JP2010027634A - Oil-filled electric apparatus, and method for preventing deposition of copper sulfide - Google Patents

Oil-filled electric apparatus, and method for preventing deposition of copper sulfide Download PDF

Info

Publication number
JP2010027634A
JP2010027634A JP2008183425A JP2008183425A JP2010027634A JP 2010027634 A JP2010027634 A JP 2010027634A JP 2008183425 A JP2008183425 A JP 2008183425A JP 2008183425 A JP2008183425 A JP 2008183425A JP 2010027634 A JP2010027634 A JP 2010027634A
Authority
JP
Japan
Prior art keywords
oil
copper
oxygen
insulating
insulating paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008183425A
Other languages
Japanese (ja)
Inventor
Hisakatsu Kawarai
久勝 瓦井
Yoji Fujita
洋司 藤田
Junji Tanimura
純二 谷村
Satoru Toyama
悟 外山
Takeshi Amimoto
剛 網本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008183425A priority Critical patent/JP2010027634A/en
Publication of JP2010027634A publication Critical patent/JP2010027634A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing deposition of copper sulfide onto insulating paper by a simple method without pretreatment of insulating oil (removal of a copper sulfide forming sulfur component), addition of a metal passivator and the like and a transformer configured almost hermetically, and to provide an oil-filled electric apparatus. <P>SOLUTION: The invention provides the oil-filled electric apparatus in which a copper component and the insulating paper are dipped in the insulating oil in a container. The apparatus is characterized by including an oxygen removing means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、油入変圧器など、複数の銅部品とその間に挟まれた絶縁紙が電気絶縁油中に浸漬された油入電気機器において、銅部品が絶縁油中に含まれる硫黄成分(硫化銅生成原因物質)と反応し、絶縁紙に硫化銅が析出するのを防止する方法に関する。   The present invention relates to an oil-filled electrical device such as an oil-filled transformer in which a plurality of copper components and insulating paper sandwiched between them are immersed in the electrical insulating oil. The present invention relates to a method for preventing copper sulfide from precipitating on insulating paper by reacting with a substance that produces copper.

変圧器など、複数の銅部品とその間に挟まれた絶縁体が電気絶縁油中に浸漬された電気機器において、機器中の銅部品と電気絶縁油中の硫黄成分(硫化銅生成原因物質)が反応し、絶縁紙の表面に硫化銅が析出して絶縁紙の絶縁性能が損なわれる現象が知られている。   In electrical equipment where transformers and other copper parts and insulators sandwiched between them are immersed in electrical insulation oil, the copper components in the equipment and the sulfur component in the electrical insulation oil (causative substances for copper sulfide) A phenomenon is known in which copper sulfide is deposited on the surface of insulating paper and the insulating performance of the insulating paper is impaired.

しかしながら、硫化銅の生成メカニズムの詳細はわかっていない。このため、現状では、硫化銅の析出を防止するために、絶縁油中の硫黄成分の除去技術開発やmetal passivatorの添加の試みがなされている。   However, details of the copper sulfide formation mechanism are not known. For this reason, at present, in order to prevent the precipitation of copper sulfide, attempts have been made to develop a technology for removing sulfur components in the insulating oil and to add a metal passivator.

特許文献1には、絶縁油中の硫黄成分の除去技術が開示されている。特許文献1に開示された硫黄成分の除去装置を図6に示す。図6において、導入配管7から容器1内に導入された絶縁油3は、容器1内で銅粉と接触する。9は絶縁油3をかき混ぜて銅粉4の沈降を防止する攪拌装置であり、10A、10Bは容器1の外側下方に設けられ、絶縁油3を過熱するためのヒータである。また、11は容器1と図示しない油入電気機器本体とを連結し、硫黄化合物の除去が完了した絶縁油を油入電気機器本体に注入する注入配管であり、該注入配管11は銅を捕捉するための吸着剤111と銅粉が油入電気機器本体に入ることを防止するためのフィルタ112を有している。   Patent Document 1 discloses a technology for removing sulfur components in insulating oil. The sulfur component removal apparatus disclosed in Patent Document 1 is shown in FIG. In FIG. 6, the insulating oil 3 introduced into the container 1 from the introduction pipe 7 comes into contact with the copper powder in the container 1. Reference numeral 9 denotes a stirring device that stirs the insulating oil 3 to prevent the copper powder 4 from settling. Reference numerals 10A and 10B denote heaters that are provided below the outside of the container 1 to heat the insulating oil 3. Reference numeral 11 denotes an injection pipe for connecting the container 1 to an oil-filled electrical device main body (not shown) and injecting the insulating oil from which sulfur compounds have been removed into the oil-filled electrical device main body. The injection pipe 11 captures copper. And a filter 112 for preventing the adsorbent 111 and copper powder from entering the oil-filled electrical device main body.

一方で、絶縁油中での銅の溶解を防止するために絶縁油中にmetal passivator(ベンゾトリアゾール)を添加する技術は、非特許文献1に開示されている。   On the other hand, Non-Patent Document 1 discloses a technique of adding a metal passivator (benzotriazole) to an insulating oil in order to prevent copper from being dissolved in the insulating oil.

また、硫化銅の生成メカニズムについて、近年、絶縁油中に含有する硫黄成分の中でジベンジルジスルフィド(以下、「DBDS」と略す)が硫化銅生成原因物質であることが報告されている(非特許文献2)。   In addition, regarding the mechanism of copper sulfide formation, it has recently been reported that dibenzyl disulfide (hereinafter abbreviated as “DBDS”) is a causative substance of copper sulfide generation among sulfur components contained in insulating oil (non-sulphur). Patent Document 2).

ところで、後述のように本発明者らは硫黄成分(硫化銅生成原因物質)を含む絶縁油中において、絶縁紙への硫化銅生成が酸素の影響を大きく受け、酸素の存在によって硫化銅の生成が促進されることが分かった。従って、絶縁紙への硫化銅生成を防止するために絶縁油中への酸素の溶解を防止する必要がある。絶縁油への酸素の溶解防止方法として、絶縁油面上に絶縁板または隔膜を設置することが開示されている。特許文献2では絶縁油の劣化防止のために絶縁油の上に絶縁板を設けている。また特許文献3では絶縁油を入れた容器の腐食を防止するために絶縁油と気相の間に隔膜を設けている。この構成によって新たに外気を吸収せず、吸湿剤が不要で、変圧器内部における結露やこれに起因するタンクの腐食を防止できる。   By the way, as will be described later, in the insulating oil containing a sulfur component (copper sulfide generation causative substance), the present inventors are greatly influenced by the generation of copper sulfide on the insulating paper, and the presence of oxygen generates copper sulfide. Was found to be promoted. Therefore, it is necessary to prevent the dissolution of oxygen in the insulating oil in order to prevent copper sulfide from forming on the insulating paper. As a method for preventing the dissolution of oxygen in insulating oil, it is disclosed to install an insulating plate or a diaphragm on the insulating oil surface. In Patent Document 2, an insulating plate is provided on the insulating oil to prevent deterioration of the insulating oil. In Patent Document 3, a diaphragm is provided between the insulating oil and the gas phase in order to prevent corrosion of the container containing the insulating oil. This configuration does not newly absorb outside air, does not require a hygroscopic agent, and prevents condensation inside the transformer and corrosion of the tank due to this.

ところで変圧器における絶縁油の劣化防止方式として、不活性ガス封入式、隔膜式、シリカゲルなどの吸湿材を用いた開放式が知られている(非特許文献3)。不活性ガス封入式・隔膜式では絶縁油の入った容器と外気との呼吸がほとんどないため、容器内に空気が混入することがほとんど無い。従って、硫化銅の生成が抑制される。一方、開放式は絶縁油の入った容器が外気と呼吸するため、空気の混入が生じる。   By the way, as a method for preventing deterioration of insulating oil in a transformer, an open type using a moisture absorbing material such as an inert gas sealing type, a diaphragm type, or silica gel is known (Non-Patent Document 3). In the inert gas-filled type / diaphragm type, there is almost no breathing between the container containing the insulating oil and the outside air, so that air hardly mixes in the container. Therefore, the production of copper sulfide is suppressed. On the other hand, in the open type, a container containing insulating oil breathes with the outside air, so that air is mixed.

特許文献2に記載の容器はその構造から隔膜式に相当するものと考えられるため、空気の混入はほとんど無い。また、特許文献3の変圧器も絶縁油が外気と接触するのを防止した構造は隔膜式に相当するものと考えられるため、空気の混入はほとんど無い。従って、特許文献2および特許文献3はいずれも絶縁油が外気と触れることがほとんど無いが、密閉式に近い構造が必要となるため、油入電気機器の製造工程が増加する。
特開2001−311083号公報 特開平9−22822号公報 特開2006−295017号公報 Per Wiklund、Chemical Stability of Benzotriazole Copper Surface Passivators in Insulating Oils、2007年、Industrial & engineering chemistry research、46巻、3312−3316頁 R. Maina, F. Scatiggio, S. Kapila, V. Tumiatti, and M. Tumiatti and M. “Pompilli、Dibenzyl disulfide (DBDS) as corrosive sulfur Contaminant in used and unused mineral insulating oils”、[online]、CIGRE(International Council on Large Electric Systems)、[平成20年6月24日検索]、インターネット <URL:http://www.cigre-a2.org/Site/Publications/download/DBDS_paper_ColorVersionID44VER52.pdf> “電気機器の冷却方式”、[online]、フリー百科事典「ウィキペディア」、[平成20年6月24日検索]、インターネット <URL:http://ja.wikipedia.org/wiki/%E9%9B%BB%E6%B0%97%E6%A9%9F%E5%99%A8%E3%81%AE%E5%86%B7%E5%8D%B4%E6%96%B9%E5%BC%8F>
Since the container described in Patent Document 2 is considered to correspond to a diaphragm type due to its structure, there is almost no air contamination. Moreover, since the structure of the transformer of Patent Document 3 that prevents the insulating oil from coming into contact with the outside air is considered to correspond to a diaphragm type, there is almost no air mixing. Therefore, in both Patent Document 2 and Patent Document 3, the insulating oil hardly comes into contact with the outside air, but a structure close to a sealed type is required, so that the manufacturing process of the oil-filled electrical device increases.
JP 2001-311083 A Japanese Patent Laid-Open No. 9-22822 JP 2006-295017 A Per Wiklund, Chemical Stability of Benzotriazole Copper Surface Passivators in Insulating Oils, 2007, Industrial & engineering chemistry research, 46, 3312-3316 R. Maina, F. Scatiggio, S. Kapila, V. Tumiatti, and M. Tumiatti and M. “Pompilli, Dibenzyl disulfide (DBDS) as corrosive sulfur Contaminant in used and unused mineral insulating oils”, [online], CIGRE ( International Council on Large Electric Systems), [Search June 24, 2008] Internet <URL: http://www.cigre-a2.org/Site/Publications/download/DBDS_paper_ColorVersionID44VER52.pdf> “Cooling method of electrical equipment”, [online], free encyclopedia “Wikipedia”, [searched on June 24, 2008], Internet <URL: http://en.wikipedia.org/wiki/%E9%9B % BB% E6% B0% 97% E6% A9% 9F% E5% 99% A8% E3% 81% AE% E5% 86% B7% E5% 8D% B4% E6% 96% B9% E5% BC% 8F >

本発明は、硫黄成分(硫化銅生成原因物質)を含んだ絶縁油を用いた開放式の変圧器において、絶縁油を入れた容器内に外気が混入しても絶縁油への酸素の溶解を防止することを課題とする。また、特許文献1では絶縁油の前処理設備が必要であり、また、非特許文献2ではベンゾトリアゾールの消費に伴ってベンゾトリアゾールの再添加、特許文献2、3では密閉式に近い変圧器の構造が必要であるが、本発明は、このような絶縁油の前処理(硫化銅を生成する硫黄成分の除去)およびmetal passivator等の添加や、密閉式に近い変圧器の構造を必要とせず、簡便な方法で絶縁紙への硫化銅析出を防止できる方法および油入電気機器を提供することを課題とする。   The present invention relates to an open-type transformer using an insulating oil containing a sulfur component (a copper sulfide producing causative substance), which dissolves oxygen in the insulating oil even if outside air enters the container containing the insulating oil. The problem is to prevent it. In Patent Document 1, a pretreatment facility for insulating oil is required. In Non-Patent Document 2, benzotriazole is added again as benzotriazole is consumed. In Patent Documents 2 and 3, a closed-type transformer is used. Although a structure is required, the present invention does not require such pretreatment of insulating oil (removal of sulfur components that produce copper sulfide) and addition of a metal passivator, or a structure of a transformer close to a sealed type. Another object of the present invention is to provide a method and an oil-filled electrical device that can prevent copper sulfide from being deposited on insulating paper by a simple method.

本発明は、銅部品と絶縁紙が容器内の絶縁油中に浸漬された開放式の油入電気機器であって、絶縁油に酸素が溶解するのを防止するために、比較的簡便に空気中の酸素を除去する手段(酸素除去手段)を設けることを特徴とする。   The present invention relates to an open-type oil-filled electrical device in which a copper part and insulating paper are immersed in insulating oil in a container, and in order to prevent oxygen from being dissolved in the insulating oil, the air is relatively simple. Means for removing oxygen therein (oxygen removing means) is provided.

上記酸素除去手段として容器内の気相中に設けられたイオン化傾向の異なる2種以上の金属を含む金属シートおよび/または脱酸素剤を用いることが好ましい。上記金属シートにおいて、イオン化傾向の異なる2種以上の金属が、銅または銀と、アルミニウム、亜鉛またはそれらの合金との組み合わせからなることが好ましい。イオン化傾向の異なる2種以上の金属のうちイオン化傾向の大きい金属としては、アルミニウム、亜鉛およびそれらの合金が用いられる。また脱酸素剤は、鉄、アスコルビン酸、没食酸またはグリセリンの少なくとも1種以上を含有することが好ましい。   It is preferable to use a metal sheet and / or an oxygen scavenger containing two or more kinds of metals having different ionization tendencies provided in the gas phase in the container as the oxygen removing means. In the metal sheet, it is preferable that two or more kinds of metals having different ionization tendencies consist of a combination of copper or silver and aluminum, zinc or an alloy thereof. Among the two or more metals having different ionization tendencies, aluminum, zinc, and alloys thereof are used as the metal having a large ionization tendency. The oxygen scavenger preferably contains at least one of iron, ascorbic acid, gallic acid and glycerin.

また、本発明は銅部品と絶縁紙が容器内の絶縁油中に浸漬された開放式の油入電気機器において、容器内の気相中の酸素を除去することを特徴とする、絶縁紙への硫化銅の析出防止方法にも関する。   Further, the present invention provides an insulating paper, characterized in that oxygen in a gas phase in a container is removed in an open-type oil-filled electrical device in which a copper part and insulating paper are immersed in insulating oil in the container. This also relates to a method for preventing the precipitation of copper sulfide.

本発明においては、上記酸素除去手段を設けることにより、簡便な方法で酸素が絶縁油中に溶解することを防止することができ、硫化銅生成原因物質である硫黄成分が絶縁油に含有されている場合でも、絶縁紙への硫化銅の析出が抑制される。   In the present invention, by providing the oxygen removing means, it is possible to prevent oxygen from being dissolved in the insulating oil by a simple method, and the sulfur component that is a copper sulfide generation causative substance is contained in the insulating oil. Even when it is present, the precipitation of copper sulfide on the insulating paper is suppressed.

絶縁油、銅、絶縁紙が共存する系において、絶縁紙への硫化銅の析出を防止することのできる本発明の油入電気機器および硫化銅の析出防止方法においては、容器内に入った空気中の酸素を除去する手段(酸素除去手段)が必要である。酸素を除去する手段として、イオン化傾向の異なる2種以上の金属を含む金属シートまたは脱酸素剤を用いる。これらの方法を同時に使用しても良い。   In the system in which insulating oil, copper, and insulating paper coexist, in the oil-filled electrical device and the method for preventing copper sulfide precipitation of the present invention that can prevent copper sulfide from precipitating on the insulating paper, the air contained in the container Means for removing oxygen (oxygen removing means) are necessary. As a means for removing oxygen, a metal sheet or oxygen scavenger containing two or more metals having different ionization tendencies is used. These methods may be used simultaneously.

イオン化傾向の異なる2種以上の金属を含む金属シートに用いるイオン化傾向の大きい金属として、アルミニウム(以下、Al)、亜鉛(以下、Zn)またはそれらの合金、またはAlやZnをめっきした鋼板を用いる。   Aluminum (hereinafter referred to as Al), zinc (hereinafter referred to as Zn) or an alloy thereof, or a steel plate plated with Al or Zn is used as a metal having a large ionization tendency used for a metal sheet containing two or more kinds of metals having different ionization tendencies. .

AlまたはZnを用いる場合、AlまたはZnの厚みは0.05〜5mmが好ましい。0.05mm以下の厚みでは軟らかくて剛性が無いために容器内への取り付けが困難であり、入手性も悪い。一方、5mm以上の厚みでは重量増により容器内への取り付けが困難であり、入手性も悪い。絶縁油を入れた容器の内側で、かつ気相部にAl板またはZn板を設置する。開放式においては絶縁油に混入している水分の蒸発による水蒸気によってAl板またはZn板の表面でAl又はZnの溶解反応((i)式または(ii)式)と容器材料(鋼)の表面で酸素の還元反応((iii)式)がそれぞれ生じ、酸素の還元反応によって空気中の酸素が除去される。   When Al or Zn is used, the thickness of Al or Zn is preferably 0.05 to 5 mm. If the thickness is 0.05 mm or less, it is soft and not rigid, so that it is difficult to install in a container and the availability is poor. On the other hand, when the thickness is 5 mm or more, it is difficult to mount the container in the container due to an increase in weight, and the availability is poor. An Al plate or a Zn plate is placed inside the container containing the insulating oil and in the gas phase part. In the open type, the dissolution reaction of Al or Zn (formula (i) or (ii)) and the surface of the container material (steel) on the surface of the Al plate or Zn plate by water vapor due to evaporation of moisture mixed in the insulating oil Thus, an oxygen reduction reaction (formula (iii)) occurs, and oxygen in the air is removed by the oxygen reduction reaction.

Al→Al3++3e ・・・(i)
Zn→Zn2++2e ・・・(ii)
1/2O2+H2O+2e→2OH- ・・・(iii)
一般に容器材料として使用される鋼とAl板またはZn板を電気的に接続させる。これにより、鋼とAlの組み合わせまたは鋼とZnの組み合わせによる自然電位の差が駆動力となって鋼表面で生じる酸素の還元反応が促進される。またこれらの材料の組み合わせによって鋼の腐食を防止できるという副次効果も生じる。
Al → Al 3+ + 3e (i)
Zn → Zn 2+ + 2e (ii)
1 / 2O 2 + H 2 O + 2e → 2OH (iii)
Generally, steel used as a container material is electrically connected to an Al plate or a Zn plate. As a result, the difference in natural potential due to the combination of steel and Al or the combination of steel and Zn serves as a driving force to promote the oxygen reduction reaction occurring on the steel surface. Moreover, the side effect that corrosion of steel can be prevented by the combination of these materials also arises.

さらに自然電位の差を大きくするために、Al板またはZn板の表面にイオン化傾向の小さい金属、例えば銅や銀を電気的に接続・設置する。図1はAl板またはZn板の表面にイオン化傾向の小さい金属を設置した図である。図1の51はAl板またはZn板、52はイオン化傾向の小さい金属、53はイオン化傾向の小さい金属間の距離である。   In order to further increase the difference in natural potential, a metal with a low ionization tendency, such as copper or silver, is electrically connected and installed on the surface of the Al plate or Zn plate. FIG. 1 is a diagram in which a metal having a small ionization tendency is placed on the surface of an Al plate or a Zn plate. In FIG. 1, 51 is an Al plate or Zn plate, 52 is a metal having a low ionization tendency, and 53 is a distance between metals having a low ionization tendency.

金属52は入手性および作業性の観点から0.05〜1mmの板厚として用いる。また金属52は金属51とボルト等を用いて固定すればよい。53の距離は好ましくは5〜10mmである。5mm以下では金属52の取り付け作業性が悪くなり、10mm以上では金属52との組み合わせによる酸素の還元反応の促進効果が小さくなる。   The metal 52 is used as a plate thickness of 0.05 to 1 mm from the viewpoint of availability and workability. The metal 52 may be fixed to the metal 51 using a bolt or the like. The distance 53 is preferably 5 to 10 mm. If it is 5 mm or less, the workability of attaching the metal 52 is poor, and if it is 10 mm or more, the effect of promoting the oxygen reduction reaction by the combination with the metal 52 becomes small.

空気中の酸素を除去するもう1つの方法として脱酸素剤を用いる方法がある。この方法では、脱酸素剤を絶縁油が接触する気相中に保持しておくことにより、気相中の酸素が除去される。用いる脱酸素剤の種類としては、無機系脱酸素剤と有機系脱酸素剤が挙げられる。   Another method for removing oxygen in the air is to use an oxygen scavenger. In this method, oxygen in the gas phase is removed by keeping the oxygen scavenger in the gas phase in contact with the insulating oil. Examples of the oxygen scavenger used include inorganic oxygen scavengers and organic oxygen scavengers.

無機系脱酸素剤としては、鉄粉や亜硫酸塩などが挙げられる。例えば、鉄粉ではその酸化によって気相中の酸素が除去される。鉄粉の平均粒径は、50μm〜500μmの範囲であることが好ましい。50μm以下では鉄粉の表面積が大きく、活性であるために油入電気機器の気相中に設置する前に酸化して効力を失う恐れがあり、500μm以上では酸化反応速度が遅く、酸素除去能力が劣る。鉄の酸化を利用して気相中の酸素を除去する方法は知られており、脱酸素剤として商品化されている。例えば鉄系反応主剤を用いた三菱ガス化学製の「エージレス(登録商標)SAタイプ」が市販されており、本発明の脱酸素剤として適用できる。   Examples of the inorganic oxygen scavenger include iron powder and sulfite. For example, iron powder removes oxygen in the gas phase by its oxidation. The average particle size of the iron powder is preferably in the range of 50 μm to 500 μm. Below 50μm, the iron powder has a large surface area and is active, so it may be oxidized before it is installed in the gas phase of oil-filled electrical equipment and lose its effectiveness. Above 500μm, the oxidation reaction rate is slow and the oxygen removal ability Is inferior. A method for removing oxygen in a gas phase by utilizing oxidation of iron is known and commercialized as an oxygen scavenger. For example, “AGELESS (registered trademark) SA type” manufactured by Mitsubishi Gas Chemical Co., Ltd. using an iron-based reaction main agent is commercially available and can be applied as the oxygen scavenger of the present invention.

有機系脱酸素剤としては、アスコルビン酸、没食酸、グリセリンなどが挙げられ、種々の脱酸素剤として商品化されている。例えば、有機系反応主剤を用いた三菱ガス化学製の「エージレス(登録商標)GLタイプ」が市販されている。   Examples of the organic oxygen scavenger include ascorbic acid, gallic acid, glycerin and the like, and are commercialized as various oxygen scavengers. For example, “AGELESS (registered trademark) GL type” manufactured by Mitsubishi Gas Chemical Co., Ltd. using an organic reaction main agent is commercially available.

上記の物理的方法と化学的方法のどちらも酸素の除去効果はあるが、油入電気機器の気相体積、運転頻度、不活性ガスおよび脱酸素剤の入手しやすさを勘定して選択すればよい。   Both the physical and chemical methods described above are effective in removing oxygen, but should be selected taking into account the gas phase volume of oil-filled electrical equipment, operating frequency, availability of inert gases and oxygen scavengers. That's fine.

上記のイオン化傾向の大きい金属または脱酸素剤を用いることによって空気中の酸素を除去でき、硫化銅の生成が抑制されるが、酸素を完全には除去できない。その結果、残存酸素が絶縁油に溶解する。したがって、これらの酸素除去手段と併用して残存酸素の絶縁油への溶解を防止するための空気遮断層を用いると、一層の硫化銅の抑制効果が得られる。   By using a metal or oxygen scavenger having a large ionization tendency, oxygen in the air can be removed and the formation of copper sulfide is suppressed, but oxygen cannot be completely removed. As a result, residual oxygen is dissolved in the insulating oil. Therefore, when an air barrier layer is used in combination with these oxygen removing means to prevent dissolution of residual oxygen in the insulating oil, a further effect of suppressing copper sulfide can be obtained.

気相と接する絶縁油面上に設ける空気遮断層としては、浮き球やシートなどを用いることができる。浮き球については、径が1mm〜20mmの範囲の浮き球(空気入り浮き球など)を用いることが好ましい。これはサイズが1mm以下では製作が困難であり、20mm以上では空気遮断能力が低減するためである。また、浮き球の材質としては、ポリプロピレン、ポリエチレン、テフロン、ナイロンを用いることが好ましい。また、シートについては、0.2mm〜1mmの範囲の厚みのシートを用いることが好ましい。厚みが0.2mm以下ではシート作製が困難であり、1mm以上では自重によって絶縁油面から沈むため絶縁油面を覆いきれないからである。また、シートの材質としては、ポリエチレン、テフロン、ナイロン等を用いることが好ましい。   As the air barrier layer provided on the insulating oil surface in contact with the gas phase, a floating ball, a sheet, or the like can be used. As for the floating ball, it is preferable to use a floating ball (such as a pneumatic floating ball) having a diameter in the range of 1 mm to 20 mm. This is because if the size is 1 mm or less, the manufacture is difficult, and if it is 20 mm or more, the air blocking ability is reduced. In addition, it is preferable to use polypropylene, polyethylene, Teflon, and nylon as the material of the floating ball. As for the sheet, it is preferable to use a sheet having a thickness in the range of 0.2 mm to 1 mm. If the thickness is 0.2 mm or less, it is difficult to produce a sheet. If the thickness is 1 mm or more, the insulating oil surface cannot be covered because it sinks from the insulating oil surface due to its own weight. Further, it is preferable to use polyethylene, Teflon, nylon or the like as the material of the sheet.

(硫化銅の析出試験)
油入電気機器の絶縁紙への硫化銅の析出に及ぼす酸素の影響については、これまで明らかになっていない。本発明者らは、人工的にDBDSを含有させた絶縁油を用いて絶縁紙への硫化銅の析出に及ぼす酸素の影響を定量的に調べた。この絶縁紙への硫化銅の析出試験は、窒素雰囲気および窒素と酸素の混合ガス(80%N2+20%O2)雰囲気において、銅板と絶縁紙を5mmの間隔を空けた状態で設置し、DBDSを含有する絶縁油に浸漬させて120℃で144時間加熱することにより行なった。なお、析出試験に用いた絶縁油、銅板、絶縁紙は次の通りである。
(Copper sulfide precipitation test)
The influence of oxygen on the deposition of copper sulfide on the insulating paper of oil-filled electrical equipment has not been clarified so far. The inventors quantitatively investigated the influence of oxygen on the precipitation of copper sulfide on insulating paper using an insulating oil artificially containing DBDS. The copper sulfide precipitation test on the insulating paper was performed in a nitrogen atmosphere and a mixed gas of nitrogen and oxygen (80% N 2 + 20% O 2 ), with the copper plate and the insulating paper being spaced 5 mm apart, This was performed by immersing in an insulating oil containing DBDS and heating at 120 ° C. for 144 hours. The insulating oil, copper plate, and insulating paper used for the precipitation test are as follows.

絶縁油:1154ppmのDBDS(硫黄換算で300ppm)のDBDSを含有した50mlのアルキルベンゼン
銅板:純銅(サイズ30×50×0.2mmを4枚)
絶縁紙:クラフト紙(サイズ10×19×0.08mm)。
Insulating oil: 50 ml of alkylbenzene containing 1154 ppm of DBDS (300 ppm in terms of sulfur) Copper plate: Pure copper (4 pieces of size 30 x 50 x 0.2 mm)
Insulating paper: Kraft paper (size 10 × 19 × 0.08 mm).

加熱後に絶縁紙を取り出し、2Mの硝酸に1時間浸漬させることによって析出した銅を硝酸中に溶解させた後、プラズマ発光分光分析装置を用いて銅を定量した。加熱後の絶縁紙(クラフト紙)への析出銅量を測定した結果、混合ガス(80%N2+20%O2)雰囲気における析出銅量は19.5μg/cm2であり、窒素雰囲気における析出銅量は3.9μg/cm2であった。 After heating, the insulating paper was taken out and immersed in 2M nitric acid for 1 hour to dissolve the precipitated copper in nitric acid, and then the copper was quantified using a plasma emission spectrometer. As a result of measuring the amount of copper deposited on the insulating paper (kraft paper) after heating, the amount of copper deposited in the mixed gas (80% N 2 + 20% O 2 ) atmosphere was 19.5 μg / cm 2 , and the precipitation in the nitrogen atmosphere The amount of copper was 3.9 μg / cm 2 .

以上の結果から、混合ガス(80%N2+20%O2)雰囲気における絶縁紙への析出銅量は窒素雰囲気の5倍であり、酸素の存在によって絶縁紙への析出銅量が増加することがわかった。なお、絶縁紙に析出した銅が硫化銅として存在していることをX線光電子分光法によって確認した。このように絶縁油中に硫化銅生成の原因物質であるDBDSが含有されていても、酸素が存在しない雰囲気では絶縁紙への硫化銅の析出が抑制されることが分かった。 From the above results, the amount of copper deposited on the insulating paper in a mixed gas (80% N 2 + 20% O 2 ) atmosphere is five times that of the nitrogen atmosphere, and the amount of copper deposited on the insulating paper increases due to the presence of oxygen. I understood. It was confirmed by X-ray photoelectron spectroscopy that copper deposited on the insulating paper was present as copper sulfide. Thus, it was found that even when DBDS, which is a causative substance of copper sulfide generation, is contained in the insulating oil, the precipitation of copper sulfide on the insulating paper is suppressed in an atmosphere where oxygen is not present.

以下に酸素除去による電気機器用絶縁紙への硫化銅析出抑制効果の具体的実施の形態を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific embodiments of the effect of suppressing the precipitation of copper sulfide on insulating paper for electrical equipment by removing oxygen, but the present invention is not limited to these.

(実施の形態1)
図2は本発明を用いた模擬的な開放式油入電気機器および絶縁紙への硫化銅の析出防止方法の一実施形態(実施の形態1)を示す図である。1は鋼製で絶縁油2が充填され、そこに絶縁紙を巻いた銅板が浸漬されている。絶縁紙を巻いた銅板3は、絶縁紙(サイズ12×100×0.08mmのクラフト紙)を巻いた銅板(サイズ10×40×0.2mm)であり、油入電気機器のコイル導体等を模擬したものである。4は空気で満たされた気相である。12は空気流出入口である。5はAl板(サイズ300×400×1mm)にCu板(サイズ10×300×1mm)を取り付けた金属シートで、Cu板を10mm間隔に配置した図1に示すような形状のものである。
(Embodiment 1)
FIG. 2 is a diagram showing an embodiment (Embodiment 1) of a simulated open-type oil-filled electrical device and a method for preventing copper sulfide from being deposited on insulating paper using the present invention. 1 is made of steel, filled with insulating oil 2, and a copper plate wrapped with insulating paper is immersed therein. The copper plate 3 wound with insulating paper is a copper plate (size 10 × 40 × 0.2 mm) wound with insulating paper (size 12 × 100 × 0.08 mm kraft paper). It is a simulation. 4 is a gas phase filled with air. Reference numeral 12 denotes an air outflow inlet. 5 is a metal sheet in which a Cu plate (size 10 × 300 × 1 mm) is attached to an Al plate (size 300 × 400 × 1 mm), and has a shape as shown in FIG. 1 in which the Cu plates are arranged at intervals of 10 mm.

容器1を120℃で12日間加熱し、加熱後の銅板に巻いた絶縁紙に析出した銅量を調べた。Cu板を取り付けたAl板を設置した場合の絶縁紙への析出銅量は12μg/cm2であった。一方、Cu板を取り付けたAl板を設置しない状態で120℃、12日間の加熱を行なった後の絶縁紙への析出銅量は24μg/cm2であった。以上の結果から、Cu板を取り付けたAl板を設けることによって絶縁紙への析出銅量が抑制されることがわかる。 The container 1 was heated at 120 ° C. for 12 days, and the amount of copper deposited on the insulating paper wound on the heated copper plate was examined. The amount of copper deposited on the insulating paper when an Al plate with a Cu plate attached thereto was 12 μg / cm 2 . On the other hand, the amount of copper deposited on the insulating paper after heating at 120 ° C. for 12 days without installing the Al plate with the Cu plate attached thereto was 24 μg / cm 2 . From the above results, it can be seen that the amount of copper deposited on the insulating paper is suppressed by providing an Al plate with a Cu plate attached thereto.

本実施形態では金属シートとしてCu板を取り付けたAl板を用いたが、Al板の代わりにZn板などを用いても良い。   In this embodiment, an Al plate with a Cu plate attached is used as the metal sheet, but a Zn plate or the like may be used instead of the Al plate.

(実施の形態2)
図3は、本発明を用いた模擬的な開放式油入電気機器および絶縁紙への硫化銅の析出防止方法の一実施形態(実施の形態2)を示す図である。容器1、絶縁油2、絶縁紙3、気相4、空気流出入口12は上記実施の形態1と同様である。5はAl板(サイズ300×400×1mm)にCu板(サイズ10×300×1mm)を取り付けた金属シートで、Cu板を10mm間隔に配置した図1に示す形状である。61は浮き子(酸素遮断手段)であり、ポリプロピレン製の浮き球(直径10mm)を用いた。
(Embodiment 2)
FIG. 3 is a diagram showing an embodiment (Embodiment 2) of a simulated open-type oil-filled electrical device and a method for preventing the precipitation of copper sulfide on insulating paper using the present invention. The container 1, the insulating oil 2, the insulating paper 3, the gas phase 4, and the air outflow / inlet 12 are the same as those in the first embodiment. 5 is a metal sheet in which a Cu plate (size 10 × 300 × 1 mm) is attached to an Al plate (size 300 × 400 × 1 mm), and has a shape shown in FIG. 1 in which the Cu plates are arranged at intervals of 10 mm. Reference numeral 61 denotes a float (oxygen blocking means), and a polypropylene float (diameter 10 mm) was used.

1の容器を120℃で12日間加熱し、加熱後の銅板に巻いた絶縁紙に析出した銅量を調べた。その結果、Cu板を取り付けたAl板を設置し、かつポリプロピレン製の浮き球を用いた場合の絶縁紙への析出銅量は10μg/cm2であった。一方、Cu板を取り付けたAl板および浮き子を設けない状態で120℃、12日間の加熱を行なった後の絶縁紙への析出銅量は24μg/cm2であった。以上の結果から、浮き子を設けることによって絶縁紙への析出銅量が抑制されることがわかる。 One container was heated at 120 ° C. for 12 days, and the amount of copper deposited on the insulating paper wound around the heated copper plate was examined. As a result, the amount of copper deposited on the insulating paper was 10 μg / cm 2 when an Al plate attached with a Cu plate was installed and a floating ball made of polypropylene was used. On the other hand, the amount of copper deposited on the insulating paper after heating at 120 ° C. for 12 days without providing an Al plate with a Cu plate and a float was 24 μg / cm 2 . From the above results, it can be seen that the amount of copper deposited on the insulating paper is suppressed by providing the float.

(実施の形態3)
図4は、本発明を用いた模擬的な開放式油入電気機器および絶縁紙への硫化銅の析出防止方法の別の実施形態(実施の形態3)を示す図である。容器1、絶縁油2、絶縁紙3、気相4、空気流出入口12は上記実施の形態1と同様である。5はAl板(サイズ300×400×1mm)にCu板(サイズ10×300×1mm)を取り付けた金属シートで、Cu板を10mm間隔に配置した図1に示す形状である。62はシート(酸素遮断手段)であり、ナイロン製のシート(0.1mm厚)を用いた。
(Embodiment 3)
FIG. 4 is a diagram showing another embodiment (Embodiment 3) of a simulated open-type oil-filled electrical device and a method for preventing copper sulfide from depositing on insulating paper using the present invention. The container 1, the insulating oil 2, the insulating paper 3, the gas phase 4, and the air outflow / inlet 12 are the same as those in the first embodiment. 5 is a metal sheet in which a Cu plate (size 10 × 300 × 1 mm) is attached to an Al plate (size 300 × 400 × 1 mm), and has a shape shown in FIG. 1 in which the Cu plates are arranged at intervals of 10 mm. 62 is a sheet (oxygen blocking means), and a nylon sheet (0.1 mm thick) was used.

容器1を120℃で12日間加熱し、加熱後の銅板に巻いた絶縁紙に析出した銅量を調べた。その結果、Cu板を取り付けたAl板を設置し、かつナイロン製のシートを用いた場合の絶縁紙への析出銅量は10μg/cm2であった。一方、Cu板を取り付けたAl板を設置しないで、かつシートを設けない状態で120℃、12日間の加熱を行なった後の絶縁紙への析出銅量は24μg/cm2であった。以上の結果から、Cu板を取り付けたAl板およびシートを設けることによって絶縁紙への析出銅量が抑制されることがわかる。 The container 1 was heated at 120 ° C. for 12 days, and the amount of copper deposited on the insulating paper wound on the heated copper plate was examined. As a result, the amount of copper deposited on the insulating paper was 10 μg / cm 2 when an Al plate attached with a Cu plate was installed and a nylon sheet was used. On the other hand, the amount of copper deposited on the insulating paper after heating for 12 days at 120 ° C. without an Al plate attached with a Cu plate and without a sheet was 24 μg / cm 2 . From the above results, it can be seen that the amount of copper deposited on the insulating paper is suppressed by providing an Al plate and a sheet to which a Cu plate is attached.

本実施形態では0.1mm厚のシートを用いたが、0.2mm〜1mm程度の範囲の厚みのシートを用いることができる。また、シートの材質としては、ナイロンの他に、ポリプロピレン、ポリエチレン、テフロン等を用いることができる。   In this embodiment, a sheet having a thickness of 0.1 mm is used, but a sheet having a thickness in the range of about 0.2 mm to 1 mm can be used. In addition to nylon, polypropylene, polyethylene, Teflon, etc. can be used as the material for the sheet.

(実施の形態4)
図5は、本発明を用いた模擬的な開放式油入電気機器および絶縁紙への硫化銅の析出防止方法のさらに別の実施形態(実施の形態4)を示す図である。容器1、絶縁油2、絶縁紙3、気相4、空気流出入口12は上記実施の形態1と同様である。63は脱酸素剤であり、気相体積1Lに対して10個の割合で容器内に設置した。脱酸素剤としては、無機系脱酸素剤である三菱ガス化学製の「エージレス(登録商標)SAタイプ」を使用した。
(Embodiment 4)
FIG. 5 is a diagram showing still another embodiment (embodiment 4) of a simulated open-type oil-filled electrical device and a method for preventing copper sulfide from depositing on insulating paper using the present invention. The container 1, the insulating oil 2, the insulating paper 3, the gas phase 4, and the air outflow / inlet 12 are the same as those in the first embodiment. 63 is an oxygen scavenger, and was installed in the container at a ratio of 10 per 1 L of gas phase volume. As the oxygen scavenger, “AGELESS (registered trademark) SA type” manufactured by Mitsubishi Gas Chemical Co., Ltd., which is an inorganic oxygen scavenger, was used.

容器1を120℃で12日間加熱し、加熱後の銅板に巻いた絶縁紙に析出した銅量を調べた。その結果、脱酸素剤を設置した場合の絶縁紙への析出銅量は12μg/cm2であった。一方、シートを設けない状態で120℃、12日間の加熱を行なった後の絶縁紙への析出銅量は24μg/cm2であった。以上の結果から、気相中に脱酸素剤を設けることによって絶縁紙への析出銅量が抑制されることがわかる。 The container 1 was heated at 120 ° C. for 12 days, and the amount of copper deposited on the insulating paper wound on the heated copper plate was examined. As a result, the amount of copper deposited on the insulating paper when the oxygen scavenger was installed was 12 μg / cm 2 . On the other hand, the amount of copper deposited on the insulating paper after heating at 120 ° C. for 12 days without a sheet was 24 μg / cm 2 . From the above results, it can be seen that the amount of copper deposited on the insulating paper is suppressed by providing an oxygen scavenger in the gas phase.

本実施形態では脱酸素剤として無機系脱酸素剤を用いたが、有機系脱酸素剤を用いても同様の効果が得られる。   In this embodiment, an inorganic oxygen scavenger is used as the oxygen scavenger, but the same effect can be obtained even if an organic oxygen scavenger is used.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明で用いるAl板またはZn板の表面にイオン化傾向の小さい金属を設置した金属シートの構造を示す図である。It is a figure which shows the structure of the metal sheet which installed the metal with a small ionization tendency on the surface of the Al plate or Zn plate used by this invention. 本発明の実施の形態1を示す図である。It is a figure which shows Embodiment 1 of this invention. 本発明の実施の形態2を示す図である。It is a figure which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す図である。It is a figure which shows Embodiment 3 of this invention. 本発明の実施の形態4を示す図である。It is a figure which shows Embodiment 4 of this invention. 従来の絶縁油中の硫黄化合物の除去装置を示す図である。It is a figure which shows the removal apparatus of the sulfur compound in the conventional insulating oil.

符号の説明Explanation of symbols

1 容器、10A,10B ヒータ、11 注入配管、111 吸着剤、112 フィルタ、12 空気流出入口、2 絶縁油、3 絶縁紙を巻いた銅板、4 気相、5 金属シート、51 Al板またはZn板、52 イオン化傾向の小さい金属、53 イオン化傾向の小さい金属間の距離、61 浮き子、62 シート、63 脱酸素剤、7 導入配管、8 銅粉、9 攪拌装置。   DESCRIPTION OF SYMBOLS 1 Container, 10A, 10B Heater, 11 Injection piping, 111 Adsorbent, 112 Filter, 12 Air outflow inlet, 2 Insulation oil, 3 Copper plate which wound insulation paper, 4 Gas phase, 5 Metal sheet, 51 Al plate or Zn plate , 52 Metal with low ionization tendency, 53 Distance between metals with low ionization tendency, 61 Float, 62 sheet, 63 Oxygen scavenger, 7 Introducing pipe, 8 Copper powder, 9 Stirrer.

Claims (6)

銅部品と絶縁紙が容器内の絶縁油中に浸漬された開放式の油入電気機器であって、酸素除去手段を有することを特徴とする油入電気機器。   An oil-filled electrical device, which is an open-type oil-filled electrical device in which a copper part and insulating paper are immersed in insulating oil in a container, and has oxygen removing means. 前記酸素除去手段が、容器内の気相中に設けられたイオン化傾向の異なる2種以上の金属を含む金属シートを含む、請求項1記載の油入電気機器。   The oil-filled electrical device according to claim 1, wherein the oxygen removing means includes a metal sheet including two or more kinds of metals having different ionization tendencies provided in a gas phase in a container. 前記イオン化傾向の異なる2種以上の金属が、銅または銀と、アルミニウム、亜鉛またはそれらの合金との組み合わせからなる、請求項2記載の油入電気機器。   The oil-filled electrical device according to claim 2, wherein the two or more kinds of metals having different ionization tendencies are a combination of copper or silver and aluminum, zinc or an alloy thereof. 前記酸素除去手段が、脱酸素剤を含む、請求項1記載の油入電気機器。   The oil-filled electrical apparatus according to claim 1, wherein the oxygen removing means includes an oxygen scavenger. 前記脱酸素剤が、鉄、アスコルビン酸、没食酸またはグリセリンの少なくとも1種以上を含有する、請求項4記載の油入電気機器。   The oil-filled electrical device according to claim 4, wherein the oxygen scavenger contains at least one of iron, ascorbic acid, gallic acid, and glycerin. 銅部品と絶縁紙が容器内の絶縁油中に浸漬された開放式の油入電気機器において、容器内の気相中の酸素を除去することを特徴とする、絶縁紙への硫化銅の析出防止方法。   In open-type oil-filled electrical equipment in which copper parts and insulating paper are immersed in insulating oil in the container, the deposition of copper sulfide on the insulating paper is characterized by removing oxygen in the gas phase in the container Prevention method.
JP2008183425A 2008-07-15 2008-07-15 Oil-filled electric apparatus, and method for preventing deposition of copper sulfide Pending JP2010027634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183425A JP2010027634A (en) 2008-07-15 2008-07-15 Oil-filled electric apparatus, and method for preventing deposition of copper sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183425A JP2010027634A (en) 2008-07-15 2008-07-15 Oil-filled electric apparatus, and method for preventing deposition of copper sulfide

Publications (1)

Publication Number Publication Date
JP2010027634A true JP2010027634A (en) 2010-02-04

Family

ID=41733220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183425A Pending JP2010027634A (en) 2008-07-15 2008-07-15 Oil-filled electric apparatus, and method for preventing deposition of copper sulfide

Country Status (1)

Country Link
JP (1) JP2010027634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852186B1 (en) * 2011-04-08 2012-01-11 三菱電機株式会社 Method for suppressing copper sulfide formation
WO2012081073A1 (en) * 2010-12-13 2012-06-21 三菱電機株式会社 Method for testing of electric insulating oil, method for treatment of electric insulating oil, and method for maintenance of oil-filled electric device
JP5186061B1 (en) * 2011-11-30 2013-04-17 三菱電機株式会社 Method for suppressing copper sulfide formation in oil-filled electrical equipment
US8854068B2 (en) 2008-08-18 2014-10-07 Mitsubishi Electric Corporation Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
US9983188B2 (en) 2015-09-17 2018-05-29 King Fahd University Of Petroleum And Minerals Device to measure the corrosive sulfur species formation rate in power transformers and a method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138715A (en) * 1986-12-01 1988-06-10 Mitsubishi Electric Corp Apparatus for preventing deterioration of insulation oil
JPH10323671A (en) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp Deoxidation device
JP2007268326A (en) * 2006-03-30 2007-10-18 Powdertech Co Ltd Organic deoxidizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138715A (en) * 1986-12-01 1988-06-10 Mitsubishi Electric Corp Apparatus for preventing deterioration of insulation oil
JPH10323671A (en) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp Deoxidation device
JP2007268326A (en) * 2006-03-30 2007-10-18 Powdertech Co Ltd Organic deoxidizer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854068B2 (en) 2008-08-18 2014-10-07 Mitsubishi Electric Corporation Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
WO2012081073A1 (en) * 2010-12-13 2012-06-21 三菱電機株式会社 Method for testing of electric insulating oil, method for treatment of electric insulating oil, and method for maintenance of oil-filled electric device
US9228992B2 (en) 2010-12-13 2016-01-05 Mitsubishi Electric Corporation Electric insulating oil inspection method, electric insulating oil treatment method, and oil-filled electric device maintenance method
JP4852186B1 (en) * 2011-04-08 2012-01-11 三菱電機株式会社 Method for suppressing copper sulfide formation
WO2012137350A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Process for suppressing copper sulphide production
US8728565B2 (en) 2011-04-08 2014-05-20 Mitsubishi Electric Corporation Method for inhibiting generation of copper sulfide
JP5186061B1 (en) * 2011-11-30 2013-04-17 三菱電機株式会社 Method for suppressing copper sulfide formation in oil-filled electrical equipment
WO2013080315A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Method for suppressing copper sulfide generation in oil-filled electrical equipment
CN103890879A (en) * 2011-11-30 2014-06-25 三菱电机株式会社 Method for suppressing copper sulfide generation in oil-filled electrical equipment
US9396835B2 (en) 2011-11-30 2016-07-19 Mitsubishi Electric Corporation Method for suppressing copper sulfide generation in oil-filled electrical equipment
US9983188B2 (en) 2015-09-17 2018-05-29 King Fahd University Of Petroleum And Minerals Device to measure the corrosive sulfur species formation rate in power transformers and a method of using the same
US10386352B2 (en) 2015-09-17 2019-08-20 King Fahd University Of Petroleum And Minerals Power transformer copper sulfide monitoring system

Similar Documents

Publication Publication Date Title
Pan et al. Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance
JP2010027634A (en) Oil-filled electric apparatus, and method for preventing deposition of copper sulfide
Allam et al. A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments
Tiringer et al. Self-healing effect of hybrid sol-gel coatings based on GPTMS, TEOS, SiO2 nanoparticles and Ce (NO3) 3 applied on aluminum alloy 7075-T6
Fouda et al. Corrosion inhibition of aluminum–silicon alloy in hydrochloric acid solutions using carbamidic thioanhydride derivatives
Quraishi et al. Influence of heterocyclic anils on corrosion inhibition and hydrogen permeation through mild steel in acid chloride environments
Gopi et al. Corrosion inhibition by benzotriazole derivatives and sodium dodecyl sulphate as corrosion inhibitors for copper in ground water at different temperatures
Deyab et al. Aesculus hippocastanum seeds extract as eco-friendly corrosion inhibitor for desalination plants: Experimental and theoretical studies
Eldesoky et al. Studies on the corrosion inhibition of copper in nitric acid solution using some pharmaceutical compounds
Tronstad et al. Ageing and corrosion of paper insulated copper windings: the effect of irgamet® 39 in aged insulated oil
Yang et al. Inhibition method for the degradation of oil–paper insulation and corrosive sulphur in a transformer using adsorption treatment
HosseinpourRokni et al. Indirect interactions between the ionic liquid and Cu surface in 0.5 M HCl: a novel mechanism explaining cathodic corrosion inhibition
Abdallah et al. Inhibition of zinc corrosion by some benzaldehyde derivatives in HCl solution
RU2012152963A (en) METHOD AND DEVICE FOR REDUCING GAS DISTRIBUTION BY TRITIUM-CONTAINING WASTES EMISSED BY THE ATOMIC INDUSTRY
Borghei et al. Synthesis, characterization and electrochemical performance of a new imidazoline derivative as an environmentally friendly corrosion and scale inhibitor
Choudhury et al. Inhibition of copper corrosion by tolyltriazole in cooling systems using treated municipal wastewater as makeup water
Aouadi et al. Early stages of tin bronze corrosion in neutral aqueous chloride media: Electrochemical and FTIR investigations
Franco et al. 1-Hydroxyethylidene-1, 1-diphosphonic Acid (HEDP) as a corrosion inhibitor of AISI 304 stainless steel in a medium containing chloride and sulfide ions in the presence of different metallic cations
Schneider et al. Nano‐sized zeolite particles as inhibitor carrier in plasma electrolytic oxide layers on AZ31
Fuchs-Godec et al. The inhibitive effect of vitamin-C on the corrosive performance of steel in HCl solutions-part II
Finšgar The influence of the amino group in 3‐amino‐1, 2, 4‐triazole corrosion inhibitor on the interface properties for brass studied by ToF‐SIMS
Saadouni et al. Experimental and quantum chemical and Monte Carlo simulations studies on the corrosion inhibition of mild steel in 1 M HCl by two benzothiazine derivatives
Samarasinghe et al. A review on influencing factors of sulphur corrosion and metal passivation in power transformers
El Warraky The effect of sulphide ions on the corrosion inhibition of copper in acidic chloride solutions
Zhou et al. The Synergistic Effect of 2-Chloromethylbenzimidazole and Potassium Iodide on the Corrosion behavior of Mild Steel in Hydrochloric Acid Solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306