JP2010025913A - Wavelength dispersion measuring device and technique - Google Patents

Wavelength dispersion measuring device and technique Download PDF

Info

Publication number
JP2010025913A
JP2010025913A JP2008318652A JP2008318652A JP2010025913A JP 2010025913 A JP2010025913 A JP 2010025913A JP 2008318652 A JP2008318652 A JP 2008318652A JP 2008318652 A JP2008318652 A JP 2008318652A JP 2010025913 A JP2010025913 A JP 2010025913A
Authority
JP
Japan
Prior art keywords
chromatic dispersion
optical
signals
end side
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318652A
Other languages
Japanese (ja)
Other versions
JP5398251B2 (en
Inventor
Seiji Onohara
聖史 斧原
Takashi Mizuochi
隆司 水落
Kazuo Kubo
和夫 久保
Yoshiaki Konishi
良明 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008318652A priority Critical patent/JP5398251B2/en
Publication of JP2010025913A publication Critical patent/JP2010025913A/en
Application granted granted Critical
Publication of JP5398251B2 publication Critical patent/JP5398251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength dispersion measuring device and a technique thereof for measuring wavelength dispersion with sufficient accuracy without reflection at a receiving end, even if locations of the transmitting and receiving ends are different. <P>SOLUTION: The wavelength dispersion measuring device includes a process generating two light signals with different wavelength at a transmitting end of light transmission path, a process multiplexing the two light signals to transmit from the transmitting end of the light transmission path, a process transmitting wavelength dispersion measurement information containing wavelength of the measuring start signal based on generation of the light signals and the two light signals from the transmitting end to the receiving end, a process splitting the two light signals transmitted through the light transmission path to convert into electric signal, respectively, at the receiving end of the light transmission path. and a process measuring phase difference of the two signals with different converted wavelengths according to the measuring start signal of wavelength dispersion measurement information from the transmitting end to derive wavelength dispersion in the light transmission path from the measured phase difference and wavelength difference of the two signals of the wavelength dispersion measurement information which were measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、波長分散測定、特に長距離光ファイバ伝送路等のように入力部と出力部が離れた場所にある光通信装置のための波長分散測定装置及び波長分散測定方法に関する。   The present invention relates to chromatic dispersion measurement, and in particular, to a chromatic dispersion measurement apparatus and a chromatic dispersion measurement method for an optical communication apparatus such as a long-distance optical fiber transmission line where an input unit and an output unit are separated.

伝送速度高速化および距離延伸化が進む光ファイバ通信システムにおいては、波長分散補償技術は必須要素となっている。特に40ギガビット以上のビットレートでは、数十km程度の伝送距離のシステムでも波長分散による光信号の波形歪が発生することから、波長分散補償は不可欠な技術である。従って、伝送路となる光ファイバでの波長分散を精度よく測定し、波長分散によって生じる波形歪を補償する技術が必要である。さらに光ファイバ通信システムでは伝送路の両端は離れた場所にあり、光ファイバの波長分散は外部環境に応じて変化するため、波長分散の測定およびその補償は送信部と受信部が離れた場所にあっても行える必要がある。   In an optical fiber communication system where transmission speed increases and distance extension advances, chromatic dispersion compensation technology is an essential element. In particular, at a bit rate of 40 gigabits or more, wavelength distortion compensation is an indispensable technique because waveform distortion of an optical signal due to wavelength dispersion occurs even in a system with a transmission distance of about several tens of kilometers. Therefore, there is a need for a technique for accurately measuring chromatic dispersion in an optical fiber serving as a transmission line and compensating for waveform distortion caused by chromatic dispersion. Furthermore, in an optical fiber communication system, both ends of the transmission line are located at remote locations, and the chromatic dispersion of the optical fiber changes according to the external environment. Therefore, measurement and compensation of chromatic dispersion are performed at locations where the transmitter and receiver are separated. It must be possible even if it exists.

従来の波長分散測定装置では、フィールド上の既設ファイバのような被測定光ファイバの入出力端が同じ場所でない場合、終端器やサーキュレータを設け、受信端側で光信号を反射させ、送信端で戻り光を受信することによって離れた2地点間での光ファイバの波長分散を測定していた(例えば、特許文献1)。また、受信端で光/電気変換した信号の強度、平均光電流、パルス形状及び光源周波数の情報から被測定光ファイバの波長分散を測定する方法も提案されていた(例えば、特許文献2)。   In the conventional chromatic dispersion measuring device, when the input and output ends of the optical fiber to be measured such as the existing fiber on the field are not in the same place, a terminator or a circulator is provided to reflect the optical signal at the receiving end side, and at the transmitting end By receiving the return light, the chromatic dispersion of the optical fiber between two distant points was measured (for example, Patent Document 1). In addition, a method for measuring chromatic dispersion of an optical fiber to be measured from information on the intensity, average photocurrent, pulse shape, and light source frequency of a signal optically / electrically converted at the receiving end has been proposed (for example, Patent Document 2).

特開2000−329653号公報JP 2000-329653 A 特開2000−193558号公報JP 2000-193558 A

従来の波長分散測定装置では、フィールド上の既設ファイバのような被測定光ファイバの入出力端が同じ場所でない場合は、終端器やサーキュレータを設けることで反射させなければ測定することができなかった。しかし、サーキュレータを用いた方法では受信端で光信号を折り返す必要があり、波長分散測定中は、システム運用ができないという問題点があった。また、上記特許文献2の場合においても、システム運用中には被測定光ファイバの波長分散を測定することはできなかった。   In the conventional chromatic dispersion measuring device, when the input and output ends of the optical fiber to be measured such as the existing fiber on the field are not in the same place, it is impossible to measure without reflecting by providing a terminator or a circulator. . However, in the method using the circulator, it is necessary to return the optical signal at the receiving end, and there is a problem that the system cannot be operated during the chromatic dispersion measurement. Further, even in the case of Patent Document 2, the chromatic dispersion of the optical fiber to be measured cannot be measured during system operation.

この発明は、上記の問題点を解決するためになされたもので、送受信端が異なる場所にある場合でも受信端で反射させることなく波長分散を精度よく測定する波長分散測定装置及び波長分散測定方法を提供することを目的とする。   The present invention has been made to solve the above problems, and a chromatic dispersion measuring apparatus and a chromatic dispersion measuring method for accurately measuring chromatic dispersion without reflection at the receiving end even when the transmitting and receiving ends are in different locations. The purpose is to provide.

この発明は、光伝送路での波長分散を測定する波長分散測定装置であって、前記光伝送路の送信端側に、波長の異なる2つの光信号を生成する光信号生成手段と、前記2つの光信号を合波して送信する合波部と、を設け、送信端側から受信端側に、前記光信号生成手段での光信号の生成に基づく測定開始信号及び前記2つの光信号の波長を含む波長分散測定情報を送信する伝送路を含む測定制御手段を設け、前記光伝送路の受信端側に、前記光伝送路を介して送信されてきた前記2つの光信号を分波する分波部と、分波した前記2つの光信号をそれぞれ電気信号に変換する光電変換部と、前記送信端側からの波長分散測定情報の測定開始信号に従い、変換された波長の異なる2つの前記電気信号の位相差を測定し、この測定された位相差と前記波長分散測定情報の2つの信号の波長の波長差とから前記光伝送路での波長分散を求める波長分散測定手段と、を備えたことを特徴とする波長分散測定装置およびその方法にある。   The present invention is a chromatic dispersion measuring apparatus for measuring chromatic dispersion in an optical transmission line, and an optical signal generating means for generating two optical signals having different wavelengths on the transmitting end side of the optical transmission line; A multiplexing unit configured to multiplex and transmit two optical signals, and from the transmission end side to the reception end side, a measurement start signal based on the generation of the optical signal by the optical signal generation unit and the two optical signals A measurement control means including a transmission path for transmitting chromatic dispersion measurement information including a wavelength is provided, and the two optical signals transmitted via the optical transmission path are demultiplexed on the receiving end side of the optical transmission path A demultiplexing unit, a photoelectric conversion unit that converts the two demultiplexed optical signals into electric signals, and a measurement start signal of chromatic dispersion measurement information from the transmitting end side, and the two different wavelengths converted The phase difference of the electrical signal is measured and this measured phase difference and the previous A wavelength dispersion measuring apparatus and method is characterized in that and a wavelength dispersion measuring means for determining the chromatic dispersion in the optical transmission line and a wavelength difference of wavelengths of the two signals of the wavelength dispersion measurement information.

さらに、偏波ビームスプリッタを具備することで、1次の偏波モード分散である微分群遅延時間差(DGD:Differential Group Delay)を測定したり、また光信号を3波以上具備することで、分散スロープ係数や、分散スロープ係数が既知である場合は被測定光ファイバの距離も測定する。   Furthermore, by providing a polarization beam splitter, the differential group delay time difference (DGD: Differential Group Delay), which is the first-order polarization mode dispersion, is measured, and the dispersion is achieved by providing three or more optical signals. If the slope coefficient or dispersion slope coefficient is known, the distance of the optical fiber to be measured is also measured.

この発明では、送受信端が異なる場所にある場合でも受信端で反射させることなく波長分散を精度よく測定する波長分散測定装置及びその方法を提供することができる。また、測定には2つの異なる波長の送信信号のフレームパルスの遅延差を利用するため、システム運用中であっても主信号に影響することなく波長分散を測定することができる。   According to the present invention, it is possible to provide a chromatic dispersion measuring apparatus and method for accurately measuring chromatic dispersion without reflection at the receiving end even when the transmitting and receiving ends are in different places. In addition, since the measurement uses the delay difference between the frame pulses of transmission signals of two different wavelengths, the chromatic dispersion can be measured without affecting the main signal even during system operation.

実施の形態1.
図1はこの発明の一実施の形態による波長分散測定装置の構成図を示す。この発明の波長分散測定装置は、光伝送路となる(被測定)光ファイバF1,F2が有する波長分散を測定する送信端側と受信端側にそれぞれ設けられた、H/W(ハードウェア)で構成された測定部10a,10bと、これらの測定部10a,10bを制御するS/W(ソフトウェア)に従って動作するコンピュータを含み、さらにネットワークNW(上記光伝送路とは別の伝送路)を介して互いに通信を行う通信機能を備えた測定制御部20a,20bから構成される。測定部10a,10bはそれぞれ、送信側にSDHフレーム生成部11、光信号生成部12、合波部13、受信側に分波部14、光電変換部(O/E)15、SDHフレーム同期部16、波長分散測定部17を備え、一方の測定部が送信ノード、他方が受信ノードに設置され、光伝送路である光ファイバF1,F2の波長分散を測定することができる。
Embodiment 1 FIG.
FIG. 1 shows a block diagram of a chromatic dispersion measuring apparatus according to an embodiment of the present invention. The chromatic dispersion measuring device according to the present invention is provided with H / W (hardware) provided respectively on the transmitting end side and the receiving end side for measuring the chromatic dispersion of the optical fibers F1 and F2 (measured) serving as optical transmission paths. And a computer that operates according to S / W (software) that controls the measurement units 10a and 10b, and further includes a network NW (a transmission path different from the optical transmission path). Measurement control units 20a and 20b having a communication function for communicating with each other. The measurement units 10a and 10b are respectively an SDH frame generation unit 11, an optical signal generation unit 12, a multiplexing unit 13 on the transmission side, a demultiplexing unit 14, a photoelectric conversion unit (O / E) 15, and an SDH frame synchronization unit on the reception side. 16, a chromatic dispersion measuring unit 17 is provided. One measuring unit is installed at the transmitting node and the other is installed at the receiving node, and the chromatic dispersion of the optical fibers F1 and F2, which are optical transmission lines, can be measured.

なお、SDHフレーム生成部11と光信号生成部12が光信号生成手段を構成し、SDHフレーム同期部16と波長分散測定部17が波長分散測定手段を構成し、測定制御部20a,20bとネットワークNWが測定制御手段を構成する。また、図1では、測定部10a側から測定部10b側とその逆方向の、光ファイバF1,F2のそれぞれの波長分散測定機能が示されている。   The SDH frame generation unit 11 and the optical signal generation unit 12 constitute an optical signal generation unit, the SDH frame synchronization unit 16 and the chromatic dispersion measurement unit 17 constitute a chromatic dispersion measurement unit, and the measurement control units 20a and 20b and the network. NW constitutes a measurement control means. Further, FIG. 1 shows the respective wavelength dispersion measurement functions of the optical fibers F1 and F2 from the measurement unit 10a side to the measurement unit 10b side and in the opposite direction.

以下、光ファイバF1の波長分散測定を例に挙げて説明すると、波長分散測定に際し、光ファイバF1の送信端側の測定制御部20aからネットワークNWを介して受信端側の測定制御部20bへ、測定開始信号及び測定のために送信される波長の異なる2つの光信号の波長λ、λを含む波長分散測定情報が送られる。 Hereinafter, chromatic dispersion measurement of the optical fiber F1 will be described as an example. When performing chromatic dispersion measurement, from the measurement control unit 20a on the transmission end side of the optical fiber F1 to the measurement control unit 20b on the reception end side via the network NW, Chromatic dispersion measurement information including wavelengths λ 1 and λ 2 of two optical signals having different wavelengths transmitted for measurement is transmitted.

送信側のSDHフレーム生成部11では、波長λ、λ用のそれぞれのSDHフレームを生成する。光信号生成部12では、SDHフレーム生成部11で生成されたSDH信号(SDHフレーム信号)を光強度変調し、合波部13で合波する。変調信号は光ファイバF1,F2の伝送路を伝播する際に、光ファイバの持つ波長分散の影響を受け、波長に依存した群遅延を生じる。 The SDH frame generation unit 11 on the transmission side generates SDH frames for the wavelengths λ 1 and λ 2 . In the optical signal generation unit 12, the SDH signal (SDH frame signal) generated by the SDH frame generation unit 11 is optically modulated and combined by the multiplexing unit 13. When the modulated signal propagates through the transmission lines of the optical fibers F1 and F2, it is affected by the chromatic dispersion of the optical fiber and causes a group delay depending on the wavelength.

受信側では、波長分散測定情報を受けると、まず分波部14で受信された合波されている光信号を上述の異なる2つの波長に分離、分波した後、それぞれの光信号を光電変換部15で電気信号に変換する。そして波長の異なる2つの電気信号についてSDHフレーム同期部16でフレーム同期が行われ、フレーム同期により生成したフレームパルスは波長分散測定部17に入力される。   When receiving the chromatic dispersion measurement information, the receiving side first separates and splits the multiplexed optical signal received by the demultiplexing unit 14 into the two different wavelengths described above, and then photoelectrically converts each optical signal. The unit 15 converts it into an electrical signal. Frame synchronization is performed by the SDH frame synchronization unit 16 for two electrical signals having different wavelengths, and a frame pulse generated by the frame synchronization is input to the chromatic dispersion measurement unit 17.

波長分散測定部17では、受信したフレームパルスにより両者の信号の遅延差を測定する。もし光伝送路、例えば光ファイバF1に波長分散がなければ、両者の信号のタイミングは全く同一となるが、実際は光ファイバF1の持つ波長分散のために、光ファイバ長や波長差に応じて、両者のタイミングにずれが生じる。推定した群遅延時間から波長分散を求めるには次式を用いる。   The chromatic dispersion measuring unit 17 measures the delay difference between the two signals using the received frame pulse. If there is no chromatic dispersion in the optical transmission line, for example, the optical fiber F1, the timing of both signals is exactly the same, but in reality, due to the chromatic dispersion of the optical fiber F1, depending on the length of the optical fiber and the wavelength difference, There is a difference in timing between the two. The following equation is used to obtain chromatic dispersion from the estimated group delay time.

λ=nt(λ−λ) D λ = nt (λ 2 −λ 1 )

ここで、Dλは波長分散、λ、λは波長の異なる2つの電気信号の中心波長、tはビット間隔、n(n=1、2、3・・・)はビットシフト数である。すなわちntは群遅延時間差(波長の異なる2つの電気信号の位相差)となる。なお、波長λ、λは波長分散測定情報から得ることができる。 Here, D λ is chromatic dispersion, λ 1 and λ 2 are center wavelengths of two electric signals having different wavelengths, t is a bit interval, and n (n = 1, 2, 3,...) Is a bit shift number. . That is, nt is a group delay time difference (phase difference between two electric signals having different wavelengths). The wavelengths λ 1 and λ 2 can be obtained from chromatic dispersion measurement information.

この方式では、SDHのフレーム同期後に、群遅延時間を測定するための回路(ハードウェア)をFPGA(Field Programmable Gate Array)で構成し、このFPGA回路にPLL回路を用いることで、測定する群遅延時間の測定精度を向上させることができる。   In this method, after SDH frame synchronization, a circuit (hardware) for measuring a group delay time is configured by an FPGA (Field Programmable Gate Array), and a PLL circuit is used for the FPGA circuit to measure the group delay. Time measurement accuracy can be improved.

図2は図1の波長分散測定装置の受信側でのハードウェア構成のより詳細な図である。カプラ14aにより二分岐された光信号はバンドパスフィルタ(BPF)14b,14cによりそれぞれλ、λの波長が抽出される。抽出された光信号は光電変換部(O/E)15で光/電気変換され、さらにそれぞれ二分岐される。一方の電気信号(波)はクロック抽出部(CDR)161a,161bでクロック再生が行われ、フレーム同期器162a,162bにて、SDHフレームの同期が行われフレームパルスを生成する。生成されたフレームパルスは波長分散測定部17に入力される。他方の電気信号(波)はクロック抽出部、フレーム同期器を通らず、そのまま波長分散測定部17に入力される。 FIG. 2 is a more detailed diagram of the hardware configuration on the receiving side of the chromatic dispersion measuring apparatus of FIG. Wavelengths λ 1 and λ 2 are extracted from the optical signal branched into two by the coupler 14a by band-pass filters (BPF) 14b and 14c, respectively. The extracted optical signal is optical / electrically converted by a photoelectric conversion unit (O / E) 15 and further branched into two. One electrical signal (wave) is clock recovered by clock extraction units (CDR) 161a and 161b, and SDH frames are synchronized by frame synchronizers 162a and 162b to generate frame pulses. The generated frame pulse is input to the chromatic dispersion measuring unit 17. The other electrical signal (wave) is directly input to the chromatic dispersion measuring unit 17 without passing through the clock extracting unit and the frame synchronizer.

波長分散測定部17は、低精度測定部17aと高精度測定部17bを含む。低精度測定部17aでは、フレーム同期により生成されるフレームパルスの入力遅延差を測定して波長分散を測定する。すなわち、2つのフレームパルスのうち先に到着したフレームパルス(図2の場合λの方)から内部カウンタ(図示省略)を動作させ、後の他方のフレームパルス(図2の場合λの方)が到着するまでのカウンタ値より遅延時間を求める。このときの波長分散測定の精度は、ビットレートの逆数に相当する。例えば155.52Mbpsの信号であれば、約6.4nsの精度で波長分散が測定される。 The chromatic dispersion measurement unit 17 includes a low accuracy measurement unit 17a and a high accuracy measurement unit 17b. The low accuracy measurement unit 17a measures the chromatic dispersion by measuring the input delay difference of the frame pulse generated by the frame synchronization. That is, two frames pulses that arrive out destination of the frame pulse (towards the case of FIG. 2 lambda 1) is operated the internal counter (not shown) from the other frame pulse (towards the case of FIG. 2 lambda 2 after The delay time is obtained from the counter value until) arrives. The accuracy of chromatic dispersion measurement at this time corresponds to the reciprocal of the bit rate. For example, if the signal is 155.52 Mbps, the chromatic dispersion is measured with an accuracy of about 6.4 ns.

一方、光電変換部(O/E)15で光/電気変換された信号のうちフレーム同期器を通らない信号は、高精度測定部17bにおける高精度波長分散測定のために用いられる。図3は波長分散測定部17の高精度測定部17bのハードウェア部分の回路構成の一例を示す図、図4は図3の回路の動作を説明するためのタイミングチャートである。回路には、フレームパルスすなわち155.52MHzのクロック(CLK)を所定の倍数で逓倍したクロックをさらにそれぞれに異なる位相量ずらした複数のクロックを発生する位相同期回路(PLL)171を含むクロック入力部、波長λ、λの電気信号のデータを入力するそれぞれ第1、第2のデータ入力部から構成される。第2のデータ入力部の入力側には、低精度測定部17aで測定された入力遅延差により遅延の調整を行う調整部172を含む。 On the other hand, the signal that does not pass through the frame synchronizer among the signals that have been optically / electrically converted by the photoelectric conversion unit (O / E) 15 is used for high-accuracy chromatic dispersion measurement in the high-accuracy measurement unit 17b. FIG. 3 is a diagram showing an example of the circuit configuration of the hardware part of the high-precision measurement unit 17b of the chromatic dispersion measurement unit 17, and FIG. 4 is a timing chart for explaining the operation of the circuit of FIG. The circuit includes a clock input unit including a phase synchronization circuit (PLL) 171 that generates a plurality of clocks obtained by shifting a frame pulse, that is, a clock obtained by multiplying a clock (CLK) of 155.52 MHz by a predetermined multiple, respectively, by different phase amounts. , And λ 1 and λ 2 , respectively, are input from the first and second data input sections. The input side of the second data input unit includes an adjustment unit 172 that adjusts the delay based on the input delay difference measured by the low-precision measurement unit 17a.

入力データは、入力クロックはPLL171によりx倍に逓倍され、CLKn(n=0,1,2,3,・・・,k−1)のクロックを出力する。CLKnはそれぞれCLK0を基準として360×(n/k)°ずつ位相をずらしたクロックである。図3はx=4、k=4の時の回路を示している。なお、図4に示すようにCLK0〜3は622.08MHz(155.52MHz×4)、それぞれの位相差は90°である。   The input data is multiplied by x times by the PLL 171 and the clock of CLKn (n = 0, 1, 2, 3,..., K−1) is output. CLKn is a clock whose phase is shifted by 360 × (n / k) ° with respect to CLK0. FIG. 3 shows a circuit when x = 4 and k = 4. As shown in FIG. 4, CLK0 to CLK3 are 622.08 MHz (155.52 MHz × 4), and the respective phase differences are 90 °.

波長λ、λの電気信号である入力データ(Data)はそれぞれ4分岐され、それぞれ1段目のT−FF(T型フリップフロップ)に入力される。ここで、波長λのデータは、先に測定したSDHフレームによる測定結果を元に遅延分のビットを相殺するように調整される。すなわち波長λ、λの入力データは、SDH信号1ビット以下の遅延差に調整され、T−FFに入力されることになる。 Input data (Data), which is an electrical signal of wavelengths λ 1 and λ 2 , is branched into four, and each is input to a first-stage T-FF (T-type flip-flop). Here, the data of the wavelength λ 2 is adjusted so as to cancel out the bits corresponding to the delay based on the measurement result of the previously measured SDH frame. That is, the input data of the wavelengths λ 1 and λ 2 are adjusted to a delay difference of 1 bit or less for the SDH signal and input to the T-FF.

それぞれのT−FFには上記のCLK0〜3が入力されており、動作タイミングがそれぞれ90°ずつシフトされている。2段目のT−FFにはCLK0が入力される。ただし、CLK3については、CLK0との位相差が90°しかないため、FPGA内部での配置配線状況によってはタイミングが取れない可能性があり、CLK0との逆位相であるCLK2を用いる。これにより位相差を270°取ることができ、配置配線に余裕ができる。このままでは、全てのT−FFにCLK0をゲート信号として入力する(入力データを叩く)ことができないため、3段目のT−FFを追加し、ここでは全てCLK0をゲート信号として入力する(入力データを叩く)。CLK2とCLK0の位相差は180°あることから、タイミングマージンは十分である。3段目のT−FFを通過後、タイミング比較部173により、高精度の波長分散値を測定する。   The above CLK0 to 3 are input to each T-FF, and the operation timing is shifted by 90 °. CLK0 is input to the second T-FF. However, since the phase difference between CLK3 and CLK0 is only 90 °, there is a possibility that the timing may not be obtained depending on the arrangement and wiring situation inside the FPGA, and CLK2 that is opposite in phase to CLK0 is used. As a result, a phase difference of 270 ° can be obtained, and there is a margin in the placement and wiring. In this state, CLK0 cannot be input to all T-FFs as a gate signal (hit input data), so a third-stage T-FF is added. Here, CLK0 is input as a gate signal (input). Hit the data). Since the phase difference between CLK2 and CLK0 is 180 °, the timing margin is sufficient. After passing through the third stage T-FF, the timing comparison unit 173 measures a highly accurate chromatic dispersion value.

図4に示す図3の回路のタイミングチャートにおいて、D0、D1、D2、D3は4分岐されて1段目のT−FFを通過後の入力データ、D0−1d、D1−1d、D2−1d、D3−1dは2段目のT−FFの出力データ、D0−2d、D1−2d、D2−2d、D3−2dは3段目のT−FFの出力データである。CLK3とCLK0の位相差が90°しかないことから、一度CLK2でD3−1dのデータを生成することで、D3−1dからD3−2dの位相差を180°設けることができる。最終段のT−FFにおいてCLK0でデータを生成することで、4分岐したデータが0000から1111へ変化する2クロック間のちょうど真ん中の1クロック目のタイミングが測定する位相遅延となり、CLK0との位相差は0000のとき0°、0001のとき90°、0011のとき180°、0111のとき270°となる。 In the timing chart of the circuit of FIG. 3 shown in FIG. 4, D 0 0, D 0 1, D 0 2, and D 0 3 are branched into four and input data D 0 0 after passing through the first stage T-FF. −1d, D 0 1-1d, D 0 2-1d, D 0 3-1d are output data of the second stage T-FF, D 0 0-2d, D 0 1-2d, D 0 2-2d, D 0 3-2d is the output data of the third stage T-FF. Since the phase difference between CLK3 and CLK0 is only 90 °, that generates data D 0 3-1d once CLK2, be provided 180 ° phase difference D 0 3-2d from D 0 3-1d it can. By generating data at CLK0 in the final stage T-FF, the timing of the first clock between the two clocks where the four-branched data changes from 0000 to 1111 becomes the phase delay to be measured, and the position relative to CLK0 The phase difference is 0 ° when 0000, 90 ° when 0001, 180 ° when 0011, and 270 ° when 0111.

すなわち、低精度測定部17aでは155MHzの何クロック分という精度しか遅延差を測定できない。そこで高精度測定部17bでは、クロック(155MHz CLK)を位相同期回路(PLL)171により逓倍させ、さらに(0°、90°、180°、270°)と1/4クロックずつ位相差を設けることにより測定精度を高める。図4では、位相差を設けた4つのクロックを表している。その下にフレームパルス(λ、λ)が描かれているが、ここではフレームパルス(λ)のみに注目する。 In other words, the low accuracy measurement unit 17a can measure the delay difference only with an accuracy of how many clocks of 155 MHz. Therefore, in the high-accuracy measuring unit 17b, the clock (155 MHz CLK) is multiplied by the phase synchronization circuit (PLL) 171, and further, (0 °, 90 °, 180 °, 270 °) and a phase difference of 1/4 clock are provided. Increase measurement accuracy. FIG. 4 shows four clocks provided with a phase difference. Below this, the frame pulse (λ 1 , λ 2 ) is drawn, but here only the frame pulse (λ 1 ) is focused.

第1段階では、フレームパルスをCLK0〜3に同期させる(クロック乗せ換え)。
0はCLK0に同期して動作するのでフレームパルスλが到着してから、最初にCLK0が(L→H)と変化するところで、D0が(L→H)に遷移する。同様にD1はその1/4クロック後に(L→H)に遷移する。D2は、フレームパルスλが到着してから、最初にCLK2が(L→H)と変化するところで遷移するので、D1より3/4クロック分戻った位置となる。同様にD3はD2の1/4クロック後に(L→H)に遷移する。
In the first stage, the frame pulse is synchronized with CLK0 to CLK3 (clock transfer).
Since D 0 0 operates in synchronization with CLK 0, D 0 0 transitions to (L → H) when CLK 0 first changes (L → H) after the arrival of the frame pulse λ 1 . Similarly, D 0 1 transitions to (L → H) after ¼ clock. D 0 2 transitions at a point where CLK 2 first changes from (L → H) after the arrival of the frame pulse λ 1 , and thus is a position returned by 3/4 clock from D 0 1. Similarly, D 0 3 transitions to (L → H) after 1/4 clock of D 0 2.

第2段階では、CLK0〜3に同期したデータをCLK0に乗せ換え直す。注目するのはCLK0とD0である。D0が(L→H)と遷移してから、CLK0が(L→H)と変化するところで、D0−1dが(L→H)に遷移する。同様に、D1が(L→H)と遷移してから、CLK0が(L→H)と変化するところで、D1−1dが(L→H)に遷移する。さらに、D2が(L→H)と遷移してから、CLK0が(L→H)と変化するところで、D2−1dが(L→H)に遷移する。最後も同様に、D3−1dも考えたいが、ここで少し問題がある。D3が(L→H)と遷移してから、CLK0が(L→H)と変化するまでには、わずかに1/4クロックのマージンしかない。これでは、タイミングが非常に難しく、FPGAやLSIでの回路設計が容易ではないため、一旦、CLK2で同期を取ることにする。D3が(L→H)と遷移してから、CLK2が(L→H)と変化するまでには、3/4クロックあるため、十分なタイミングマージンが取れる。 In the second stage, data synchronized with CLK0 to CLK3 is replaced with CLK0. Is the CLK0 and D 0 0 to note. D 0 0-1d changes to (L → H) when CLK 0 changes to (L → H) after D 0 0 changes to (L → H). Similarly, since the transition of D 0 1 is an (L → H), where CLK0 changes and (L → H), D 0 1-1d transitions to (L → H). Furthermore, D 0 2-1d changes to (L → H) when CLK 0 changes to (L → H) after D 0 2 changes to (L → H). Similarly, we want to consider D 0 3-1d at the end, but there is a problem here. There is only a ¼ clock margin after D 0 3 changes from (L → H) to when CLK0 changes from (L → H). In this case, the timing is very difficult, and circuit design with an FPGA or LSI is not easy. Therefore, synchronization is once performed at CLK2. Since there are 3/4 clocks from when D 0 3 changes from (L → H) to when CLK2 changes from (L → H), a sufficient timing margin can be obtained.

これで、D3−1d以外の全ての信号がCLK0に同期したが、D3−1dはCLK2に同期しているため、第3段階として、再度CLK0で同期を行う。これまでと同様の動作を行うと、D3−2dについてもD3−1dが(L→H)と遷移してから、CLK0が(L→H)と変化するまで1/2クロック分のタイミングマージンが取れるため、十分な回路設計が可能となる。フレームパルスλ2も同様の動作を行い、全てのデータがCLK0で同期が取れたら、以下の方法でタイミング判定を行い、遅延差を測定する。 As a result, all signals other than D 0 3-1d are synchronized with CLK0. However, since D 0 3-1d is synchronized with CLK2, synchronization is performed again with CLK0 as the third stage. When the same operation as heretofore, D 0 from the transition D 0 3-1d is the (L → H) also 3-2d, 1/2 clocks until CLK0 changes and (L → H) Therefore, a sufficient circuit design is possible. The same operation is performed for the frame pulse λ2, and when all data is synchronized with CLK0, the timing is determined by the following method and the delay difference is measured.

即ち、622.08MHz CLK0の立ち上がり(L→H)に注目し、図4では「0000」→「0000」→「0011」→「1111」と変化する。即ち、「0000」から「1111」に遷移する間の「0011」が測定タイミングとなる。   That is, paying attention to the rising edge (L → H) of 622.08 MHz CLK0, in FIG. 4, “0000” → “0000” → “0011” → “1111”. That is, “0011” during the transition from “0000” to “1111” is the measurement timing.

タイミング比較器173では、波長λ、λのデータから「0000」、「0001」、「0011」、「0111」がそれぞれ求められる。例えば、波長λ1が「0001」で波長λ2が「0011」の場合、波長λが90度で波長λが180°となるので、その位相差(180°−90°=90°、すなわち622.08MHzの1/4)が遅延差となる。 The timing comparator 173 obtains “0000”, “0001”, “0011”, and “0111” from the data of the wavelengths λ 1 and λ 2 . For example, when the wavelength λ1 is the wavelength λ2 in the "0001" is "0011", the wavelength lambda 2 at a wavelength lambda 1 is 90 degrees is 180 °, the phase difference (180 ° -90 ° = 90 ° , i.e. 622 The delay difference is 1/4 of 08 MHz.

この方式によれば、低精度測定部17aと比較してx×k倍の精度で波長分散を測定することができる。たとえば、信号ビットレート155.52Mbpsでx=4、k=4の場合、測定精度は約6.4ns/(4×4)=約400psとなる。   According to this method, it is possible to measure chromatic dispersion with an accuracy of x × k times that of the low-accuracy measurement unit 17a. For example, when the signal bit rate is 155.52 Mbps and x = 4 and k = 4, the measurement accuracy is about 6.4 ns / (4 × 4) = about 400 ps.

以上の高精度測定部17bによる高精度波長分散方式は、データ入力において4分岐の入力系列に限定されるものではなく、多分岐の入力系列に対しても広く適用可能である。また、FPGAの内部PLLの逓倍についても同様に4倍に限定されるものではない。   The high-accuracy chromatic dispersion method by the high-precision measurement unit 17b is not limited to the four-branch input sequence in data input, and can be widely applied to multi-branch input sequences. Similarly, the multiplication of the internal PLL of the FPGA is not limited to four times.

この発明では、測定開始信号や、送信波長などの情報をネットワークを通じて通信することで、送受信端が異なる場所にある場合でも受信端で反射させることなく波長分散を精度よく測定することができる。   In the present invention, by transmitting information such as a measurement start signal and a transmission wavelength through a network, it is possible to accurately measure chromatic dispersion without reflection at the receiving end even when the transmitting and receiving ends are in different places.

また、受信端側に備えた位相同期回路(PLL)により入力クロックを逓倍させかつ数十度ずつ位相をずらした複数のクロックを発生させ、これらのクロックを使用して2つの異なる波長の信号の位相差の測定することで、測定精度を向上させることができる。   In addition, a phase synchronization circuit (PLL) provided on the receiving end side multiplies the input clock and generates a plurality of clocks whose phases are shifted by several tens of degrees. Using these clocks, signals of two different wavelengths are generated. Measurement accuracy can be improved by measuring the phase difference.

また、波長分散の測定に該光導波路の通常の通信に使用されるSDH(Synchronous Digital Hierarchy)のフレームパルスを用いることで、システム運用中であっても通常の通信の号に影響を与えることなく波長分散を測定することができる。なお、SDH(同期デジタル・ハイアラーキ)は、アジアやヨーロッパで広く使われている光通信の国際電気通信連合(ITU−T)の標準規格である。   In addition, by using the SDH (Synchronous Digital Hierarchy) frame pulse used for the normal communication of the optical waveguide for the measurement of the chromatic dispersion, the normal communication number is not affected even during the system operation. Chromatic dispersion can be measured. Note that SDH (Synchronous Digital Hierarchy) is a standard of the International Telecommunications Union (ITU-T) for optical communications widely used in Asia and Europe.

実施の形態2.
図5はこの発明の別の実施の形態による波長分散測定装置の構成図を示す。上記実施の形態と同一もしくは相当部分は同一符号で示し説明を省略する。なお図5では測定部10aから測定部10bへの光ファイバF1側についてのみ図示して以下で説明するが、光ファイバF2側では送受信の向きは反対であるが同様な構成が設けられ同様な動作が行われる。
Embodiment 2. FIG.
FIG. 5 shows a block diagram of a chromatic dispersion measuring apparatus according to another embodiment of the present invention. The same or corresponding parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted. In FIG. 5, only the optical fiber F1 side from the measurement unit 10a to the measurement unit 10b is illustrated and described below. However, on the optical fiber F2 side, the direction of transmission and reception is opposite, but the same configuration is provided and the same operation is performed. Is done.

図5の波長分散測定装置は、受信側に偏波ビームスプリッタ(PBS)22を具備した装置であり、1次の偏波モード分散である微分群遅延時間差(DGD:Differential Group Delay)を測定することができる。また、送信又は受信側に偏波回転器(STM1)21を置き、より短時間で最大DGDを精度よく測ることができるようにした。   The chromatic dispersion measuring apparatus of FIG. 5 is an apparatus having a polarization beam splitter (PBS) 22 on the receiving side, and measures differential group delay (DGD), which is first-order polarization mode dispersion. be able to. Also, a polarization rotator (STM1) 21 is placed on the transmission or reception side so that the maximum DGD can be accurately measured in a shorter time.

図5の波長分散測定装置では、光ファイバF1により送られてきた、例えば光信号生成部12の出力である波長λの光強度変調信号を偏波ビームスプリッタ22で2つの光信号に分離し、得られた2つ光信号をそれぞれ光電変換部15で電気信号に変換する。そしてこれらの電気信号はSDHフレーム同期部16を介して波長分散測定部17に入力される。 In the chromatic dispersion measuring apparatus shown in FIG. 5, a light intensity modulation signal having a wavelength λ 2 , for example, output from the optical signal generation unit 12, which is sent by the optical fiber F 1, is separated into two optical signals by the polarization beam splitter 22. Each of the obtained two optical signals is converted into an electric signal by the photoelectric conversion unit 15. These electrical signals are input to the chromatic dispersion measuring unit 17 via the SDH frame synchronization unit 16.

波長分散測定部17は低精度測定部17a及び高精度測定部17b(図2参照)に加えてさらに相互相関(Cross Correlation)演算部17cを設けており、この相互相関演算部17cは、偏波ビームスプリッタ22で分離された2つ光信号の電気信号に基づきこれらの相互相関を求めることにより1次の偏波モード分散である微分群遅延時間差(DGD)を得る。波長分散測定部17の低精度測定部17a及び高精度測定部17bはこの微分群遅延時間差(DGD)に基づき上述の群遅延時間差nt(位相差)を求め、以下同様にして波長分散を求める。   The chromatic dispersion measuring unit 17 further includes a cross correlation calculating unit 17c in addition to the low accuracy measuring unit 17a and the high accuracy measuring unit 17b (see FIG. 2). A differential group delay time difference (DGD), which is first-order polarization mode dispersion, is obtained by obtaining a cross-correlation between the two optical signals separated by the beam splitter 22. The low accuracy measurement unit 17a and the high accuracy measurement unit 17b of the chromatic dispersion measurement unit 17 obtain the above-described group delay time difference nt (phase difference) based on the differential group delay time difference (DGD), and then obtain the chromatic dispersion in the same manner.

また、送信又は受信側の光伝送路上に偏波回転器21を具備し(図5では受信側)、意図的に2主軸への分離を起こさせるようにすることで、より短時間で最大微分群遅延時間差(DGD)を精度よく測ることができる。   In addition, a polarization rotator 21 is provided on the optical transmission line on the transmission or reception side (reception side in FIG. 5), and the maximum differentiation is achieved in a shorter time by intentionally causing separation into the two main axes. The group delay time difference (DGD) can be accurately measured.

実施の形態3.
図6はこの発明のさらに別の実施の形態による波長分散測定装置の構成図を示す。上記実施の形態と同一もしくは相当部分は同一符号で示し説明を省略する。図6の波長分散測定装置は、3波以上(図6ではλ,λ,λの3波を示す)の光信号を用いて、分散スロープ係数を求めるようにしている。
Embodiment 3 FIG.
FIG. 6 shows a block diagram of a chromatic dispersion measuring apparatus according to still another embodiment of the present invention. The same or corresponding parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted. The chromatic dispersion measuring apparatus in FIG. 6 uses an optical signal of three or more waves (showing three waves of λ 1 , λ 2 , and λ 3 in FIG. 6) to obtain a dispersion slope coefficient.

国際電気通信連合のG.652で規定されているシングルモードファイバの分散スロープには、その最大値が0.093ps/nm^2/kmと規定されており、2波長の光信号を用いた測定方法の場合は、この値を期待値として、さらに2信号の波長間隔と被測定光ファイバ(光ファイバF1,F2)の距離を用いることが必要であった。   G. of the International Telecommunication Union. The maximum value of the dispersion slope of the single mode fiber specified by 652 is specified as 0.093 ps / nm ^ 2 / km, and this value is used in the case of a measurement method using an optical signal of two wavelengths. As an expected value, it was necessary to use the wavelength interval between the two signals and the distance between the optical fibers to be measured (optical fibers F1 and F2).

しかし、この分散スロープの期待値から求めた波長分散値は被測定光ファイバの距離に応じて誤差が大きくなるという問題があった。   However, there is a problem that the chromatic dispersion value obtained from the expected value of the dispersion slope has a large error depending on the distance of the optical fiber to be measured.

そこで3波以上の光信号を用いることで、被測定光ファイバの距離情報が不要となる。さらに、分散スロープ係数が既知の場合、被測定光ファイバの距離を求めることが可能となる。   Therefore, by using optical signals of three or more waves, distance information of the optical fiber to be measured becomes unnecessary. Furthermore, when the dispersion slope coefficient is known, the distance of the optical fiber to be measured can be obtained.

図7は上記のこの発明の特徴を説明するための図であり、(a)は2波長の光信号を用いた測定の場合、(b)は例えば3波長の光信号を用いた測定の場合、のそれぞれ左側が波長に対する群遅延時間、右側が波長に対する波長分散を示す。すなわち、2波長の光信号を用いた測定の場合、図7の(a)に示すように群遅延時間は2点しか得られず、分散スロープを求めることができなかった。そこで図7の(b)に示すように、3波長以上の光信号を用いることで、2点以上の波長分散値を求め、得られた複数の波長分散値から分散スロープ係数を求めることで、被測定光ファイバの距離情報を必要とせずに、波長分散を精度よく求めるようにする。   FIGS. 7A and 7B are diagrams for explaining the characteristics of the present invention. FIG. 7A shows a case of measurement using an optical signal of two wavelengths, and FIG. 7B shows a case of measurement using an optical signal of three wavelengths, for example. The left side of, shows the group delay time with respect to the wavelength, and the right side shows chromatic dispersion with respect to the wavelength. That is, in the case of measurement using an optical signal having two wavelengths, only two group delay times can be obtained as shown in FIG. 7A, and the dispersion slope cannot be obtained. Therefore, as shown in FIG. 7B, by using an optical signal having three or more wavelengths, two or more chromatic dispersion values are obtained, and a dispersion slope coefficient is obtained from a plurality of obtained chromatic dispersion values. The chromatic dispersion is obtained accurately without requiring distance information of the optical fiber to be measured.

図6において、送信側のSDHフレーム生成部11から受信側のSDHフレーム生成部16間の動作は光信号の数が異なるだけで動作は基本的に上記実施の形態と同じである。従って、図示は省略するが、図6の分波部14〜SDHフレーム生成部16までの構成は、図2のバンドパスフィルタ(BPF)14〜フレーム同期器162までの構成が3組あることになる。波長分散測定部17は、上述の低精度測定部17a、高精度測定部17bに加えて、得られた複数の波長分散値から波長分散を求め、さらに被測定光ファイバの距離を求める光伝送路長演算部17dをさらに含む。   In FIG. 6, the operation between the SDH frame generation unit 11 on the transmission side and the SDH frame generation unit 16 on the reception side is basically the same as that of the above embodiment except that the number of optical signals is different. Therefore, although not shown in the figure, the configuration from the demultiplexing unit 14 to the SDH frame generation unit 16 in FIG. 6 has three configurations from the bandpass filter (BPF) 14 to the frame synchronizer 162 in FIG. Become. In addition to the above-described low-precision measurement unit 17a and high-precision measurement unit 17b, the chromatic dispersion measurement unit 17 obtains chromatic dispersion from a plurality of obtained chromatic dispersion values and further obtains the distance of the optical fiber to be measured. A length calculation unit 17d is further included.

そして光伝送路長演算部17dは、図7の(b)に示すように、低精度測定部17a、高精度測定部17bで求められた複数の波長分散値から分散スロープ係数を求めることで、被測定光ファイバの距離を必要とせずに波長分散を精度よく求め、さらに予め分散スロープ係数を記憶している場合には、被測定光ファイバの距離を求める。   Then, as shown in FIG. 7B, the optical transmission line length calculation unit 17d obtains a dispersion slope coefficient from a plurality of chromatic dispersion values obtained by the low accuracy measurement unit 17a and the high accuracy measurement unit 17b. When the wavelength dispersion is accurately obtained without requiring the distance of the optical fiber to be measured, and the dispersion slope coefficient is stored in advance, the distance of the optical fiber to be measured is obtained.

なお、上記各実施の形態の説明では、光信号の波長及び測定開始信号等からなる波長分散測定情報はネットワークNW(伝送路)を通じて送受信するように説明されているが、光信号自身のフレームのオーバヘッドを用いて送受信することも可能である。   In the description of each of the above embodiments, the chromatic dispersion measurement information including the wavelength of the optical signal and the measurement start signal is described as being transmitted and received through the network NW (transmission path). It is also possible to transmit / receive using overhead.

また、フレームフォーマットとして、SDHフレームの他、国際電気通信連合(ITU−T)のG.709に定めるOptical Transport Network(OTN)フレームを含む任意の形式を用いることも可能である。   As the frame format, in addition to the SDH frame, G. of International Telecommunications Union (ITU-T). Any format including an optical transport network (OTN) frame defined in 709 can be used.

なお、この発明はこれらの各実施の形態に限定されるものではなく、これらの実施の形態の個々と特徴の可能な組合せも含むことは云うまでもない。   It should be noted that the present invention is not limited to each of these embodiments, and it goes without saying that each of these embodiments and possible combinations of features are included.

この発明の一実施の形態による波長分散測定装置の構成図である。It is a block diagram of the wavelength dispersion measuring apparatus by one embodiment of this invention. 図1の波長分散測定装置の受信側でのハードウェア構成のより詳細な図である。FIG. 2 is a more detailed diagram of a hardware configuration on the receiving side of the chromatic dispersion measuring apparatus in FIG. 1. 図2の波長分散測定部の高精度測定部のハードウェア部分の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the hardware part of the high precision measurement part of the chromatic dispersion measurement part of FIG. 図4は図3の回路の動作を説明するためのタイミングチャートである。FIG. 4 is a timing chart for explaining the operation of the circuit of FIG. この発明の別の実施の形態による波長分散測定装置の構成図である。It is a block diagram of the wavelength dispersion measuring apparatus by another embodiment of this invention. この発明のさらに別の実施の形態による波長分散測定装置の構成図である。It is a block diagram of the wavelength dispersion measuring apparatus by another embodiment of this invention. 図6の波長分散測定装置に関する3波以上の光信号を用いた分散スロープ係数測定方式を説明するための図である。It is a figure for demonstrating the dispersion slope coefficient measuring system using the optical signal of three or more waves regarding the chromatic dispersion measuring apparatus of FIG.

符号の説明Explanation of symbols

10a,10b 測定部、11 SDHフレーム生成部、12 光信号生成部、13 合波部、14 分波部、14a カプラ、14b,14c バンドパスフィルタ(BPF)、15 光電変換部(O/E)、16 SDHフレーム同期部、17 波長分散測定部、17a 低精度測定部、17b 高精度測定部、17c 相互相関(Cross Correlation)演算部、17d 光伝送路長演算部、20a,20b 測定制御部、21 偏波回転器、22 偏波ビームスプリッタ(PBS)、161a,161b クロック抽出部(CDR)、162a,162b フレーム同期器、171 位相同期回路(PLL)、172 調整部、173 タイミング比較器、F1,F2 光ファイバ。   10a, 10b measurement unit, 11 SDH frame generation unit, 12 optical signal generation unit, 13 multiplexing unit, 14 demultiplexing unit, 14a coupler, 14b, 14c band pass filter (BPF), 15 photoelectric conversion unit (O / E) 16 SDH frame synchronization unit, 17 chromatic dispersion measurement unit, 17a low accuracy measurement unit, 17b high accuracy measurement unit, 17c cross correlation calculation unit, 17d optical transmission line length calculation unit, 20a, 20b measurement control unit, 21 Polarization rotator, 22 Polarization beam splitter (PBS), 161a, 161b Clock extraction unit (CDR), 162a, 162b Frame synchronizer, 171 Phase synchronization circuit (PLL), 172 Adjustment unit, 173 Timing comparator, F1 , F2 optical fiber.

Claims (18)

光伝送路での波長分散を測定する波長分散測定装置であって、
前記光伝送路の送信端側に、
波長の異なる2つの光信号をフレーム化して生成する光信号生成手段と、
前記2つの光信号を合波して送信する合波部と、を設け、
送信端側から受信端側に、前記光信号生成手段での光信号の生成に基づく測定開始信号及び前記2つの光信号の波長を含む波長分散測定情報を送信する測定制御手段を設け、
前記光伝送路の受信端側に、
前記光伝送路を介して送信されてきた前記2つの光信号を分波する分波部と、
分波した前記2つの光信号をそれぞれ電気信号に変換する光電変換部と、
前記送信端側からの波長分散測定情報の測定開始信号に従い、変換された波長の異なる2つの前記電気信号の位相差を測定し、この測定された位相差と前記波長分散測定情報の2つの信号の波長の波長差とから前記光伝送路での波長分散を求める波長分散測定手段と、
を備えたことを特徴とする波長分散測定装置。
A chromatic dispersion measuring device for measuring chromatic dispersion in an optical transmission line,
On the transmission end side of the optical transmission line,
Optical signal generating means for generating two optical signals having different wavelengths by framing them;
A multiplexing unit that multiplexes and transmits the two optical signals, and
From the transmission end side to the reception end side, provided is a measurement control means for transmitting chromatic dispersion measurement information including the measurement start signal based on the generation of the optical signal in the optical signal generation means and the wavelengths of the two optical signals,
On the receiving end side of the optical transmission line,
A demultiplexing unit that demultiplexes the two optical signals transmitted via the optical transmission path;
A photoelectric conversion unit that converts the two optical signals that have been demultiplexed into electrical signals;
According to the measurement start signal of the chromatic dispersion measurement information from the transmitting end side, the phase difference between the two converted electric signals having different wavelengths is measured, and the two signals of the measured phase difference and the chromatic dispersion measurement information are measured. Chromatic dispersion measuring means for obtaining chromatic dispersion in the optical transmission line from the wavelength difference of the wavelength,
A chromatic dispersion measuring apparatus comprising:
送信端側の前記光信号生成手段が、
2つの光信号の波長分散測定用のそれぞれのフレームを生成するフレーム生成部と、
生成されたフレームの信号を光強度変調して前記2つの光信号を生成する光信号生成部と、
を含み、
受信端側の前記波長分散測定手段が、
前記光電変換部で光信号のフレーム信号を電気信号に変換した波長の異なる2つの前記電気信号からクロックを再生し前記クロックに基づきフレーム同期を行いフレームパルスを生成するフレーム同期部と、
位相同期回路により発生させた前記フレームパルスを所定の倍数で逓倍したクロックをそれぞれ異なる位相量ずらした複数のクロックを使用して波長の異なる2つの前記電気信号の位相差を測定し、この測定された位相差と前記波長分散測定情報の2つの信号の波長の波長差とから前記光伝送路での波長分散を求める波長分散測定部と、
を含む、
ことを特徴とする請求項1に記載の波長分散測定装置。
The optical signal generating means on the transmitting end side is
A frame generator for generating respective frames for measuring chromatic dispersion of two optical signals;
An optical signal generation unit for generating the two optical signals by optical intensity modulation of the generated frame signal;
Including
The chromatic dispersion measuring means on the receiving end side is
A frame synchronization unit that regenerates a clock from two electrical signals having different wavelengths obtained by converting a frame signal of an optical signal into an electrical signal by the photoelectric conversion unit, and generates a frame pulse by performing frame synchronization based on the clock;
A phase difference between two electrical signals having different wavelengths is measured using a plurality of clocks obtained by shifting the clock generated by the phase synchronization circuit by a predetermined multiple and shifted by different phase amounts. A chromatic dispersion measuring unit for obtaining chromatic dispersion in the optical transmission line from the phase difference and the wavelength difference between the wavelengths of the two signals of the chromatic dispersion measurement information;
including,
The chromatic dispersion measuring apparatus according to claim 1.
前記光伝送路の受信端側に、
前記光伝送路からの前記2つの光信号の一方の光信号を2つの光信号に分離する偏波ビームスプリッタを備え、
前記波長分散測定手段が、
前記偏波ビームスプリッタで分離された2つ光信号の前記光電変換部で変換された電気信号に基づきこれらの相互相関を求めることで1次の偏波モード分散である微分群遅延時間差を得る相互相関演算部をさらに含み、前記微分群遅延時間差に基づき位相差を決定することを特徴とする請求項1に記載の波長分散測定装置。
On the receiving end side of the optical transmission line,
A polarization beam splitter that separates one optical signal of the two optical signals from the optical transmission path into two optical signals;
The chromatic dispersion measuring means is
A mutual difference is obtained by obtaining a differential group delay time which is a first-order polarization mode dispersion by obtaining a cross-correlation of the two optical signals separated by the polarization beam splitter based on an electric signal converted by the photoelectric conversion unit. The chromatic dispersion measuring apparatus according to claim 1, further comprising a correlation calculation unit, and determining a phase difference based on the differential group delay time difference.
送信側又は受信側の光伝送路上に2主軸への分離を起こさせる偏波回転器を設けたことを特徴とする請求項3に記載の波長分散測定装置。   4. The chromatic dispersion measuring apparatus according to claim 3, wherein a polarization rotator for causing separation into two main axes is provided on an optical transmission line on a transmission side or a reception side. 光伝送路での波長分散を測定する波長分散測定装置であって、
前記光伝送路の送信端側に、
波長の異なる3つの光信号をフレーム化して生成する光信号生成手段と、
前記3つの光信号を合波して送信する合波部と、を設け、
送信端側から受信端側に、前記光信号生成手段での光信号の生成に基づく測定開始信号及び前記3つの光信号の波長を含む波長分散測定情報を送信する測定制御手段を設け、
前記光伝送路の受信端側に、
前記光伝送路を介して送信されてきた前記3つの光信号を分波する分波部と、
分波した前記3つの光信号をそれぞれ電気信号に変換する光電変換部と、
前記送信端側からの波長分散測定情報の測定開始信号に従い、変換された波長の異なる3つの前記電気信号の位相差を測定し、この測定された位相差と前記波長分散測定情報の3つの信号の波長の波長差とから前記光伝送路での複数の波長分散値を求め、さらに求められた複数の波長分散値から分散スロープ係数を求める波長分散測定手段と、
を備えたことを特徴とする波長分散測定装置。
A chromatic dispersion measuring device for measuring chromatic dispersion in an optical transmission line,
On the transmission end side of the optical transmission line,
Optical signal generation means for generating three optical signals having different wavelengths by framing them;
A multiplexing unit that multiplexes and transmits the three optical signals; and
From the transmission end side to the reception end side, provided is a measurement control means for transmitting chromatic dispersion measurement information including the measurement start signal based on the generation of the optical signal by the optical signal generation means and the wavelengths of the three optical signals,
On the receiving end side of the optical transmission line,
A demultiplexing unit for demultiplexing the three optical signals transmitted via the optical transmission path;
A photoelectric conversion unit that converts the three optical signals that have been demultiplexed into electrical signals;
According to the measurement start signal of the chromatic dispersion measurement information from the transmitting end side, the phase difference of the three electrical signals having different converted wavelengths is measured, and the measured phase difference and the three signals of the chromatic dispersion measurement information are measured. Chromatic dispersion measuring means for obtaining a plurality of chromatic dispersion values in the optical transmission line from the wavelength difference of the wavelength, and further obtaining a dispersion slope coefficient from the obtained chromatic dispersion values;
A chromatic dispersion measuring apparatus comprising:
波長分散測定手段が、予め分散スロープ係数を記憶しており、光伝送路の距離を求めることを特徴とする請求項5に記載の波長分散測定装置。   6. The chromatic dispersion measuring apparatus according to claim 5, wherein the chromatic dispersion measuring means stores a dispersion slope coefficient in advance and obtains the distance of the optical transmission line. 測定制御手段が、波長分散測定情報をネットワーク又フレーム化された光信号のオーバヘッドを用いて送受信する請求項1から6までのいずれか1項に記載の波長分散測定装置。   7. The chromatic dispersion measuring apparatus according to claim 1, wherein the measurement control means transmits / receives the chromatic dispersion measurement information using a network or the overhead of the optical signal formed into a frame. 波長分散測定のための光伝送に前記光伝送路での通常の伝送と同じフレームを用いることを特徴とする請求項1から7までのいずれか1項に記載の波長分散測定装置。   The chromatic dispersion measuring apparatus according to any one of claims 1 to 7, wherein the same frame as that of normal transmission on the optical transmission line is used for optical transmission for chromatic dispersion measurement. フレームフォーマとしてSDHフレーム又はOTNフレームを用いることを特徴とする請求項8に記載の波長分散測定装置。   9. The chromatic dispersion measuring apparatus according to claim 8, wherein an SDH frame or an OTN frame is used as a frame former. 光伝送路での波長分散を測定する波長分散測定方法であって、
前記光伝送路の送信端側で波長の異なる2つの光信号をフレーム化して生成する工程と、
前記光伝送路の送信端側から前記2つの光信号を合波して送信する工程と、
送信端側から受信端側に前記光信号の生成に基づく測定開始信号及び前記2つの光信号の波長を含む波長分散測定情報を送信する工程と、
前記光伝送路の受信端側で、前記光伝送路を介して送信されてきた前記2つの光信号を分波してそれぞれ電気信号に変換する工程と、
前記送信端側からの波長分散測定情報の測定開始信号に従い、変換された波長の異なる2つの前記電気信号の位相差を測定し、測定された位相差と前記波長分散測定情報の2つの信号の波長の波長差とから前記光伝送路での波長分散を求める工程と、
を備えたことを特徴とする波長分散測定方法。
A chromatic dispersion measuring method for measuring chromatic dispersion in an optical transmission line,
Framing and generating two optical signals having different wavelengths on the transmitting end side of the optical transmission path; and
Combining and transmitting the two optical signals from the transmission end side of the optical transmission path;
Transmitting from the transmitting end side to the receiving end side chromatic dispersion measurement information including the measurement start signal based on the generation of the optical signal and the wavelengths of the two optical signals;
Demultiplexing the two optical signals transmitted via the optical transmission path on the receiving end side of the optical transmission path and converting them to electrical signals, respectively;
According to the measurement start signal of the chromatic dispersion measurement information from the transmitting end side, the phase difference between the two converted electric signals having different wavelengths is measured, and the two signals of the measured phase difference and the two signals of the chromatic dispersion measurement information are measured. Obtaining chromatic dispersion in the optical transmission line from a wavelength difference between wavelengths;
A chromatic dispersion measuring method comprising:
光信号を生成する工程が、
2つの光信号の波長分散測定用のそれぞれのフレームを生成する工程と、
生成されたフレームの信号を光強度変調して前記2つの光信号を生成する工程と、
を含み、
分波して電気信号に変換する工程で、送信されてきた前記2つの光信号のフレーム信号を分波しさらにこれらを電気信号に変換し、
波長分散を求める工程が、
波長の異なる2つの前記電気信号からクロックを再生し前記クロックに基づきフレーム同期を行いフレームパルスを生成する工程と、
位相同期回路により発生させた前記フレームパルスを所定の倍数で逓倍したクロックをそれぞれ異なる位相量ずらした複数のクロックを使用して波長の異なる2つの前記電気信号の位相差を測定し、この測定された位相差と前記波長分散測定情報の2つの信号の波長の波長差とから前記光伝送路での波長分散を求める工程と、
を含むことを特徴とする請求項10に記載の波長分散測定方法。
The step of generating an optical signal is
Generating respective frames for chromatic dispersion measurement of two optical signals;
A step of generating a light intensity modulation of the signal of the generated frame to generate the two optical signals;
Including
In the step of demultiplexing and converting to an electrical signal, the frame signal of the transmitted two optical signals is demultiplexed and further converted into an electrical signal,
The process of obtaining chromatic dispersion is
Regenerating a clock from the two electrical signals having different wavelengths and performing frame synchronization based on the clock to generate a frame pulse;
A phase difference between two electrical signals having different wavelengths is measured using a plurality of clocks obtained by shifting the clock generated by the phase synchronization circuit by a predetermined multiple and shifted by different phase amounts. Determining the chromatic dispersion in the optical transmission line from the phase difference and the wavelength difference between the wavelengths of the two signals of the chromatic dispersion measurement information;
The chromatic dispersion measuring method according to claim 10, comprising:
前記光伝送路の受信端側で、偏波ビームスプリッタで前記光伝送路からの前記2つの光信号の一方の光信号を2つの光信号に分離する工程をさらに備え、
前記波長分散を求める工程において、前記偏波ビームスプリッタで分離された2つ光信号の前記光電変換部で変換された電気信号に基づきこれらの相互相関を求めることで1次の偏波モード分散である微分群遅延時間差を得て、前記微分群遅延時間差に基づき位相差を決定することを特徴とする請求項10に記載の波長分散測定方法。
Further comprising a step of separating one optical signal of the two optical signals from the optical transmission path into two optical signals by a polarization beam splitter at the receiving end side of the optical transmission path;
In the step of obtaining the chromatic dispersion, the first-order polarization mode dispersion is obtained by obtaining the cross-correlation of the two optical signals separated by the polarization beam splitter based on the electric signal converted by the photoelectric conversion unit. The chromatic dispersion measuring method according to claim 10, wherein a differential group delay time difference is obtained, and a phase difference is determined based on the differential group delay time difference.
送信側又は受信側の光伝送路上で偏波回転器により2主軸への分離を起こさせる工程をさらに備えたことを特徴とする請求項12に記載の波長分散測定方法。   13. The chromatic dispersion measuring method according to claim 12, further comprising a step of causing separation into two main axes by a polarization rotator on an optical transmission line on a transmission side or a reception side. 光伝送路での波長分散を測定する波長分散測定方法であって、
前記光伝送路の送信端側で波長の異なる3つの光信号をフレーム化して生成する工程と、
前記光伝送路の送信端側から前記3つの光信号を合波して送信する工程と、
送信端側から受信端側に前記光信号の生成に基づく測定開始信号及び前記2つの光信号の波長を含む波長分散測定情報を送信する工程と、
前記光伝送路の受信端側で、前記光伝送路を介して送信されてきた前記3つの光信号を分波してそれぞれ電気信号に変換する工程と、
前記送信端側からの波長分散測定情報の測定開始信号に従い、変換された波長の異なる3つの前記電気信号の位相差を測定し、測定された位相差と前記波長分散測定情報の3つの信号の波長の波長差とから前記光伝送路での複数の波長分散を求め、さらに求められた複数の波長分散値から分散スロープ係数を求める工程と、
を備えたことを特徴とする波長分散測定方法。
A chromatic dispersion measuring method for measuring chromatic dispersion in an optical transmission line,
Framing and generating three optical signals having different wavelengths on the transmitting end side of the optical transmission path; and
Combining and transmitting the three optical signals from the transmission end side of the optical transmission path;
Transmitting from the transmitting end side to the receiving end side chromatic dispersion measurement information including the measurement start signal based on the generation of the optical signal and the wavelengths of the two optical signals;
Demultiplexing the three optical signals transmitted via the optical transmission path on the receiving end side of the optical transmission path and converting them to electrical signals, respectively;
According to the measurement start signal of the chromatic dispersion measurement information from the transmitting end side, the phase difference of the three electrical signals having different converted wavelengths is measured, and the measured phase difference and the three signals of the chromatic dispersion measurement information are measured. Obtaining a plurality of chromatic dispersions in the optical transmission line from the wavelength difference of the wavelengths, and further obtaining a dispersion slope coefficient from the obtained chromatic dispersion values;
A chromatic dispersion measuring method comprising:
分散スロープ係数を求める工程において、予め分散スロープ係数を記憶しており、光伝送路の距離を求めることを特徴とする請求項14に記載の波長分散測定方法。   The chromatic dispersion measuring method according to claim 14, wherein in the step of obtaining the dispersion slope coefficient, the dispersion slope coefficient is stored in advance, and the distance of the optical transmission line is obtained. 波長分散測定情報を送信する工程において、波長分散測定情報をネットワーク又フレーム化された光信号のオーバヘッドを用いて送受信する請求項10から15までのいずれか1項に記載の波長分散測定方法。   16. The chromatic dispersion measurement method according to claim 10, wherein in the step of transmitting chromatic dispersion measurement information, the chromatic dispersion measurement information is transmitted and received using an overhead of a network or framed optical signal. 波長分散測定のための光伝送に前記光伝送路での通常の伝送と同じフレームを用いることを特徴とする請求項10から16までのいずれか1項に記載の波長分散測定方法。   The chromatic dispersion measuring method according to any one of claims 10 to 16, wherein the same frame as that of normal transmission in the optical transmission path is used for optical transmission for chromatic dispersion measurement. フレームフォーマとしてSDHフレーム又はOTNフレームを用いることを特徴とする請求項17に記載の波長分散測定方法。   The chromatic dispersion measuring method according to claim 17, wherein an SDH frame or an OTN frame is used as a frame former.
JP2008318652A 2008-06-18 2008-12-15 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method Active JP5398251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318652A JP5398251B2 (en) 2008-06-18 2008-12-15 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008159498 2008-06-18
JP2008159498 2008-06-18
JP2008318652A JP5398251B2 (en) 2008-06-18 2008-12-15 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Publications (2)

Publication Number Publication Date
JP2010025913A true JP2010025913A (en) 2010-02-04
JP5398251B2 JP5398251B2 (en) 2014-01-29

Family

ID=41731875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318652A Active JP5398251B2 (en) 2008-06-18 2008-12-15 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Country Status (1)

Country Link
JP (1) JP5398251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006402A (en) * 2014-06-20 2016-01-14 大井電気株式会社 Time difference measuring apparatus to be used for optical communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258299A (en) * 1999-03-08 2000-09-22 Japan Science & Technology Corp Characteristic evaluating system for optical device
JP2002365165A (en) * 2001-06-08 2002-12-18 Sumitomo Electric Ind Ltd Wavelength dispersion measuring device and method
JP2003121303A (en) * 2001-10-16 2003-04-23 Fujitsu Ltd Method for measuring wavelength dispersion and optical transmission system
JP2003177078A (en) * 2002-10-15 2003-06-27 Nec Corp Dispersion measuring method
JP2007085981A (en) * 2005-09-26 2007-04-05 Fujikura Ltd Method and instrument for measuring wavelength dispersion, and wavelength dispersion correction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258299A (en) * 1999-03-08 2000-09-22 Japan Science & Technology Corp Characteristic evaluating system for optical device
JP2002365165A (en) * 2001-06-08 2002-12-18 Sumitomo Electric Ind Ltd Wavelength dispersion measuring device and method
JP2003121303A (en) * 2001-10-16 2003-04-23 Fujitsu Ltd Method for measuring wavelength dispersion and optical transmission system
JP2003177078A (en) * 2002-10-15 2003-06-27 Nec Corp Dispersion measuring method
JP2007085981A (en) * 2005-09-26 2007-04-05 Fujikura Ltd Method and instrument for measuring wavelength dispersion, and wavelength dispersion correction system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013037139; Qian Yu,外3名: 'Chromatic Dispersion Monitoring TechniqueUsing Sideband Optical Filtering andClock Phase-Shift Detec' JOURNAL OF LIGHTWAVE TECHNOLOGY VOL. 20, NO. 12, 200212, p.2267〜2271 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006402A (en) * 2014-06-20 2016-01-14 大井電気株式会社 Time difference measuring apparatus to be used for optical communication system

Also Published As

Publication number Publication date
JP5398251B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP2573960B1 (en) Coherent light receiving device, interchannel skew detector device and detection method in coherent light receiving device
JP4767676B2 (en) Optical receiver
US20030020985A1 (en) Receiver for high-speed optical signals
JP2004511128A (en) System and method for code division multiplexed optical communication
Kihara et al. Two-way time transfer through 2.4 Gb/s optical SDH system
EP3072249B1 (en) Data serializer
CN100388651C (en) A 40G optical transmission system bit error rate detection method and apparatus
JP5398251B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method
JP3061124B2 (en) Optical fiber transmission line measurement method
JP2010016705A (en) Transmission system and transmission method
US20030180051A1 (en) Wavelength division multiplex transmission system or a polarisation division multiplex system with means for measuring dispersion characteristics, an optical transmitter, an optical receiver and a method therefore
US10637601B2 (en) Communications network
KR101871431B1 (en) Method and apparatus for synchronizing time between nodes
Dods et al. Asynchronous sampling for optical performance monitoring
JP4680073B2 (en) PON system
JP2003134047A (en) Optical wavelength multiple transmission system with automatic distribution compensation circuit
US20080181610A1 (en) Optical signal multiplexing device and optical signal multiplexing method
JP2009239438A (en) Multi-channel data phase control device
JP3752540B2 (en) Optical pulse separation method and optical pulse separation device
JPH01144832A (en) Timing information optical parallel-transmission system
JP2001298441A (en) Optical transmission system and optical signal transmission method
JP5492118B2 (en) WDM signal batch coherent receiver and method
JP2002281000A (en) Method for adjusting time delays and device for synchronization of channels in a wdm system
GB2246677A (en) Synchronous multi-wavelength optical terminal
JPH10257037A (en) Phase difference absorbing circuit, transmitter, receiver and wavelength multiplex transmitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250