JP2010026657A - Driver state detection device - Google Patents

Driver state detection device Download PDF

Info

Publication number
JP2010026657A
JP2010026657A JP2008185176A JP2008185176A JP2010026657A JP 2010026657 A JP2010026657 A JP 2010026657A JP 2008185176 A JP2008185176 A JP 2008185176A JP 2008185176 A JP2008185176 A JP 2008185176A JP 2010026657 A JP2010026657 A JP 2010026657A
Authority
JP
Japan
Prior art keywords
driver
thickness
crystalline lens
state
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008185176A
Other languages
Japanese (ja)
Other versions
JP4973613B2 (en
Inventor
Makoto Tanaka
信 田中
Masami Aga
正己 阿賀
Eisaku Akutsu
英作 阿久津
Yohei Satomi
洋平 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008185176A priority Critical patent/JP4973613B2/en
Publication of JP2010026657A publication Critical patent/JP2010026657A/en
Application granted granted Critical
Publication of JP4973613B2 publication Critical patent/JP4973613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Alarm Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driver state detection device for highly precisely detecting a state of a driver based on a state of eyes of the driver. <P>SOLUTION: This driver state detection device is provided with: an irradiation means for irradiating a region including the crystalline lens of eyeballs of a driver with the invisible rays of light with a striped pattern; an imaging means for picking up the image of the region including the crystalline lens of the eyeballs of the driver with the invisible rays of light; a stripped pattern detection means for detecting a stripped pattern projected on the crystalline lens of the driver from the image picked up by the imaging means; a thickness estimation means for estimation the thickness of the crystalline lens of the driver based on the change of the stripped pattern detected by the stripped pattern detection means; and a driver state decision means for deciding the state of the driver based on the change of the thickness of the crystalline lens estimated by the thickness estimation means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、運転者状態検出装置に関する。   The present invention relates to a driver state detection device.

運転支援装置などに利用するために、運転者の漫然状態、居眠り状態などの運転者の状態を検出する装置が各種提案されている。特許文献1に記載の装置では、運転者の瞳孔径を検出し、瞳孔径の変化率に基づいて漫然状態か否かを判定する。
特開2002−367100号公報 特開平11−213164号公報 特表2005−532831号公報
Various devices for detecting a driver's state such as a driver's sloppy state or a dozing state have been proposed for use in driving support devices. In the apparatus described in Patent Literature 1, the pupil diameter of the driver is detected, and it is determined whether or not the driver is in a random state based on the change rate of the pupil diameter.
JP 2002-367100 A JP-A-11-213164 JP 2005-532831 A

瞳孔は、入ってくる光の量によって径が変化する。また、車両の運転者は、走行中に変化する環境下で光の変化を受ける。そのため、環境光量などの外乱の影響によって、運転者の瞳孔径は、運転者の状態に関係なく変化する場合がある。その結果、運転者の瞳孔径の変化から漫然状態か否かを精度良く判定できない場合がある。   The diameter of the pupil changes depending on the amount of incoming light. In addition, the driver of the vehicle receives a change in light under an environment that changes during traveling. Therefore, the pupil diameter of the driver may change regardless of the driver's condition due to the influence of disturbance such as the amount of environmental light. As a result, it may not be possible to accurately determine whether the driver's pupil diameter changes or not.

そこで、本発明は、運転者の眼の状態に基づいて運転者の状態を高精度に検出する運転者状態検出装置を提供することを課題とする。   Then, this invention makes it a subject to provide the driver | operator state detection apparatus which detects a driver | operator's state with high precision based on a driver | operator's eye state.

本発明に係る運転者状態検出装置は、縞模様の不可視光を運転者の眼球の水晶体を含む領域に照射する照射手段と、不可視光によって運転者の眼球の水晶体を含む領域を撮像する撮像手段と、撮像手段で撮像した画像から運転者の水晶体に映っている縞模様を検出する縞模様検出手段と、縞模様検出手段で検出した縞模様の変化に基づいて運転者の水晶体の厚さを推定する厚さ推定手段と、厚さ推定手段で推定した水晶体の厚さの変化に基づいて運転者の状態を判定する運転者状態判定手段とを備えることを特徴とする。   The driver state detection device according to the present invention includes an irradiation unit that irradiates a region including a crystalline lens of a driver's eyeball with invisible light having a striped pattern, and an imaging unit that images a region including the crystalline lens of the driver's eyeball using the invisible light. And a striped pattern detecting means for detecting a striped pattern reflected in the driver's crystalline lens from an image captured by the imaging means, and a thickness of the driver's crystalline lens based on a change in the striped pattern detected by the striped pattern detecting means. Thickness estimation means for estimation, and driver state determination means for determining the state of the driver based on a change in the thickness of the lens estimated by the thickness estimation means are provided.

この運転者状態検出装置では、照射手段により運転者の眼球の水晶体を含む領域に縞模様の不可視光を照射する。そして、運転者状態検出装置では、撮像手段によりその縞模様の不可視光が照射されている水晶体を含む領域を不可視光によって撮像し、水晶体を含む画像を取得する。さらに、運転者状態検出装置では、縞模様検出手段によりその画像から水晶体に映っている縞模様を検出する。水晶体に映っている縞模様は、水晶体の曲面(曲率)に応じて歪み、模様が変化する。また、水晶体は、視覚対象物に応じて焦点距離を変えるために、視覚対象物までの距離に応じて厚さが変化し(伸縮し)、その厚さに応じて曲率が変化する。このように、水晶体の厚さは、視覚対象物までの距離に依存しており、環境光などの影響を受け難い。そこで、運転者状態検出装置では、厚さ推定手段によりその水晶体の状態に応じて変化している縞模様に基づいて水晶体の厚さを推定する。そして、運転者状態検出装置では、運転者状態判定手段により水晶体の厚さの変化に基づいて運転者の状態を判定する。運転者が平常状態の場合、周辺の様々な物体から運転に必要な情報を取得するために、視覚対象物を時々刻々と変えるので、それに応じて水晶体の厚さも頻繁に変化する。しかし、運転者の意識状態が低下してくると、視覚対象物を変える頻度が少なくなるので、水晶体の厚さの変化も少なくなる。このように、運転者状態検出装置では、水晶体の厚さの変化を利用することにより、運転者の状態を高精度に検出することができる。   In this driver state detection device, a region of the driver's eyeball including the crystalline lens is irradiated with striped invisible light by the irradiation means. In the driver state detection device, an area including the crystalline lens irradiated with the invisible light with the striped pattern is captured by the invisible light, and an image including the crystalline lens is acquired. Furthermore, in the driver state detection device, the striped pattern reflected on the crystalline lens is detected from the image by the striped pattern detecting means. The striped pattern reflected in the crystalline lens is distorted and the pattern changes according to the curved surface (curvature) of the crystalline lens. Further, in order to change the focal length according to the visual object, the thickness of the crystalline lens changes (stretches) according to the distance to the visual object, and the curvature changes according to the thickness. Thus, the thickness of the crystalline lens depends on the distance to the visual object and is not easily affected by ambient light or the like. Therefore, in the driver state detection device, the thickness of the crystalline lens is estimated by the thickness estimating means based on the stripe pattern that changes in accordance with the state of the crystalline lens. In the driver state detection device, the driver state determination unit determines the state of the driver based on the change in the thickness of the crystalline lens. When the driver is in a normal state, the visual object is changed every moment in order to acquire information necessary for driving from various surrounding objects, and the thickness of the lens frequently changes accordingly. However, when the driver's consciousness state decreases, the frequency of changing the visual object decreases, so the change in the thickness of the lens also decreases. Thus, the driver state detection device can detect the driver's state with high accuracy by utilizing the change in the thickness of the crystalline lens.

縞模様としては、例えば、格子状の縞模様、縦方向の縞模様、横方向の縞模様がある。運転者の状態としては、例えば、平常状態と漫然状態、意識が低下した状態、居眠り直前状態とがある。本発明で用いる水晶体の厚さは、水晶体の厚さ自体の他に、厚さに応じて変化する他のパラメータ(例えば、曲率)も含む概念とする。   Examples of the striped pattern include a grid-like striped pattern, a vertical striped pattern, and a horizontal striped pattern. The driver's state includes, for example, a normal state and a sloppy state, a state in which consciousness is lowered, and a state immediately before falling asleep. The thickness of the crystalline lens used in the present invention is a concept including not only the crystalline thickness of the crystalline lens itself but also other parameters (for example, curvature) that change according to the thickness.

本発明の上記運転者状態検出装置では、照射手段は、格子状の縞模様の不可視光を照射すると好適である。   In the above-described driver state detection device of the present invention, it is preferable that the irradiating means irradiates invisible light with a grid-like stripe pattern.

この運転者状態検出装置では、照射手段により運転者の眼球の水晶体を含む領域に格子状の縞模様の不可視光を照射する。そして、運転者状態検出装置では、縞模様検出手段により撮像画像から水晶体に映っている格子状の縞模様を検出し、厚さ推定手段によりその検出した格子状の縞模様の変化に基づいて運転者の水晶体の厚さを推定する。格子状の縞模様の場合、水晶体の厚さ(曲率)の変化に応じて縦方向の縞模様が歪むとともに横方向の縞模様が歪むので、この2つの方向の縞模様の変化が得られる。このように、運転者状態検出装置では、格子状の縞模様を用いることにより、2つの方向の縞模様の変化に基づいて水晶体の厚さをより高精度に推定できる。   In this driver state detection device, the irradiation means irradiates a region including the crystalline lens of the driver's eyeball with invisible light in a grid pattern. In the driver state detection device, the striped pattern detecting means detects the grid-like striped pattern reflected in the crystalline lens from the captured image, and the thickness estimating means drives based on the detected change in the grid-like striped pattern. The thickness of the person's lens. In the case of a lattice-like stripe pattern, the stripe pattern in the vertical direction is distorted and the stripe pattern in the horizontal direction is distorted in accordance with the change in the thickness (curvature) of the crystalline lens, so that a change in the stripe pattern in these two directions is obtained. Thus, in the driver state detection device, the thickness of the crystalline lens can be estimated with higher accuracy based on the change in the striped pattern in two directions by using the grid-like striped pattern.

本発明の上記運転者状態検出装置では、運転者状態判定手段は、水晶体の厚さが変化した頻度に基づいて運転者の状態を判定する構成としてもよい。   In the above-described driver state detection device of the present invention, the driver state determination unit may be configured to determine the state of the driver based on the frequency with which the thickness of the crystalline lens has changed.

上記したように視覚対象物までの距離に応じて水晶体の厚さが変化するので、運転者が視覚対象物を変える毎に水晶体の厚さが変化(伸縮)する。したがって、運転者が視覚対象物を変えた回数が多いと水晶体の厚さの変化回数も多くなり、運転者が視覚対象物を変えた回数が少なくなると水晶体の厚さの変化回数も少なくなる。そこで、運転者状態検出装置では、運転者状態判定手段により水晶体の厚さが変化した頻度に基づいて運転者の状態を判定することにより、運転者の状態を高精度に検出することができる。   As described above, since the thickness of the crystalline lens changes according to the distance to the visual object, the thickness of the crystalline lens changes (stretches) each time the driver changes the visual object. Therefore, if the number of times the driver changes the visual object is large, the number of changes in the lens thickness increases, and if the number of times the driver changes the visual object is small, the number of changes in the lens thickness also decreases. Therefore, in the driver state detection device, the driver's state can be detected with high accuracy by determining the state of the driver based on the frequency with which the thickness of the crystalline lens is changed by the driver state determination unit.

本発明の上記運転者状態検出装置では、運転者状態判定手段は、運転者が漫然状態か否かを判定する構成としてもよい。   In the driver state detection device of the present invention, the driver state determination means may determine whether or not the driver is in a sloppy state.

運転者は漫然状態になると、視覚対象物を変える回数が少なくなり、水晶体の厚さの変化回数も少なくなる。したがって、この運転者状態検出装置では、水晶体の厚さの変化を用いることにより、運転者が漫然状態か否かを精度良く判定できる。   When the driver is in a state of disambiguation, the number of times the visual object is changed decreases, and the number of changes in the lens thickness also decreases. Therefore, in this driver state detection device, it is possible to accurately determine whether or not the driver is in a sloppy state by using a change in the thickness of the crystalline lens.

本発明は、水晶体の厚さの変化を利用することにより、運転者の状態を高精度に検出することができる。   The present invention can detect the state of the driver with high accuracy by utilizing the change in the thickness of the crystalline lens.

以下、図面を参照して、本発明に係る運転者状態検出装置の実施の形態を説明する。   Hereinafter, an embodiment of a driver state detection device according to the present invention will be described with reference to the drawings.

本実施の形態では、本発明に係る運転者状態検出装置を、車両に搭載される漫然運転判定装置に適用する。本発明に係る漫然運転判定装置は、運転者の眼球の水晶体の厚さの伸縮頻度を利用して漫然状態か否かを判定し、その判定結果を運転支援装置などに提供する。   In the present embodiment, the driver state detection device according to the present invention is applied to a casual driving determination device mounted on a vehicle. The random driving determination device according to the present invention determines whether or not it is a random state by using the frequency of expansion and contraction of the lens thickness of the driver's eyeball, and provides the determination result to a driving support device or the like.

水晶体は、外から入ってくる光を屈折させて網膜上に焦点を合わせるための凸状のレンズであり、チン氏帯を介して毛様筋が繋がっている。近くのものを見る場合、毛様筋が収縮し、チン氏帯が弛むことにより、水晶体の厚さが厚くなる(曲率が大きくなる)。また、遠くのものを見る場合、毛様筋が弛緩し、チン氏帯が引っ張られることにより、水晶体の厚さが薄くなる(曲率が小さくなる)。このように、人は、見る物体までの距離に応じて、水晶体の厚さを無意識に伸縮させて焦点距離を調節している。水晶体の厚さは、一般に、通常時には3.6mm程度であり、最大時には4.0mm程度である。また、水晶体を正面から見たときの直径は、一般に、9〜10mm程度である。   The crystalline lens is a convex lens that refracts incoming light and focuses it on the retina, and the ciliary muscles are connected via the Chin band. When looking at nearby objects, the ciliary muscles contract and the chin band relaxes, resulting in a thicker lens (curvature increases). Also, when looking at a distant object, the ciliary muscle relaxes and the chin band is pulled, thereby reducing the thickness of the crystalline lens (decreasing the curvature). In this way, the person adjusts the focal length by unconsciously expanding and contracting the thickness of the crystalline lens according to the distance to the object to be viewed. The thickness of the crystalline lens is generally about 3.6 mm at the normal time and about 4.0 mm at the maximum. The diameter of the crystalline lens when viewed from the front is generally about 9 to 10 mm.

車両の運転者は、通常運転時(平常状態の場合)には安全確認のために、視覚対象物(例えば、他車両、歩行者、自転車、信号機、交通標識、各種計器、バックミラー、サイドミラー)を絶えず変えている。したがって、運転者は、視覚対象物に応じた焦点距離に調節するために、水晶体の厚さを絶えず変化させている。しかし、運転者は、漫然状態になると、視覚対象物を意識的に変えなくなるので、水晶体の厚さの変化も少なくなる。   The driver of the vehicle is required to confirm visual objects (for example, other vehicles, pedestrians, bicycles, traffic lights, traffic signs, various instruments, rearview mirrors, side mirrors) for safety confirmation during normal driving (in normal conditions). ) Is constantly changing. Therefore, the driver constantly changes the lens thickness in order to adjust the focal length according to the visual object. However, when the driver is in a state of ambiguity, the visual object is not changed consciously, so the change in the thickness of the lens is also reduced.

図1〜図3を参照して、漫然運転判定装置1について説明する。図1は、本実施の形態に係る漫然運転判定装置の構成図である。図2は、図1の漫然運転判定装置における動作の概要図である。図3は、水晶体の厚さの時間変化の一例を示すグラフである。   With reference to FIGS. 1 to 3, the casual driving determination device 1 will be described. FIG. 1 is a configuration diagram of a random driving determination device according to the present embodiment. FIG. 2 is a schematic diagram of the operation in the casual driving determination device of FIG. FIG. 3 is a graph showing an example of a temporal change in the thickness of the crystalline lens.

漫然運転判定装置1は、運転者の水晶体の厚さを推定し、水晶体の厚さの伸縮頻度に基づいて運転者が平常状態かあるいは漫然状態かを判定する。特に、漫然運転判定装置1では、水晶体に格子縞の近赤外線を照射し、その格子縞の変化具合から水晶体の厚さを推定する。そのために、漫然運転判定装置1は、近赤外線照射器2、偏光フィルム3、カメラ4及びECU[Electronic Control Unit]5を備えている。   The random driving determination device 1 estimates the thickness of the driver's crystalline lens, and determines whether the driver is in a normal state or a casual state based on the expansion / contraction frequency of the crystalline lens thickness. In particular, the casual driving determination device 1 irradiates the near-infrared rays of the lattice pattern on the crystalline lens, and estimates the thickness of the crystalline lens from the degree of change of the lattice pattern. For this purpose, the casual driving determination device 1 includes a near infrared irradiator 2, a polarizing film 3, a camera 4 and an ECU [Electronic Control Unit] 5.

なお、本実施の形態では、近赤外線照射器2及び偏光フィルム3が特許請求の範囲に記載する照射手段に相当し、カメラ4が特許請求の範囲に記載する撮像手段に相当し、ECU5における各処理が特許請求の範囲に記載する縞模様検出手段、厚さ推定手段、運転者状態判定手段に相当する。   In the present embodiment, the near-infrared irradiator 2 and the polarizing film 3 correspond to the irradiating means described in the claims, and the camera 4 corresponds to the imaging means described in the claims. The processing corresponds to a striped pattern detection unit, a thickness estimation unit, and a driver state determination unit described in the claims.

近赤外線照射器2は、近赤外線を照射する照射器である。近赤外線照射器2は、インストルメントパネルやステアリングコラムなどに、運転者の眼球の水晶体周辺に向けて照射する向きで取り付けられる。近赤外線照射器2は、漫然運転判定装置1の作動中、運転者の水晶体周辺に向けて近赤外線を照射する。このように近赤外線照射器2によって運転者に水晶体周辺に近赤外線を照射し、カメラ4で運転者の水晶体周辺を撮像することにより、運転者の水晶体周辺だけの画像を取得することができる。近赤外線は、人に無害である。また、近赤外線は、不可視光であるので、運転者の運転に支障を及ぼさない。   The near infrared irradiator 2 is an irradiator that irradiates near infrared rays. The near-infrared irradiator 2 is attached to an instrument panel, a steering column, or the like in such a direction as to irradiate around the crystalline lens of the driver's eyeball. The near-infrared irradiator 2 irradiates near infrared rays toward the driver's crystalline lens while the casual driving determination device 1 is in operation. In this way, the near infrared irradiator 2 irradiates the driver with near infrared light around the lens and the camera 4 captures the periphery of the driver's lens, thereby obtaining an image only around the driver's lens. Near-infrared rays are harmless to humans. Moreover, since near infrared rays are invisible light, they do not hinder the driving of the driver.

なお、運転者によって水晶体が存在する位置(特に、高さ位置)が異なるので、運転者の顔(特に、眼)の位置を検出し、その検出した位置に応じて近赤外線照射器2の照射方向を変更できるようにするとよい。また、水晶体は小さいので、水晶体周辺のみに近赤外線を照射するのではなく、少なくとも水晶体を含むある程度広い領域(例えば、顔全体程度)に近赤外線を照射するようにしてもよい。   In addition, since the position (especially height position) where a lens exists differs from driver | operator, the position of a driver | operator's face (especially eye) is detected, and irradiation of the near-infrared irradiator 2 according to the detected position It is good to be able to change the direction. Further, since the crystalline lens is small, the near infrared ray may be irradiated to at least a certain wide area including the crystalline lens (for example, the entire face) instead of irradiating the near infrared ray only to the periphery of the crystalline lens.

偏光フィルム3は、近赤外線照射器2から照射された近赤外線を格子状の縞模様に偏光フィルタリングする偏光フィルムである。この格子状の縞模様は、格子を形成する複数本の縦線及び横線の線間隔が同一であり、この線間隔が水晶体の直径よりも十分に狭い間隔(例えば、直径の数分の1〜数十分の1の間隔)である。偏光フィルム3は、近赤外線照射器2から照射された近赤外線が通過する任意の位置に配置され、近赤外線照射器2内に設けられてもよいしあるいは近赤外線照射器2と別体で設けられてもよい。偏光フィルム3では、近赤外線が入射すると偏光フィルタリングし、格子縞の近赤外線Cを出射する(図2参照)。   The polarizing film 3 is a polarizing film that filters the near infrared rays irradiated from the near infrared irradiator 2 into a grid-like striped pattern. In this grid-like striped pattern, a plurality of vertical lines and horizontal lines forming the grid have the same line spacing, and the line spacing is sufficiently narrower than the diameter of the crystalline lens (for example, 1 to a fraction of the diameter). Several tenths of an interval). The polarizing film 3 is disposed at an arbitrary position through which the near infrared ray irradiated from the near infrared irradiator 2 passes, and may be provided in the near infrared irradiator 2 or provided separately from the near infrared irradiator 2. May be. In the polarizing film 3, when near-infrared rays enter, polarization filtering is performed, and lattice-patterned near-infrared rays C are emitted (see FIG. 2).

カメラ4は、運転者の水晶体周辺の画像を取得するためのカメラである。カメラ4は、インストルメントパネルやステアリングコラムなどに、運転者の水晶体周辺の方向に向けて取り付けられる。カメラ4は、近赤外線カメラであり、近赤外線(特に、近赤外線照射器2からの近赤外線)を取り込み、その近赤外線の輝度に応じた近赤外線画像を生成する。カメラ4では、一定時間毎(例えば、1/30秒毎)に、運転者の水晶体L周辺を撮像し、撮像した近赤外線画像Iを画像信号としてECU5に送信する(図2参照)。   The camera 4 is a camera for acquiring an image around the driver's crystalline lens. The camera 4 is attached to an instrument panel, a steering column, or the like in a direction around the driver's crystalline lens. The camera 4 is a near-infrared camera, takes in near-infrared rays (particularly, near-infrared rays from the near-infrared irradiator 2), and generates a near-infrared image corresponding to the brightness of the near-infrared rays. The camera 4 captures an image of the driver's crystalline lens L around every predetermined time (for example, every 1/30 seconds), and transmits the captured near-infrared image I to the ECU 5 as an image signal (see FIG. 2).

なお、運転者によって水晶体が存在する位置が異なるので、運転者の顔(特に、眼)の位置を検出し、その検出した位置に応じてカメラ4の撮像方向を変更できるようにするとよい。また、水晶体は小さいので、カメラ4で運転者の顔周辺を撮像し、顔画像から眼領域(特に、水晶体周辺)を抽出するようにしてもよい。   In addition, since the position where a crystalline lens exists differs from driver | operator, it is good to detect the position of a driver | operator's face (especially eye), and to change the imaging direction of the camera 4 according to the detected position. Further, since the crystalline lens is small, the camera 4 may be used to capture the periphery of the driver's face and extract the eye region (particularly, the crystalline lens periphery) from the facial image.

ECU5は、CPU[Central Processing Unit]、ROM[ReadOnly Memory]、RAM[Random Access Memory]及び画像処理装置などからなり、漫然運転判定装置1を統括制御する。ECU5では、漫然運転判定装置1が起動されると近赤外線照射器2及びカメラ4を起動し、一定時間毎にカメラ4から画像信号を受信する。そして、ECU5では、一定時間毎の撮像画像に基づいて運転者が漫然状態か否かを判定し、その判定結果を運転支援装置に出力する。   The ECU 5 includes a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], an image processing device, and the like, and comprehensively controls the casual driving determination device 1. The ECU 5 activates the near-infrared irradiator 2 and the camera 4 when the casual driving determination device 1 is activated, and receives image signals from the camera 4 at regular intervals. Then, the ECU 5 determines whether or not the driver is in a relaxed state based on the captured images at regular intervals, and outputs the determination result to the driving support device.

具体的には、撮像画像が入力される毎に、ECU5では、入力された撮像画像Iに対してレンズ歪みを補正するとともに画像の傾きを台形補正し、補正を施した撮像画像I’を取得する(図2参照)。レンズ歪みは、カメラ4の特性(特に、カメラのレンズの曲面)に応じて発生する。画像の傾きは、運転者の水晶体(顔)の位置とカメラ4との位置関係に応じて発生する。補正後の撮像画像I’は、レンズ歪みがなくかつ水晶体Lを真正面から撮像した画像に相当する。なお、更に前処理として、撮像画像から格子模様を検知し易くするために、撮像画像に対してノイズ除去やフィルタリングなどを行ってよい。   Specifically, every time a captured image is input, the ECU 5 corrects the lens distortion with respect to the input captured image I and corrects the tilt of the image to a trapezoid to obtain a corrected captured image I ′. (See FIG. 2). The lens distortion occurs according to the characteristics of the camera 4 (particularly, the curved surface of the camera lens). The inclination of the image is generated according to the positional relationship between the position of the driver's crystalline lens (face) and the camera 4. The corrected captured image I ′ corresponds to an image obtained by imaging the crystalline lens L from the front without lens distortion. Further, as preprocessing, noise removal, filtering, or the like may be performed on the captured image in order to easily detect the lattice pattern from the captured image.

ECU5では、補正後の撮像画像I’中の格子模様Sをトレースし、格子模様Sを抽出する(図2参照)。この格子模様Sは、水晶体Lに映っている部分では水晶体Lの曲面に沿って歪んでおり、照射時の直線で構成される格子模様から曲線で構成される格子模様となっている。   The ECU 5 traces the lattice pattern S in the corrected captured image I ′ and extracts the lattice pattern S (see FIG. 2). This lattice pattern S is distorted along the curved surface of the crystalline lens L in the portion reflected in the crystalline lens L, and is a lattice pattern composed of a curve from a lattice pattern composed of straight lines at the time of irradiation.

ECU5では、抽出した格子模様Sからその各曲線の曲率や各曲線間の間隔(縦線間隔、横線間隔)を算出する。さらに、ECU5では、格子模様Sの曲率や線間隔に基づいて水晶体Lの曲率を算出し、水晶体Lの曲率に基づいて水晶体Lの厚さを算出する。そして、ECU5では、その算出した水晶体Lの厚さを時系列で記憶する。   The ECU 5 calculates the curvature of each curve and the interval between the curves (vertical line interval, horizontal line interval) from the extracted lattice pattern S. Further, the ECU 5 calculates the curvature of the crystalline lens L based on the curvature of the lattice pattern S and the line interval, and calculates the thickness of the crystalline lens L based on the curvature of the crystalline lens L. Then, the ECU 5 stores the calculated thickness of the crystalline lens L in time series.

ECU5では、現時刻から過去の所定時間内の水晶体Lの厚さの時系列データを読み出す。所定時間は、運転者による視覚対象物の時々刻々の変化に応じた水晶体の厚さの伸縮回数を十分に取得可能な時間であり、実験などによって予め設定される。そして、ECU5では、所定時間内の水晶体Lの厚さの時系列データから、所定時間内での水晶体Lの厚さが伸縮(変化)する頻度を求める。   The ECU 5 reads time series data of the thickness of the crystalline lens L within a predetermined time in the past from the current time. The predetermined time is a time during which the number of expansion / contractions of the lens thickness according to the change of the visual object by the driver from time to time can be sufficiently obtained, and is set in advance by an experiment or the like. Then, the ECU 5 obtains the frequency of expansion / contraction (change) of the thickness of the crystalline lens L within the predetermined time from the time series data of the thickness of the crystalline lens L within the predetermined time.

ECU5では、所定時間内での水晶体Lの厚さの伸縮頻度が閾値より多いか否かを判定する。閾値は、運転者が平常状態のときの所定時間内での水晶体Lの厚さの伸縮頻度(特に、平常状態のときの最低レベルの頻度)であり、運転者が平常状態かあるいは漫然状態かを判定するための閾値である。閾値は、過去に収集された運転者が平常状態のときの水晶体の厚さの時系列データから求められた値でもよいし、運転開始後の運転者が平常状態のときの直前の値でもよいし、あるいは、多数の運転者から収集された運転者が平常状態のときの水晶体の厚さの時系列データから予め求められた一般的な値でもよい。この一般的な値は、閾値の初期値になる。この初期値に対して運転者から収集したデータを用いて学習し、運転者特有の閾値にするとよい。   In the ECU 5, it is determined whether the expansion / contraction frequency of the thickness of the crystalline lens L within a predetermined time is greater than a threshold value. The threshold value is a frequency of expansion / contraction of the thickness of the lens L within a predetermined time when the driver is in a normal state (particularly, a frequency at the lowest level in the normal state), and whether the driver is in a normal state or a loose state. This is a threshold value for determining. The threshold value may be a value obtained from time-series data of the lens thickness when the driver collected in the past is in a normal state, or may be a value immediately before the driver is in a normal state after driving. Alternatively, it may be a general value obtained in advance from time-series data of the lens thickness when the driver collected from a large number of drivers is in a normal state. This general value is the initial value of the threshold. The initial value may be learned using data collected from the driver, and a threshold unique to the driver may be set.

ECU5では、所定時間内での水晶体Lの厚さの伸縮頻度が閾値以上の場合(すなわち、運転者が視覚対象物を頻繁に変えている場合)、運転者が平常状態と判定する。一方、ECU5では、所定時間内での水晶体Lの厚さの伸縮頻度が閾値未満の場合(すなわち、運転者が視覚対象物を余り変えてない場合)、運転者が漫然状態と判定する。   The ECU 5 determines that the driver is in a normal state when the expansion / contraction frequency of the thickness of the crystalline lens L within a predetermined time is equal to or greater than a threshold value (that is, when the driver frequently changes the visual object). On the other hand, in the ECU 5, when the expansion / contraction frequency of the thickness of the crystalline lens L within a predetermined time is less than the threshold value (that is, when the driver has not changed the visual object so much), the driver determines that the driver is in a loose state.

図3には、運転者の水晶体の厚さの時間変化の一例を示している。符号Tで示す時間帯では、その前後の時間帯に比べて、水晶体の厚さが変化する回数が明らかに少ない。したがって、この時間帯Tでは、運転者が視覚対象物(焦点対象)を切り替えた回数が減少しており、運転者がぼんやりとしている漫然状態であると推測できる。   FIG. 3 shows an example of a temporal change in the thickness of the driver's crystalline lens. In the time zone indicated by the symbol T, the number of times the thickness of the crystalline lens changes is clearly smaller than in the time zones before and after that. Therefore, in this time zone T, the number of times the driver has switched the visual object (focus target) is decreasing, and it can be estimated that the driver is in a state of being blurred.

図1〜図3を参照して、漫然運転判定装置1における動作を図4のフローチャートに沿って説明する。図4は、図1の漫然運転判定装置における動作の流れを示すフローチャートである。   With reference to FIGS. 1-3, the operation | movement in the casual driving determination apparatus 1 is demonstrated along the flowchart of FIG. FIG. 4 is a flowchart showing a flow of operations in the casual driving determination device of FIG.

漫然運転判定装置1が作動中、近赤外線照射器2では、運転者の眼球の水晶体周辺に向けて近赤外線を照射する(S1)。偏光フィルム3では、この照射された近赤外線を偏光フィルタリングして格子模様の近赤外線とする(S1)。この格子模様の近赤外線は、運転者の眼球の水晶体周辺に到達する。   While the casual driving determination device 1 is in operation, the near-infrared irradiator 2 irradiates near infrared rays toward the lens of the driver's eyeball (S1). In the polarizing film 3, the irradiated near-infrared light is subjected to polarization filtering to obtain a lattice-patterned near-infrared light (S1). This grid pattern of near-infrared rays reaches around the lens of the driver's eyeball.

カメラ4では、一定時間毎に、近赤外線によって運転者の眼球の水晶体周辺を撮像し、その画像信号をECU5に送信する(S2)。ECU5では、一定時間毎に、画像信号を受信し、近赤外線の撮像画像を取得する。   The camera 4 captures the vicinity of the crystalline lens of the driver's eyeball with near infrared rays at regular intervals, and transmits the image signal to the ECU 5 (S2). The ECU 5 receives an image signal and acquires a near-infrared captured image at regular intervals.

ECU5では、撮像画像のレンズ歪みを補正し(S3)、撮像画像の傾きを台形補正する(S4)。ECU5では、補正した撮像画像から水晶体表面に映った格子模様を抽出する(S5)。ECU5では、抽出した格子模様の曲率や線間隔に基づいて水晶体の厚さを推定し、その水晶体の厚さを時系列で記憶する(S6)。   The ECU 5 corrects the lens distortion of the captured image (S3), and corrects the tilt of the captured image to a trapezoid (S4). The ECU 5 extracts a lattice pattern reflected on the lens surface from the corrected captured image (S5). The ECU 5 estimates the lens thickness based on the extracted lattice pattern curvature and line spacing, and stores the lens thickness in time series (S6).

ECU5では、現時刻から過去の所定時間内の水晶体の厚さの時系列データから水晶体の厚さの伸縮頻度をカウントする(S7)。   The ECU 5 counts the expansion / contraction frequency of the lens thickness from the time-series data of the lens thickness within a predetermined time in the past from the current time (S7).

ECU5では、水晶体の厚さの伸縮頻度が閾値以上か否かを判定する(S8)。S8にて水晶体の厚さの伸縮頻度が閾値以上と判定した場合、ECU5では、運転者が平常状態(通常運転状態)と判定する(S9)。一方、S8にて水晶体の厚さの伸縮頻度が閾値未満と判定した場合、ECU5では、運転者が漫然状態(漫然運転状態)と判定する(S10)。そして、ECU5では、その判定結果を運転支援装置に出力する。   The ECU 5 determines whether the expansion / contraction frequency of the lens thickness is equal to or greater than a threshold value (S8). When it is determined in S8 that the expansion / contraction frequency of the lens thickness is equal to or greater than the threshold value, the ECU 5 determines that the driver is in a normal state (normal operation state) (S9). On the other hand, when it is determined in S8 that the expansion / contraction frequency of the thickness of the crystalline lens is less than the threshold value, the ECU 5 determines that the driver is in a sloppy state (a sloppy driving state) (S10). Then, the ECU 5 outputs the determination result to the driving support device.

この漫然運転判定装置1によれば、水晶体の厚さの変化(伸縮頻度)に基づいて判定することにより、運転者が漫然状態か否かを高精度に判定することができる。ちなみに、水晶体の厚さは、視覚対象物までの距離に依存して変化するので、環境光などの影響を受け難い。また、水晶体の厚さの伸縮頻度を用いることにより運転者が視覚対象物を頻繁に変化させているかを的確に判定できるので、漫然状態かあるいは平常状態かを精度良く判別できる。   According to this random driving determination device 1, it is possible to determine with high accuracy whether or not the driver is in a random state by making a determination based on a change in thickness (extension / contraction frequency) of the crystalline lens. By the way, the thickness of the lens changes depending on the distance to the visual object, so it is hardly affected by ambient light. In addition, since it is possible to accurately determine whether the driver frequently changes the visual object by using the expansion / contraction frequency of the thickness of the crystalline lens, it is possible to accurately determine whether the driver is in a rough state or a normal state.

漫然運転判定装置1では、格子状の縞模様を用いることにより、縦方向と横方向の2方向の縞模様に基づいて水晶体の厚さをより高精度に推定できる。   In the random driving determination device 1, the thickness of the crystalline lens can be estimated with higher accuracy based on the striped pattern in the two directions of the vertical direction and the horizontal direction by using the grid-like striped pattern.

以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。   As mentioned above, although embodiment which concerns on this invention was described, this invention is implemented in various forms, without being limited to the said embodiment.

例えば、本実施の形態では運転者の漫然状態を判定する漫然運転判定装置に適用したが、意識の低下状態、覚醒度(居眠り直前状態)などの他の運転者の状態を検出する装置に適用してもよいし、あるいは、運転支援装置における運転者状態検出機能として適用してもよい。   For example, in the present embodiment, the present invention is applied to the casual driving determination device that determines the driver's casual state. However, the present invention is applied to a device that detects other driver states such as a state of reduced consciousness and arousal level (a state immediately before falling asleep). Alternatively, it may be applied as a driver state detection function in the driving support device.

また、本実施の形態では縞模様として格子状の縞模様を適用したが、縦方向の縞模様のみ、横方向の縞模様のみなどの他の縞模様でも適用可能である。   In the present embodiment, a grid-like striped pattern is applied as the striped pattern, but other striped patterns such as a vertical striped pattern or a horizontal striped pattern can be applied.

また、本実施の形態では不可視光として近赤外線を適用したが、人に害を与えるものなければ、他の不可視光でもよい。   In this embodiment, near-infrared light is applied as invisible light, but other invisible light may be used as long as it does not harm humans.

また、本実施の形態では水晶体の厚さの伸縮頻度と閾値とを比較することによって漫然状態か否かを判定する構成としたが、水晶体の厚さの変化周期、水晶体の曲率の変化頻度などの他の水晶体の厚さの変化情報を用いてもよい、判定方法についても他の方法を用いてもよい。   In the present embodiment, the lens thickness expansion / contraction frequency is compared with a threshold value to determine whether or not the lens is in an indeterminate state. Other lens thickness change information may be used, and other methods may be used as the determination method.

本実施の形態に係る漫然運転判定装置の構成図である。It is a block diagram of the casual driving determination apparatus which concerns on this Embodiment. 図1の漫然運転判定装置における動作の概要図である。It is a schematic diagram of the operation | movement in the casual driving determination apparatus of FIG. 水晶体の厚さの時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the thickness of a crystalline lens. 図1の漫然運転判定装置における動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement in the casual driving determination apparatus of FIG.

符号の説明Explanation of symbols

1…漫然運転判定装置、2…近赤外線照射器、3…偏光フィルム、4…カメラ、5…ECU   DESCRIPTION OF SYMBOLS 1 ... Random driving determination apparatus, 2 ... Near-infrared irradiator, 3 ... Polarizing film, 4 ... Camera, 5 ... ECU

Claims (4)

縞模様の不可視光を運転者の眼球の水晶体を含む領域に照射する照射手段と、
不可視光によって運転者の眼球の水晶体を含む領域を撮像する撮像手段と、
前記撮像手段で撮像した画像から運転者の水晶体に映っている縞模様を検出する縞模様検出手段と、
前記縞模様検出手段で検出した縞模様の変化に基づいて運転者の水晶体の厚さを推定する厚さ推定手段と、
前記厚さ推定手段で推定した水晶体の厚さの変化に基づいて運転者の状態を判定する運転者状態判定手段と
を備えることを特徴とする運転者状態検出装置。
Irradiating means for irradiating a region including the crystalline lens of the driver's eyeball with invisible light in a striped pattern;
Imaging means for imaging an area including the crystalline lens of the driver's eyeball with invisible light;
Striped pattern detecting means for detecting a striped pattern reflected on the driver's crystalline lens from an image captured by the imaging means;
A thickness estimation means for estimating the thickness of the driver's crystalline lens based on the change in the stripe pattern detected by the stripe pattern detection means;
A driver state detection device comprising: a driver state determination unit that determines a driver state based on a change in thickness of the lens estimated by the thickness estimation unit.
前記照射手段は、格子状の縞模様の不可視光を照射することを特徴とする請求項1に記載する運転者状態検出装置。   The driver state detection apparatus according to claim 1, wherein the irradiating unit irradiates a grid-like striped invisible light. 前記運転者状態判定手段は、水晶体の厚さが変化した頻度に基づいて運転者の状態を判定することを特徴とする請求項1又は請求項2に記載する運転者状態検出装置。   3. The driver state detection device according to claim 1, wherein the driver state determination unit determines the state of the driver based on a frequency at which the thickness of the crystalline lens is changed. 前記運転者状態判定手段は、運転者が漫然状態か否かを判定することを特徴とする請求項1〜請求項3のいずれか1項に記載する運転者状態検出装置。   The driver state detection device according to any one of claims 1 to 3, wherein the driver state determination unit determines whether or not the driver is in an indeterminate state.
JP2008185176A 2008-07-16 2008-07-16 Driver status detection device Expired - Fee Related JP4973613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185176A JP4973613B2 (en) 2008-07-16 2008-07-16 Driver status detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185176A JP4973613B2 (en) 2008-07-16 2008-07-16 Driver status detection device

Publications (2)

Publication Number Publication Date
JP2010026657A true JP2010026657A (en) 2010-02-04
JP4973613B2 JP4973613B2 (en) 2012-07-11

Family

ID=41732455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185176A Expired - Fee Related JP4973613B2 (en) 2008-07-16 2008-07-16 Driver status detection device

Country Status (1)

Country Link
JP (1) JP4973613B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137155A (en) * 2015-01-28 2016-08-04 京セラ株式会社 Determination method for eye's open/close state, picture processing apparatus, and determination system
JP2017091362A (en) * 2015-11-13 2017-05-25 オートリブ ディベロップメント エービー Danger avoidance device and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160059406A (en) 2014-11-18 2016-05-26 삼성전자주식회사 Wearable device and method for outputting virtual image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297332A (en) * 1989-05-11 1990-12-07 Topcon Corp Dimension measuring device of living eye
JPH07255669A (en) * 1994-03-24 1995-10-09 Sony Corp Eye condition detector and indicator
JP2005231382A (en) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd Vehicular running control device
JP2006309432A (en) * 2005-04-27 2006-11-09 Toyota Motor Corp Driver's state estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297332A (en) * 1989-05-11 1990-12-07 Topcon Corp Dimension measuring device of living eye
JPH07255669A (en) * 1994-03-24 1995-10-09 Sony Corp Eye condition detector and indicator
JP2005231382A (en) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd Vehicular running control device
JP2006309432A (en) * 2005-04-27 2006-11-09 Toyota Motor Corp Driver's state estimation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137155A (en) * 2015-01-28 2016-08-04 京セラ株式会社 Determination method for eye's open/close state, picture processing apparatus, and determination system
JP2017091362A (en) * 2015-11-13 2017-05-25 オートリブ ディベロップメント エービー Danger avoidance device and computer program

Also Published As

Publication number Publication date
JP4973613B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US9526448B2 (en) State estimation device and state estimation program
JP4899059B2 (en) Sleepiness detection device
EP1933256B1 (en) Eye closure recognition system and method
JP6350145B2 (en) Face orientation detection device and vehicle warning system
JP4793269B2 (en) Sleepiness detection device
JP4452833B2 (en) Gaze movement detection method and gaze movement detection apparatus
JP5233322B2 (en) Information processing apparatus and method, and program
JP2010013090A (en) Driver&#39;s condition monitoring system
JP6090129B2 (en) Viewing area estimation device
JP6578784B2 (en) State estimation device and state estimation program
JP2007004448A (en) Line-of-sight detecting apparatus
JP4742921B2 (en) Awakening level estimation device
JP2017097759A (en) Visual line direction detection device, and visual line direction detection system
JP2008204107A (en) Carelessness warning device, vehicle equipment control method for the device and program for vehicle control device
JP2015207163A (en) State estimation device and state estimation program
JP2010124043A (en) Image capturing apparatus and method
JP2018183532A (en) State estimation apparatus
JP2009219555A (en) Drowsiness detector, driving support apparatus, drowsiness detecting method
JP2013196331A (en) Imaging control device and program
JP4973613B2 (en) Driver status detection device
JP2009125518A (en) Driver&#39;s blink detection method, driver&#39;s awakening degree determination method, and device
KR20130013711A (en) Auto mirror control device and method thereof
JP5541099B2 (en) Road marking line recognition device
KR102038371B1 (en) Driver eye detecting device and method thereof
JP2013114290A (en) Safety support apparatus and safety support method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4973613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees