2 (en) 2008-07-04 2009-06-30 Auger ice machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008176367 2008-07-04
JP2008176367 2008-07-04
JP2009156368A JP5421673B2 (en) 2008-07-04 2009-06-30 Auger ice machine

Publications (2)

Publication Number Publication Date
JP2010032204A true JP2010032204A (en) 2010-02-12
JP5421673B2 JP5421673B2 (en) 2014-02-19

Family

ID=41736881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156368A Expired - Fee Related JP5421673B2 (en) 2008-07-04 2009-06-30 Auger ice machine

Country Status (1)

Country Link
JP (1) JP5421673B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205673A (en) * 1962-09-24 1965-09-14 Carl E Soderberg Auger type ice flake machine and method
US3844134A (en) * 1972-12-13 1974-10-29 Reynolds Products Auger type ice cube maker
JPS5585674U (en) * 1978-12-08 1980-06-13
JPS5618878U (en) * 1979-07-23 1981-02-19
JPH02568U (en) * 1988-06-15 1990-01-05
JPH05240542A (en) * 1992-12-18 1993-09-17 Hoshizaki Electric Co Ltd Icemaker
JPH083897Y2 (en) * 1990-05-18 1996-01-31 ホシザキ電機株式会社 External heat insulation structure of auger type ice maker
JP2004096986A (en) * 2002-08-09 2004-03-25 Hoshizaki Electric Co Ltd Geared motor
JP2006029241A (en) * 2004-07-16 2006-02-02 Ebara Corp Centrifugal pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205673A (en) * 1962-09-24 1965-09-14 Carl E Soderberg Auger type ice flake machine and method
US3844134A (en) * 1972-12-13 1974-10-29 Reynolds Products Auger type ice cube maker
JPS5585674U (en) * 1978-12-08 1980-06-13
JPS5618878U (en) * 1979-07-23 1981-02-19
JPH02568U (en) * 1988-06-15 1990-01-05
JPH083897Y2 (en) * 1990-05-18 1996-01-31 ホシザキ電機株式会社 External heat insulation structure of auger type ice maker
JPH05240542A (en) * 1992-12-18 1993-09-17 Hoshizaki Electric Co Ltd Icemaker
JP2004096986A (en) * 2002-08-09 2004-03-25 Hoshizaki Electric Co Ltd Geared motor
JP2006029241A (en) * 2004-07-16 2006-02-02 Ebara Corp Centrifugal pump

Also Published As

Publication number Publication date
JP5421673B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP3051240A1 (en) Shielding device and refrigerator comprising same
CN103185431A (en) Refrigerator
JP2007046828A (en) Drum type ice making machine
JP5275925B2 (en) Auger ice machine
US20120031138A1 (en) Water supply apparatus in refrigerator
JP4994321B2 (en) Auger ice machine
JP5469933B2 (en) Auger ice machine
JP5421673B2 (en) Auger ice machine
JP5492259B2 (en) Auger ice machine
JP5367315B2 (en) Auger ice machine
KR102544432B1 (en) Ice maker
US20230272958A1 (en) Ice maker
JP2006308112A (en) Auger type ice-making machine
JP5253924B2 (en) Auger ice machine
US6349556B1 (en) Water tank for ice making machine
JP3783725B1 (en) refrigerator
JPH09273843A (en) Automatic icemaker and refrigerator
JP5105991B2 (en) refrigerator
US6425258B1 (en) Ice guide for an ice making machine
KR102137622B1 (en) Auger type ice machine
JP2021004718A (en) Auger type ice-making machine
JP2006250487A (en) Ice making device for refrigerator
JP2023153561A (en) Liquid supply device and refrigerator with the same
KR20100064536A (en) Refrigerator
JP2022110528A (en) Ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

LAPS Cancellation because of no payment of annual fees