JP2010030863A - Method of judgement of deterioration of mold and method and apparatus of molding quartz glass - Google Patents

Method of judgement of deterioration of mold and method and apparatus of molding quartz glass Download PDF

Info

Publication number
JP2010030863A
JP2010030863A JP2008196817A JP2008196817A JP2010030863A JP 2010030863 A JP2010030863 A JP 2010030863A JP 2008196817 A JP2008196817 A JP 2008196817A JP 2008196817 A JP2008196817 A JP 2008196817A JP 2010030863 A JP2010030863 A JP 2010030863A
Authority
JP
Japan
Prior art keywords
mold
quartz glass
molding
deterioration
dynamic friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008196817A
Other languages
Japanese (ja)
Other versions
JP4998403B2 (en
Inventor
Masafumi Mizuguchi
雅史 水口
Naoyasu Uehara
直保 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008196817A priority Critical patent/JP4998403B2/en
Publication of JP2010030863A publication Critical patent/JP2010030863A/en
Application granted granted Critical
Publication of JP4998403B2 publication Critical patent/JP4998403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of judgement of deterioration of a quartz glass mold by which the degree of deterioration of the mold is easily judged. <P>SOLUTION: The invention relates to a method of judgement of deterioration of carbon molds 11 and 13 for compression-molding heated quartz glass. The degree of deterioration of the carbon mold 11 and 13 is judged based on coefficients of dynamic friction of mold faces 11a, 13a, and 14a in contact with the quartz glass of the carbon molding molds 11 and 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、加熱された石英ガラスを加圧成形するカーボン製成形型の劣化判定方法と、この判定方法を利用した石英ガラスの成形方法及び成形装置とに関する。   The present invention relates to a deterioration determination method for a carbon mold for press-molding heated quartz glass, and a method and apparatus for forming quartz glass using this determination method.

従来、リソグラフィ工程で使用されるフォトマスクや露光装置の投影レンズ等、各種の光学部品の素材などとして、合成石英ガラスの成形体が使用されている(例えば、下記特許文献1、2参照)。   Conventionally, synthetic quartz glass molded bodies have been used as materials for various optical components such as a photomask used in a lithography process and a projection lens of an exposure apparatus (see, for example, Patent Documents 1 and 2 below).

合成石英ガラスの成形体は、例えば、合成石英ガラスのインゴットを所望の大きさに切り出し、カーボン製成形型を用いて高温下で加圧成形することで、所望の大きさや形状に成形されている。   The synthetic quartz glass molded body is formed into a desired size and shape by, for example, cutting a synthetic quartz glass ingot into a desired size and press-molding it at a high temperature using a carbon mold. .

カーボン製成形型は、例えばグラファイト等からなり、上型、下型、及び側板型等から成形空間が形成されている。成型時には、合成石英ガラスのインゴットを成形空間に収容して高温に昇温した後、上型と下型との間でインゴットを加圧する。すると、インゴットが型面で摺動しつつ上下方向に押し潰されて側方に広がるように変形し、インゴットの周囲の一部が型面の側面に到達する。更に、上下面間で加圧を継続すると、インゴットが上下方向に更に押し潰されて周囲が側面で摺動して変形し、インゴットの全ての面が型面の上面、下面、及び側面に密着することで成形が終了する。
特開2004−307264号公報 特開2006−1821号公報
The carbon mold is made of, for example, graphite, and a molding space is formed from an upper mold, a lower mold, a side plate mold, and the like. At the time of molding, a synthetic quartz glass ingot is accommodated in a molding space and heated to a high temperature, and then the ingot is pressurized between the upper mold and the lower mold. Then, while the ingot slides on the mold surface, it is crushed in the vertical direction and deformed so as to spread laterally, and a part of the periphery of the ingot reaches the side surface of the mold surface. Furthermore, if pressure is continued between the upper and lower surfaces, the ingot is further crushed in the vertical direction and the periphery slides and deforms on the side surfaces, and all surfaces of the ingot are in close contact with the upper surface, lower surface, and side surfaces of the mold surface. This completes the molding.
JP 2004-307264 A JP 2006-1821 A

しかしがら、フォトマスク等の光学部品は近年大型化しており、それに伴い、合成石英ガラスの成形体も大型化し、成形型の型面への負荷が増大している。そのため、成形型の型面で劣化が生じ易くなっている。成形型の型面が劣化すると、合成石英ガラスが型面で摺動して変形されるため、成形時に合成石英ガラスに割れなどの成形不良を引き起こし易く、多数回使用した成形型ほど成形不良が生じ易かった。ところが、成形型の型面の劣化の程度は把握し難く、劣化した成形型を適切な時期に交換することができなかった。   However, optical parts such as photomasks have become larger in recent years, and accordingly, a synthetic quartz glass molded body has also become larger, increasing the load on the mold surface of the mold. Therefore, deterioration tends to occur on the mold surface of the mold. When the mold surface of the mold deteriorates, the synthetic quartz glass slides and deforms on the mold surface, so that it is easy to cause molding defects such as cracks in the synthetic quartz glass during molding. It was easy to occur. However, it is difficult to grasp the degree of deterioration of the mold surface of the mold, and the deteriorated mold cannot be replaced at an appropriate time.

そこで、この発明は、成形型の劣化程度を容易に判定することが可能な石英ガラスの成形型の劣化判定方法を提供することを課題とし、そのような劣化判定方法を利用することで、割れなどの不良品の発生を抑えて複数の石英ガラスを成形し易い石英ガラスの成形方法と成形装置とを提供することを他の課題とする。   Then, this invention makes it a subject to provide the deterioration determination method of the shaping | molding die of quartz glass which can determine the deterioration degree of a shaping | molding die easily, By utilizing such a deterioration determination method, it is a crack. Another object is to provide a method and apparatus for forming quartz glass that can easily form a plurality of quartz glasses while suppressing the occurrence of defective products such as the above.

カーボン成形型では、加熱された石英ガラスを繰り返し成形すると、カーボン成形型の炭化珪素化が起こり、加熱された石英ガラスと直接接触する型面に炭化珪素の層が生じ、動摩擦係数が増加する。そして、この動摩擦係数の増加が成形時に石英ガラスの成形不良を引き起こす原因となっていた。本発明者らは、このような動摩擦係数の増加により成形不良が生じることに着目し、上記課題を解決するに至った。   In the carbon mold, when the heated quartz glass is repeatedly molded, the carbon mold is siliconized, and a silicon carbide layer is formed on the mold surface that is in direct contact with the heated quartz glass, increasing the dynamic friction coefficient. This increase in the coefficient of dynamic friction has caused a defective molding of quartz glass during molding. The present inventors have paid attention to the fact that defective molding occurs due to such an increase in the dynamic friction coefficient, and have solved the above-mentioned problems.

そこで、この発明の成形型の劣化判定方法は、加熱された石英ガラスを加圧成形するカーボン製成形型の劣化判定方法であり、前記成形型の前記石英ガラスと接する型面の動摩擦係数に基づいて、前記成形型の劣化程度を判定することを特徴とする。   Therefore, the deterioration determination method for a mold according to the present invention is a deterioration determination method for a carbon mold that press-molds heated quartz glass, and is based on the dynamic friction coefficient of the mold surface of the mold that is in contact with the quartz glass. Then, the deterioration degree of the mold is determined.

また、この発明の石英ガラスの成形方法は、加熱された石英ガラスをカーボン製成形型内で加圧成形することを繰り返して、複数の前記石英ガラスを成形する方法において、成形後の前記成形型の前記石英ガラスと接する型面の動摩擦係数が予め定められた限界値以上であるか否かを検出し、前記型面の動摩擦係数が前記限界値未満のとき、検出した前記成形型で次の成形を行い、前記型面の動摩擦係数が前記限界値以上のとき、前記成形型の一部又は全部を交換して次の成形を行うことを特徴とする。   The method for molding quartz glass according to the present invention is the method for molding a plurality of the quartz glasses by repeatedly pressing the heated quartz glass in a carbon mold to form the plurality of quartz glasses. Detecting whether or not the dynamic friction coefficient of the mold surface in contact with the quartz glass is greater than or equal to a predetermined limit value, and when the dynamic friction coefficient of the mold surface is less than the limit value, Molding is performed, and when the dynamic friction coefficient of the mold surface is equal to or greater than the limit value, the next molding is performed by exchanging part or all of the molding die.

更に、この発明の石英ガラスの成形装置は、上面と、下面と、側面とからなる型面を備え、加熱された石英ガラスを前記上面と前記下面との間で加圧することで、前記上面、前記下面、及び前記側面で前記石英ガラスを摺動させて変形させるカーボン製の成形型と、該成形型の何れかの前記型面の動摩擦係数が予め定められた限界値以上であるか否かを検出し、前記限界値以上の場合に、前記成形型を使用不可と判定する劣化判定手段とを備えたことを特徴とする。   Furthermore, the quartz glass molding apparatus of the present invention comprises a mold surface composed of an upper surface, a lower surface, and a side surface, and pressurizes the heated quartz glass between the upper surface and the lower surface, whereby the upper surface, Whether or not the molding die made of carbon that causes the quartz glass to slide and deform on the lower surface and the side surface, and the dynamic friction coefficient of any one of the molding surfaces of the molding die is equal to or greater than a predetermined limit value And a deterioration determining means for determining that the mold is unusable when it is equal to or greater than the limit value.

この発明の劣化判定方法によれば、成形型の石英ガラスと接する型面の動摩擦係数に基づいて成形型の劣化程度を判定するので、加熱された石英ガラスが加圧されて型面に押し付けられたときに、摺動し難い型面を判定することができる。そのため、この判定方法で劣化程度を判定すれば、成形時に石英ガラスに割れなどが生じ易い程度に成形型が劣化しているかどうかを評価することが容易で、劣化した成形型を適切な時期に交換することが可能である。   According to the deterioration determination method of the present invention, the degree of deterioration of the mold is determined based on the dynamic friction coefficient of the mold surface that is in contact with the quartz glass of the mold, so that the heated quartz glass is pressed against the mold surface. The mold surface that is difficult to slide can be determined. Therefore, if the degree of deterioration is determined by this determination method, it is easy to evaluate whether the mold has deteriorated to such an extent that the quartz glass is easily cracked during molding. It is possible to exchange.

この発明の石英ガラスの成形方法によれば、加熱された石英ガラスをカーボン製成形型内で加圧成形することを繰り返して、複数の石英ガラスを成形する際、成形後の成形型の型面の動摩擦係数が予め定められた限界値以上であるか否かを検出し、その結果に基づいて成形型の交換を行うので、複数の石英ガラスを常時良好な摺動性の型面を有する成形型で成形することが可能であり、割れなどの不良品の発生を抑えて複数の石英ガラスを成形し易い成形方法を提供することが可能である。   According to the method for molding quartz glass of the present invention, when molding a plurality of quartz glasses by repeatedly press-molding heated quartz glass in a carbon mold, the mold surface of the molded mold after molding It is detected whether or not the dynamic friction coefficient is equal to or greater than a predetermined limit value, and the mold is replaced based on the result, so that a plurality of quartz glasses are always molded with a mold surface having good slidability. It is possible to provide a molding method which can be molded with a mold and can easily mold a plurality of quartz glasses while suppressing the occurrence of defective products such as cracks.

この発明の石英ガラスの成形装置によれば、加熱された石英ガラスを成形型の型面の上面と下面との間で加圧することで、上面、下面、及び側面で石英ガラスを摺動させて変形させるカーボン製の成形型と、成形型の何れかの型面の動摩擦係数が予め定められた限界値以上であるか否かを検出して、限界値以上の場合に、成形型を使用不可と判定する劣化判定手段とを備えているので、石英ガラスの摺動性が良好な成形型で常時成形することが可能であり、割れなどの不良品の発生を抑えて石英ガラスを成形し易い成形装置を提供することができる。   According to the quartz glass molding apparatus of the present invention, the heated quartz glass is pressed between the upper surface and the lower surface of the mold surface of the mold so that the quartz glass slides on the upper surface, the lower surface, and the side surface. Detects whether the dynamic friction coefficient of the carbon mold to be deformed and any mold surface of the mold is greater than or equal to a predetermined limit value. If the coefficient is greater than the limit value, the mold cannot be used. Is provided with a deterioration judging means for judging that the quartz glass can be always formed with a mold having good slidability of the quartz glass, and it is easy to mold the quartz glass by suppressing the occurrence of defective products such as cracks. A molding apparatus can be provided.

以下、この発明の実施の形態について、図1乃至図3を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

この実施の形態の石英ガラスの成形装置は、図1に示すように、下型11、上型13、及び側板型14とを組み合わせて構成されるグラファイト製のカーボン成形型10と、図2に示すように、カーボン成形型10を型開きした際に各型11、13、14の型面の劣化を判定する劣化判定部30とを備える。   As shown in FIG. 1, the quartz glass molding apparatus according to this embodiment includes a graphite carbon molding die 10 configured by combining a lower die 11, an upper die 13, and a side plate die 14, and FIG. As shown, a deterioration determining unit 30 that determines deterioration of the mold surfaces of the molds 11, 13, and 14 when the carbon mold 10 is opened is provided.

まず、カーボン成形型10は、下型11と、下型11と離間して対向配置され、加圧部12により下型11側へ加圧される上型13と、上型13と下型11との間の間隙の周囲を囲む側板型14とを備え、これらが組み立てられることで下型11の上面11a、上型13の下面13a、及び側板型14の側面14aからなる型面により、石英ガラス20を成形するための成形空間15が形成されている。   First, the carbon molding die 10 is disposed opposite to the lower die 11 so as to be separated from the lower die 11, and the upper die 13 that is pressurized toward the lower die 11 by the pressurizing unit 12, the upper die 13, and the lower die 11. And a side plate mold 14 surrounding the gap between them, and by assembling them, the mold surface comprising the upper surface 11a of the lower mold 11, the lower surface 13a of the upper mold 13, and the side surface 14a of the side plate mold 14 is used to produce quartz. A molding space 15 for molding the glass 20 is formed.

このような構成のカーボン成形型10を用いて、複数の石英ガラスの成形体を成形するには、予め作製された母材を切り出す等により所望の大きさの石英ガラス20を作製し、下型11、上型13及び側板型14により形成された成形空間15内に石英ガラス20を収容して型締めし、加熱及び加圧することで石英ガラス20を徐々に変形して成形する。   In order to form a plurality of quartz glass molded bodies using the carbon molding die 10 having such a configuration, a quartz glass 20 having a desired size is produced by cutting out a preformed preform and the lower mold. 11, the quartz glass 20 is accommodated in the molding space 15 formed by the upper mold 13 and the side plate mold 14, the mold is clamped, and the quartz glass 20 is gradually deformed and molded by heating and pressurizing.

成形される石英ガラス20は、特に限定されるものではないが、この実施の形態では、OH基濃度が800ppm〜1200ppmのものを用いる。   The quartz glass 20 to be molded is not particularly limited, but in this embodiment, one having an OH group concentration of 800 ppm to 1200 ppm is used.

成形時には、例えば、収容空間15に石英ガラス20を収容したカーボン成形型10を図示しないチャンバー内で変形可能な温度まで昇温し、加圧部12により上型13を加圧する。成形時の温度及び圧力は適宜選択可能であるが、この実施の形態では、温度は、例えば1600℃〜1750℃とし、圧力は、例えば5×10Pa〜2.5×10Paとしている。 At the time of molding, for example, the temperature of the carbon molding die 10 containing the quartz glass 20 in the accommodation space 15 is raised to a temperature that can be deformed in a chamber (not shown), and the upper die 13 is pressurized by the pressurizing unit 12. Although the temperature and pressure at the time of molding can be appropriately selected, in this embodiment, the temperature is, for example, 1600 ° C. to 1750 ° C., and the pressure is, for example, 5 × 10 3 Pa to 2.5 × 10 5 Pa. .

成形を開始すると、図2(b)に実線で示すように、成形空間15内に周囲に空隙を有して配置された石英ガラス20を、下型11の上面11aと上型13の下面13aとの間で加圧する。すると、石英ガラス20は、上下方向に押し潰されつつ下面13aと上面11aで摺動して側方に徐々に広がるように変形し、図2(b)に仮想線で示すように、石英ガラス20の周囲の一部が型面の側面に到達する。   When molding is started, as shown by a solid line in FIG. 2 (b), the quartz glass 20 disposed with a void around the molding space 15 is replaced with the upper surface 11a of the lower mold 11 and the lower surface 13a of the upper mold 13. Pressurize between. Then, the quartz glass 20 is deformed so that it is squeezed in the vertical direction and slides on the lower surface 13a and the upper surface 11a so as to gradually spread laterally, and as shown by a virtual line in FIG. A part of the periphery of 20 reaches the side surface of the mold surface.

更に、下面13aと上面11a間で加圧を継続すると、石英ガラス20が上下方向に更に押し潰されつつ下面13aと上面11aで摺動すると共に、周囲が側面14aに押し付けられつつ摺動して変形する。そして、石英ガラス20の全ての面が下面13a、上面11a、及び側面14aに密着することで、成形空間15に対応した形状に成形される。その後、冷却して型開きし、石英ガラス20の成形体を取りだすことで、一つの石英ガラス20の成形を終了する。   Further, if the pressure is continued between the lower surface 13a and the upper surface 11a, the quartz glass 20 slides on the lower surface 13a and the upper surface 11a while being further crushed in the vertical direction, and the periphery is slid while being pressed against the side surface 14a. Deform. And all the surfaces of the quartz glass 20 are shape | molded in the shape corresponding to the shaping | molding space 15 by closely_contact | adhering to the lower surface 13a, the upper surface 11a, and the side surface 14a. Then, it cools and mold-opens and the shaping | molding of one quartz glass 20 is complete | finished by taking out the molded object of the quartz glass 20. FIG.

そして、再度、カーボン成形型10の成形空間15を形成して内部に次の石英ガラス20を収容し、同様に成形することを繰り返すことで、複数の石英ガラス20を成形する。   Then, the quartz space 20 of the carbon mold 10 is formed again, the next quartz glass 20 is accommodated therein, and molding is repeated in the same manner, thereby forming a plurality of quartz glasses 20.

この成形装置では、前の成形が完了し、次の成形が開始される前の時点で、型開きした状態、或いは、必要に応じてカーボン成形型10の一部又は全部分解した状態で、劣化判定部30により型面11a、13a、14aの劣化を判定する。   In this molding apparatus, when the previous molding is completed and before the next molding is started, the mold is opened, or the carbon molding die 10 is partially or entirely disassembled as necessary. The determination unit 30 determines deterioration of the mold surfaces 11a, 13a, and 14a.

劣化判定部30では、カーボン成形型10の石英ガラス20と接する型面11a、13a、14aの動摩擦係数に基づいて、成形型の劣化程度を判定する。ここでは、型面11a、13a、14aの動摩擦係数が予め定められた限界値以上か否かで、カーボン成形型10が成形不良を発生し易い程度に劣化したか否かを判定し、限界値以上のとき、カーボン成形型10を使用不可と判定する。   The deterioration determination unit 30 determines the degree of deterioration of the mold based on the dynamic friction coefficients of the mold surfaces 11 a, 13 a, and 14 a that are in contact with the quartz glass 20 of the carbon mold 10. Here, it is determined whether or not the carbon molding die 10 has deteriorated to the extent that molding defects are likely to occur depending on whether or not the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a are equal to or greater than a predetermined limit value. At the above time, it is determined that the carbon mold 10 is unusable.

カーボン成形型10では、加熱された石英ガラス20と直接接触して加圧することで、次式のようなカーボンのケイ化反応が起こり、型面11a、13a、14aの炭化珪素化が進行する。ここで、式中、Cはカーボン成形型10に由来するカーボンであり、SiOは石英ガラス20からの揮発成分である。   In the carbon molding die 10, by applying direct pressure to the heated quartz glass 20 and applying pressure, a silicidation reaction of carbon as shown in the following formula occurs, and siliconization of the mold surfaces 11 a, 13 a, and 14 a proceeds. Here, in the formula, C is carbon derived from the carbon mold 10, and SiO is a volatile component from the quartz glass 20.

(化1) 2C+SiO → SiC+CO ・・・(1)   (Chemical formula 1) 2C + SiO → SiC + CO (1)

カーボン成形型10は、層状の構造を有するグラファイトを含むために自己潤滑性を有している。ところが、SiCは立体的な結晶構造であり、グラファイト等に比べて自己潤滑性が低い。そのため、型面11a、13a、14aのカーボンが炭化珪素化し、この量が増加することで、型面11a、13a、14aの動摩擦係数が増加することになる。後述する実施例から明らかなように、型面11a、13a、14aの動摩擦係数と炭化珪素濃度とには相関があり、繰り返し石英ガラスを成形することで、動摩擦係数が増加する。そして、この型面11a、13a、14aは、加熱された石英ガラス20が加圧されることで摺動して変形する部位であるため、動摩擦係数が増加すると、成形時に石英ガラス20が摺動し難くなり、その結果、成形時に割れなどの成形不良が生じ易くなる。それ故、型面11a、13a、14aの動摩擦係数が予め定められた限界値以上か否かで、カーボン成形型10の劣化程度が判定できる。   The carbon mold 10 has self-lubricating properties because it includes graphite having a layered structure. However, SiC has a three-dimensional crystal structure and is less self-lubricating than graphite. Therefore, carbon of the mold surfaces 11a, 13a, and 14a becomes silicon carbide, and this amount increases, so that the dynamic friction coefficient of the mold surfaces 11a, 13a, and 14a increases. As will be apparent from the examples described later, there is a correlation between the dynamic friction coefficients of the mold surfaces 11a, 13a and 14a and the silicon carbide concentration, and the dynamic friction coefficient is increased by repeatedly forming quartz glass. Since the mold surfaces 11a, 13a, and 14a are parts that slide and deform when the heated quartz glass 20 is pressurized, if the dynamic friction coefficient increases, the quartz glass 20 slides during molding. As a result, molding defects such as cracks are likely to occur during molding. Therefore, the degree of deterioration of the carbon mold 10 can be determined based on whether or not the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a are equal to or greater than a predetermined limit value.

なお、本発明において成形型の劣化程度を判定するための動摩擦係数としては、型面11a、13a、14aと石英ガラスとの間の動摩擦係数を採用することが適当であるが、石英ガラスの代わりに例えばステンレス球を用い、型面11a、13a、14aとステンレス球との間の動摩擦係数に基づいて劣化程度を判定しても良い。型面11a、13a、14aの炭化珪素化による自己潤滑性の低下は、摩擦対象物が石英ガラスであるかステンレス球であるかによらず同様に生じるため、型面11a、13a、14aの炭化珪素化が進行するとステンレス球との間の動摩擦係数も増大する。したがって予めステンレス球との間の動摩擦係数に関して限界値を定めておけば、カーボン成形型10の劣化程度を判定することができる。   In the present invention, as the dynamic friction coefficient for determining the degree of deterioration of the mold, it is appropriate to employ the dynamic friction coefficient between the mold surfaces 11a, 13a, 14a and the quartz glass. For example, a stainless steel sphere may be used, and the degree of deterioration may be determined based on the dynamic friction coefficient between the mold surfaces 11a, 13a, 14a and the stainless steel sphere. The reduction in self-lubricity due to silicon carbide of the mold surfaces 11a, 13a, and 14a occurs in the same manner regardless of whether the friction object is quartz glass or a stainless sphere. Therefore, the carbonization of the mold surfaces 11a, 13a, and 14a. As siliconization proceeds, the coefficient of dynamic friction with the stainless steel ball also increases. Therefore, if a limit value is determined in advance for the coefficient of dynamic friction with the stainless steel ball, the degree of deterioration of the carbon mold 10 can be determined.

ところで、カーボン成形型10の動摩擦係数を直接に測定することは、例えば、カーボン成形型10を完全に分解し、各種の測定条件を満たすようにした上で測定しなければならないなどの理由で容易でない。特に、大型のカーボン成形型10の場合には直接に動摩擦係数を測定することは困難である。そのため、劣化判定部30では、型面11a、13a、14aの炭化珪素量を測定し、この炭化珪素量に基づいて型面11a、13a、14aの動摩擦係数を推定してもよい。   By the way, it is easy to directly measure the dynamic friction coefficient of the carbon mold 10 because, for example, the carbon mold 10 must be completely disassembled and measured after satisfying various measurement conditions. Not. In particular, in the case of the large carbon mold 10, it is difficult to directly measure the dynamic friction coefficient. Therefore, the deterioration determination unit 30 may measure the silicon carbide amounts of the mold surfaces 11a, 13a, and 14a, and estimate the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a based on the silicon carbide amounts.

更に、型面11a、13a、14aの炭化珪素濃度をSEM−EDX測定や化学分析により測定する場合、測定用サンプルを型面11a、13a、14aの一部を破壊して採取する必要がある。即ち、カーボン成形型10の劣化程度の判定を行うために型面11a、13a、14aに傷等が形成されることになる。そのため、この実施の形態の劣化判定部30では、型面11a、13a、14aの表面の電気抵抗値を測定し、この電気抵抗値に基づいて型面11a、13a、14aの動摩擦係数を推定する。   Furthermore, when measuring the silicon carbide concentration of the mold surfaces 11a, 13a, and 14a by SEM-EDX measurement or chemical analysis, it is necessary to collect a measurement sample by partially destroying the mold surfaces 11a, 13a, and 14a. That is, in order to determine the degree of deterioration of the carbon mold 10, scratches and the like are formed on the mold surfaces 11a, 13a, and 14a. Therefore, the deterioration determination unit 30 of this embodiment measures the electrical resistance values of the surfaces of the mold surfaces 11a, 13a, and 14a, and estimates the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a based on the electrical resistance values. .

ここでは、カーボン成形型10を構成するグラファイト等のカーボンと、炭化珪素とは電気抵抗値が異なるため、型面11a、13a、14aに炭化珪素が増加することにより、型面11a、13a、14aの表面の電気抵抗値が変化する。後述する実施例から明らかなように、型面11a、13a、14aの表面の電気抵抗値と炭化珪素濃度とには相関がある。そのため、この表面の電気抵抗値により炭化珪素濃度が推定でき、動摩擦係数を推定することができる。   Here, carbon such as graphite constituting the carbon mold 10 and silicon carbide have different electric resistance values. Therefore, when silicon carbide increases on the mold surfaces 11a, 13a, and 14a, the mold surfaces 11a, 13a, and 14a. The electrical resistance value of the surface of the surface changes. As is clear from the examples described later, there is a correlation between the electrical resistance values of the surfaces of the mold surfaces 11a, 13a, and 14a and the silicon carbide concentration. Therefore, the silicon carbide concentration can be estimated from the electrical resistance value of the surface, and the dynamic friction coefficient can be estimated.

具体的に、この実施の形態の劣化判定部30の構成は、図2に示すように、カーボン成形型10を型開きした状態、或いは、各型11、13、14を分解した状態で、各型11、13、14の型面11a、13a、14aに接触させる探針31を備えた検出部32と、この検出部32の検出値により型面11a、13a、14aの表面の電気抵抗値を取得し、これに基づいてカーボン成形型10の劣化程度を判定し、その結果を表示したり伝達する制御部33とを備えている。   Specifically, as shown in FIG. 2, the deterioration determining unit 30 according to this embodiment has a configuration in which the carbon molding die 10 is opened or each die 11, 13, 14 is disassembled. The detection part 32 provided with the probe 31 brought into contact with the mold surfaces 11a, 13a, and 14a of the molds 11, 13, and 14 and the electric resistance values of the surfaces of the mold surfaces 11a, 13a, and 14a based on the detection values of the detection unit 32. The control part 33 which acquires, determines the deterioration degree of the carbon shaping | molding die 10 based on this, and displays or transmits the result is provided.

型面11a、13a、14aの表面の電気抵抗値の測定は、動摩擦係数との相関を有する値を測定可能な範囲であれば、適宜な方法で行うことが可能であるが、ここでは、図3に示すような検出部32により、直流4探針法にて行う。各探針31はオスミウム合金製であり、先端半径が200μmであり、4本の探針は1mmの間隔で直線上に配列されている。それぞれの探針31は保持部32aにバネ常数200g/mmの図示しないスプリングにより進退可能に保持されており、各型面11a、13a、14aに対する接触圧が一定に保たれるように構成されている。   The measurement of the electrical resistance values on the surfaces of the mold surfaces 11a, 13a, and 14a can be performed by an appropriate method as long as the value having a correlation with the dynamic friction coefficient can be measured. The detection unit 32 as shown in FIG. Each probe 31 is made of an osmium alloy, has a tip radius of 200 μm, and four probes are arranged on a straight line at intervals of 1 mm. Each probe 31 is held by a holding portion 32a by a spring (not shown) having a spring constant of 200 g / mm so as to be able to advance and retreat, and the contact pressure with respect to each mold surface 11a, 13a, 14a is kept constant. Yes.

そして、測定を実施するには、探針4本を備えた検出部32を各型面11a、13a、14aの表面に接触させ、検出部32全体に200gの荷重を加えた状態で、外側の探針31間に100mAの測定電流を流し、内側の探針31間の電位差Vを測定し、R=V/Iから型面11a、13a、14aの表面の電気抵抗値を測定する。   In order to perform the measurement, the detection unit 32 including four probes is brought into contact with the surfaces of the mold surfaces 11a, 13a, and 14a, and a load of 200 g is applied to the entire detection unit 32, and the outer side A measurement current of 100 mA is passed between the probes 31, the potential difference V between the inner probes 31 is measured, and the electrical resistance values of the mold surfaces 11a, 13a, and 14a are measured from R = V / I.

なお、この実施の形態の劣化判定部30では、各型11、13、14のうち、下型11又は上型13の一方だけの表面の電気抵抗値を測定し、この値に基づいてカーボン成形型10の劣化程度を判定してもよい。下型11又は上型13は側板型14に比べてより多く加熱された石英ガラス20と接触して、より速く劣化され易いためである。   In the degradation determination unit 30 of this embodiment, the electrical resistance value of the surface of only one of the lower mold 11 or the upper mold 13 among the molds 11, 13, and 14 is measured, and carbon molding is performed based on this value. The degree of deterioration of the mold 10 may be determined. This is because the lower mold 11 or the upper mold 13 comes into contact with the heated quartz glass 20 more than the side plate mold 14 and is easily deteriorated faster.

劣化判定部30の制御部33では、このようにして測定された型面11a、13a、14aの表面の電気抵抗値に基づいて型面11a、13a、14aの動摩擦係数を推定し、この動摩擦係数が予め設定されている限界値未満のとき、検出したカーボン成形型10を用いて次の石英ガラス20の成形を行うことを許容し、一方、型面11a、13a、14aの動摩擦係数がその限界値以上のときには、検出したカーボン成形型10を使用不可と判定し、カーボン成形型10の一部又は全部を交換して次の成形を行うための表示や信号を伝達する。   The control unit 33 of the deterioration determining unit 30 estimates the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a based on the electrical resistance values of the surfaces of the mold surfaces 11a, 13a, and 14a thus measured, and this dynamic friction coefficient. Is less than a preset limit value, it is allowed to form the next quartz glass 20 using the detected carbon mold 10, while the dynamic friction coefficients of the mold surfaces 11a, 13a, 14a are the limit. When the value is equal to or greater than the value, it is determined that the detected carbon molding die 10 cannot be used, and a display or a signal for performing the next molding is exchanged by exchanging part or all of the carbon molding die 10.

この動摩擦係数の限界値は、その値以上のカーボン成形型10では成形時に石英ガラス20の割れが生じ易くなるという値である。そのため、この限界値を動摩擦係数として設定される必要はなく、そのような動摩擦係数の限界値に相当する量で設定することも可能であり、例えば、動摩擦係数の限界値に対応する炭化珪素量として設定されていてもよく、動摩擦係数の限界値に対応する型面11a、13a、14aの表面の電気抵抗値として設定されていてもよい。   The limit value of this dynamic friction coefficient is a value that the quartz glass 20 is likely to be cracked during molding in the carbon mold 10 that is equal to or greater than that value. Therefore, it is not necessary to set this limit value as a dynamic friction coefficient, and it is also possible to set the limit value in an amount corresponding to the limit value of such a dynamic friction coefficient. For example, the amount of silicon carbide corresponding to the limit value of the dynamic friction coefficient Or may be set as the electrical resistance value of the surfaces of the mold surfaces 11a, 13a, 14a corresponding to the limit value of the dynamic friction coefficient.

炭化珪素量や表面の電気抵抗値は動摩擦係数に相関を有するため、これらの限界値に到達することで、動摩擦係数の限界値に到達することが推定できるからである。例えば、前述のように石英ガラスを成形する場合には、型面11a、13a、14aにおける炭化珪素量が15原子%未満としてもよく、また、型面11a、13a、14aの表面の電気抵抗値が2.44mΩとしてもよい。   This is because the amount of silicon carbide and the electrical resistance value of the surface have a correlation with the dynamic friction coefficient, and it can be estimated that reaching the limit value of the dynamic friction coefficient by reaching these limit values. For example, when quartz glass is molded as described above, the amount of silicon carbide in the mold surfaces 11a, 13a, and 14a may be less than 15 atomic%, and the electrical resistance value of the surfaces of the mold surfaces 11a, 13a, and 14a. May be 2.44 mΩ.

なお本発明において炭化珪素の原子%とはSiC/(Si+C)×100を意味し、その値は珪素の原子%に等しい。これは型面に存在する珪素が全て炭化珪素となっているためである。   In the present invention, the atomic% of silicon carbide means SiC / (Si + C) × 100, and the value is equal to the atomic% of silicon. This is because all silicon present on the mold surface is silicon carbide.

この実施の形態では、限界値として電気抵抗値が設定されており、劣化判定部30の検出部32により検出された電気抵抗値が予め設定されている電気抵抗値の限界値に達したとき、動摩擦係数が成形時に石英ガラス20に割れなどが生じ易い程度となり、成形型が劣化しているとして、成形型を使用不可と判定している。そして、そのような限界値に到達することで、カーボン成形型10の交換を実施し、次の石英ガラス20の成形に供する。   In this embodiment, the electrical resistance value is set as the limit value, and when the electrical resistance value detected by the detection unit 32 of the deterioration determination unit 30 reaches the limit value of the preset electrical resistance value, The dynamic friction coefficient is such that the quartz glass 20 is easily cracked at the time of molding, and it is determined that the mold is unusable because the mold is deteriorated. Then, by reaching such a limit value, the carbon forming die 10 is exchanged and used for the next forming of the quartz glass 20.

以上のようにして石英ガラス20のカーボン成形型10の劣化を判定すれば、カーボン成形型10の石英ガラス20と接する型面11a、13a、14aの動摩擦係数に基づいてカーボン成形型10の劣化程度を判定するので、加熱された石英ガラス20が加圧されて型面11a、13a、14aに押し付けられた際、摺動し難くなった型面11a、13a、14aを判定することができる。そのため、この判定方法で劣化程度を判定すれば、成形時に石英ガラス20に割れなどが生じ易い程度にカーボン成形型10が劣化しているかどうかを評価することが容易で、劣化したカーボン成形型10を適切な時期に交換することが可能である。   If the deterioration of the carbon mold 10 of the quartz glass 20 is determined as described above, the degree of deterioration of the carbon mold 10 based on the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a in contact with the quartz glass 20 of the carbon mold 10 is determined. Therefore, when the heated quartz glass 20 is pressed and pressed against the mold surfaces 11a, 13a, and 14a, the mold surfaces 11a, 13a, and 14a that are difficult to slide can be determined. Therefore, if the degree of deterioration is determined by this determination method, it is easy to evaluate whether or not the carbon mold 10 is deteriorated to such an extent that the quartz glass 20 is easily cracked during molding. Can be exchanged at an appropriate time.

しかも、このようにカーボン成形型10の劣化を簡便に評価することで、石英ガラス20を成形する際に成形不良を生じ易いカーボン成形型10の一部又は全部の使用を予め回避することができるため、石英ガラス20の成形体の成形不良を未然に回避することが可能で、歩留まりも向上できる。   In addition, by simply evaluating the deterioration of the carbon mold 10 as described above, it is possible to avoid in advance the use of part or all of the carbon mold 10 that is likely to cause molding defects when the quartz glass 20 is molded. Therefore, it is possible to avoid molding defects of the molded body of the quartz glass 20 and to improve the yield.

また、このような判定方法を利用した成形方法によれば、加熱された石英ガラス20をカーボン成形型10内で加圧成形することを繰り返して、複数の石英ガラス20を成形する際、成形後のカーボン成形型10の型面11a、13a、14aの動摩擦係数が予め定められた限界値以上であるか否かを検出し、その結果に基づいてカーボン成形型10の一部又は全部を交換するので、複数の石英ガラス20を常時良好な摺動性の型面11a、13a、14aを有するカーボン成形型10で成形することが可能であり、割れなどの不良品の発生を抑えて複数の石英ガラス20を成形し易い。   Further, according to the molding method using such a determination method, when the quartz glass 20 is molded by repeating the pressure molding of the heated quartz glass 20 in the carbon mold 10, It is detected whether or not the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a of the carbon mold 10 are equal to or greater than a predetermined limit value, and a part or all of the carbon mold 10 is replaced based on the result. Therefore, it is possible to form the plurality of quartz glasses 20 with the carbon mold 10 having the mold surfaces 11a, 13a, and 14a having good sliding properties at all times, and suppress the generation of defective products such as cracks. It is easy to mold the glass 20.

更に、このような判定方法を利用した成形装置によれば、加熱された石英ガラス20をカーボン成形型10の型面11a、13a、14aの下面13aと上面11aとの間で加圧することで、下面13a、上面11a、及び側面14aで石英ガラス20を摺動させて変形させるカーボン成形型10と、カーボン成形型10の何れかの型面11a、13a、14aの動摩擦係数が予め定められた限界値以上であるか否かを検出して、限界値以上の場合に、カーボン成形型10を使用不可と判定する劣化判定部30とを備えているので、石英ガラス20の摺動性が良好のカーボン成形型10で常時成形することが可能であり、割れなどの不良品の発生を抑えて石英ガラス20を成形し易い成形装置を提供することができる。   Furthermore, according to the molding apparatus using such a determination method, by pressing the heated quartz glass 20 between the lower surface 13a and the upper surface 11a of the mold surfaces 11a, 13a, and 14a of the carbon molding die 10, The carbon molding die 10 in which the quartz glass 20 is slid and deformed on the lower surface 13a, the upper surface 11a, and the side surface 14a, and the dynamic friction coefficients of any of the mold surfaces 11a, 13a, 14a of the carbon molding die 10 are predetermined limits. Since it is provided with the deterioration determination unit 30 that detects whether or not the value is equal to or greater than the value and determines that the carbon mold 10 is unusable when the value is equal to or greater than the limit value, the slidability of the quartz glass 20 is good It is possible to always mold with the carbon molding die 10, and it is possible to provide a molding apparatus that can easily mold the quartz glass 20 while suppressing generation of defective products such as cracks.

なお、上記実施の形態は、この発明の範囲内において適宜変更可能である。例えば、上記では、劣化判定部30では、型面11a、13a、14aの表面の電気抵抗値を測定し、この電気抵抗値に基づいて、型面11a、13a、14aの劣化程度を判定したが、型面11a、13a、14aの動摩擦係数が測定可能であれば、直接的に動摩擦係数を測定して劣化程度を判定することは可能である。また、型面11a、13a、14aを破壊することなく炭化珪素量が測定可能であれば、或いは、目的の石英ガラスの成形体に使用時に利用されない部位等が存在するのであれば、型面11a、13a、14aの炭化珪素量を測定して劣化程度を判定することも可能である。これらの場合には、何れも型面の表面の電気抵抗値を測定することなく、劣化程度をの判定を行うことができる。   The above embodiment can be appropriately changed within the scope of the present invention. For example, in the above description, the degradation determination unit 30 measures the electrical resistance values of the surfaces of the mold surfaces 11a, 13a, and 14a, and determines the degree of degradation of the mold surfaces 11a, 13a, and 14a based on the electrical resistance values. If the dynamic friction coefficients of the mold surfaces 11a, 13a, and 14a can be measured, the degree of deterioration can be determined by directly measuring the dynamic friction coefficient. Further, if the silicon carbide amount can be measured without destroying the mold surfaces 11a, 13a, and 14a, or if there is a portion that is not used at the time of use in the target quartz glass molded body, the mold surface 11a. It is also possible to determine the degree of deterioration by measuring the amounts of silicon carbide of 13a, 14a. In any of these cases, the degree of deterioration can be determined without measuring the electrical resistance value of the surface of the mold surface.

また、上記では、カーボン成形型10の交換を実施する際、全ての下型11、上型13、及び側板型14の全てのカーボン成形型10を交換する例について説明したが、一部を交換するようにしてもよい。   Further, in the above description, when the carbon mold 10 is replaced, an example in which all the carbon molds 10 of the lower mold 11, the upper mold 13, and the side plate mold 14 are replaced has been described. You may make it do.

更に、上記では、一つの成形体の成形が終了する毎に劣化判定部30により劣化を判定したが、複数個の成形体毎に定期的に行うことも可能である。   Furthermore, in the above description, degradation is determined by the degradation determination unit 30 every time molding of one molded body is completed, but it is also possible to periodically perform degradation for each of a plurality of molded bodies.

以下、実施例について説明する。   Examples will be described below.

実施例1Example 1

[動摩擦係数]   [Dynamic friction coefficient]

平面視四角形の成形空間15を有するグラファイト製のカーボン成形型10を用い、石英ガラス20を加熱加圧して成形体を繰り返し作製した。   Using a carbon molding die 10 made of graphite having a square shaped molding space 15 in plan view, quartz glass 20 was heated and pressed to repeatedly produce a compact.

得られた成形体の大きさは約1m四方の平板であり、成形空間に収容した石英ガラス20の大きさは約500mmφ×約200mmの円柱状で、OH基濃度が約1000ppmであった。   The size of the obtained compact was a flat plate of about 1 m square, the size of the quartz glass 20 accommodated in the molding space was a columnar shape of about 500 mmφ × about 200 mm, and the OH group concentration was about 1000 ppm.

また、成形時の温度は1620℃とし、圧力は1.2×10Paとした。 The molding temperature was 1620 ° C. and the pressure was 1.2 × 10 5 Pa.

このような条件で複数の石英ガラス20の成形体を割れが生じるまで繰り返し、割れが生じたカーボン成形型10を得た。   Under such conditions, the molded body of the plurality of quartz glasses 20 was repeated until cracking occurred, and the carbon molding die 10 in which cracking occurred was obtained.

割れが生じたカーボン成形型10について、下型11の型面の動摩擦係数を測定した。動摩擦係数の測定には新東科学(株)製HeidonTYPE14DR型測定器を使用し、ステンレスボールを用いるボールオンディスク法により測定した。測定条件は荷重200g、移動速度600mm/min、移動速度2cmとし、各試料について3回測定を行なってその平均値を求めた。その結果、割れが生じたカーボン成形型の動摩擦係数の平均は1.6であった。そのため、動摩擦係数が1.6以上であると石英ガラス20の成形体に割れが生じ易いことが分かった。   The dynamic friction coefficient of the mold surface of the lower mold 11 was measured for the carbon mold 10 in which cracking occurred. The dynamic friction coefficient was measured by using a Heidon TYPE 14DR type measuring instrument manufactured by Shinto Kagaku Co., Ltd., by a ball-on-disk method using a stainless ball. The measurement conditions were a load of 200 g, a moving speed of 600 mm / min, and a moving speed of 2 cm, and each sample was measured three times to obtain an average value. As a result, the average dynamic friction coefficient of the carbon mold in which cracks occurred was 1.6. Therefore, it has been found that if the dynamic friction coefficient is 1.6 or more, the molded body of the quartz glass 20 is likely to be cracked.

[炭化珪素濃度]   [Silicon carbide concentration]

割れを生じたカーボン成形型10の型面の炭化珪素濃度を成形初期の段階から複数回測定し、動摩擦係数との相関を調べた。結果を図4に示す。   The silicon carbide concentration of the mold surface of the carbon mold 10 in which cracking occurred was measured a plurality of times from the initial stage of molding, and the correlation with the dynamic friction coefficient was examined. The results are shown in FIG.

この結果から明らかなように、炭化珪素濃度と動摩擦係数とは相関があり、動摩擦係数1.6に対応する炭化珪素濃度は23.6原子%であった。そのため、炭化珪素濃度が23.6原子%以上であると石英ガラス20の成形体に割れが生じ易いことが分かった。   As is clear from this result, the silicon carbide concentration and the dynamic friction coefficient are correlated, and the silicon carbide concentration corresponding to the dynamic friction coefficient 1.6 was 23.6 atomic%. For this reason, it has been found that when the silicon carbide concentration is 23.6 atomic% or more, cracks are likely to occur in the molded body of the quartz glass 20.

[電気抵抗値]   [Electric resistance value]

割れを生じたカーボン成形型10の型面を図3に示す直流4探針法にて成形初期の段階から複数回測定し、炭化珪素濃度との相関を調べた。結果を図5に示す。   The mold surface of the carbon molding die 10 in which cracking occurred was measured a plurality of times from the initial stage of molding by the direct current four-probe method shown in FIG. 3, and the correlation with the silicon carbide concentration was examined. The results are shown in FIG.

この結果から明らかなように、カーボン成形型10の型面の電気抵抗値と炭化珪素濃度とは相関があり、炭化珪素濃度23.6%に対応する電気抵抗値は2.44mΩであった。そのため、電気抵抗値が2.44mΩ以上だと石英ガラス20の成形体に割れが生じ易いことが分かった。   As is apparent from this result, the electrical resistance value of the mold surface of the carbon mold 10 and the silicon carbide concentration have a correlation, and the electrical resistance value corresponding to the silicon carbide concentration of 23.6% was 2.44 mΩ. Therefore, it was found that when the electric resistance value is 2.44 mΩ or more, the molded body of the quartz glass 20 is easily cracked.

実施例2Example 2

同じカーボン成形型10を繰り返し使用して複数の石英ガラス20の成形体を成形し、成形回数が5回、10回、20回、30回の時点で型面表面の電気抵抗値を測定した。結果を図6に示す。   The same carbon molding die 10 was repeatedly used to mold a plurality of quartz glass 20 molded bodies, and the electrical resistance value of the mold surface was measured when the number of moldings was 5, 10, 20, and 30 times. The results are shown in FIG.

この成形では、成形回数が20回で成形体に割れを生じた。この20回のときに測定された電気抵抗値は2.44mΩであった。従って、電気抵抗値2.44mΩ以上では石英ガラス20の成形体に割れが生じることが確認できた。   In this molding, the molded body was cracked at a molding frequency of 20 times. The electrical resistance value measured at the 20th time was 2.44 mΩ. Therefore, it was confirmed that cracks occurred in the molded body of the quartz glass 20 when the electrical resistance value was 2.44 mΩ or more.

この発明の実施の形態のカーボン成形型の一部を示し、(a)は縦断面概略図、(b)は横断面概略図である。A part of carbon molding die of an embodiment of this invention is shown, (a) is a longitudinal section schematic diagram, (b) is a transverse section schematic diagram. この発明の実施の形態の劣化判定部を示す概略図である。It is the schematic which shows the deterioration determination part of embodiment of this invention. この発明の実施の形態の劣化判定部の検出部を示す概略図である。It is the schematic which shows the detection part of the deterioration determination part of embodiment of this invention. 実施例1の結果を示すグラフであり、動摩擦係数と炭化珪素濃度との関係を示す。It is a graph which shows the result of Example 1, and shows the relationship between a dynamic friction coefficient and silicon carbide concentration. 実施例1の結果を示すグラフであり、炭化珪素濃度と電気抵抗値の関係を示す。It is a graph which shows the result of Example 1, and shows the relationship between a silicon carbide density | concentration and an electrical resistance value. 実施例2の結果を示すグラフであり、成形回数と電気抵抗値との関係を示す。It is a graph which shows the result of Example 2, and shows the relationship between the frequency | count of shaping | molding and an electrical resistance value.

符号の説明Explanation of symbols

10 カーボン成形型
11 下型
11a 上面
13 上型
13a 下面
14 側板型
14a 側面
15 成形空間
20 石英ガラス
30 劣化判定部
DESCRIPTION OF SYMBOLS 10 Carbon shaping | molding die 11 Lower die 11a Upper surface 13 Upper die 13a Lower surface 14 Side plate type 14a Side surface 15 Molding space 20 Quartz glass 30 Degradation judgment part

Claims (7)

加熱された石英ガラスを加圧成形するカーボン製成形型の劣化判定方法であり、
前記成形型の前記石英ガラスと接する型面の動摩擦係数に基づいて、前記成形型の劣化程度を判定することを特徴とする成形型の劣化判定方法。
It is a method for judging deterioration of a carbon mold for press-molding heated quartz glass,
A method for determining a deterioration of a molding die, comprising: determining a degree of deterioration of the molding die based on a dynamic friction coefficient of a die surface that is in contact with the quartz glass of the molding die.
前記型面の動摩擦係数が予め定められた限界値以上の場合に、前記成形型を使用不可と判定することを特徴とする請求項1に記載の成形型の劣化判定方法。   2. The method for determining deterioration of a mold according to claim 1, wherein when the dynamic friction coefficient of the mold surface is equal to or greater than a predetermined limit value, the mold is determined to be unusable. 前記型面は、上面と、下面と、側面とを備え、前記成形型は、前記石英ガラスを前記上面と前記下面との間で加圧することで、該石英ガラスを前記上面、前記下面、及び前記側面で摺動させて変形させるものであることを特徴とする請求項1又は2に記載の成形型の劣化判定方法。   The mold surface includes an upper surface, a lower surface, and a side surface, and the molding die presses the quartz glass between the upper surface and the lower surface, whereby the quartz glass is pressed against the upper surface, the lower surface, and The method for determining deterioration of a mold according to claim 1 or 2, wherein the mold is slid and deformed on the side surface. 前記型面の炭化珪素量を測定し、前記炭化珪素量に基づいて前記型面の動摩擦係数を推定することを特徴とする請求項1乃至3の何れか一つに記載の成形型の劣化判定方法。   The deterioration determination of the mold according to any one of claims 1 to 3, wherein an amount of silicon carbide on the mold surface is measured, and a dynamic friction coefficient of the mold surface is estimated based on the amount of silicon carbide. Method. 前記型面の表面の電気抵抗値を測定し、前記電気抵抗値に基づいて前記型面の動摩擦係数を推定することを特徴とする請求項1乃至3の何れか一つに記載の成形型の劣化判定方法。   4. The molding die according to claim 1, wherein an electrical resistance value of the surface of the mold surface is measured, and a dynamic friction coefficient of the mold surface is estimated based on the electrical resistance value. 5. Degradation judgment method. 加熱された石英ガラスをカーボン製成形型内で加圧成形することを繰り返して、複数の前記石英ガラスを成形する方法において、
成形後の前記成形型の前記石英ガラスと接する型面の動摩擦係数が予め定められた限界値以上であるか否かを検出し、
前記型面の動摩擦係数が前記限界値未満のとき、検出した前記成形型で次の成形を行い、
前記型面の動摩擦係数が前記限界値以上のとき、前記成形型の一部又は全部を交換して次の成形を行うことを特徴とする複数の石英ガラスの成形方法。
In a method of molding a plurality of quartz glasses by repeatedly pressing the heated quartz glass in a carbon mold,
Detecting whether or not the dynamic friction coefficient of the mold surface in contact with the quartz glass of the mold after molding is greater than or equal to a predetermined limit value,
When the dynamic friction coefficient of the mold surface is less than the limit value, perform the next molding with the detected mold,
A method for molding a plurality of quartz glasses, wherein when the dynamic friction coefficient of the mold surface is equal to or greater than the limit value, a part or all of the mold is replaced and the next molding is performed.
上面と、下面と、側面とからなる型面を備え、加熱された石英ガラスを前記上面と前記下面との間で加圧することで、前記上面、前記下面、及び前記側面で前記石英ガラスを摺動させて変形させるカーボン製の成形型と、
該成形型の何れかの前記型面の動摩擦係数が予め定められた限界値未満であるか否かを検出し、前記限界値以上の場合に、前記成形型を使用不可と判定する劣化判定手段とを備えたことを特徴とする石英ガラスの成形装置。
A mold surface comprising an upper surface, a lower surface, and a side surface is provided, and heated quartz glass is pressed between the upper surface and the lower surface to slide the quartz glass on the upper surface, the lower surface, and the side surface. A carbon mold that is moved and deformed;
Deterioration determining means that detects whether or not the dynamic friction coefficient of any of the mold surfaces of the mold is less than a predetermined limit value, and determines that the mold is unusable when the coefficient is equal to or greater than the limit value. An apparatus for molding quartz glass, comprising:
JP2008196817A 2008-07-30 2008-07-30 Deterioration judgment method of molding die, quartz glass molding method and molding apparatus Expired - Fee Related JP4998403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196817A JP4998403B2 (en) 2008-07-30 2008-07-30 Deterioration judgment method of molding die, quartz glass molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196817A JP4998403B2 (en) 2008-07-30 2008-07-30 Deterioration judgment method of molding die, quartz glass molding method and molding apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012113634A Division JP5472374B2 (en) 2012-05-17 2012-05-17 Deterioration judgment method of molding die, quartz glass molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2010030863A true JP2010030863A (en) 2010-02-12
JP4998403B2 JP4998403B2 (en) 2012-08-15

Family

ID=41735832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196817A Expired - Fee Related JP4998403B2 (en) 2008-07-30 2008-07-30 Deterioration judgment method of molding die, quartz glass molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP4998403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148976A (en) * 2012-05-17 2012-08-09 Nikon Corp Method for determining if shaping die is deteriorated or not, and method and apparatus for shaping quartz glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199036A (en) * 1989-01-30 1990-08-07 Hoya Corp Production of mold for glass press molding
JPH05294643A (en) * 1992-04-15 1993-11-09 Kyocera Corp Molding device for glass optical element
JPH11217229A (en) * 1998-01-30 1999-08-10 Shinetsu Quartz Prod Co Ltd Production of quartz glass article
JP2004307264A (en) * 2003-04-07 2004-11-04 Nikon Corp Method of molding quartz glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199036A (en) * 1989-01-30 1990-08-07 Hoya Corp Production of mold for glass press molding
JPH05294643A (en) * 1992-04-15 1993-11-09 Kyocera Corp Molding device for glass optical element
JPH11217229A (en) * 1998-01-30 1999-08-10 Shinetsu Quartz Prod Co Ltd Production of quartz glass article
JP2004307264A (en) * 2003-04-07 2004-11-04 Nikon Corp Method of molding quartz glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148976A (en) * 2012-05-17 2012-08-09 Nikon Corp Method for determining if shaping die is deteriorated or not, and method and apparatus for shaping quartz glass

Also Published As

Publication number Publication date
JP4998403B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
Zhai et al. Precursor evolution and stress corrosion cracking initiation of cold-worked alloy 690 in simulated pressurized water reactor primary water
Song et al. Residual stress measurement in thin films at sub-micron scale using Focused Ion Beam milling and imaging
CN107709969B (en) Method and instrument for testing residual stress of coating
Beretta et al. Extreme value models for the assessment of steels containing multiple types of inclusion
JP5450903B1 (en) Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method
CN102323288B (en) Measurement method of phase transition point of zirconium alloy
JP6673112B2 (en) Method and system for estimating fracture toughness value of sinter
Dukwen et al. Tribological wear analysis and numerical lifetime prediction of glassy carbon tools in fused silica molding
Zambrano et al. Fracture toughness and growth of short and long fatigue cracks in ductile cast iron EN‐GJS‐400‐18‐LT
JP4998403B2 (en) Deterioration judgment method of molding die, quartz glass molding method and molding apparatus
Bernstein et al. Predicting the lifetime of fluorosilicone o-rings
JP5294938B2 (en) Film thickness measuring method and glass optical element manufacturing method
Monclús et al. Tip shape effect on hot nanoindentation hardness and modulus measurements
CN108982176B (en) Method for processing flexible glass plate and method for measuring thermal expansion coefficient
JP5472374B2 (en) Deterioration judgment method of molding die, quartz glass molding method and molding apparatus
CN110749617B (en) Method for measuring practical softening point temperature of glass
CN102162720B (en) Method for measuring artificial U-shaped flaw on standard sample tube by applying polycondensation silicon rubber for secondary impression
Klocke et al. Analysis of wear of fused silica moulding using glassy carbon moulds
KR102190503B1 (en) Method of evaluating performance of work roll
Wang Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel
Ito et al. Experimental testing and FEM simulation for thermal imprinting of micro/nano glass-optical devices
TW200925600A (en) Method for determining the thermal shock robustness and material strength of brittle failure materials
JP4916746B2 (en) Evaluation method of strain in local region of formed ferritic steel sheet
Li et al. Study on the Ductile removal behavior of K9 glass with nano-scratch
Sonnenfeld et al. Mechanical strength of microstructured optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110505

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees