JP2010031901A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2010031901A
JP2010031901A JP2008192099A JP2008192099A JP2010031901A JP 2010031901 A JP2010031901 A JP 2010031901A JP 2008192099 A JP2008192099 A JP 2008192099A JP 2008192099 A JP2008192099 A JP 2008192099A JP 2010031901 A JP2010031901 A JP 2010031901A
Authority
JP
Japan
Prior art keywords
axial direction
peripheral surface
gap
tapered roller
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192099A
Other languages
Japanese (ja)
Other versions
JP5234263B2 (en
Inventor
Hiroki Matsuyama
博樹 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008192099A priority Critical patent/JP5234263B2/en
Publication of JP2010031901A publication Critical patent/JP2010031901A/en
Application granted granted Critical
Publication of JP5234263B2 publication Critical patent/JP5234263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/767Sealings of ball or roller bearings integral with the race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7803Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings
    • F16C33/7813Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings for tapered roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered roller bearing capable of reducing torque by restraining an increase in agitating resistance to lubricating oil of a rolling element, by optimizing an inflow quantity of the lubricating oil to the bearing inside. <P>SOLUTION: A cone side extension part 21e and a cup side extension part 22e are arranged on the first end side in the axial direction of a cup 22 and a cone 21, and a bearing ring side gap C is formed between an inner peripheral surface of a cup side flange part 22a formed on an inner peripheral surface of its cup side extension part 22e and an outer peripheral surface of the cone side extension part 21e. An outer peripheral surface of a small collar part 21s for regulating a position in the axial direction on the small end surface side of a tapered roller 23, is formed as an inclined face 21f inclining in the same direction as the outer peripheral surface of the tapered roller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は円錐ころ軸受に関する。   The present invention relates to a tapered roller bearing.

特開2005−69421号公報JP 2005-69421 A WO2005/045269号公報WO2005 / 045269

自動車用のギア式駆動伝達ユニットにおいては、その要所(例えば終減速装置部分をなすディファレンシャルギア装置)に円錐ころ軸受が採用されている(特許文献1,2)。円錐ころ軸受は、コンパクトでありながら大容量で使用可能な利点があり、また、ギア噛み合いによる衝撃荷重への耐久性にも優れている利点がある。   In a gear-type drive transmission unit for automobiles, a tapered roller bearing is employed at its main point (for example, a differential gear device forming a final reduction gear) (Patent Documents 1 and 2). The tapered roller bearing has an advantage that it can be used with a large capacity even though it is compact, and has an advantage that it is excellent in durability against an impact load due to gear engagement.

円錐ころ軸受は、軸受の回転によって生じるポンプ作用によって、潤滑油を小径側(第一端側)から内外輪間の転動体保持空間に吸い込み、大径側(第二端側)から流出するようになっている。しかし、この潤滑油の吸い込み量が多すぎたり、あるいは大径側からの流出が阻害されたりすると、転動体保持空間に滞留する潤滑油量が過剰となり、転動体による潤滑油の撹拌抵抗が大きくなって軸受の回転トルクが増大し、駆動d年経つユニットの効率が低下して車両の燃費を悪化させる問題がある。このようなこの問題を解決するため、特許文献1及び2には、アキシャル方向における保持器の第一端側端部を内輪外周面の対応する端部に向けて曲げ返すことにより保持器側フランジ部を形成し、該保持器側フランジ部と内輪との間に潤滑油の流入を規制するギャップを形成した軸受が提案されている。   The tapered roller bearing sucks lubricating oil from the small diameter side (first end side) into the rolling element holding space between the inner and outer rings and flows out from the large diameter side (second end side) by the pump action generated by the rotation of the bearing. It has become. However, if the amount of the lubricating oil sucked in is excessive or the outflow from the large diameter side is obstructed, the amount of lubricating oil staying in the rolling element holding space becomes excessive, and the stirring resistance of the lubricating oil by the rolling element becomes large. As a result, the rotational torque of the bearing increases, the efficiency of the unit d years after driving decreases, and the fuel consumption of the vehicle deteriorates. In order to solve this problem, Patent Documents 1 and 2 describe a cage-side flange by bending back a first end side end portion of the cage in an axial direction toward a corresponding end portion of the outer peripheral surface of the inner ring. A bearing has been proposed in which a gap is formed between the cage-side flange and the inner ring so as to restrict the inflow of lubricating oil.

しかし、上記の軸受の構成では、円錐ころの小端面と保持器側フランジ部との間に滞留する潤滑油の軸受外への排出が進みにくく、円錐ころの潤滑油に対する撹拌抵抗が増加しやすくなって、軸受の回転トルクが増加しやすくなる欠点がある。   However, in the configuration of the bearing described above, it is difficult for the lubricating oil staying between the small end surface of the tapered roller and the cage side flange portion to be discharged out of the bearing, and the stirring resistance of the tapered roller against the lubricating oil is likely to increase. Thus, there is a drawback that the rotational torque of the bearing tends to increase.

本発明の課題は、円錐ころの小端面側において軸受外への潤滑油の排出が促進でき、円錐ころの潤滑油に対する撹拌抵抗が低減できる円錐ころ軸受を提供することにある。   An object of the present invention is to provide a tapered roller bearing capable of promoting the discharge of lubricating oil to the outside of the bearing on the small end face side of the tapered roller and reducing the stirring resistance of the tapered roller with respect to the lubricating oil.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の円錐ころ軸受は、
ラジアル方向に対向配置された外輪及び内輪とを備え、外輪の内周面及び内輪の外周面に、それぞれアキシャル方向の第一端側から第二端側に向けて拡径する円錐軌道面が形成され、それら円錐軌道面の間に形成される転動体保持空間にて回転周方向に転動体をなす複数の円錐ころが配置され、
外輪及び内輪には、アキシャル方向にて各々円錐ころの軌道面よりも第一端側に延出する外輪側延出部及び内輪側延出部がそれぞれ形成され、
外輪側延出部の内周面には、ラジアル方向内向きに突出する周方向の外輪側フランジ部が設けられ、該外輪側フランジ部の内周面と内輪側延出部の外周面との間に軌道輪側ギャップが形成され、
アキシャル方向における予め定められた一方の端を第一端として、内輪の内周面には、円錐軌道面のアキシャル方向における第二端側に隣接する形で、円錐ころのアキシャル方向における当該第二端側の位置を規制する周方向の大鍔部が突出形成され、
内輪の内周面には、円錐軌道面のアキシャル方向における第一端側に隣接する形で、円錐ころのアキシャル方向における当該第一端側の位置を規制する周方向の小鍔部が突出形成され、
小鍔部の外周面が、円錐ころの外周面と同一方向に傾斜する傾斜面として形成されていることを特徴とする。
In order to solve the above problems, the tapered roller bearing of the present invention is
The outer ring and inner ring arranged opposite to each other in the radial direction are provided, and conical raceway surfaces that expand from the first end side to the second end side in the axial direction are formed on the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring, respectively. A plurality of tapered rollers that form rolling elements in the circumferential direction of rotation in a rolling element holding space formed between the conical raceway surfaces,
The outer ring and the inner ring are respectively formed with an outer ring side extending part and an inner ring side extending part extending in the axial direction to the first end side from the raceway surface of the tapered roller.
A circumferential outer ring side flange portion protruding radially inward is provided on the inner circumferential surface of the outer ring side extending portion, and an inner circumferential surface of the outer ring side flange portion and an outer circumferential surface of the inner ring side extending portion are provided. A raceway side gap is formed between
The second end in the axial direction of the tapered roller is formed in such a manner that a predetermined one end in the axial direction is a first end and the inner peripheral surface of the inner ring is adjacent to the second end side in the axial direction of the conical raceway surface. A large collar portion in the circumferential direction that regulates the position of the end side is formed to protrude,
The inner ring of the inner ring is adjacent to the first end side in the axial direction of the conical raceway surface, and a circumferential small flange that regulates the position of the first end side in the axial direction of the tapered roller is formed to protrude. And
The outer peripheral surface of the small collar portion is formed as an inclined surface inclined in the same direction as the outer peripheral surface of the tapered roller.

上記本発明の円錐ころ軸受では、外輪及び内輪のアキシャル方向における第一端側に内輪側延出部及び外輪側延出部を設け、その外輪側延出部の内周面に形成した外輪側フランジ部の内周面と、内輪側延出部の外周面との間に軌道輪側ギャップを形成する。該軌道輪側ギャップは、第一端側から転動体保持空間への潤滑油の流入量を調整ないし規制する役割を果たす。そして、内輪外周面に形成される、円錐ころの小端面側のアキシャル方向位置を規制する小鍔部の外周面を、円錐ころの外周面と同一方向に傾斜する傾斜面として形成したので、円錐ころの小端面と軌道輪側フランジ部との間に滞留する潤滑油を、当該傾斜面に沿って軌道輪側ギャップから軸受外にスムーズに排出でき、円錐ころの潤滑油に対する撹拌抵抗ひいては軸受回転トルクの増加を効果的に抑制できる。また、円錐ころのポンプ作用により、傾斜した小鍔部の外周面に沿って潤滑油を円錐ころに向けスムーズに引き込むことができる。   In the tapered roller bearing of the present invention, an inner ring side extension part and an outer ring side extension part are provided on the first end side in the axial direction of the outer ring and the inner ring, and the outer ring side formed on the inner peripheral surface of the outer ring side extension part. A bearing ring side gap is formed between the inner peripheral surface of the flange portion and the outer peripheral surface of the inner ring side extending portion. The bearing ring side gap serves to adjust or regulate the amount of lubricating oil flowing from the first end side into the rolling element holding space. Since the outer peripheral surface of the small collar portion that restricts the axial position on the small end surface side of the tapered roller formed on the outer peripheral surface of the inner ring is formed as an inclined surface that is inclined in the same direction as the outer peripheral surface of the tapered roller. Lubricating oil staying between the small end face of the roller and the bearing ring side flange can be smoothly discharged from the bearing ring side gap along the inclined surface to the outside of the bearing. An increase in torque can be effectively suppressed. Further, the lubricating action of the tapered roller can be smoothly drawn toward the tapered roller along the outer peripheral surface of the inclined small flange portion.

転動体保持空間には、アキシャル方向の第一端側から第二端側に向けて拡径する円錐台状の殻体として構成された本体部を有し、該本体部の周方向に円錐ころをそれぞれ転動可能に収容保持する複数個のポケット部が形成された保持器を配置できる。この場合、該保持器は、本体部のアキシャル方向の第一端側をラジアル方向内向きに曲げ返して保持器側フランジ部を形成し、該保持器側フランジ部のラジアル方向内周面が小鍔部の傾斜面をなす外周面と対向させることにより保持器側ギャップを形成できる。軌道輪側ギャップと保持器側ギャップとを組み合わせることにより、転動体側への油流入量の調整をよりきめ細かく行なうことができる。例えば、軸受自体への潤滑油供給量が相当大きい場合にあっても、軌道輪側ギャップと保持器側ギャップとの併用により、転動体側への過度な油流入を抑制することができる。また、転動体と軌道輪側フランジ部との間に保持器側フランジ部が介在することで、保持器側フランジ部と転動体との間に形成される油溜まり空間が拡張され、転動体に供給される油流入量の変動をさらに小さくすることができる。   The rolling element holding space has a main body portion configured as a truncated cone-shaped shell body whose diameter increases from the first end side in the axial direction toward the second end side, and the tapered roller extends in the circumferential direction of the main body portion. A cage in which a plurality of pocket portions for accommodating and holding each of them is formed can be arranged. In this case, the retainer bends the first end side in the axial direction of the main body portion inward in the radial direction to form a retainer side flange portion, and the radially inner peripheral surface of the retainer side flange portion is small. The cage-side gap can be formed by facing the outer peripheral surface forming the inclined surface of the collar portion. By combining the bearing ring side gap and the cage side gap, the oil inflow amount to the rolling element side can be adjusted more finely. For example, even when the amount of lubricating oil supplied to the bearing itself is considerably large, excessive oil inflow to the rolling element side can be suppressed by the combined use of the bearing ring side gap and the cage side gap. In addition, the cage side flange portion is interposed between the rolling element and the bearing ring side flange portion, so that the oil sump space formed between the cage side flange portion and the rolling element is expanded, The fluctuation of the supplied oil inflow amount can be further reduced.

一方、上記の保持器は、中心軸線を含む断面において本体部のアキシャル方向の第一端側が小鍔部側に直線的に延出させ、小鍔部の傾斜面をなす外周面と対向させる構造、すなわち、保持器側フランジ部を廃止した構造とすることもできる。これにより、円錐ころの小端面と軌道輪側フランジ部との間に滞留する潤滑油の排出が保持器側フランジ部により妨げられなくなり、潤滑油を軸受外へ一層スムーズに排出できる。   On the other hand, the cage has a structure in which the first end side in the axial direction of the main body portion extends linearly toward the small collar portion in a cross section including the central axis, and is opposed to the outer peripheral surface forming the inclined surface of the small collar portion. That is, a structure in which the cage side flange portion is abolished can also be adopted. As a result, the discharge of the lubricating oil staying between the small end surface of the tapered roller and the bearing ring side flange portion is not hindered by the cage side flange portion, and the lubricating oil can be discharged more smoothly out of the bearing.

軸受の回転トルクの過度な上昇を回避しつつ、軸受外部からの異物等が転動体保持空間へ侵入するのを抑制するために、軌道輪側ギャップはラビリンスシールとして形成することが望ましい。ラビリンスシールをなす軌道輪側ギャップは、第一端側から転動体保持空間へ異物等の侵入を遮断しつつ、当該第一端側への潤滑油の供給量が過剰となった場合も、異物侵入遮断のためラビリンスシールをなす程度にギャップ間隔が狭小化していることで、潤滑油の流入量は比較的少量に規制される。しかし、その軌道輪側ギャップを通過してくる潤滑油は、アキシャル方向における該保持器の第一端側の側縁部と内輪側延出部の外周面とが、軌道輪側ギャップよりも大きなラジアル方向間隔をもって対向配置されているので、保持器と内輪側延出部との間を速やかに通過して保持器に供給される。つまり、軌道輪側ギャップを通過する潤滑油量が抑制されつつも、転動体自体への潤滑油供給量は必要十分な値に安定化し、大きな変動を生じることがない。その結果、潤滑油量が過剰側に振れて転動体の撹拌抵抗が増加する不具合を抑制でき、かつ、軸受内に流入する潤滑油量が不足側に振れて焼き付き等を起こす不具合も生じにくい。なお、保持器側ギャップを形成する場合は、軌道輪側ギャップよりもギャップ間隔を大きく設定することになる。   In order to prevent the foreign matter from the outside of the bearing from entering the rolling element holding space while avoiding an excessive increase in the rotational torque of the bearing, it is desirable to form the bearing ring side gap as a labyrinth seal. The gap on the race ring side that forms the labyrinth seal prevents foreign matter from entering the rolling element holding space from the first end side, and even if the amount of lubricating oil supplied to the first end side becomes excessive, The gap interval is narrowed to such an extent that a labyrinth seal is formed to prevent intrusion, so that the inflow amount of lubricating oil is restricted to a relatively small amount. However, the lubricating oil passing through the bearing ring side gap is larger in the axial direction in the side edge portion on the first end side of the cage and the outer peripheral surface of the inner ring side extension portion than the bearing ring side gap. Since they are opposed to each other with a radial interval, they pass quickly between the cage and the inner ring side extension and are supplied to the cage. That is, while the amount of lubricating oil passing through the raceway side gap is suppressed, the amount of lubricating oil supplied to the rolling elements themselves is stabilized to a necessary and sufficient value, and no significant fluctuation occurs. As a result, it is possible to suppress the problem that the amount of lubricating oil swings to the excessive side and increases the stirring resistance of the rolling elements, and the problem that the amount of lubricating oil flowing into the bearing swings to the insufficient side and causes seizure or the like is less likely to occur. When the cage side gap is formed, the gap interval is set larger than the bearing ring side gap.

アキシャル方向における保持器の第一端側の側縁部と内輪側延出部の外周面とは、ラビリンスシール非形成となるようにラジアル方向間隔を定めておくとよい。すなわち、軸受内への異物等の侵入はラビリンスシール化された軌道輪側ギャップ側で十分に図ることができるので、保持器と内輪側延出部との空間はラビリンスシール非形成となる程度に思い切って拡大することができる。これにより、軌道輪側ギャップを通過してくる潤滑油を転動体側に一層速やかに導くことができる。   The radial direction interval may be determined so that the labyrinth seal is not formed between the side edge portion on the first end side of the cage in the axial direction and the outer peripheral surface of the inner ring side extending portion. In other words, foreign matter or the like can enter the bearing sufficiently on the side of the gap on the race ring side where the labyrinth seal is formed, so that the space between the cage and the extension portion on the inner ring side does not form a labyrinth seal. You can zoom in and out. As a result, the lubricating oil passing through the bearing ring side gap can be more quickly guided to the rolling element side.

外輪側フランジ部の、アキシャル方向にて軸受内側に位置する側周面と、保持器の第一端側の側縁部とのアキシャル方向距離は、外輪側フランジ部の内周面のアキシャル方向幅よりも小さく設定することができる。外輪側フランジ部と保持器とのアキシャル方向距離を、ラビリンスシール部を形成する外輪側フランジ部の内周面のアキシャル方向幅よりも小さくなるように近づけることで、軌道輪側ギャップを通過してくる潤滑油を転動体側に速やかに導く効果をさらに高めることができる。   The axial direction distance between the side circumferential surface located inside the bearing in the axial direction of the outer ring side flange portion and the side edge portion on the first end side of the cage is the axial width of the inner circumferential surface of the outer ring side flange portion. Can be set smaller. By making the axial direction distance between the outer ring side flange part and the cage smaller than the axial direction width of the inner peripheral surface of the outer ring side flange part forming the labyrinth seal part, it passes through the bearing ring side gap. The effect of promptly guiding the coming lubricating oil to the rolling element side can be further enhanced.

外輪側フランジ部は、該外輪側延出部のアキシャル方向における第一端側端面から当該アキシャル方向にて一定深さオフセットした位置に設けることができる。本発明者が検討したところ、円錐ころ軸受に軌道輪側ギャップを形成する場合、軸受内部への流入油量は軌道輪側ギャップの間隔(ラジアル方向)の影響をより大きく受け、ギャップに保持される油の撹拌剪断抵抗はギャップ幅(アキシャル方向)の影響をより大きく受けることがわかった。そこで、外輪側フランジ部を第一端側端面からオフセットさせることで、軌道輪側ギャップのアキシャル方向幅を決める外輪側フランジ部の厚み(内周面幅)を縮小でき、軌道輪側ギャップに保持される油量ひいてはその撹拌剪断抵抗を縮小しつつ、軌道輪側ギャップ間隔の調整により軸受内部への油流入規制効果も問題なく達成できる。   The outer ring side flange portion can be provided at a position offset from the first end side end surface in the axial direction of the outer ring side extending portion by a certain depth in the axial direction. As a result of studies by the present inventor, when the bearing ring side gap is formed in the tapered roller bearing, the amount of oil flowing into the bearing is greatly affected by the gap (radial direction) of the bearing ring side gap and is held in the gap. It was found that the agitation shear resistance of the oil is more affected by the gap width (axial direction). Therefore, by offsetting the outer ring side flange part from the end face on the first end side, the thickness (inner peripheral surface width) of the outer ring side flange part that determines the axial width of the bearing ring side gap can be reduced and held in the bearing ring side gap. The effect of restricting the inflow of oil into the bearing can be achieved without any problem by adjusting the gap distance on the bearing ring side while reducing the amount of oil to be applied, and hence the stirring shear resistance.

内輪側延出部の外周面には、当該外周面のアキシャル方向における第一端側端部をなし外輪側フランジ部の内周面と対向して軌道輪側ギャップを形成する第一部分と、アキシャル方向軸受内部側において該第一部分に続く形で該第一部分よりも径大に形成された第二部分とを形成できる。そして、それら第一部分と第二部分とをラジアル方向にて階段状につなぐ段部面を、アキシャル方向にて外輪側フランジ部の軸受内側に位置する側周面先端部と対向させることにより補助ギャップを形成することができる。ラジアル方向の軌道輪側ギャップに続く形でアキシャル方向の補助ギャップを形成することで、油流入を規制するギャップが全体として階段状に形成されることになり、軸受外部からの異物等が転動体保持空間へ侵入する効果を高めることができる。   On the outer peripheral surface of the inner ring side extension portion, a first portion that forms an end ring side gap that forms a first end side end portion in the axial direction of the outer peripheral surface and faces the inner peripheral surface of the outer ring side flange portion, and an axial A second portion having a larger diameter than the first portion can be formed in the direction following the first portion on the inner side of the directional bearing. Then, the step gap surface connecting the first portion and the second portion in the radial direction is opposed to the front end portion of the side peripheral surface located inside the bearing of the outer ring side flange portion in the axial direction, thereby assisting the auxiliary gap. Can be formed. By forming an auxiliary gap in the axial direction following the radial ring-side gap in the radial direction, the gap that restricts the inflow of oil is formed in a staircase as a whole, and foreign matter from the outside of the bearing is caused by rolling elements. The effect of entering the holding space can be enhanced.

この場合、上記の補助ギャップは軌道輪側ギャップよりも小さく形成することが望ましい。軌道輪側ギャップは、前述のごとく外輪側フランジ部のオフセットによりアキシャル方向幅が縮小され、ギャップ内面での摩擦剪断抵抗ひいては軸受の回転トルクを低減できる一方、補助ギャップについては、軌道輪側ギャップよりも間隔を狭くすることで油流入規制効果を高めることができる。また、軌道輪側ギャップは対向方向がラジアル方向となるのに対し、補助ギャップは対向方向がアキシャル方向となるから、軌道輪側ギャップのアキシャル方向内側の延長上に形成する補助ギャップのギャップ間隔を縮小することで、補助ギャップに保持される油量を縮小でき、撹拌剪断抵抗ひいては軸受回転トルクの増加を小さく留めることができる。   In this case, it is desirable that the auxiliary gap is formed smaller than the bearing ring side gap. As described above, the bearing ring side gap is reduced in the axial width due to the offset of the outer ring side flange portion, and the friction shear resistance on the inner surface of the gap and thus the rotational torque of the bearing can be reduced. Also, the effect of restricting oil inflow can be enhanced by narrowing the interval. In addition, since the facing direction of the bearing ring side gap is the radial direction, the auxiliary gap is the axial direction of the auxiliary gap, so the gap interval of the auxiliary gap formed on the extension inside the axial direction of the bearing ring side gap is By reducing the size, the amount of oil retained in the auxiliary gap can be reduced, and the increase in the agitation shear resistance and hence the bearing rotational torque can be kept small.

次に、転動体保持空間には、転動体をそれぞれ転動可能に収容保持する複数個のポケット部が周方向に形成された保持器を配置することができる。アキシャル方向における該保持器の第一端側の側縁には内輪側延出部の外周面に向けてラジアル方向内向きに突出する保持器側フランジ部を形成でき、当該保持器側フランジ部の内周面と内輪側延出部の外周面との間に保持器側ギャップを形成することができる。軌道輪側ギャップと保持器側ギャップとを組み合わせることにより、転動体側への油流入量の調整をよりきめ細かく行なうことができる。例えば、軸受自体への潤滑油供給量が相当大きい場合にあっても、軌道輪側ギャップと保持器側ギャップとの併用により、転動体側への過度な油流入を抑制することができる。また、転動体と軌道輪側フランジ部との間に保持器側フランジ部が介在することで、保持器側フランジ部と転動体との間に形成される油溜まり空間が拡張され、転動体に供給される油流入量の変動をさらに小さくすることができる。   Next, in the rolling element holding space, a cage in which a plurality of pocket portions for accommodating and holding the rolling elements in a rollable manner is formed in the circumferential direction can be arranged. A cage side flange portion projecting radially inward toward the outer peripheral surface of the inner ring side extension portion can be formed on the side edge on the first end side of the cage in the axial direction. A cage side gap can be formed between the inner peripheral surface and the outer peripheral surface of the inner ring side extending portion. By combining the bearing ring side gap and the cage side gap, the oil inflow amount to the rolling element side can be adjusted more finely. For example, even when the amount of lubricating oil supplied to the bearing itself is considerably large, excessive oil inflow to the rolling element side can be suppressed by the combined use of the bearing ring side gap and the cage side gap. In addition, the cage side flange portion is interposed between the rolling element and the bearing ring side flange portion, so that the oil sump space formed between the cage side flange portion and the rolling element is expanded, The fluctuation of the supplied oil inflow amount can be further reduced.

この場合、軌道輪側フランジ部の内周面のアキシャル方向幅は、保持器側フランジ部の内周面のアキシャル方向幅よりも小さく設定することが望ましい。これにより、保持器側フランジ部は、油流入量の規制効果を補助的に高めつつも、そのアキシャル方向幅が軌道輪側フランジ部よりも縮小されることで、保持器側のギャップに保持される油量を削減でき、撹拌剪断抵抗ひいては軸受回転トルクの増加を抑制することができる。   In this case, it is desirable to set the axial direction width of the inner peripheral surface of the bearing ring side flange portion smaller than the axial direction width of the inner peripheral surface of the cage side flange portion. As a result, the cage flange portion is held in the cage gap by reducing the axial width of the cage side flange portion more than the bearing ring side flange portion while supplementarily enhancing the effect of regulating the oil inflow amount. The amount of oil to be reduced can be reduced, and the increase in the stirring shear resistance and hence the bearing rotational torque can be suppressed.

外輪側フランジ部の内周面は切削仕上げ面として形成できる。多数のポケットを有した薄肉の保持器は打抜き加工により製造されるので、特許文献1ないし2に開示された保持器によるギャップ形成方式では、保持器側のギャップ形成面も形成精度が粗い打抜面となり(具体的には面平滑性や円筒度の劣化、バリの残留など)、保持器と内輪との干渉防止の観点から、保持器と内輪との間に形成するギャップの間隔は必要以上に大きく設定せざるを得なかった。しかし、本発明においては、鍛造及び切削により外輪の一部として一体形成できる外輪側フランジ部を用いてギャップ形成するので、当該外輪側フランジ部の内周面を形成精度の良好な切削面とすることにより、外輪側フランジ部の間隔をより縮小でき、油流入規制効果が向上するとともに軸受個体間でのばらつきも縮小できる。   The inner peripheral surface of the outer ring side flange portion can be formed as a cut finish surface. Since the thin cage having a large number of pockets is manufactured by punching, the gap forming method using the cage disclosed in Patent Documents 1 and 2 is punched with a rough forming accuracy on the gap forming surface on the cage side. From the viewpoint of preventing interference between the cage and the inner ring, the gap formed between the cage and the inner ring is more than necessary. I had to set it large. However, in the present invention, since the gap is formed by using the outer ring side flange portion that can be integrally formed as a part of the outer ring by forging and cutting, the inner peripheral surface of the outer ring side flange portion is a cutting surface with good formation accuracy. By this, the space | interval of the outer ring | wheel side flange part can be shortened more, the oil inflow control effect improves, and the dispersion | variation between individual bearings can also be reduced.

外輪側フランジ部のアキシャル方向における第一端側の側周面と、該第一端側における外輪側延出部の内周面端部とにより、外輪の第一端側端面には周方向の座ぐり状の凹部を形成することができる。この凹部は、軌道輪側ギャップへの潤滑油滞留部として機能させることができるので、軸受第一端側への潤滑油供給量に仮に変動が生じても該凹部に潤滑油をプールすることで、軌道輪側ギャップへの潤滑油供給量を安定化できる。   Due to the side circumferential surface on the first end side in the axial direction of the outer ring side flange portion and the inner circumferential surface end portion of the outer ring side extending portion on the first end side, the end surface on the first end side of the outer ring has a circumferential direction. A spot-like recess can be formed. Since this concave portion can function as a lubricating oil retention portion in the raceway side gap, even if the amount of lubricating oil supplied to the bearing first end side fluctuates, the lubricating oil is pooled in the concave portion. The amount of lubricating oil supplied to the bearing ring side gap can be stabilized.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の適用対象の1つとなるディファレンシャルギア装置の内部構造を示すものである。該ディファレンシャルギア装置3はFR(前方エンジン後輪駆動)方式の自動車において、そのトランスミッションユニットの終減速装置部分に適用されるもので、前後に長いプロペラシャフト1を介して車両前方(図1では右側)に搭載されるエンジン(図示せず)からの動力が、該ディファレンシャルギア装置3を経てドライブシャフト2へ伝えられ、左右の後輪(駆動輪;図示せず)を回転させるようになっている。プロペラシャフト1の回転はコンパニオンフランジ38を介してピニオン軸31(後述の液体潤滑機構30に含まれる部材である)に伝達される。該ピニオン軸31は、ケース34内にて一対の円錐ころ軸受10,20により支持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the internal structure of a differential gear device that is one of the objects to which the present invention is applied. The differential gear device 3 is applied to the final reduction gear portion of the transmission unit in an FR (front engine rear wheel drive) type automobile, and is forward of the vehicle via a long propeller shaft 1 at the front and rear (right side in FIG. 1). Power from an engine (not shown) mounted on the drive shaft 2 is transmitted to the drive shaft 2 via the differential gear device 3 to rotate left and right rear wheels (drive wheels; not shown). . The rotation of the propeller shaft 1 is transmitted to the pinion shaft 31 (a member included in the liquid lubrication mechanism 30 described later) through the companion flange 38. The pinion shaft 31 is supported in a case 34 by a pair of tapered roller bearings 10 and 20.

これら円錐ころ軸受10,20は、第一端側(軌道面の小径側)がアキシャル方向に対向する形で、該ピニオン軸31に外嵌される円筒状のスペーサ39を介し一定の対向距離をもってピニオン軸31上に取り付けられている。内輪11,21はピニオン軸31と一体回転する一方、外輪12,22はケース34内の軸受ハウジング部35に非回転に固定される。   These tapered roller bearings 10 and 20 have a constant facing distance through a cylindrical spacer 39 fitted on the pinion shaft 31 such that the first end side (the smaller diameter side of the raceway surface) faces in the axial direction. Mounted on the pinion shaft 31. The inner rings 11, 21 rotate integrally with the pinion shaft 31, while the outer rings 12, 22 are fixed to the bearing housing portion 35 in the case 34 so as not to rotate.

円錐ころ軸受10,20は、いずれも本発明の円錐ころ軸受として構成され、軸受寸法が相違する点を除き同一の構成を有するものである。図2に示すように、いずれも、ラジアル方向に対向配置された外輪12,22及び内輪11,21と、それら外輪12,22と内輪11,21との間の環状の転動体保持空間にて回転周方向に複数配置された転動体としての円錐ころ13,23とを備える。外輪12,22の内周面及び内輪11,21の外周面には、それぞれアキシャル方向の第一端側から第二端側に向けて拡径する円錐軌道面が形成され、それら円錐軌道面の間に円錐ころ13,23が配置される。   The tapered roller bearings 10 and 20 are both configured as the tapered roller bearing of the present invention, and have the same configuration except that the bearing dimensions are different. As shown in FIG. 2, the outer rings 12 and 22 and the inner rings 11 and 21 are opposed to each other in the radial direction, and the annular rolling element holding space between the outer rings 12 and 22 and the inner rings 11 and 21 is used. A plurality of tapered rollers 13 and 23 as rolling elements arranged in the circumferential direction of rotation are provided. Conical raceway surfaces that increase in diameter from the first end side in the axial direction toward the second end side are formed on the inner peripheral surfaces of the outer rings 12 and 22 and the outer peripheral surfaces of the inner rings 11 and 21, respectively. The tapered rollers 13 and 23 are disposed between them.

内輪11,21の内周面には、円錐軌道面のアキシャル方向における第二端側に隣接する形で、円錐ころ13,23のアキシャル方向における当該第二端側の位置を規制する周方向の大鍔部11b,21bが突出形成されている。また、円錐軌道面のアキシャル方向における第一端側に隣接する形で、円錐ころ13,23のアキシャル方向における当該第一端側の位置を規制する周方向の小鍔部11s,21sが突出形成されている。内輪11,21及び外輪12,22は鋼材の鍛造及び切削加工により成型される。   In the inner peripheral surfaces of the inner rings 11 and 21, adjacent to the second end side in the axial direction of the conical raceway surface, a circumferential direction that regulates the position of the second end side in the axial direction of the tapered rollers 13 and 23. The large collar portions 11b and 21b are formed to protrude. In addition, circumferential small ribs 11s and 21s that project the conical roller surface adjacent to the first end in the axial direction and restrict the position of the tapered rollers 13 and 23 in the axial direction are formed to protrude. Has been. The inner rings 11 and 21 and the outer rings 12 and 22 are formed by forging and cutting of a steel material.

他方、各転動体保持空間には、円錐ころ13,23をそれぞれ転動可能に収容保持する複数個のポケット部24pが周方向に形成された保持器14,24が配置されている。保持器14,24は、鋼板を素材として外形及びポケット部24pを打抜形成し、さらに、後述の保持器側フランジ部14a,24aの曲げ返しを含めて、アキシャル方向への絞り形態のプレス加工を施すことにより成型され、外面切削はなされない。   On the other hand, in each rolling element holding space, cages 14 and 24 are arranged in which a plurality of pocket portions 24p for accommodating and holding the tapered rollers 13 and 23 so as to roll are formed in the circumferential direction. The cages 14 and 24 are formed by punching the outer shape and the pocket portion 24p using a steel plate as a raw material, and further, press working in a drawing form in the axial direction including bending back of the cage-side flange portions 14a and 24a described later. The outer surface is not cut.

円錐ころ軸受10,20の外輪12,22及び内輪11,21には、アキシャル方向にて各々円錐ころ13,23の軌道面よりも第一端側に延出する外輪側延出部12e,22e及び内輪側延出部11e,21eがそれぞれ形成されている。また、外輪側延出部12e,22eの内周面には、ラジアル方向内向きに突出する周方向の外輪側フランジ部12a,22aが設けられ、該外輪側フランジ部12a,22aの内周面と内輪側延出部11e,21eの外周面との間に軌道輪側ギャップA,Cが形成されている。また、保持器24の第一端側の側縁には内輪側延出部11e,21eの外周面に向けてラジアル方向内向きに突出する保持器側フランジ部14a,24aが形成され、当該保持器側フランジ部14a,24aの内周面と内輪小鍔部11s,21sの外周面との間に保持器側ギャップB,Dが形成されている。   The outer rings 12 and 22 and the inner rings 11 and 21 of the tapered roller bearings 10 and 20 have outer ring side extending portions 12e and 22e extending in the axial direction to the first end side from the raceway surfaces of the tapered rollers 13 and 23, respectively. And inner ring side extension parts 11e and 21e are formed, respectively. In addition, outer circumferential side outer ring side flange portions 12a and 22a projecting radially inward are provided on the inner circumferential surfaces of the outer ring side extending portions 12e and 22e, and the inner circumferential surfaces of the outer ring side flange portions 12a and 22a. And raceway side gaps A and C are formed between the outer peripheral surfaces of the inner ring side extending portions 11e and 21e. Also, cage side flange portions 14a and 24a projecting radially inward toward the outer peripheral surface of the inner ring side extending portions 11e and 21e are formed on the side edge on the first end side of the cage 24, and the cage Cage-side gaps B and D are formed between the inner peripheral surface of the container-side flange portions 14a and 24a and the outer peripheral surface of the inner ring gavel portions 11s and 21s.

図1に戻り、ピニオン軸31上の円錐ころ軸受10,20には、液体潤滑機構30により、各々上記第一端側から各転動体保持空間に潤滑油Lが供給される。液体潤滑機構30は、上記ピニオン軸31と、その一端に一体回転可能に取り付けられたピニオンギア32と、下縁部がディファレンシャルケース34内の潤滑油L中に浸漬されるとともに上記ピニオンギア32と噛合して回転駆動され、潤滑油Lを跳ね上げるリングギア33とを備える。   Returning to FIG. 1, the lubricating oil L is supplied from the first end side to the rolling element holding spaces by the liquid lubrication mechanism 30 to the tapered roller bearings 10 and 20 on the pinion shaft 31. The liquid lubrication mechanism 30 includes the pinion shaft 31, a pinion gear 32 attached to one end of the pinion shaft 31, and a lower edge portion immersed in the lubricating oil L in the differential case 34 and the pinion gear 32. And a ring gear 33 that meshes and is rotationally driven to lift up the lubricating oil L.

また、ピニオン軸31の他端には、プロペラシャフト1とピニオン軸31とを連結するコンパニオンフランジ38(連結継手)が、ピニオン軸31に対し対応する端面から軸線方向にねじ込まれるナット38aにより締結結合されている。また、軸受ハウジング部35の内周面とコンパニオンフランジ38との間には摺動型のオイルシール36が介挿されている。さらに、コンパニオンフランジ38には該オイルシール36を覆う環状のデフレクタ37(保護部材)が一体回転可能に固定されている。   Further, a companion flange 38 (connection joint) for connecting the propeller shaft 1 and the pinion shaft 31 is fastened to the other end of the pinion shaft 31 by a nut 38a screwed in the axial direction from the corresponding end face to the pinion shaft 31. Has been. A sliding oil seal 36 is inserted between the inner peripheral surface of the bearing housing portion 35 and the companion flange 38. Further, an annular deflector 37 (protective member) covering the oil seal 36 is fixed to the companion flange 38 so as to be integrally rotatable.

リングギア33で跳ね上げられた潤滑油Lは、軸受ハウジング部35の内壁面に沿う給油路35aを通り、一対の円錐ころ軸受10,20に対して内輪11,21のアキシャル方向における第一端側から供給される。各円錐ころ軸受10,20において第一端側から供給された潤滑油Lは、円錐ころ13,23の回転に伴い発生するポンプ作用により転動面に沿って軸受内にらせん状に引き込まれ、各々第二端側から排出される。   The lubricating oil L bounced up by the ring gear 33 passes through an oil supply passage 35 a along the inner wall surface of the bearing housing portion 35, and the first end in the axial direction of the inner rings 11, 21 with respect to the pair of tapered roller bearings 10, 20. Supplied from the side. The lubricating oil L supplied from the first end side in each of the tapered roller bearings 10 and 20 is drawn into the bearing spirally along the rolling surface by a pump action generated as the tapered rollers 13 and 23 rotate. Each is discharged from the second end side.

このときの、軌道輪側ギャップA,C及び保持器側ギャップB,Dの作用・効果については、円錐ころ軸受10,20について全く同じであるので、以下、リングギア33に近い側の円錐ころ軸受20で代表させて説明する。図3は、その拡大図である。外輪側フランジ部22aの内周面と、内輪側延出部21eの外周面との間に形成された軌道輪側ギャップCは、第一端側から転動体保持空間への潤滑油Lの流入量を規制する役割を果たす。外輪側フランジ部22aは、鍛造及び切削により外輪22の一部として、外輪周方向に沿って連続環状に一体形成されている。当該フランジ部22eの内周面は、内輪側延出部21eの外周面とともに、形成精度が良好な切削面とされている。また、軸受の回転トルクの過度な上昇を回避しつつ、軸受外部からの異物等が転動体保持空間へ侵入するのを抑制するために、軌道輪側ギャップCはラビリンスシールを形成している。   At this time, the operations and effects of the raceway side gaps A and C and the cage side gaps B and D are exactly the same for the tapered roller bearings 10 and 20, and hence the tapered rollers on the side closer to the ring gear 33 will be described below. The bearing 20 will be described as a representative. FIG. 3 is an enlarged view thereof. The bearing ring side gap C formed between the inner peripheral surface of the outer ring side flange portion 22a and the outer peripheral surface of the inner ring side extending portion 21e is an inflow of the lubricating oil L from the first end side to the rolling element holding space. It plays a role in regulating the quantity. The outer ring side flange portion 22a is integrally formed in a continuous annular shape along the circumferential direction of the outer ring as a part of the outer ring 22 by forging and cutting. The inner peripheral surface of the flange portion 22e is a cutting surface with good formation accuracy together with the outer peripheral surface of the inner ring side extending portion 21e. In addition, the raceway side gap C forms a labyrinth seal in order to prevent foreign matters from the outside of the bearing from entering the rolling element holding space while avoiding an excessive increase in the rotational torque of the bearing.

内輪側延出部21eの外周面は、当該外周面のアキシャル方向における第一端側端部を形成するとともに、外輪側フランジ部22aの内周面と対向して軌道輪側ギャップCを形成する第一部分と、アキシャル方向軸受内部側において該第一部分に続く形で該第一部分よりも径大に形成された第二部分とからなる。具体的には、小鍔部21sの外周面が第二部分とされ、内輪側延出部21eの、アキシャル方向にて小鍔部21sよりも第一端に近い側(軸受外側)に位置する部分の外周面が第一部分をなす。該小鍔部21sの外周面は、円錐ころ23の外周面と同一方向に傾斜する傾斜面21fとされている。   The outer peripheral surface of the inner ring side extending portion 21e forms a first end side end portion in the axial direction of the outer peripheral surface, and forms a raceway ring side gap C facing the inner peripheral surface of the outer ring side flange portion 22a. A first portion and a second portion formed on the inner side of the axial direction bearing and having a diameter larger than the first portion in a form following the first portion. Specifically, the outer peripheral surface of the small flange portion 21s is the second portion, and is located on the side closer to the first end (outside of the bearing) than the small flange portion 21s in the axial direction of the inner ring side extending portion 21e. The outer peripheral surface of the part forms the first part. The outer peripheral surface of the small flange portion 21 s is an inclined surface 21 f that is inclined in the same direction as the outer peripheral surface of the tapered roller 23.

そして、上記第一部分と第二部分とは段部面によりラジアル方向にて階段状に接続され、外輪側フランジ部22aの軸受内側に位置する側周面先端部がアキシャル方向にて該段部面と対向することにより、補助ギャップFが形成されている。補助ギャップFの間隔(アキシャル方向)λは、軌道輪側ギャップCの間隔(ラジアル方向)g1よりも小さく設定されている。また、保持器側フランジ部24aの内周面は、小鍔部21sの外周面(第二部分)と対向することで保持器側ギャップDを形成している。保持器24は、そのアキシャル方向の第一端側の側縁部、すなわち保持器側フランジ部24aを除いた本体部24mが、アキシャル方向の第一端側から第二端側に向けて拡径する円錐台状の殻体として構成されている。   The first portion and the second portion are connected stepwise in the radial direction by the stepped surface, and the tip of the side peripheral surface located inside the bearing of the outer ring side flange portion 22a is the stepped surface in the axial direction. Auxiliary gap F is formed by facing. The interval (axial direction) λ of the auxiliary gap F is set to be smaller than the interval (radial direction) g1 of the bearing ring side gap C. Further, the inner peripheral surface of the cage side flange portion 24a is opposed to the outer peripheral surface (second portion) of the small collar portion 21s to form a cage side gap D. The cage 24 has a side edge portion on the first end side in the axial direction, that is, the main body portion 24m excluding the cage-side flange portion 24a has a diameter increased from the first end side in the axial direction toward the second end side. It is configured as a frustoconical shell.

軌道輪側フランジ部22aの内周面のアキシャル方向幅t1は、保持器側フランジ部24aの内周面のアキシャル方向幅t2よりも小さく設定されている。さらに、外輪側フランジ部22aの、アキシャル方向にて軸受外側に位置する側周面と上記段部面とのアキシャル方向距離μは、外輪側フランジ部22aの内周面及び保持器側フランジ部24aの内周面の各アキシャル方向幅t1,t2のいずれよりも小さく設定されている。   The axial width t1 of the inner peripheral surface of the bearing ring side flange portion 22a is set smaller than the axial width t2 of the inner peripheral surface of the cage side flange portion 24a. Further, the axial direction distance μ between the side peripheral surface of the outer ring side flange portion 22a located outside the bearing in the axial direction and the stepped surface is determined by the inner peripheral surface of the outer ring side flange portion 22a and the cage side flange portion 24a. Is set smaller than either of the axial widths t1 and t2.

軌道輪側ギャップCの間隔(ラジアル方向)g1は、例えば0.5mm以上0.7mm(例えば、0.63mm)以下である。また、補助ギャップFの間隔(アキシャル方向)λは、例えば0.2mm以上0.6mm以下(例えば、0.4mm)である。それぞれλ<g1となるように上記数値範囲内で適宜設定される。また、保持器側フランジ部22aの先端部と、小鍔部21sとのラジアル方向のオーバーラップ量εは0.6mm以上1.0mm以下である。   An interval (radial direction) g1 of the bearing ring side gap C is, for example, not less than 0.5 mm and not more than 0.7 mm (for example, 0.63 mm). Further, the interval (axial direction) λ of the auxiliary gap F is, for example, not less than 0.2 mm and not more than 0.6 mm (for example, 0.4 mm). Each is appropriately set within the above numerical range so that λ <g1. Moreover, the overlap amount ε in the radial direction between the distal end portion of the cage side flange portion 22a and the small flange portion 21s is 0.6 mm or greater and 1.0 mm or less.

一方、保持器側ギャップDの間隔、すなわち、アキシャル方向における該保持器24の第一端側の側縁部と内輪側延出部21eの外周面とのラジアル方向対向間隔g2(小鍔部21sの内周面が傾斜しているので間隔が最も小さくなる位置での値として定義する)は、軌道輪側ギャップCの間隔よりも大きく設定されている。   On the other hand, the distance between the cage side gaps D, that is, the radial facing distance g2 between the side edge portion on the first end side of the cage 24 and the outer peripheral surface of the inner ring side extending portion 21e in the axial direction (the small flange portion 21s). Is defined as a value at a position where the interval is the smallest since the inner peripheral surface of the inner surface is inclined) is set to be larger than the interval of the bearing ring side gap C.

円錐ころ23の小端面側のアキシャル方向位置を規制する小鍔部21sの外周面を、円錐ころの外周面と同一方向に傾斜する傾斜面21fとして形成したので、円錐ころ23の小端面と軌道輪側フランジ部22aとの間に滞留する潤滑油Lを、当該傾斜面21fに沿って軌道輪側ギャップCから軸受外にスムーズに排出でき、円錐ころ23の潤滑油Lに対する撹拌抵抗ひいては軸受回転トルクの増加を効果的に抑制できる。また、円錐ころ23のポンプ作用により、傾斜した小鍔部21sの外周面に沿って潤滑油Lを円錐ころ23に向けスムーズに引き込むことができる。   Since the outer peripheral surface of the small flange portion 21s that regulates the axial position on the small end surface side of the tapered roller 23 is formed as an inclined surface 21f that is inclined in the same direction as the outer peripheral surface of the tapered roller, the small end surface of the tapered roller 23 and the track Lubricating oil L staying in contact with the wheel-side flange portion 22a can be smoothly discharged from the bearing ring-side gap C along the inclined surface 21f to the outside of the bearing, and the stirring resistance of the tapered roller 23 against the lubricating oil L and the bearing rotation An increase in torque can be effectively suppressed. Further, the pumping action of the tapered roller 23 allows the lubricating oil L to be smoothly drawn toward the tapered roller 23 along the outer peripheral surface of the inclined small flange portion 21s.

また、軌道輪側ギャップCに補助ギャップFを組み合わせ、ギャップ全体を階段状に形成することで、内外輪22,23間のシール性(特に、異物等の侵入遮断性)が向上する。さらに、軌道輪側ギャップCのアキシャル方向内側の延長上に形成する補助ギャップFの間隔λを、軌道輪側ギャップCの間隔g1よりも小さくなるように縮小することで、補助ギャップFに保持される油量を縮小でき、撹拌剪断抵抗ひいては軸受回転トルクの増加が抑制されている。   In addition, by combining the auxiliary gap F with the raceway side gap C and forming the entire gap in a step shape, the sealing performance between the inner and outer rings 22 and 23 (particularly, the entry and blocking performance of foreign matter or the like) is improved. Further, by reducing the interval λ of the auxiliary gap F formed on the inner extension in the axial direction of the bearing ring side gap C to be smaller than the interval g1 of the bearing ring side gap C, the auxiliary gap F is held. The amount of oil to be reduced can be reduced, and the increase in the stirring shear resistance and thus the bearing rotational torque is suppressed.

さらに、軌道輪側ギャップCと保持器側ギャップDとを組み合わせることにより、転動体23側への油流入量の調整をよりきめ細かく行なうことができる。例えば、軸受自体への潤滑油供給量が相当大きい場合にあっても、軌道輪側ギャップCと保持器側ギャップDとの併用により、転動体23側への過度な油流入を抑制することができる。そして、本実施形態では、保持器側フランジ部24aは、内周面のアキシャル方向幅t2が軌道輪側フランジ部22aの内周面のアキシャル方向幅t1よりも大きく設定されているので、軌道輪側ギャップCと協働して油流入量の規制効果を補助的に高めつつも、油流入口側の保持器側ギャップDに保持される油量は縮小され、撹拌剪断抵抗ひいては軸受回転トルクの増加抑制に寄与している。例えば、保持器フランジ部24aのアキシャル方向幅t2は1.5〜2.0mmに、軌道輪側フランジ22aのアキシャル方向幅t1は0.8〜1.4mmに設定される。   Furthermore, by combining the bearing ring side gap C and the cage side gap D, the oil inflow amount to the rolling element 23 side can be adjusted more finely. For example, even when the amount of lubricating oil supplied to the bearing itself is considerably large, the combined use of the bearing ring side gap C and the cage side gap D can suppress excessive oil inflow to the rolling element 23 side. it can. In the present embodiment, the cage-side flange portion 24a is set such that the axial direction width t2 of the inner peripheral surface is larger than the axial direction width t1 of the inner peripheral surface of the race ring-side flange portion 22a. While assisting the restriction of the oil inflow amount in cooperation with the side gap C, the amount of oil retained in the cage side gap D on the oil inlet side is reduced, and the stirring shear resistance and thus the bearing rotational torque are reduced. Contributes to increase control. For example, the axial width t2 of the cage flange portion 24a is set to 1.5 to 2.0 mm, and the axial width t1 of the bearing ring side flange 22a is set to 0.8 to 1.4 mm.

外輪側フランジ部22aの内周面は、内輪側延出部21eの外周面とともに、形成精度が良好な切削面とされているので、軌道輪ギャップCの間隔g1をより縮小でき、油流入規制効果が向上する。また、間隔g1の軸受個体間でのばらつきも抑制される。さらに、保持器側ギャップDは、転動体保持空間内での保持器24のラジアル方向への遊びにより間隔g2が変動しやすいのに対し、軌道輪側ギャップCを形成する内輪側延出部21eの外周面は、内輪22と外輪21とが転動体23を介してアキシャル方向に予圧付与した形で組みつけられていることとも相俟って、ラジアル方向における位置が一定である。その結果、軌道輪側ギャップCの間隔g1は軸受回転中もほとんど変動せず、潤滑油Lの供給量を安定に保つことができる。   Since the inner peripheral surface of the outer ring side flange portion 22a is a cutting surface with good forming accuracy together with the outer peripheral surface of the inner ring side extending portion 21e, the gap g1 of the race ring gap C can be further reduced, and the oil inflow restriction is achieved. The effect is improved. Moreover, the variation between the individual bearings of the gap g1 is also suppressed. Furthermore, the gap g2 of the cage-side gap D tends to fluctuate due to the play in the radial direction of the cage 24 in the rolling element holding space, whereas the inner ring-side extending portion 21e that forms the bearing ring-side gap C. The outer peripheral surface of the inner ring 22 has a constant position in the radial direction, coupled with the inner ring 22 and the outer ring 21 being assembled in a form in which a preload is applied in the axial direction via the rolling elements 23. As a result, the gap g1 of the bearing ring side gap C hardly changes during rotation of the bearing, and the supply amount of the lubricating oil L can be kept stable.

以下、本発明の一実施形態にかかる円錐ころ軸受20の、種々の変形態様について説明する。図3では、外輪側フランジ部22aの内周面のアキシャル方向幅t1が、保持器側フランジ部24aの内周面のアキシャル方向幅t2よりも大きく設定されていたが、図4では、上記t1がt2とほぼ同等か、あるいはt2よりも小さくように保持器側フランジ部24aの厚みを減じてある。これにより、軌道輪側ギャップCのアキシャル方向幅t1が縮小され、軌道輪側ギャップCにおける潤滑油の撹拌剪断抵抗はより小さくなる。その結果、軸受の回転トルクの更なる低減を図ることができる。   Hereinafter, various deformation | transformation aspects of the tapered roller bearing 20 concerning one Embodiment of this invention are demonstrated. In FIG. 3, the axial direction width t1 of the inner peripheral surface of the outer ring side flange portion 22a is set larger than the axial direction width t2 of the inner peripheral surface of the cage side flange portion 24a, but in FIG. The thickness of the cage flange portion 24a is reduced so that is substantially equal to t2 or smaller than t2. Thereby, the axial direction width t1 of the bearing ring side gap C is reduced, and the stirring shear resistance of the lubricating oil in the bearing ring side gap C becomes smaller. As a result, it is possible to further reduce the rotational torque of the bearing.

図5の構成では、内輪側延出部21eの外周面が、軌道輪側ギャップCを形成する部分と保持器側ギャップDを形成する部分とが同一外径となる連続円筒面として形成されている。従って、図3において形成されていた補助ギャップFは省略された形となっている。内輪側軌道面の第一端側縁は該連続円筒面よりも小径となることでラジアル方向に凹状に没し、小鍔部21sが形成されている。軌道輪側ギャップCを通過した潤滑油は、アキシャル方向に直進させる形で、間隔の大きい保持器側ギャップDに速やかに導かれるので、外輪側フランジ部22aと保持器24との間の空間(油溜まり空間)28に余分な潤滑油が滞留しにくくなり、円錐ころ23による潤滑油の撹拌抵抗を低減する効果が高められている。図5においては、軌道輪側ギャップCの出口を保持器側ギャップDの入口に接近させて上記効果をさらに高めるため、外輪側フランジ部22aの、アキシャル方向にて軸受内側に位置する側周面と、これと対向する保持器側フランジ部24aの側周面とのアキシャル方向距離νを、外輪側フランジ部22aの内周面(軌道輪側ギャップC)及び保持器側フランジ部24aの内周面(保持器側ギャップD)の各アキシャル方向幅t1,t2のいずれよりも小さく設定している。   In the configuration of FIG. 5, the outer peripheral surface of the inner ring side extending portion 21 e is formed as a continuous cylindrical surface in which the portion that forms the bearing ring side gap C and the portion that forms the cage side gap D have the same outer diameter. Yes. Therefore, the auxiliary gap F formed in FIG. 3 is omitted. The first end side edge of the inner ring side raceway surface has a smaller diameter than the continuous cylindrical surface, so that it is recessed in the radial direction to form a small flange portion 21s. Lubricating oil that has passed through the bearing ring side gap C is quickly guided to the cage-side gap D having a large interval in a form that advances straight in the axial direction, so that the space between the outer ring-side flange portion 22a and the cage 24 ( It is difficult for excess lubricating oil to stay in the (oil sump space) 28, and the effect of reducing the stirring resistance of the lubricating oil by the tapered rollers 23 is enhanced. In FIG. 5, in order to make the outlet of the bearing ring side gap C approach the inlet of the cage side gap D and further enhance the above effect, the side peripheral surface of the outer ring side flange portion 22a located inside the bearing in the axial direction. And the axial direction distance ν between the outer peripheral side flange portion 24a and the inner peripheral surface of the outer ring side flange portion 22a and the inner periphery of the retainer side flange portion 24a. The surface (the cage side gap D) is set to be smaller than each of the axial widths t1 and t2.

図6は、図3の構成において、軌道輪側ギャップCを形成する外輪側フランジ部22aが、外輪側延出部22eのアキシャル方向における第一端側端面から一定深さdだけオフセットした位置に設けられる態様を示す。外輪側フランジ部22aのアキシャル方向における第一端側の側周面と、該第一端側における外輪側延出部22eの内周面端部とにより、外輪22の第一端側端面には周方向の座ぐり状の凹部25が形成されている。   FIG. 6 shows a configuration in which the outer ring side flange portion 22a forming the bearing ring side gap C is offset by a certain depth d from the first end side end surface in the axial direction of the outer ring side extending portion 22e in the configuration of FIG. The aspect provided is shown. An outer ring side flange portion 22a has a side circumferential surface on the first end side in the axial direction and an inner circumferential surface end portion of the outer ring side extending portion 22e on the first end side. A counterbore 25 in the circumferential direction is formed.

軌道輪側ギャップCは、そのアキシャル方向間隔g1が小さいほど潤滑油Lの通過断面積が縮小する。従って、アキシャル方向間隔g1を適度に小さく設定することで、軌道輪側ギャップCにおける潤滑油Lの流入規制効果を高めることができる。一方、外輪側フランジ部22aの内周面(つまり、軌道輪側ギャップCのアキシャル方向幅)のアキシャル方向幅t1は、極度に大きくなると軌道輪側ギャップCに保持される潤滑油Lの量が大きくなり、潤滑油Lの撹拌剪断抵抗が増加して軸受の回転トルクが大きくなることにつながる。   In the bearing ring side gap C, the cross-sectional area of the lubricating oil L decreases as the axial distance g1 decreases. Therefore, the inflow restriction effect of the lubricating oil L in the raceway side gap C can be enhanced by setting the axial direction gap g1 to be appropriately small. On the other hand, when the axial direction width t1 of the inner peripheral surface of the outer ring side flange portion 22a (that is, the axial direction width of the bearing ring side gap C) becomes extremely large, the amount of the lubricating oil L held in the bearing ring side gap C is reduced. This increases the stirring shear resistance of the lubricating oil L, leading to an increase in the rotational torque of the bearing.

しかし、図6の態様では、軌道輪側ギャップCを形成する外輪側フランジ部22aの厚み(図3では外輪側フランジ部22aの厚みはラジアル方向にほぼ一定とされており、内周面幅t1と一致する)が、第一端側端面からの外輪側フランジ部22aのオフセット深さdにより縮小方向に調整されている。すなわち、軌道輪側ギャップCのアキシャル方向幅t1が削減され、軌道輪側ギャップCでの潤滑油Lの撹拌剪断抵抗ひいては軸受回転トルクが縮小するとともに、軌道輪側ギャップCの間隔g1の調整により軸受内部への潤滑油Lの流入規制効果も問題なく達成されている。   However, in the embodiment of FIG. 6, the thickness of the outer ring side flange portion 22a that forms the bearing ring side gap C (in FIG. 3, the thickness of the outer ring side flange portion 22a is substantially constant in the radial direction, and the inner circumferential surface width t1. Is adjusted in the reduction direction by the offset depth d of the outer ring side flange portion 22a from the end surface on the first end side. That is, the axial width t1 of the bearing ring side gap C is reduced, the agitating shear resistance of the lubricating oil L in the bearing ring side gap C and the bearing rotational torque are reduced, and the adjustment of the interval g1 of the bearing ring side gap C is performed. The effect of regulating the inflow of the lubricating oil L into the bearing is also achieved without problems.

また、外輪側フランジ部22aに凹部25が形成されているので、軌道輪側ギャップCへの潤滑油滞留部として機能し、液体潤滑機構30(図1)による軸受第一端側への潤滑油Lの供給量に変動が生じても、該凹部25に一定量の潤滑油Lが保持され、軌道輪側ギャップCを通過する潤滑油量の変動抑制に寄与する。なお、図6においても、補助ギャップFの間隔λが軌道輪側ギャップCの間隔g1よりも小さく設定されている。   Moreover, since the recessed part 25 is formed in the outer ring side flange part 22a, it functions as a lubricating oil retention part in the bearing ring side gap C, and the lubricating oil to the bearing first end side by the liquid lubricating mechanism 30 (FIG. 1). Even if the supply amount of L fluctuates, a certain amount of the lubricating oil L is retained in the recess 25, which contributes to the suppression of fluctuations in the amount of lubricating oil passing through the bearing ring side gap C. Also in FIG. 6, the interval λ of the auxiliary gap F is set to be smaller than the interval g1 of the bearing ring side gap C.

図7は、図3の構成において、中心軸線を含む断面において保持器24の本体部の、アキシャル方向の第一端側部分24eを小鍔部21s側に直線的に延出させ、小鍔部21sの傾斜面をなす外周面21fと対向させる構造、すなわち、保持器側フランジ部を廃止した構造を示すものである。保持器側フランジ部24aの省略により、円錐ころ23の小端面と軌道輪側フランジ部22aとの間に滞留する潤滑油Lの排出が保持器側フランジ部により妨げられなくなり、また、保持器24の第一端側部分24eとの小鍔部21sとの対向間隔g2が拡大するので、潤滑油Lを軸受外へ一層スムーズに排出できる。また、円錐ころ23に向けた潤滑油Lの引き込みLも一層スムーズに行なうことができる。   FIG. 7 is a cross-sectional view including the central axis in the configuration of FIG. 3 in which the first end portion 24e in the axial direction of the main body portion of the retainer 24 is linearly extended toward the small flange portion 21s. This shows a structure that faces the outer peripheral surface 21f forming an inclined surface of 21s, that is, a structure in which the cage side flange portion is abolished. By omitting the cage side flange portion 24a, the drainage of the lubricating oil L staying between the small end surface of the tapered roller 23 and the race ring side flange portion 22a is not hindered by the cage side flange portion, and the cage 24 Since the gap g2 between the first end side portion 24e and the small flange portion 21s increases, the lubricating oil L can be discharged more smoothly to the outside of the bearing. Further, the pulling-in L of the lubricating oil L toward the tapered roller 23 can be performed more smoothly.

本発明の適用対象となるディファレンシャルギア装置の一例を示す要部断面図。The principal part sectional drawing which shows an example of the differential gear apparatus used as the application object of this invention. 図1の軸受部分を拡大して示す半断面図。The half sectional view which expands and shows the bearing part of FIG. 本発明の円錐ころ軸受の一実施例をなす、図2の一方の円錐ころ軸受を拡大して示す半断面図。The half sectional view which expands and shows one tapered roller bearing of FIG. 2 which makes one Example of the tapered roller bearing of this invention. 図3の円錐ころ軸受の第一変形例を示す半断面図。FIG. 4 is a half sectional view showing a first modification of the tapered roller bearing of FIG. 3. 同じく第二変形例を示す半断面図。The half sectional view showing the second modification similarly. 同じく第三変形例を示す半断面図。The half sectional view showing the third modification similarly. 同じく第四変形例を示す半断面図。The half sectional view showing the 4th modification similarly.

符号の説明Explanation of symbols

10,20 円錐ころ軸受
11,21 内輪
11e,21e 内輪側延出部
12,22 外輪
12e,22e 外輪側延出部
12a,22a 外輪側フランジ部
13,23 円錐ころ
A,C 軌道輪側ギャップ
14,24 保持器
14a,24a 保持器側フランジ部
D 保持器側ギャップ
F 補助ギャップ
DESCRIPTION OF SYMBOLS 10,20 Tapered roller bearing 11,21 Inner ring 11e, 21e Inner ring side extension part 12,22 Outer ring 12e, 22e Outer ring side extension part 12a, 22a Outer ring side flange part 13,23 Taper roller A, C Track ring side gap 14 , 24 Cage 14a, 24a Cage side flange D Cage side gap F Auxiliary gap

Claims (4)

ラジアル方向に対向配置された外輪及び内輪とを備え、前記外輪の内周面及び前記内輪の外周面に、それぞれアキシャル方向の第一端側から第二端側に向けて拡径する円錐軌道面が形成され、それら円錐軌道面の間に形成される転動体保持空間にて回転周方向に転動体をなす複数の円錐ころが配置され、
前記外輪及び前記内輪には、アキシャル方向にて各々前記円錐ころの軌道面よりも前記第一端側に延出する外輪側延出部及び内輪側延出部がそれぞれ形成され、
前記外輪側延出部の内周面には、ラジアル方向内向きに突出する周方向の外輪側フランジ部が設けられ、該外輪側フランジ部の内周面と前記内輪側延出部の外周面との間に軌道輪側ギャップが形成され、
アキシャル方向における予め定められた一方の端を第一端として、前記内輪の内周面には、前記円錐軌道面の前記アキシャル方向における第二端側に隣接する形で、前記円錐ころのアキシャル方向における当該第二端側の位置を規制する周方向の大鍔部が突出形成され、
前記内輪の内周面には、前記円錐軌道面の前記アキシャル方向における第一端側に隣接する形で、前記円錐ころのアキシャル方向における当該第一端側の位置を規制する周方向の小鍔部が突出形成され、
前記小鍔部の外周面が、前記円錐ころの外周面と同一方向に傾斜する傾斜面として形成されていることを特徴とする円錐ころ軸受。
A conical raceway surface having an outer ring and an inner ring arranged opposite to each other in the radial direction, and expanding in diameter from the first end side to the second end side in the axial direction on the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring, respectively. A plurality of tapered rollers that form rolling elements in the rotational circumferential direction in a rolling element holding space formed between the conical raceway surfaces,
The outer ring and the inner ring are respectively formed with an outer ring side extending part and an inner ring side extending part extending in the axial direction to the first end side from the raceway surface of the tapered roller, respectively.
A circumferential outer ring side flange portion protruding radially inward is provided on the inner circumferential surface of the outer ring side extending portion, and the outer circumferential surface of the outer ring side flange portion and the inner ring side extending portion are provided. A ring-side gap is formed between
One end predetermined in the axial direction is a first end, and the inner circumferential surface of the inner ring is adjacent to the second end side of the conical raceway surface in the axial direction, and the axial direction of the tapered roller A large collar portion in the circumferential direction that regulates the position of the second end side in the projection is formed,
An inner circumferential surface of the inner ring is adjacent to the first end side in the axial direction of the conical raceway surface, and a circumferential edge for regulating the position of the first end side in the axial direction of the tapered roller. The part is formed to protrude,
A tapered roller bearing, wherein an outer peripheral surface of the small flange portion is formed as an inclined surface inclined in the same direction as the outer peripheral surface of the tapered roller.
前記転動体保持空間に、アキシャル方向の第一端側から第二端側に向けて拡径する円錐台状の殻体として構成された本体部を有し、該本体部の周方向に前記円錐ころをそれぞれ転動可能に収容保持する複数個のポケット部が形成された保持器が配置されるとともに、該保持器は、前記本体部のアキシャル方向の第一端側がラジアル方向内向きに曲げ返されて保持器側フランジ部を形成し、該保持器側フランジ部のラジアル方向内周面が前記小鍔部の前記傾斜面をなす外周面と対向して保持器側ギャップを形成してなる請求項1記載の円錐ころ軸受。   The rolling element holding space has a main body configured as a truncated cone-shaped shell that expands from the first end side in the axial direction toward the second end side, and the cone is formed in the circumferential direction of the main body portion. A cage in which a plurality of pocket portions are formed to accommodate and hold the rollers in a rollable manner is disposed, and the cage has a first end side in the axial direction bent inward in the radial direction. And forming a cage-side gap so that a radially inner circumferential surface of the cage-side flange portion faces an outer circumferential surface forming the inclined surface of the small flange portion. The tapered roller bearing according to Item 1. 前記転動体保持空間に、アキシャル方向の第一端側から第二端側に向けて拡径する円錐台状の殻体として構成された本体部を有し、該本体部の周方向に前記円錐ころをそれぞれ転動可能に収容保持する複数個のポケット部が形成された保持器が配置されるとともに、該保持器は、中心軸線を含む断面において前記本体部のアキシャル方向の第一端側が前記小鍔部側に直線的に延出し、前記小鍔部の前記傾斜面をなす外周面と対向してなる請求項1記載の円錐ころ軸受。   The rolling element holding space has a main body configured as a truncated cone-shaped shell that expands from the first end side in the axial direction toward the second end side, and the cone is formed in the circumferential direction of the main body portion. A cage in which a plurality of pocket portions for accommodating and holding the rollers in a rollable manner is disposed, and the cage has a first end side in the axial direction of the main body portion in a cross section including a central axis. 2. The tapered roller bearing according to claim 1, wherein the tapered roller bearing extends linearly toward the side of the collar and faces the outer peripheral surface forming the inclined surface of the collar. 軌道輪側ギャップはラビリンスシールを形成するものであり、
アキシャル方向における前記保持器の前記第一端側の側縁部と前記内輪側延出部の外周面とが、前記軌道輪側ギャップよりも大きなラジアル方向間隔をもって対向配置されている請求項1ないし請求項3のいずれか1項に記載の円錐ころ軸受。
The bearing ring side gap forms a labyrinth seal,
The side edge portion on the first end side of the retainer in the axial direction and the outer peripheral surface of the inner ring side extension portion are arranged to face each other with a radial interval larger than the gap on the race ring side. The tapered roller bearing according to claim 3.
JP2008192099A 2008-07-25 2008-07-25 Tapered roller bearings Expired - Fee Related JP5234263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192099A JP5234263B2 (en) 2008-07-25 2008-07-25 Tapered roller bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192099A JP5234263B2 (en) 2008-07-25 2008-07-25 Tapered roller bearings

Publications (2)

Publication Number Publication Date
JP2010031901A true JP2010031901A (en) 2010-02-12
JP5234263B2 JP5234263B2 (en) 2013-07-10

Family

ID=41736614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192099A Expired - Fee Related JP5234263B2 (en) 2008-07-25 2008-07-25 Tapered roller bearings

Country Status (1)

Country Link
JP (1) JP5234263B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053366A1 (en) * 2010-10-19 2012-04-26 Ntn株式会社 Roller bearing
JP2012087864A (en) * 2010-10-19 2012-05-10 Ntn Corp Roller bearing
JP2015059648A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Conical roller bearing
JP2015086994A (en) * 2013-11-01 2015-05-07 日本精工株式会社 Angular contact ball bearing and dental air turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144548A (en) * 1994-09-16 1995-06-06 Nippon Seiko Kk Lubricating device for differential gear bearing
JP2005257048A (en) * 2004-03-15 2005-09-22 Koyo Seiko Co Ltd Tapered roller bearing
JP2006308008A (en) * 2005-04-28 2006-11-09 Jtekt Corp Liquid lubricated tapered roller bearing device and vehicular pinion shaft supporting device
JP2008045711A (en) * 2006-08-21 2008-02-28 Jtekt Corp Tapered roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144548A (en) * 1994-09-16 1995-06-06 Nippon Seiko Kk Lubricating device for differential gear bearing
JP2005257048A (en) * 2004-03-15 2005-09-22 Koyo Seiko Co Ltd Tapered roller bearing
JP2006308008A (en) * 2005-04-28 2006-11-09 Jtekt Corp Liquid lubricated tapered roller bearing device and vehicular pinion shaft supporting device
JP2008045711A (en) * 2006-08-21 2008-02-28 Jtekt Corp Tapered roller bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053366A1 (en) * 2010-10-19 2012-04-26 Ntn株式会社 Roller bearing
JP2012087864A (en) * 2010-10-19 2012-05-10 Ntn Corp Roller bearing
US8979384B2 (en) 2010-10-19 2015-03-17 Ntn Corporation Rolling bearing device
US9033582B2 (en) 2010-10-19 2015-05-19 Ntn Corporation Rolling bearing device
JP2015059648A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Conical roller bearing
JP2015086994A (en) * 2013-11-01 2015-05-07 日本精工株式会社 Angular contact ball bearing and dental air turbine

Also Published As

Publication number Publication date
JP5234263B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
EP1717463B1 (en) Liquid-lubricated tapered roller bearing and bearing arrangement of a vehicle pinion shaft
JP4314430B2 (en) Tapered roller bearing
JP2008089039A (en) Tapered roller bearing and differential device
JP6458459B2 (en) Tapered roller bearing
JP5126678B2 (en) Rolling bearing
JP5234263B2 (en) Tapered roller bearings
JP2010071321A (en) Tapered roller bearing
US9435372B2 (en) Tapered roller bearing and power transmission device
US9958009B2 (en) Roller bearing
US10520027B2 (en) Tapered roller bearing
JP6458458B2 (en) Tapered roller bearing
US9249833B2 (en) Tapered roller bearing and power transmission device
JP2008202785A (en) Tapered roller bearing
US9644672B2 (en) Tapered roller bearing
JP2014185649A (en) Rolling bearing device and vehicular pinion shaft supporting device
JP4715705B2 (en) Tapered roller bearings and differential devices
US10001171B2 (en) Rolling bearing
JP2010159788A (en) Thrust roller bearing
JP2008064288A (en) Tapered roller bearing
JP2007263212A (en) Tapered roller bearing
JP2013019504A (en) Rolling bearing
JP2005291445A (en) Tapered roller bearing
JP2008223863A (en) Tapered roller bearing
JP2009041589A (en) Bearing device and differential
JP2015052349A (en) Conical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees