JP2010031738A - Pump with impeller made from sheet metal - Google Patents

Pump with impeller made from sheet metal Download PDF

Info

Publication number
JP2010031738A
JP2010031738A JP2008194544A JP2008194544A JP2010031738A JP 2010031738 A JP2010031738 A JP 2010031738A JP 2008194544 A JP2008194544 A JP 2008194544A JP 2008194544 A JP2008194544 A JP 2008194544A JP 2010031738 A JP2010031738 A JP 2010031738A
Authority
JP
Japan
Prior art keywords
blade
impeller
blades
discharge
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008194544A
Other languages
Japanese (ja)
Inventor
Sumimasa Hiradate
澄賢 平舘
Teiji Tanaka
定司 田中
Yoshimasa Chiba
由昌 千葉
Isato Shimizu
勇人 清水
Yuji Nagai
優治 永井
Koichi Irie
浩一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008194544A priority Critical patent/JP2010031738A/en
Publication of JP2010031738A publication Critical patent/JP2010031738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impeller made from a sheet metal capable of improving a blade molding property of the impeller achieving high performance and balancing strength reliability and welding property of the impeller at the same time. <P>SOLUTION: In the pump provided with a rotation shaft, the impeller made from the sheet metal consisting of hub mounted to the rotation shaft and blades arranged for an outer circumference of this hub, a suction casing for introducing fluid to the impeller and a discharge casing consisting of an outer circumferential discharge casing and an inner circumferential discharge for introducing the fluid discharged from the impeller, the impeller is structured as follows; the blades of the impeller are separated in a direction from an impeller inlet to an outlet and suction side blades of the separated blades are molded by mold-bending and discharge side blades of the separated blades are defined in a perfect two-dimensional form and molded by linear bending with a roll and the blades are respectively arranged to a hub at its sucking side and discharge side in tandem and welded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体機械の一つであるポンプに係り、特に強度の信頼性と製作性を保ちつつ、高性能を達成する板金等の板金製羽根車を有するポンプに関するものである。   The present invention relates to a pump that is one of fluid machines, and more particularly to a pump having a sheet metal impeller such as a sheet metal that achieves high performance while maintaining strength reliability and manufacturability.

流体機械の一例であるポンプは、発電所やプラント向け大容量冷却水循環ポンプ、海水淡水化ポンプ、送、排水ポンプなどに使用されている。   Pumps, which are examples of fluid machinery, are used for large-capacity cooling water circulation pumps, desalination pumps, feed and drainage pumps for power plants and plants.

従来のポンプについて、斜流ポンプを取り上げ、その構造を図8、図9を用いて以下に述べる。図8は従来の斜流ポンプのうち、羽根車1にシュラウド13のあるクローズドタイプ羽根車の周辺部分の断面図である。図9は従来の斜流ポンプのうち、羽根車にシュラウドのないオープンタイプ羽根車の周辺部分の断面図である。   Regarding the conventional pump, a mixed flow pump is taken up, and the structure thereof will be described below with reference to FIGS. FIG. 8 is a cross-sectional view of a peripheral portion of a closed type impeller having a shroud 13 on the impeller 1 in a conventional mixed flow pump. FIG. 9 is a cross-sectional view of a peripheral portion of an open type impeller having no shroud in the impeller of a conventional mixed flow pump.

従来の斜流ポンプは、回転軸10と、この回転軸10に装着されたハブ12、及びこのハブ12の外周に設けられた羽根11からなる羽根車1と、羽根車1に流体を導く吸込ケーシング2と、羽根車1から吐出された流体を導く外周吐出ケーシング31及び内周吐出ケーシング32からなる吐出ケーシング3とを備えて構成されている。   The conventional mixed flow pump includes an impeller 1 including a rotating shaft 10, a hub 12 attached to the rotating shaft 10, and blades 11 provided on the outer periphery of the hub 12, and suction for guiding fluid to the impeller 1. The casing 2 includes a discharge casing 3 including an outer peripheral discharge casing 31 and an inner peripheral discharge casing 32 that guide the fluid discharged from the impeller 1.

この内、前記羽根11の構造について説明する。図10は、従来の斜流ポンプの羽根形状を羽根車回転軸方向に吸込側から見た図であり、隣り合う二翼を記載してある。図10に記載の羽根は、羽根車回転軸方向から見ると、羽根車回転方向に対して先行する羽根101と後行する羽根102が一部重なっており、翼間流路103を形成している。このうち、前記先行する羽根101の翼間流路部において、羽根前縁側の境界線104を定義する。また、前記後行する羽根102の翼間流路部において、羽根後縁側の境界線105を定義する。この2本の境界線104、105により、羽根は3つの領域に分割される事となる。これを、吸込側羽根106、吐出側羽根108、そして、両者の中間領域である107とに分類し、図11に示す。   Among these, the structure of the blade 11 will be described. FIG. 10 is a view of the blade shape of a conventional mixed flow pump as viewed from the suction side in the direction of the impeller rotation axis, and shows two adjacent blades. In the blade shown in FIG. 10, when viewed from the impeller rotation axis direction, the blade 101 that precedes the blade rotation direction and the blade 102 that follows are partially overlapped to form an inter-blade channel 103. Yes. Among these, the boundary line 104 on the blade leading edge side is defined in the inter-blade channel portion of the preceding blade 101. Further, a boundary line 105 on the trailing edge side of the blade is defined in the inter-blade channel portion of the trailing blade 102. With these two boundary lines 104 and 105, the blade is divided into three regions. This is classified into a suction side blade 106, a discharge side blade 108, and 107, which is an intermediate region between them, and is shown in FIG.

また図12は、図11の羽根を羽根チップ側のある1方向から見た斜視図である。吐出側羽根108は、図11に示す様にハブ12から羽根の最外周面(羽根チップ)109までスパン方向にほぼ重なって見え、二次元的な形状をしている。一方、吸込側羽根106は、羽根の流水部効率やキャビテーション性能を高めるため反りのある形状となっており、3次元の自由曲面形状となっている。   FIG. 12 is a perspective view of the blade of FIG. 11 viewed from one direction on the blade tip side. As shown in FIG. 11, the discharge-side blades 108 appear to overlap substantially in the span direction from the hub 12 to the outermost peripheral surface (blade tip) 109 of the blades, and have a two-dimensional shape. On the other hand, the suction side blade 106 has a warped shape to improve the efficiency of the flowing water portion of the blade and the cavitation performance, and has a three-dimensional free-form surface shape.

吸込側羽根106が3次元の自由曲面形状をしているため、従来では羽根全体を鋳造で成形、または羽根を板金製として3次元総金型によるプレス加工で成形(製缶構造羽根車)していた。   Since the suction-side blade 106 has a three-dimensional free-form surface shape, conventionally, the entire blade is formed by casting, or the blade is made of sheet metal and formed by pressing with a three-dimensional total mold (canned structure impeller). It was.

しかし、上記従来の鋳造による羽根車羽根の製造では、木型作成に対する製造コストが高い事や、木型の製作期間が長いという問題があった。一方、従来のプレス加工による板金製の羽根車羽根では、3次元総金型の製作費用が高いため、流体機械を安価に製造出来ないという課題があった。また、硬度の高いステンレス材の大きな羽根を成形するため、大型のプレス加工機が必要であった。   However, in the manufacture of the impeller blades by the conventional casting described above, there are problems that the manufacturing cost for making the wooden mold is high and the manufacturing period of the wooden mold is long. On the other hand, in the conventional impeller blade made of sheet metal by press working, there is a problem that the fluid machine cannot be manufactured at low cost because the production cost of the three-dimensional total mold is high. In addition, a large press machine was required to form large blades of stainless steel with high hardness.

この課題を克服するため、特許文献1記載のように、羽根面を円筒や円錐の一部として近似し、比較的簡便に板金製の羽根車を形成する事で、コスト低減を図った例がある。   In order to overcome this problem, as disclosed in Patent Document 1, the blade surface is approximated as a part of a cylinder or a cone, and an impeller made of sheet metal is formed relatively easily, thereby reducing costs. is there.

また、羽根車を板金製として羽根とハブとを溶接とした場合、鋳造製羽根車のように羽根とハブを一体で製作した場合と比較して、羽根の付根部分の強度が確保出来ない。そのため、羽根チップ109にシュラウド13の無いオープンタイプの羽根車の場合、羽根前縁付近で流体の流れ方向を変化させる事で生じる羽根の曲げ応力に対する強度が問題となる。一方、羽根チップ109にシュラウド13のあるクローズドタイプの羽根車の場合、図8中の案内羽根5と羽根11との動静翼干渉により羽根出口側付近のシュラウド131が力を受け、羽根高さ方向の変形を繰り返すため、この干渉変動応力に対する強度が問題となる。羽根強度を保つためには、羽根厚みの厚い板材を使用せざるを得ないので、羽根重量の増大や羽根成形性の悪化、溶接量増大等が必要となり、結果的に製造コストが高くなるという問題があった。   Further, when the impeller is made of sheet metal and the blade and the hub are welded, the strength of the root portion of the blade cannot be ensured as compared to the case where the blade and the hub are manufactured integrally as in the case of a cast impeller. Therefore, in the case of an open type impeller without the shroud 13 in the blade tip 109, the strength against the bending stress of the blade caused by changing the fluid flow direction in the vicinity of the blade leading edge becomes a problem. On the other hand, in the case of a closed type impeller in which the blade tip 109 has the shroud 13, the shroud 131 near the blade outlet side receives a force due to the moving and stationary blade interference between the guide blade 5 and the blade 11 in FIG. Therefore, the strength against the interference fluctuation stress becomes a problem. In order to maintain the blade strength, it is necessary to use a plate material with a large blade thickness, so that it is necessary to increase the blade weight, deteriorate the blade moldability, increase the welding amount, etc., resulting in an increase in manufacturing cost. There was a problem.

この課題のうち、特に羽根前縁の曲げ応力についての課題を克服するため、特許文献2記載のように、圧縮機用の羽根車のシュラウドを、各羽根チップ側の羽根前縁から後縁の間の中間部まで取り付け、羽根車を補強した例がある。   Among these problems, in order to overcome the problem concerning the bending stress of the blade leading edge in particular, as described in Patent Document 2, the shroud of the impeller for the compressor is moved from the blade leading edge on each blade tip side to the trailing edge. There is an example in which the impeller is reinforced by attaching to the middle part.

特開2002−147390号公報JP 2002-147390 A 特開2004−353607号公報JP 2004-353607 A

しかし、上記特許文献1に記載の羽根製作手法は、吸込側羽根3の自由曲面形状の三次元性が強くなると、円筒や円錐の一部として近似した羽根形状が所望の羽根形状からずれてしまうという課題があった。   However, in the blade manufacturing method described in Patent Document 1, when the three-dimensionality of the free curved surface shape of the suction side blade 3 becomes strong, the blade shape approximated as a part of a cylinder or a cone deviates from the desired blade shape. There was a problem.

また、上記特許文献2の実施例記載のように、圧縮機の羽根車に対してシュラウドを部分的に取り付けた例はあるが、ポンプに特有な問題である、羽根前縁付近で発生するキャビテーションを考慮したシュラウド取り付け法については言及していないという課題があった。   In addition, as described in the embodiment of Patent Document 2, there is an example in which a shroud is partially attached to an impeller of a compressor, but cavitation that occurs near the leading edge of the blade, which is a problem peculiar to the pump. There was a problem that the shroud mounting method considering the above was not mentioned.

本発明の目的は、板金製の羽根車において高性能を達成するための羽根成形性を向上すると同時に、羽根車の強度信頼性と、溶接性、キャビテーション性能を両立する事が出来るポンプを提供することにある。   An object of the present invention is to provide a pump capable of improving the blade formability for achieving high performance in a sheet metal impeller and at the same time satisfying the strength reliability of the impeller, weldability, and cavitation performance. There is.

前述の目的を達成するために、本発明のポンプは、回転軸と、前記回転軸に装着されたハブ及びこのハブの外周に設けられた羽根からなる板金製羽根車と、前記羽根車に流体を導く吸込みケーシングと、前記羽根車から吐出された流体を導く外周吐出ケーシング及び内周吐出ケーシングからなる吐出ケーシングとを備えたポンプにおいて、前記羽根車羽根を、羽根車入口から出口に向かう方向で2分割し、前記2分割した羽根のうち、羽根の流水部効率やキャビテーション性能を高めるため3次元の自由曲面形状となっている吸込側羽根は金型によるプレス成形(以下、型曲げと呼ぶ)で成形し、前記2分割した羽根のうち、比較的二次元的な形状をしている吐出側羽根は完全二次元形状で定義し、羽根の各流れ方向位置においてハブとシュラウドとを結ぶ直線状の曲げ線を定義して、ロールにより順次板金を折り曲げて曲面を形成する線曲げ(以下、線曲げと呼ぶ)で成形して、ハブにそれぞれ吸込み側、吐出し側にタンデムに設置して溶接し、構成される。   In order to achieve the above-mentioned object, a pump according to the present invention includes a rotating shaft, a hub mounted on the rotating shaft, and a sheet metal impeller comprising blades provided on the outer periphery of the hub, and a fluid in the impeller. In a pump comprising a suction casing for guiding the fluid discharged from the impeller, and a discharge casing composed of an outer peripheral discharge casing and an inner peripheral discharge casing for guiding the fluid discharged from the impeller, the impeller blade is moved in a direction from the impeller inlet to the outlet. The suction side blade which is divided into two and has a three-dimensional free-form surface in order to improve the flowing water efficiency and cavitation performance of the two divided blades is press-molded by a die (hereinafter referred to as mold bending). Of the two divided blades, the discharge-side blade having a relatively two-dimensional shape is defined as a complete two-dimensional shape, and the hub and shuffle are defined at each position in the flow direction of the blade. Define a straight bend line connecting the Udo and form it by wire bending (hereinafter referred to as wire bending) in which a sheet metal is sequentially bent by a roll to form a curved surface. Installed in tandem and welded.

また、前記2分割した羽根の吸込側羽根のチップ側全体と、前記2分割した羽根の吐出側羽根のチップ側のうち、羽根車入口から出口へ向かう方向の上流側の一部を、略円錐状に拡開された板金製のシュラウドで覆って溶接し、シュラウドのない部分にはライナを配置して羽根翼端との間に狭い間隙を形成して構成したことを特徴とする。また、前記シュラウドは円筒部材であり、この円筒部の外周部に前記ケーシング摺動するインペラリング部を形成したことを特徴とする。   Further, a portion of the tip side of the suction side blade of the two divided blades and the tip side of the discharge side blade of the two divided blades are substantially conical on the upstream side in the direction from the impeller inlet to the outlet. It is characterized in that it is constructed by covering and welding with a sheet metal shroud expanded in a shape, and arranging a liner in a portion without the shroud to form a narrow gap between the blade blade tips. The shroud is a cylindrical member, and an impeller ring portion that slides the casing is formed on an outer peripheral portion of the cylindrical portion.

本発明のポンプによれば、板金製羽根車において高性能を達成する羽根車の羽根成形性を向上すると同時に、羽根車の強度信頼性と溶接性、キャビテーション性能を両立する事が出来る。   According to the pump of the present invention, it is possible to improve the blade formability of an impeller that achieves high performance in a sheet metal impeller, and at the same time, it is possible to achieve both strength reliability, weldability, and cavitation performance of the impeller.

以下、本発明を適用してなるポンプの実施例1について図1〜図2を用いて説明する。   Hereinafter, a first embodiment of a pump to which the present invention is applied will be described with reference to FIGS.

図1は、本発明を適用してなるポンプの一例の概略構成を示す断面図である。図2は、本実施例における羽根車羽根11を、回転軸方向吸込側から見た図である。本実施例のポンプは、回転軸10と、羽根車1と、吸込ケーシング2と、外周吐出ケーシング31及び内周吐出ケーシング32からなる吐出ケーシング3とを備えて構成されている。羽根車1は板金で形成される。また、吸込ケーシング2、吐出ケーシング3は、鋳物で形成されても、板金で形成されても良い。   FIG. 1 is a cross-sectional view showing a schematic configuration of an example of a pump to which the present invention is applied. FIG. 2 is a view of the impeller blade 11 in the present embodiment as viewed from the rotation axis direction suction side. The pump of the present embodiment includes a rotating shaft 10, an impeller 1, a suction casing 2, and a discharge casing 3 including an outer peripheral discharge casing 31 and an inner peripheral discharge casing 32. The impeller 1 is formed of sheet metal. Moreover, the suction casing 2 and the discharge casing 3 may be formed of a casting or may be formed of a sheet metal.

回転軸10は、吸込ケーシング2側から吐出ケーシング3側に伸びており、図示しないスラスト軸受け及びラジアル軸受けにより回転自在に支持されている。羽根車1は回転軸10に装着されて回転軸10と共に回転され、作動流体(本実施例では、水)にエネルギーを与える。この羽根車1は、略円錐状に拡開されたハブ12と、このハブ12の円錐外周面に斜めに設けられた複数枚の羽根2とから構成されている。   The rotary shaft 10 extends from the suction casing 2 side to the discharge casing 3 side, and is rotatably supported by a thrust bearing and a radial bearing (not shown). The impeller 1 is attached to the rotating shaft 10 and rotated together with the rotating shaft 10 to give energy to the working fluid (in this embodiment, water). The impeller 1 includes a hub 12 that is expanded in a substantially conical shape, and a plurality of blades 2 that are provided obliquely on the outer peripheral surface of the cone of the hub 12.

本実施例において、羽根形状は鋳造品と同等性能を再現するよう構成される。ここでは、鋳造製羽根車形状として図10、図11の従来例を用い、これと比較しながら実施例の羽根の特徴を図2を元に説明する。   In this embodiment, the blade shape is configured to reproduce the same performance as the cast product. Here, the conventional example of FIGS. 10 and 11 is used as the shape of the cast impeller, and the features of the blades of the example will be described based on FIG. 2 in comparison with this.

本実施例では、羽根を板金で形成し、性能に影響の大きい3次元自由曲面形状の吸込側羽根部106のみを型曲げで成形し、二次元的形状である吐出側羽根108はロールによる線曲げで完全二次元形状として定義し、羽根の各流れ方向位置においてハブとシュラウドとを結ぶ直線状の曲げ線110を定義して、ロールにより順次板金を折り曲げて曲面を形成する線曲げで成形する。その結果、3次元総金型によるプレス加工をせずに鋳造製羽根車と同等の性能が得られる。更に、ロールによる線曲げは、大型のプレス機を必要としないため、コスト低減につながる。   In this embodiment, the blades are formed of sheet metal, only the suction side blade portion 106 having a three-dimensional free-form surface shape having a large influence on performance is formed by mold bending, and the discharge side blade 108 having a two-dimensional shape is formed by a roll. It is defined as a complete two-dimensional shape by bending, a straight bending line 110 connecting the hub and the shroud is defined at each position in the flow direction of the blade, and the sheet metal is sequentially bent by a roll to form a curved surface. . As a result, a performance equivalent to that of a cast impeller can be obtained without pressing with a three-dimensional total mold. Further, the wire bending by the roll does not require a large press, which leads to cost reduction.

更にコスト低減を実現するには、完全二次元形状で定義する線曲げ羽根108の領域を、なるべく吸込側まで延ばす必要がある。しかし、線曲げ羽根108の領域を吸込側へ延長して行くにつれ、従来例図11中の107で示す中間領域付近において、線曲げ成形する羽根の形状と、型曲げ成形する羽根との形状の不連続性が強まり、図3に示す羽根11の羽根角度βの巻角θに対する分布が、図4に示すように不連続になってしまう。前記の形状不連続領域では線曲げでの成形が難しくなり、型曲げとせざるを得なくなる。その結果、コストが高くなってしまう。なお、図4は、線曲げ成形する羽根の領域を羽根車吸込側へ延長していった場合の、線曲げ成形する羽根と型曲げ成形する羽根との形状の不連続性による、羽根角度βの巻角θに対する分布の不連続を説明する図である。   In order to further reduce the cost, it is necessary to extend the region of the wire bending blade 108 defined by the complete two-dimensional shape as much as possible to the suction side. However, as the region of the wire bending blade 108 is extended to the suction side, the shape of the wire bending forming blade and the shape of the die bending forming blade are formed in the vicinity of the intermediate region 107 shown in FIG. The discontinuity becomes stronger, and the distribution of the blade angle β of the blade 11 shown in FIG. 3 with respect to the winding angle θ becomes discontinuous as shown in FIG. In the shape discontinuous region, molding by wire bending becomes difficult, and it must be mold bending. As a result, the cost increases. FIG. 4 shows the blade angle β due to the discontinuity of the shape of the blade for wire bending and the blade for mold bending when the region of the blade for wire bending is extended to the impeller suction side. It is a figure explaining the discontinuity of distribution with respect to the winding angle θ.

そこで図2中に示すように、本実施例では、羽根を羽根車入口から出口に向かう方向で2分割する。前記2分割した羽根のうち吸込側羽根106は型曲げで成形し、吐出側羽根108は線曲げで成形する。そして、前記2分割した羽根106、108を中間領域107を抜いた状態(空間領域)でハブ12の吸込側と吐出側にそれぞれタンデムに並べて(縦に並べて)に配置して溶接する。   Therefore, as shown in FIG. 2, in this embodiment, the blade is divided into two in the direction from the impeller inlet to the outlet. Of the two divided blades, the suction side blade 106 is formed by mold bending, and the discharge side blade 108 is formed by linear bending. Then, the two divided blades 106 and 108 are arranged in tandem (vertically arranged) on the suction side and the discharge side of the hub 12 with the intermediate region 107 removed (space region) and welded.

羽根を板金で形成する際、羽根を分割構造とする事で、以下の効果が生まれる。即ち、型曲げとなる吸込側羽根106、線曲げとなる吐出側羽根107の成形を独立に実施可能となるため、成形の並列化による工程の短縮が図れる。また、分割により寸法が小さくなった吸込側羽根106のみプレス加工用の型が必要であるため、プレス機の容量を減らす事が出来る。また、羽根を一枚の板金から成形する場合に避けられない、中間領域107の形状不連続性を取り除く事が出来る。従って、吐出側羽根108の線曲げ領域をより吸込側へと延ばす事ができ、プレス加工用の型を最小の大きさに出来る。   When the blades are formed of sheet metal, the following effects are produced by making the blades into a divided structure. That is, the suction-side blade 106 that serves as a mold bend and the discharge-side blade 107 that serves as a wire bend can be formed independently, so that the process can be shortened by parallel forming. Further, only the suction side blade 106 whose size is reduced by the division requires a press working die, so that the capacity of the press machine can be reduced. In addition, it is possible to remove the shape discontinuity of the intermediate region 107, which is inevitable when the blade is formed from a single sheet metal. Accordingly, the line bending region of the discharge side blade 108 can be extended to the suction side, and the die for press working can be made the minimum size.

更に、非分割構造の羽根に型曲げと線曲げを両方実施する場合、曲げ加工を順に実施する事になるが、後に実施する曲げ加工の際に、既に曲げを実施した領域において変形が生じてしまうが、羽根を分割構造とすれば、この変形の問題はなくなる。加えて、中間領域107における形状の不連続部を抜いた状態にあり、吸込側羽根106と吐出側羽根108との間で流体は羽根からの拘束を受けずに流れる。このような流れ場において流体は、羽根の拘束がある場合と比較し、吸込側羽根106の出口と吐出側羽根108の入口との間をより滑らかに流れようとするため、流体性能への悪影響も防げる。   Furthermore, when both mold bending and line bending are performed on a blade having an undivided structure, bending is performed in order. However, when bending is performed later, deformation occurs in an already bent region. However, if the blade is divided, the problem of this deformation is eliminated. In addition, the discontinuity of the shape in the intermediate region 107 is removed, and the fluid flows between the suction side blade 106 and the discharge side blade 108 without being restricted by the blade. In such a flow field, the fluid tends to flow more smoothly between the outlet of the suction-side blade 106 and the inlet of the discharge-side blade 108 than when the blade is constrained, which adversely affects the fluid performance. You can also prevent.

羽根を分割し、夫々をハブに溶接する構造にした事で鋳造製羽根車と同等のキャビテーション性能が実現出来るが、更に吸込側羽根106と吐出側羽根108の羽根枚数比を自由に設定可能となる事を活かし、ポンプのキャビテーション性能向上が図れる。本実施例では、キャビテーション性能向上を狙って羽根車吸込側の流路面積を増大させるため、図5のように吸込側羽根106の羽根枚数を吐出側羽根108の羽根枚数よりも少なく設定してやれば、羽根車吸込側での流路面積を広く取れる。ここで、吸込側羽根106の羽根枚数が吐出側羽根108の羽根枚数の半分であれば、両者の周方向の相対位置関係がどの羽根でも同一となるため、各羽根間の流動状態の不均一性が最小となり望ましい。   Cavitation performance equivalent to that of a cast impeller can be realized by dividing the blades and welding each to the hub, but the blade number ratio between the suction side blades 106 and the discharge side blades 108 can be freely set. This makes it possible to improve pump cavitation performance. In this embodiment, in order to increase the flow passage area on the impeller suction side with the aim of improving cavitation performance, if the number of blades of the suction side blades 106 is set smaller than the number of blades of the discharge side blades 108 as shown in FIG. The flow path area on the impeller suction side can be widened. Here, if the number of the suction side blades 106 is half the number of the discharge side blades 108, the relative positional relationship between the two in the circumferential direction is the same for all the blades. This is desirable because it minimizes the property.

また、羽根を分割し、夫々をハブ12に溶接するという構造にした事で、両者の周方向相対位置関係も自由に設定する事が可能となる。図5では、吸込側羽根106と吐出側羽根108との周方向相対位置は変化させていないが、羽根車の効率やキャビテーション性能を考慮し、必要に応じて周方向相対位置を設定するのが良い。   In addition, since the blades are divided and each is welded to the hub 12, it is possible to freely set the circumferential relative positional relationship between them. In FIG. 5, the circumferential relative position between the suction-side blade 106 and the discharge-side blade 108 is not changed, but the circumferential relative position is set as necessary in consideration of the efficiency and cavitation performance of the impeller. good.

尚、本実施例で説明した図では斜流ポンプを例に取り説明したが、ポンプの形態は斜流ポンプに捉われるものではなく、他の形態のポンプにも使用可能である。   Although the mixed flow pump has been described as an example in the drawings described in the present embodiment, the form of the pump is not limited to the mixed flow pump and can be used for other forms of pumps.

以下、本発明の実施例2を図6〜図7を用いて説明する。図6は、本発明を適用してなるポンプの概略構成を示す断面図である。図7は、図6の羽根チップ側シュラウドの構成例を示す図である。   A second embodiment of the present invention will be described below with reference to FIGS. FIG. 6 is a sectional view showing a schematic configuration of a pump to which the present invention is applied. FIG. 7 is a diagram illustrating a configuration example of the blade tip side shroud of FIG. 6.

本実施例の内で実施例1と異なる点は、図6に記載の様に、吸込側羽根106のチップ109全体と、吐出側羽根108のチップ109のうち羽根車1の入口から出口へ向かう方向の上流側の一部を、円錐状に拡開されたシュラウド13で覆って溶接している点である。吐出側羽根のチップの内でシュラウドのない部分14は、ライナ4を配置して羽根翼端との間に狭い間隙を形成して構成している。図6に示すように、板金製のシュラウド13の吸込側部は、羽根車回転軸10に平行な形状となっている。更に、吸込口から羽根車回転軸10に沿って流れてくる流体を斜め半径方向に滑らかに転向させるため、シュラウド13の羽根チップ部と同一傾斜を持つ部分と、前記吸込側部分とを連結するシュラウド13の中間部は、曲面形状となっている。先端にはシュラウド13の背面からの漏れを抑えるためのシール部6が設けられている。   The difference between the present embodiment and the first embodiment is that the entire tip 109 of the suction side blade 106 and the tip 109 of the discharge side blade 108 are directed from the inlet to the outlet of the impeller 1 as shown in FIG. A part of the upstream side in the direction is covered with a shroud 13 expanded in a conical shape and welded. A portion 14 having no shroud in the tip of the discharge-side blade is configured by disposing the liner 4 and forming a narrow gap with the blade blade tip. As shown in FIG. 6, the suction side portion of the sheet metal shroud 13 has a shape parallel to the impeller rotating shaft 10. Further, in order to smoothly turn the fluid flowing from the suction port along the impeller rotating shaft 10 in the oblique radial direction, the portion having the same inclination as the blade tip portion of the shroud 13 is connected to the suction side portion. The middle part of the shroud 13 has a curved surface shape. A seal portion 6 for suppressing leakage from the back surface of the shroud 13 is provided at the tip.

ここで、シュラウド13の板厚が比較的厚い場合には、図6に示すように、シュラウド13の流れ方向の終端部形状を、羽根車回転軸10に対して平行になるように予め切削加工を施すと良い。そうすれば、シュラウド13の流れ方向の終端部形状に合わせてライナ4の形状を成形する事で、シュラウド13の背面へと向かう漏れを低減出来ると同時に、ポンプを組み立てる際、ライナ4を半割り構造とせずとも羽根車軸方向から組み付ける事が可能となる。   Here, when the plate thickness of the shroud 13 is relatively thick, as shown in FIG. 6, the end shape in the flow direction of the shroud 13 is cut in advance so as to be parallel to the impeller rotating shaft 10. It is good to give. Then, by shaping the shape of the liner 4 in accordance with the shape of the end portion of the shroud 13 in the flow direction, leakage toward the back surface of the shroud 13 can be reduced, and at the same time, when the pump is assembled, the liner 4 is halved. Even if it is not structured, it can be assembled from the impeller shaft direction.

このシュラウド13は、中間部が曲面形状をしており成形性が悪いため、図7のように構成しても良い。即ち、シュラウド13を円筒部材とし、円筒の外周部には漏れ流れを防止するためケーシングと摺動するインペラリング部132を形成し、内周面側出口に旋盤加工で図6中のシュラウド中間部の曲率を形成する。この円筒部材は一体の板金でも良いし、異なる素材の円筒部材を積層溶接しても良い。そして、この円筒シュラウドの内周部の出口端が、図6記載のクローズドインペラ部の流れ方向終端位置に合うように、羽根チップと円筒シュラウドを溶接する。   The shroud 13 may be configured as shown in FIG. 7 because the intermediate portion has a curved surface shape and poor moldability. That is, the shroud 13 is a cylindrical member, an impeller ring portion 132 that slides with the casing is formed on the outer peripheral portion of the cylinder, and a lathe intermediate portion in FIG. Form the curvature. This cylindrical member may be an integral sheet metal, or cylindrical members made of different materials may be laminated and welded. Then, the blade tip and the cylindrical shroud are welded so that the outlet end of the inner peripheral portion of the cylindrical shroud matches the end position in the flow direction of the closed impeller portion shown in FIG.

前記のように、シュラウド13を取り付けた事で、以下の効果を得る事が出来る。   As described above, the following effects can be obtained by attaching the shroud 13.

まず、羽根車1の吸込側羽根106のチップ109全体をシュラウド13で覆って溶接した事により、各吸込側羽根106のチップ間がシュラウド13で補強されるため、オープンタイプの羽根車で問題となる、羽根前縁付近で流体の流れ方向を変化させる事で生じる羽根の曲げ応力に対する強度が高まる。   First, since the entire tip 109 of the suction side blade 106 of the impeller 1 is covered with the shroud 13 and welded, the space between the tips of the suction side blades 106 is reinforced by the shroud 13, so there is a problem with the open type impeller. The strength against the bending stress of the blade generated by changing the fluid flow direction in the vicinity of the blade leading edge increases.

次に、吐出側羽根108におけるシュラウド13の配置場所を、吐出側羽根108のチップ109側全域とせず、羽根車1の入口から出口へ向かう方向の上流側の一部に限定した事により、次のような効果を得る事が出来る。   Next, the arrangement location of the shroud 13 on the discharge side blade 108 is not limited to the entire region on the tip 109 side of the discharge side blade 108, but is limited to a part on the upstream side in the direction from the inlet to the outlet of the impeller 1. You can get the following effects.

オープンタイプの羽根車では、羽根チップ109の前縁側とライナ4との隙間を流れる漏れ流れにより流れは乱れ、また漏れ流れの速度剪断層が生じてチップ付近に渦が発生する。前記の流れが乱れた領域では圧力損失が生じ、また渦の中心では静圧が低下するため、キャビテーションが発生し易い。ここで、まだ羽根による昇圧作用が十分でない羽根の前縁付近が、羽根車1において最もキャビテーションの発生し易い部位となる。   In the open type impeller, the flow is disturbed by the leakage flow flowing through the gap between the front edge side of the blade tip 109 and the liner 4, and the velocity shear layer of the leakage flow is generated to generate a vortex near the tip. Cavitation is likely to occur because pressure loss occurs in the region where the flow is disturbed, and static pressure decreases at the center of the vortex. Here, the vicinity of the leading edge of the blade, where the pressure increasing action by the blade is not sufficient, is the portion where the cavitation is most likely to occur in the impeller 1.

本実施例では、吸込側羽根106はクローズドタイプであるため、オープンタイプの羽根車で最もキャビテーションの発生し易い、吸込側羽根の羽根チップ109とライナ4との隙間の漏れ流れによるキャビテーションの発生を抑制する事が可能となる。更に本実施例では、吸込側羽根106のチップ全体に加えて、吐出側羽根108のチップ109のうち、羽根車1の入口から出口へ向かう方向の上流側の一部までシュラウド13を延長して覆った事により、吐出側羽根108のチップ109に対向する壁面が、静止壁面から、羽根車と一緒に回転する回転壁に変わる。羽根チップ109に対抗する壁面が静止壁の場合、この静止壁面上の流速は0となる。一方、羽根チップ109上の流体は、粘性の影響で羽根車回転速度と等しい速度を持つ。更に、前記両壁面間の流体は羽根の圧力面と負圧面との間の圧力勾配によって羽根車回転方向と逆向きの力を受ける。   In the present embodiment, since the suction side blade 106 is a closed type, cavitation is most likely to occur in an open type impeller, and the occurrence of cavitation due to leakage flow between the suction tip blade tip 109 and the liner 4 is prevented. It becomes possible to suppress. Further, in this embodiment, in addition to the entire tip of the suction side blade 106, the shroud 13 is extended to a part of the tip 109 of the discharge side blade 108 on the upstream side in the direction from the inlet to the outlet of the impeller 1. By covering, the wall surface of the discharge-side blade 108 facing the tip 109 changes from a stationary wall surface to a rotating wall that rotates together with the impeller. When the wall surface facing the blade tip 109 is a stationary wall, the flow velocity on the stationary wall surface is zero. On the other hand, the fluid on the blade tip 109 has a speed equal to the impeller rotational speed due to the influence of viscosity. Furthermore, the fluid between the two wall surfaces is subjected to a force in the direction opposite to the impeller rotation direction due to the pressure gradient between the pressure surface and the suction surface of the blade.

従って、前記隙間内流れの流速分布は静止座標系から見ると、静止壁面上では0で、前記静止壁と羽根チップ109壁面の間では羽根車の回転方向と逆向きに凸となり、羽根チップ109上で羽根車回転速度と等しくなる。この場合、前記隙間高さ方向の速度勾配が大きくなるため、漏れ流れの速度剪断層により生じる渦強さは強く、キャビテーションが発生し易い。一方、シュラウド13を吐出側羽根108の上流側まで延長し、羽根チップ109に対向する壁面が回転壁となる場合、吐出側羽根108の前縁側の羽根チップ10とライナ4との隙間内の流れ場も、羽根車とともに回転する回転座標系の流れ場となる。   Accordingly, when viewed from the stationary coordinate system, the flow velocity distribution of the flow in the gap is zero on the stationary wall surface, and is convex between the stationary wall and the blade tip 109 wall surface in the direction opposite to the rotation direction of the impeller, and the blade tip 109 Above, it becomes equal to the impeller rotational speed. In this case, since the velocity gradient in the gap height direction becomes large, the vortex strength generated by the velocity shear layer of the leakage flow is strong and cavitation is likely to occur. On the other hand, when the shroud 13 is extended to the upstream side of the discharge-side blade 108 and the wall surface facing the blade tip 109 is a rotating wall, the flow in the gap between the blade tip 10 on the leading edge side of the discharge-side blade 108 and the liner 4. The field also becomes a flow field of a rotating coordinate system that rotates with the impeller.

この時、漏れ流れの駆動力となるのは翼圧力面−負圧面間の圧力勾配のみとなるため、前記隙間内流れの流速分布は、羽根車とともに回転する回転座標系から見ると、羽根チップ109壁面とそれに対向する壁面上では0となり、その間では羽根車回転方向と逆方向に凸になる。漏れ流れの速度剪断の大きさは、羽根チップ109と相対する壁面が静止壁の場合と比較して小さくなるため、漏れ渦が弱まる。従って、まだ羽根による昇圧作用が十分でない吐出側羽根108の前縁側の羽根チップ109とライナ4との隙間の漏れ流れによるキャビテーションの発生も抑制する事も可能となる。   At this time, the driving force of the leakage flow is only the pressure gradient between the blade pressure surface and the suction surface, so the flow velocity distribution of the flow in the gap is the blade tip when viewed from the rotating coordinate system that rotates with the impeller. 109 is 0 on the wall surface and the opposite wall surface, and in the meantime, it is convex in the direction opposite to the impeller rotation direction. Since the magnitude of the velocity shear of the leakage flow is smaller than the case where the wall surface facing the blade tip 109 is a stationary wall, the leakage vortex is weakened. Therefore, it is also possible to suppress the occurrence of cavitation due to the leakage flow in the gap between the blade tip 109 and the liner 4 on the leading edge side of the discharge blade 108 that has not yet been sufficiently pressurized.

加えて本実施例では、キャビテーション性能を向上させると同時に、羽根のチップ全域をシュラウドで覆った完全クローズドタイプの羽根車で問題となる、案内羽根5と吐出側羽根108との動静翼干渉で羽根出口側付近のシュラウドが羽根高さ方向の変形を繰り返す事で生じる干渉変動応力を、緩和する事が出来る。また、完全クローズドタイプの羽根車と比較し、シュラウドに作用する円板摩擦動力を低減出来るため、効率が向上する。更に、シュラウド13のない部分を設けた事で溶接機が入り込む空間を確保出来るため、羽根106、108とハブ12との溶接作業性を向上出来る。これにより、羽根とハブ間の全域で完全溶け込み溶接が可能となり、羽根の強度が増す。   In addition, in this embodiment, the cavitation performance is improved, and at the same time, the blade is caused by the moving and stationary blade interference between the guide blade 5 and the discharge-side blade 108, which is a problem in a completely closed type impeller in which the entire tip of the blade is covered with a shroud. Interference fluctuation stress caused by repeated deformation of the shroud near the exit side in the blade height direction can be reduced. Further, compared with a completely closed type impeller, the disc frictional power acting on the shroud can be reduced, so that the efficiency is improved. Furthermore, since the space where the welding machine enters can be secured by providing the portion without the shroud 13, the welding workability between the blades 106 and 108 and the hub 12 can be improved. Thereby, complete penetration welding is possible in the entire region between the blade and the hub, and the strength of the blade is increased.

また、シュラウド13を円筒部材とし、円筒の外周部には漏れ流れを防止するためケーシングと摺動するインペラリング部132を形成し、内周面側出口に旋盤加工で図6中のシュラウド中間部の曲率を形成した事で、下記効果が生まれる。まず、シュラウド13の中間部の曲面形状の成形性が、プレス加工で成形する場合と比較して向上する。シュラウド中間部の曲率は、羽根車吸込口から吐出側に向けての斜め半径方向への転向が大きい遠心式や斜流式の羽根車では、性能に与える影響が大きいため、曲面形状の精度が要求される。シュラウド中間部の曲面形状は周方向に一様であるため旋盤加工し易く、旋盤加工により曲面形状の精度も出し易くなる。また、単純な円筒部材内周面に旋盤加工で曲率を作成するため、加工も簡便となる。更に、この円筒部材を異なる素材の円筒部材を積層溶接し、外周側のインペラリング部132のみ摺動に適した軟部材を用いた構造とすれば、シュラウド13とインペラリング部132の硬度差を確保出来る。こうする事で、シール部6の寿命やメンテナンス性を向上出来る。   Further, the shroud 13 is a cylindrical member, and an impeller ring portion 132 that slides with the casing is formed on the outer peripheral portion of the cylinder, and an intermediate portion of the shroud in FIG. The following effects are born by forming the curvature of. First, the formability of the curved shape of the intermediate portion of the shroud 13 is improved as compared with the case of forming by press working. The curvature of the middle part of the shroud has a large effect on the performance of centrifugal and mixed flow impellers with large turning in the oblique radial direction from the impeller inlet to the discharge side. Required. Since the curved surface shape of the shroud intermediate portion is uniform in the circumferential direction, lathe machining is easy, and the lathe machining makes it easy to obtain the accuracy of the curved surface shape. Further, since the curvature is created by lathe processing on the simple inner peripheral surface of the cylindrical member, the processing becomes simple. Furthermore, if this cylindrical member is made by laminating and welding cylindrical members made of different materials and using a soft member suitable for sliding only on the impeller ring portion 132 on the outer peripheral side, the hardness difference between the shroud 13 and the impeller ring portion 132 is reduced. It can be secured. By carrying out like this, the lifetime and maintainability of the seal part 6 can be improved.

本発明の実施例1におけるポンプの概略構成を示す断面図。Sectional drawing which shows schematic structure of the pump in Example 1 of this invention. 同じく羽根車羽根を回転軸方向吸込側から見た説明図。Explanatory drawing which looked at the impeller blade from the rotation-axis direction suction side similarly. 同じく羽根角度βと巻角θの説明図。Similarly explanatory drawing of blade angle (beta) and winding angle (theta). 同じく羽根角度βの巻角θに対する分布の不連続を説明する図。Similarly, the figure explaining the discontinuity of distribution with respect to the winding angle θ of the blade angle β. 同じく吸込側羽根数を吐出側羽根数より少なく構成した場合の説明図。Explanatory drawing when the number of suction side blades is similarly configured to be smaller than the number of discharge side blades. 本発明の実施例2におけるポンプの概略構成を示す断面図。Sectional drawing which shows schematic structure of the pump in Example 2 of this invention. 同じく図6のシュラウドの構成例の説明図。Explanatory drawing of the structural example of the shroud of FIG. 6 similarly. 従来のクローズドタイプの羽根車を有するポンプの断面図。Sectional drawing of the pump which has the conventional closed type impeller. 従来のオープンタイプの羽根車を有するポンプの断面図。Sectional drawing of the pump which has the conventional open type impeller. 従来の羽根車の羽根形状を羽根車回転軸方向吸込側から見た図。The figure which looked at the blade | wing shape of the conventional impeller from the impeller rotation-axis direction suction side. 図10の羽根を3つの領域に分類した説明図。Explanatory drawing which classified the blade | wing of FIG. 10 into three area | regions. 図11の羽根を羽根チップ側のある1方向から見た斜視図。The perspective view which looked at the blade | wing of FIG. 11 from one direction with a blade | tip chip | tip side.

符号の説明Explanation of symbols

1…羽根車、10…回転軸、11…羽根、101…先行羽根、102…後行羽根、103…翼間流路、104…羽根前縁側境界線、105…羽根後縁側境界線、106…吸込側羽根、107…中間領域、108…吐出側羽根、109…チップ、110…曲げ線、12…ハブ、13…シュラウド、131…クローズド羽根車の羽根出口付近シュラウド、132…インペラリング部、2…吸込ケーシング、3…吐出ケーシング、31…外周吐出ケーシング、32…内周吐出ケーシング、4…ライナ、5…案内羽根、6…シール部。   DESCRIPTION OF SYMBOLS 1 ... Impeller, 10 ... Rotating shaft, 11 ... Blade, 101 ... Leading blade, 102 ... Trailing blade, 103 ... Flow path between blades, 104 ... Blade leading edge side boundary line, 105 ... Blade trailing edge side boundary line, 106 ... Suction side blade, 107 ... middle region, 108 ... discharge side blade, 109 ... tip, 110 ... bending line, 12 ... hub, 13 ... shroud, 131 ... shroud near blade outlet of closed impeller, 132 ... impeller ring part, 2 DESCRIPTION OF SYMBOLS ... Suction casing, 3 ... Discharge casing, 31 ... Outer periphery discharge casing, 32 ... Inner periphery discharge casing, 4 ... Liner, 5 ... Guide blade, 6 ... Seal part.

Claims (3)

回転軸と、前記回転軸に装着されたハブ及びこのハブの外周に設けられた羽根からなる板金製羽根車と、前記羽根車に流体を導く吸込みケーシングと、前記羽根車から吐出された流体を導く外周吐出ケーシング及び内周吐出ケーシングからなる吐出ケーシングとを備えたポンプにおいて、
前記羽根車に設けられた羽根を吸込み側羽根と吐出側羽根の分割構成とし、前記吸込側羽根は型曲げで成形され、前記吐出側羽根は二次元形状で定義してロールによる線曲げで成形され、前記吸込側羽根と前記吐出側羽根はそれぞれ前記ハブの吸込側と吐出側にタンデムに並べて設置して固定されたことを特徴とする板金製羽根車を有するポンプ。
A rotating shaft, a hub mounted on the rotating shaft, and a sheet metal impeller comprising blades provided on the outer periphery of the hub, a suction casing for guiding fluid to the impeller, and fluid discharged from the impeller In a pump provided with a discharge casing composed of a leading outer discharge casing and an inner discharge casing,
The blade provided in the impeller is divided into a suction side blade and a discharge side blade, the suction side blade is formed by mold bending, and the discharge side blade is defined by a two-dimensional shape and formed by wire bending by a roll. The suction blade and the discharge blade are arranged in tandem and fixed on the suction and discharge sides of the hub, respectively.
請求項1に記載のポンプにおいて、前記2分割した羽根の吸込側羽根のチップ側全体と、前記2分割した羽根の吐出側羽根のチップ側のうち、羽根車入口から出口へ向かう方向の上流側の一部を、略円錐状に拡開された板金製のシュラウドで覆って溶接し、シュラウドのない部分にはライナを配置して羽根翼端との間に狭い間隙を形成して構成したことを特徴とする板金製羽根車を有するポンプ。   2. The pump according to claim 1, an upstream side in a direction from an impeller inlet to an outlet, out of an entire tip side of a suction side blade of the two divided blades and a tip side of a discharge side blade of the two divided blades. A part of this was covered with a sheet metal shroud expanded in a substantially conical shape and welded, and a liner was placed on the part without the shroud to form a narrow gap with the blade blade tip. A pump having an impeller made of sheet metal. 請求項2に記載のポンプにおいて、前記シュラウドは円筒部材であり、この円筒部の外周部に前記ケーシング摺動するインペラリング部を形成したことを特徴とする板金製羽根車を有するポンプ。   The pump according to claim 2, wherein the shroud is a cylindrical member, and an impeller ring portion that slides the casing is formed on an outer peripheral portion of the cylindrical portion.
JP2008194544A 2008-07-29 2008-07-29 Pump with impeller made from sheet metal Pending JP2010031738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194544A JP2010031738A (en) 2008-07-29 2008-07-29 Pump with impeller made from sheet metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194544A JP2010031738A (en) 2008-07-29 2008-07-29 Pump with impeller made from sheet metal

Publications (1)

Publication Number Publication Date
JP2010031738A true JP2010031738A (en) 2010-02-12

Family

ID=41736505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194544A Pending JP2010031738A (en) 2008-07-29 2008-07-29 Pump with impeller made from sheet metal

Country Status (1)

Country Link
JP (1) JP2010031738A (en)

Similar Documents

Publication Publication Date Title
JP5730649B2 (en) Impeller and turbomachine having the same
US9874219B2 (en) Impeller and fluid machine
CN102734205B (en) Journal air bearing for small shaft diameters
WO2011007467A1 (en) Impeller and rotary machine
US10865803B2 (en) Impeller wheel for a centrifugal turbocompressor
KR101252984B1 (en) Flow vector control for high speed centrifugal pumps
US7210908B2 (en) Hydraulic machine rotor
US11739642B2 (en) Manufacturing method of 3-dimensional plastic impeller of centrifugal pump and the impeller
KR20180054661A (en) A high-strength turbomachine impeller, a turbomachine including the impeller, and a manufacturing method
JP5164558B2 (en) Fluid machinery and pumps
JP6589217B2 (en) Rotating machine, method of manufacturing rotating machine
US10443605B2 (en) Impeller, rotary machine, and impeller manufacturing method
US20110064562A1 (en) Turbomolecular Pump
CN103939368B (en) Vacuum pump
EP3669069B1 (en) Hydraulic machine comprising a radial flow runner
EP3574208B1 (en) Radial flow runner for a hydraulic machine
JP2010031738A (en) Pump with impeller made from sheet metal
JP2003090279A (en) Hydraulic rotating machine vane
JP6168705B2 (en) Centrifugal compressor impeller
JP2006022694A (en) Runner for hydraulic machine and hydraulic machine with the runner
KR102276503B1 (en) Centrifugal Compressors and Turbochargers
JP2005023794A (en) Impeller
JP6963471B2 (en) Rotating machine
JP2011137413A (en) Steam turbine
JP2010196680A (en) Double suction pump