JP2010025752A - Dry type load test device - Google Patents

Dry type load test device Download PDF

Info

Publication number
JP2010025752A
JP2010025752A JP2008187485A JP2008187485A JP2010025752A JP 2010025752 A JP2010025752 A JP 2010025752A JP 2008187485 A JP2008187485 A JP 2008187485A JP 2008187485 A JP2008187485 A JP 2008187485A JP 2010025752 A JP2010025752 A JP 2010025752A
Authority
JP
Japan
Prior art keywords
resistance
load test
switching member
test apparatus
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008187485A
Other languages
Japanese (ja)
Other versions
JP5265264B2 (en
Inventor
Toyoshi Kondo
豊嗣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsumi Ryoki Co Ltd
Original Assignee
Tatsumi Ryoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumi Ryoki Co Ltd filed Critical Tatsumi Ryoki Co Ltd
Priority to JP2008187485A priority Critical patent/JP5265264B2/en
Publication of JP2010025752A publication Critical patent/JP2010025752A/en
Application granted granted Critical
Publication of JP5265264B2 publication Critical patent/JP5265264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dry type load test device for suppressing spark occurrence in a switching member even when it is installed outdoors or the like for a long time. <P>SOLUTION: The dry type load test device includes a resistance body for high voltage load test where a plurality of slender resistance elements r<SB>i</SB>are arranged at intervals horizontally and perpendicularly and are interconnected in series horizontally, a plurality of switching members SWb<SB>ij</SB>, a plurality of electric conduction members Ca<SB>j</SB>and Cb<SB>j</SB>between assemblies, and a switch for high voltage (vacuum circuit breaker) for connecting some of the plurality of electric conduction members Ca<SB>j</SB>and Cb<SB>j</SB>between assemblies to a power supply (three-phase alternating-current generator). The switching members SWb<SB>ij</SB>have a sealed case body 69 that is filled with inert gas and includes a pair of fixed contacts (contact parts) connected to a pair of terminals Pa and Pb, a movable contact M conducting the pair of fixed contacts, and a driving means (solenoid) for driving the movable contact. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば交流発電機やその他の電源等の電気負荷試験に用いられる乾式負荷試験装置に関するものである。   The present invention relates to a dry load test apparatus used for an electric load test of an AC generator or other power source, for example.

従来、複数の棒状の抵抗素子の組み合わせで負荷容量を設定する乾式負荷試験装置としては、上記抵抗素子を水平方向及び垂直方向のそれぞれに間隔をおいて並設すると共に、水平方向に並んだ抵抗素子を直列に接続したものが知られている(例えば、特許文献1参照)。   Conventionally, as a dry load test apparatus for setting a load capacity by a combination of a plurality of rod-shaped resistance elements, the resistance elements are arranged in parallel in the horizontal direction and the vertical direction, and the resistances are arranged in the horizontal direction. A device in which elements are connected in series is known (for example, see Patent Document 1).

上記従来の乾式負荷試験装置では、各抵抗素子の一端部に一方の端子が接続された複数のスイッチング部材と、各スイッチング部材の他方の端子を垂直方向に並んだ列ごとに接続する複数の組立体間導電部材と、複数の組立体間導電部材のいくつかを被試験用電源に接続する一つの真空遮断器とを備えている。   In the conventional dry load test apparatus, a plurality of switching members in which one terminal is connected to one end portion of each resistance element, and a plurality of sets in which the other terminal of each switching member is connected in each row arranged in the vertical direction. It includes a three-dimensional conductive member and one vacuum circuit breaker that connects some of the plurality of inter-assembly conductive members to a power source for testing.

ここで、スイッチング部材は、分割可能なケースを有しており、このケース内に一対の端子に接続した固定接点と、この固定接点を導通させる可動接点と、可動接点を駆動する駆動手段としてのソレノイドとが内蔵されている。
WO01/40817号公報
Here, the switching member has a case that can be divided, a fixed contact connected to a pair of terminals in the case, a movable contact that conducts the fixed contact, and a drive means that drives the movable contact. Built-in solenoid.
WO01 / 40817 Publication

しかしながら、従来の乾式負荷試験装置にあっては、スイッチング部材のケースの密閉性が低いため、長期間屋外に設置した状態では、ケース内に細塵が入り込んで各固定接点や可動接点に付着し、一対の固定接点が導通したときスパーク(放電)が生じて各接点の焼き付き等が発生する、という問題があった。   However, in conventional dry-type load testing devices, the case of the switching member case is poorly sealed, so if it is installed outdoors for a long period of time, fine dust will enter the case and adhere to each fixed or movable contact. There has been a problem that when a pair of fixed contacts are conducted, a spark (discharge) is generated and seizure of each contact occurs.

本発明は、上記問題に着目してなされたもので、屋外等に長期間設置しておいても、スイッチング部材内でのスパーク発生を抑制することができる乾式負荷試験装置を提供することを目的とする。   The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a dry load test apparatus capable of suppressing the occurrence of sparks in a switching member even when installed outdoors for a long time. And

上記目的を達成するため、本発明では、複数の細長い抵抗素子を水平方向に間隔をあけて並設し且つ直列に接続してなる複数の抵抗組立体と、該複数の抵抗組立体を垂直方向に間隔をあけて並設し、上下方向に並んだ複数の前記抵抗素子からなる複数の抵抗素子列とを有する高電圧負荷試験用の抵抗本体と、前記複数の抵抗素子列の各抵抗素子の一端部に一方の端子が接続した複数のスイッチング部材からなる複数のスイッチング部材列と、前記複数のスイッチング部材列の各スイッチング部材の他方の端子が接続した複数の組立体間導電部材と、前記複数の組立体間導電部材のいくつかを被試験用電源に接続する一つの高電圧用スイッチと、を備えた乾式負荷試験装置において、前記スイッチング部材は、前記一対の端子のそれぞれに接続した一対の固定接点と、該一対の固定接点を導通する可動接点と、該可動接点を駆動する駆動手段と、前記固定接点、前記可動接点、前記駆動手段を内蔵すると共に、不活性ガスが充填された密封ケース体とを備えたことを特徴としている。   In order to achieve the above object, in the present invention, a plurality of resistor assemblies in which a plurality of elongated resistor elements are arranged in parallel in the horizontal direction and connected in series, and the plurality of resistor assemblies are arranged in the vertical direction. A resistor main body for a high voltage load test having a plurality of resistance element rows composed of a plurality of the resistance elements arranged in parallel in the vertical direction, and each resistance element of the plurality of resistance element rows A plurality of switching member rows composed of a plurality of switching members having one terminal connected to one end, a plurality of inter-assembly conductive members connected to the other terminal of each switching member of the plurality of switching member rows; A high-voltage switch for connecting some of the inter-assembly conductive members to the power source for testing, wherein the switching member is connected to each of the pair of terminals A pair of fixed contacts, a movable contact for conducting the pair of fixed contacts, a drive means for driving the movable contact, the fixed contact, the movable contact, and the drive means, and filled with an inert gas. And a sealed case body.

よって、本発明の乾式負荷試験装置にあっては、例えば、長期間屋外に設置した場合であっても、固定接点、可動接点、駆動手段が密封ケース体に内蔵されているため、この密封ケースにより細塵が各接点等に付着することを防止できる。さらに、不活性ガスを密封ケース体内に充填することで悪性ガスの侵入をより効果的に防止することができる。この結果、屋外等に長期間設置しておいても、スイッチング部材内でのスパーク発生を抑制することができる。   Therefore, in the dry load test apparatus of the present invention, for example, even when installed outdoors for a long period of time, the fixed contact, the movable contact, and the driving means are built in the sealed case body. Can prevent fine dust from adhering to each contact or the like. Furthermore, the invasion of malignant gas can be more effectively prevented by filling the inside of the sealed case with an inert gas. As a result, the occurrence of sparks in the switching member can be suppressed even when installed outdoors for a long time.

以下、本発明の乾式負荷試験装置を実現する最良の形態を、図面に示す実施例1〜実施例4に基づいて説明する。   Hereinafter, the best mode for realizing the dry load test apparatus of the present invention will be described based on Examples 1 to 4 shown in the drawings.

まず、構成を説明する。
図1Aはこの発明に係る移動式乾式負荷試験装置(移動式電気負荷試験装置)の平面図であり、図1Bは図1Aの側面図である。
First, the configuration will be described.
FIG. 1A is a plan view of a mobile dry load test apparatus (mobile electric load test apparatus) according to the present invention, and FIG. 1B is a side view of FIG. 1A.

この移動式乾式負荷試験装置は、トラック30と乾式負荷試験装置(電気負荷試験装置)40とを有する。このトラック30は、荷台31と、荷台31上に設けられたボックス32とを有する。このボックス32の内部には荷室33が設けられ、乾式負荷試験装置40は荷室33内に配設されている。   The mobile dry load test apparatus includes a truck 30 and a dry load test apparatus (electric load test apparatus) 40. The truck 30 includes a loading platform 31 and a box 32 provided on the loading platform 31. A cargo room 33 is provided inside the box 32, and the dry load test apparatus 40 is disposed in the cargo room 33.

[乾式負荷試験装置40の概略構成]
図2は図1A、図1Bに示したボックスを破断して内部の乾式負荷試験装置を概略的に示した概略平面図であり、図3は図2の乾式負荷試験装置を矢印A方向から見た概略側面図であり、図4は図2の乾式負荷試験装置を矢印B方向から見た概略側面図であり、図5は図1A〜図4の乾式負荷試験装置と被試験用電源との接続例を示す概略説明図であり、図6は図3の一部を拡大して斜めから見た部分斜視図である。
[Schematic configuration of dry load test apparatus 40]
2 is a schematic plan view schematically showing an internal dry load test apparatus by breaking the box shown in FIGS. 1A and 1B, and FIG. 3 is a view of the dry load test apparatus in FIG. 4 is a schematic side view of the dry load test apparatus of FIG. 2 as viewed from the direction of arrow B, and FIG. 5 is a diagram of the dry load test apparatus of FIGS. 1A to 4 and the power source to be tested. FIG. 6 is a schematic explanatory view showing a connection example, and FIG. 6 is a partial perspective view of a part of FIG.

この乾式負荷試験装置40は、荷室32内に設けられたフレーム41と、フレーム41上に隣接して前後に配設されたR相,S相,T相用の抵抗ユニット42,43,44とを有する。なお、各抵抗ユニット42,43,44は同一の構成となっている。   The dry load test apparatus 40 includes a frame 41 provided in the cargo compartment 32, and R-phase, S-phase, and T-phase resistance units 42, 43, and 44 disposed on the frame 41 adjacent to each other. And have. The resistance units 42, 43, and 44 have the same configuration.

[抵抗ユニット42,43,44]
図7Aは図3,図4の電動ファンの一部を破断して示した抵抗ユニットの側面図であり、図7Bは図7Aの絶縁板の説明図であり、図8は図7Aの抵抗ユニットとスイッチング部材との関係を示す拡大断面図である。
[Resistance units 42, 43, 44]
7A is a side view of the resistance unit shown with a part of the electric fan of FIGS. 3 and 4 cut away, FIG. 7B is an explanatory view of the insulating plate of FIG. 7A, and FIG. 8 is the resistance unit of FIG. It is an expanded sectional view which shows the relationship between and a switching member.

各抵抗ユニット42,43,44は、フレーム41上に配設されたベース枠45と、フレーム41とベース枠45間に介装された耐熱性で絶縁性の防振絶縁ゴム46と、防振絶縁ゴム46の上下両端に焼き付け固着されたプレート47,47と、プレート47,47と一体に設けられ且つフレーム41及びベース枠45をそれぞれ貫通する固定ボルト48,48と、固定ボルト48,48の両端部にそれぞれ螺着された固定ナット49,49を有する。   Each resistance unit 42, 43, 44 includes a base frame 45 disposed on the frame 41, a heat-resistant and insulating anti-vibration insulating rubber 46 interposed between the frame 41 and the base frame 45, and anti-vibration Plates 47 and 47 baked and fixed to both upper and lower ends of the insulating rubber 46, fixing bolts 48 and 48 provided integrally with the plates 47 and 47 and penetrating the frame 41 and the base frame 45, respectively, and fixing bolts 48 and 48 Fixing nuts 49 and 49 are respectively screwed to both ends.

また、各抵抗ユニット42,43,44は、ベース枠45及びフレーム41の下方に配置され、且つフレーム41に取り付けられた電動ファン50と、ベース枠45上に固定された碍子(絶縁部材)51と、碍子51上に固定され且つ上下端が開放するハウジング52と、電動ファン50からの冷却風をハウジング52に導く絶縁フード53を有する。   The resistance units 42, 43, 44 are arranged below the base frame 45 and the frame 41 and are attached to the frame 41, and an insulator (insulating member) 51 fixed on the base frame 45. And a housing 52 that is fixed on the insulator 51 and whose upper and lower ends are open, and an insulating hood 53 that guides the cooling air from the electric fan 50 to the housing 52.

このハウジング52は、アングルから形成された六面体状のフレーム54の側面開口をエポキシ系の耐熱性材料から形成された絶縁板55a,55b,55c,55d等の側部開口閉塞板で閉成したものである(図8参照)。この絶縁板55a,55b,55c,55dは、ボルト・ナット等の固定具56でフレーム54に固定されている。尚、絶縁板55b,55d等の側部開口閉塞板は、絶縁材料以外の耐熱不燃材の側部開口閉塞板に代えることができる。この材料としては、例えばアルミニウム板や鉄板を用いることができる。   The housing 52 is formed by closing a side opening of a hexahedral frame 54 formed from an angle with a side opening closing plate such as an insulating plate 55a, 55b, 55c, 55d formed of an epoxy heat-resistant material. (See FIG. 8). The insulating plates 55a, 55b, 55c, and 55d are fixed to the frame 54 by a fixture 56 such as a bolt and a nut. The side opening closing plates such as the insulating plates 55b and 55d can be replaced with side opening closing plates made of a heat-resistant noncombustible material other than the insulating material. As this material, for example, an aluminum plate or an iron plate can be used.

絶縁板55a,55cには、図7Bに示したように、多数の取付孔列H[i=1,2,3・・・n]が上下に多段に等ピッチで形成されている。この取付孔列Hは、左右に等ピッチで配列した多数の取付孔h[j=1,2,3・・・m]から形成されている。本実施例1では、取付孔列Hは22列(i=n=22)、取付孔hは16列(j=m=16)に設けられている。尚、取付孔hは16に限られるものではなく、取付孔列Hも22列に限られるものではない。尚、上下の取付孔列Hの取付孔hは左右に半ピッチずらして互い違いに設けられている。 In the insulating plates 55a and 55c, as shown in FIG. 7B, a large number of mounting hole arrays H i [i = 1, 2, 3. This mounting hole row H i is formed from a large number of mounting holes h j [j = 1, 2, 3. In the first embodiment, the mounting hole row H i is provided in 22 rows (i = n = 22), and the mounting hole h j is provided in 16 rows (j = m = 16). Incidentally, the mounting hole h j is not limited to 16, the mounting hole column H i there is no intention to be limited to 22 rows. Note that the mounting holes h j of the upper and lower mounting hole rows H i are alternately provided with a half pitch shift left and right.

[抵抗ユニット42,43,44の抵抗本体57R,57S,57T]
図9は図1〜図8の乾式負荷試験装置の回路図であり、図10は図9の部分拡大説明図である。
[Resistor bodies 57R, 57S, 57T of the resistor units 42, 43, 44]
FIG. 9 is a circuit diagram of the dry load test apparatus of FIGS. 1 to 8, and FIG. 10 is a partially enlarged explanatory view of FIG.

各抵抗ユニット42,43,44は、ハウジング52内に配設した抵抗本体57R,57S,57Tを有する。   Each resistance unit 42, 43, 44 has a resistance main body 57 </ b> R, 57 </ b> S, 57 </ b> T disposed in the housing 52.

抵抗本体57R,57S,57Tは、取付孔列Hに対応させて上下に多段に配設した多数の扁平状の抵抗組立体R,S,T[i=1,2,3・・・n]を有する(図9参照)。本実施例1では取付孔列Hが22列であるので、抵抗組立体R,S,Tも取付孔列Hに対応して22段に設けられている。尚、図9では、図示の便宜上大きな符号のみを付している。また、図9に示す抵抗組立体R,S,Tの構成は同じであるので、抵抗組立体R,S,Tの共通部分を図10に拡大して示し、図9にて図示の関係上付すことができなかった符号を図10に付して説明する。 Resistance body 57R, 57S, 57T is a mounting hole column H i numerous flat resistor assemblies R i which is arranged in multiple stages in the vertical in correspondence with, S i, T i [i = 1,2,3 · ..N] (see FIG. 9). In the first embodiment, since the mounting hole row H i is 22 rows, the resistance assemblies R i , S i , T i are also provided in 22 stages corresponding to the mounting hole row H i . In FIG. 9, only large symbols are attached for convenience of illustration. Further, since the resistance assembly R i shown in FIG. 9, the configuration of the S i, T i is the same, the resistance assembly R i, S i, the intersection of T i shown enlarged in FIG. 10, FIG. 9 The reference numerals that could not be added due to the illustration shown in FIG.

抵抗組立体R,S,Tは、図8に示したように、扁平状(平面状)に並設され且つ両端部が絶縁された複数の棒状の抵抗素子(ヒータ)r[j=1,2,3・・・m]と、隣接する複数の抵抗素子(ヒータ)rを端部において直列に接続している導電性接続片58a,58bj−1[j=1,2,3・・・m/2]を有する。 As shown in FIG. 8, the resistance assemblies R i , S i , and T i are arranged in a flat shape (planar shape), and a plurality of rod-shaped resistance elements (heaters) r j [insulated at both ends]. j = 1, 2, 3... m] and conductive connecting pieces 58a j , 58b j−1 [j = 1] connecting a plurality of adjacent resistance elements (heaters) r j in series at the end. , 2, 3... M / 2].

複数の抵抗素子(ヒータ)rは、取付孔hに対応して配列されているので、本実施例1では取付孔hに対応して水平方向に16本有する。上述のように上下の取付孔列Hの取付孔hは左右に半ピッチずらして設けられているので、上下の取付孔列Hの取付孔hに取り付けられた抵抗素子rは互いに左右に半ピッチずれて、縦方向の抵抗素子rはジグザグに配列されることになる。これにより、電動ファン50により下方から絶縁板55a,55b,55c間に供給される冷却風は上下の取付孔列Hの取付孔hに取り付けられた抵抗素子rに効率的に当たって取付孔列Hの抵抗素子r全てを効率的に冷却することになる。 A plurality of resistive elements (heaters) r j is because it is arranged so as to correspond to the mounting hole h j, to 16 inborn in the horizontal direction corresponding to the first embodiment in the mounting hole h j. Since the mounting hole h j of the upper and lower mounting holes column H i as described above are provided shifted by a half pitch in the left and right, the resistance element r j attached to the mounting hole h j of the upper and lower mounting holes column H i is The vertical resistance elements r j are arranged in a zigzag manner, shifted by a half pitch left and right. Thus, the electric fan insulating plate 55a from below by 50, 55b, the cooling air supplied between 55c is the mounting hole against the efficient and below the mounting hole column H i resistive element r j attached to the mounting hole h j of All the resistance elements r j in the column H i are efficiently cooled.

尚、多段の抵抗組立体R〜Rの各導電性接続片58aは上下に一列に接続片列を構成し、多段の抵抗組立体R〜Rの各導電性接続片58bj−1は上下に一列に接続片列を構成し、多段の抵抗組立体R〜Rの各抵抗素子(ヒータ)rは上下方向に一列に整列されて抵抗素子列を構成している。 Incidentally, the electrically conductive connection pieces 58a j of the multi-stage resistor assemblies R 1 to R n constitutes a connection piece column in a line vertically, multistage resistor assemblies R 1 to R each conductive connecting piece 58b j of n -1 constitutes a connection piece row in one row up and down, and each resistance element (heater) r j of the multi-stage resistor assemblies R 1 to R n is arranged in a row in the vertical direction to constitute a resistor element row. .

[抵抗組立体R,S,Tの抵抗素子r
図11Aは図8に示した抵抗素子の一部を破断すると共に詳細に図示した説明図であり、図11Bは図11Aの抵抗素子の端部拡大構造を示す説明図であり、図11Cは図11Aの抵抗素子の端部保持構造の他の例を示す説明図である。
[Resistance element r j of resistance assembly R i , S i , T i ]
FIG. 11A is an explanatory view showing a part of the resistance element shown in FIG. 8 while being broken, and FIG. 11B is an explanatory view showing an end portion enlarged structure of the resistance element of FIG. 11A, and FIG. It is explanatory drawing which shows the other example of the edge part holding structure of 11 A resistance elements.

この抵抗素子rは、熱伝導性の高い金属材料或いはステンレス鋼等から形成された筒体59と、筒体59の外周に固着された放熱フィン60と、筒体59の両端部内に一端部が同心に挿入された棒状電極61,61と、棒状電極61,61の中間部外周に一体且つ同心に固着された絶縁体(絶縁部材)62,62とを有する。この絶縁体62は、セラミック製の絶縁碍子等からなり、周面にホコリが付着するのを防止する環状溝62aが形成されている。 The resistance element r j includes a cylindrical body 59 made of a metal material having high thermal conductivity, stainless steel, or the like, a radiating fin 60 fixed to the outer periphery of the cylindrical body 59, and one end portion in both ends of the cylindrical body 59. Have rod-shaped electrodes 61, 61 inserted concentrically, and insulators (insulating members) 62, 62 integrally and concentrically fixed to the outer periphery of the intermediate portion of the rod-shaped electrodes 61, 61. The insulator 62 is made of a ceramic insulator or the like, and has an annular groove 62a that prevents dust from adhering to the peripheral surface.

また、抵抗素子rは、筒体59の中央に配設され且つ棒状電極61,61に両端部が接続された抵抗線(ニクロム線等のヒータ線)63と、筒体59の内面と棒状電極61,61の一端部及び抵抗線63との間に充填されたマグネシア等の絶縁材料荷より形成された絶縁体(絶縁部材)64と、棒状電極61の他端部に螺着された固定ナット65,65aとを有する。そして、導電性接続片58は、固定ナット65,65a間で締め付け固定することにより、抵抗素子rに固定されている。 The resistance element r j includes a resistance wire (a heater wire such as a nichrome wire) 63 disposed at the center of the cylindrical body 59 and connected to both ends of the rod-shaped electrodes 61, 61, an inner surface of the cylindrical body 59, and a rod shape. An insulator (insulating member) 64 formed of an insulating material load such as magnesia filled between one end of the electrodes 61 and 61 and the resistance wire 63, and a fixing screwed to the other end of the rod-shaped electrode 61 Nuts 65 and 65a. The conductive connection piece 58 is fixed to the resistance element r j by fastening and fixing between the fixing nuts 65 and 65a.

更に、図11A、図11Bに示したように、筒体59の端部と棒状電極61との間に環状又は筒状の耐熱コーキング材(耐熱シール材)64aを嵌着し、絶縁体(絶縁部材)62で押さえ付けるようにすることで、耐熱コーキング材64aにより絶縁体64内に湿気が入らないようになっている。また、高い電圧に耐え得るようにするために、絶縁体62の長さは例えば約10mm程度或いはそれ以上に設定されていて、導電性接続片58と筒体59との間の絶縁距離が十分に確保されている。   Further, as shown in FIGS. 11A and 11B, an annular or tubular heat-resistant caulking material (heat-resistant sealing material) 64a is fitted between the end of the tubular body 59 and the rod-shaped electrode 61, and an insulator (insulating) By pressing with the member 62, moisture is prevented from entering the insulator 64 by the heat-resistant caulking material 64a. Further, in order to withstand a high voltage, the length of the insulator 62 is set to about 10 mm or more, for example, and the insulation distance between the conductive connection piece 58 and the cylinder 59 is sufficient. Is secured.

この筒体59の両端部近傍には耐熱性で弾性を有する絶縁部材66が固定されている。この絶縁部材66は、耐熱性があり且つ弾性を有するシリコンゴム(合成樹脂)等から形成されている。また絶縁部材66の中央部には、環状取付溝66aが形成されている。   An insulating member 66 having heat resistance and elasticity is fixed in the vicinity of both ends of the cylindrical body 59. The insulating member 66 is made of silicon rubber (synthetic resin) having heat resistance and elasticity. An annular mounting groove 66 a is formed in the central portion of the insulating member 66.

そして、抵抗組立体R,S,Tの抵抗素子rは、上述したように取付孔列Hの取付孔hに対応して配設されている。この抵抗素子rは、両端側の絶縁部材66,66を絶縁板55a,55cの取付孔h,hに嵌合して、絶縁部材66,66の環状取付溝66a,66aに絶縁板55a,55cを係合させることにより、絶縁板55a,55cに保持(固定)されている。 The resistance elements r j of the resistance assemblies R i , S i , T i are arranged corresponding to the mounting holes h j of the mounting hole row H i as described above. The resistance element r j is configured such that the insulating members 66 and 66 on both ends are fitted into the mounting holes h j and h j of the insulating plates 55a and 55c, and the insulating plates 66 and 66 are fitted into the annular mounting grooves 66a and 66a. By engaging 55a and 55c, they are held (fixed) to the insulating plates 55a and 55c.

この様に弾性を有する耐熱性があり且つ弾性を有する絶縁部材66で筒体59を絶縁板55a,55cに保持させることで、トラックの移動時の振動衝撃が抵抗素子rに伝わって、抵抗素子rが振動衝撃等により破損するのを防止できる。また、抵抗素子rを支持する絶縁板55a,55cがエポキシ樹脂系の比較的耐熱性のある材料から形成されているが、絶縁部材66を耐熱性があるシリコンゴム(合成樹脂)等から形成して、抵抗素子rの熱が直接に絶縁板55a,55cに伝達されないようにすることで、絶縁板55a,55cの耐久性を向上させることができる。 By holding the cylindrical body 59 on the insulating plates 55a and 55c with the elastic heat-resistant and elastic insulating member 66 in this way, the vibration shock during the movement of the track is transmitted to the resistance element rj , and the resistance It is possible to prevent the element r j from being damaged by vibration shock or the like. Further, the insulating plates 55a and 55c for supporting the resistance element r j are formed from an epoxy resin-based relatively heat-resistant material, but the insulating member 66 is formed from heat-resistant silicon rubber (synthetic resin) or the like. to heat directly the insulating plate 55a of the resistive element r j, by not transmitted to 55c, it is possible to improve the insulation plate 55a, the durability of the 55c.

更に、本実施例1では、絶縁部材66を耐熱性があり且つ弾性のあるシリコンゴム(合成樹脂)等から形成しているが、必ずしもこれに限定されるものではない。すなわち、乾式負荷試験装置40を移動しない状態に設置固定して使用する場合には、絶縁部材66を図11Cに示すようにセラミック製の絶縁碍子66′から形成して、絶縁部材66′に絶縁板55a,55c等を保持させる様にしても良い。   Furthermore, in the first embodiment, the insulating member 66 is made of heat-resistant and elastic silicon rubber (synthetic resin) or the like, but is not necessarily limited thereto. That is, when the dry load test apparatus 40 is installed and fixed in a non-moving state, the insulating member 66 is formed from a ceramic insulator 66 'as shown in FIG. 11C, and is insulated from the insulating member 66'. You may make it hold | maintain board 55a, 55c.

[スイッチング部材SWaij,SWbij
図12は図2の矢印A方向から見たスイッチング部材と組立体間導電部材との配置関係を示す説明図であり、図13は図2の矢印B方向から見たスイッチング部材と組立体間導電部材との配置関係を示す説明図であり、図14は図9の抵抗組立体とその抵抗組立体の抵抗素子を短絡する部材との関係を示す説明図であり、図15は図14の抵抗組立体とスイッチング部材との関係を示す部分拡大説明図である。
[Switching members SWa ij , SWb ij ]
FIG. 12 is an explanatory view showing the positional relationship between the switching member and the inter-assembly conductive member as seen from the direction of arrow A in FIG. 2, and FIG. 13 is a diagram showing the conductive relationship between the switching member and the assembly as seen from the direction of arrow B in FIG. FIG. 14 is an explanatory view showing the arrangement relationship with the members, FIG. 14 is an explanatory view showing the relationship between the resistance assembly of FIG. 9 and a member that short-circuits the resistance element of the resistance assembly, and FIG. 15 is a resistance diagram of FIG. It is a partial expanded explanatory view which shows the relationship between an assembly and a switching member.

乾式負荷試験装置40は、抵抗ユニット42,43,44と間隔をおいた状態で、抵抗ユニット42,43,44を挟む位置に配設された絶縁板67,68を有する(図3,図4,図6参照)。この絶縁板67,68は、抵抗ユニット42,43,44の配列方向に延びて、抵抗ユニット42,43,44の側方全体を覆う大きさに形成されている。この絶縁板67,68は、下端部が図示しないボルト・ナット等の取付手段でフレーム41に取り付けられている。   The dry load test apparatus 40 has insulating plates 67 and 68 disposed at positions sandwiching the resistance units 42, 43, and 44 in a state of being spaced from the resistance units 42, 43, and 44 (FIGS. 3 and 4). FIG. 6). The insulating plates 67 and 68 extend in the arrangement direction of the resistance units 42, 43, and 44 and are formed in a size that covers the entire sides of the resistance units 42, 43, and 44. The lower ends of the insulating plates 67 and 68 are attached to the frame 41 by attachment means such as bolts and nuts (not shown).

絶縁板67,68の抵抗ユニット42,43,44側とは反対側の面67a,68aには、第1のスイッチング部材列SWa,SWb[i=1,2,3,・・・n]が抵抗組立体R,S,Tに対応して多段に配設されている(図3,図4,図12,図13,図14参照)。 The first switching member rows SWa i , SWb i [i = 1, 2, 3,... N are formed on the surfaces 67 a, 68 a of the insulating plates 67, 68 opposite to the resistance units 42, 43, 44. ] Are arranged in multiple stages corresponding to the resistance assemblies R i , S i , T i (see FIGS. 3, 4, 12, 13, and 14).

各第1のスイッチング部材列SWa,SWbは、抵抗組立体R,S,Tの抵抗素子(ヒータ)rの半分の数の第1のスイッチング部材SWaij,SWbij[j=1,2,3,・・・m/2]を有する。この第1のスイッチング部材SWaij,SWbijは、常開接点を有すると共に、絶縁板67,68にそれぞれ取り付けられている。 Each first switching member row SWa i , SWb i includes half the number of first switching members SWa ij , SWb ij [j ] of the resistance elements (heaters) r j of the resistance assemblies R i , S i , T i. = 1, 2, 3,... M / 2]. The first switching members SWa ij and SWb ij have normally open contacts and are attached to the insulating plates 67 and 68, respectively.

このとき、図6に示すように、各第1のスイッチング部材SWaij,SWbijは、後述する取付支持部73が互いに干渉しあわないように、各第1のスイッチング部材列SWa,SWbの並び方向、すなわち抵抗組立体R,S,Tの水平方向及び鉛直方向のそれぞれに対して、この取付支持部73が傾いた状態で固定される。なお、図6では、説明の便宜上後述する引出口76、絶縁壁77、絶縁屋根78及びリード線82,83は省略している。 At this time, as shown in FIG. 6, the first switching member SWa ij, SWb ij, as mounting support 73 to be described later do not interfere with each other, each of the first switching member columns SWa i, SWb i The mounting support portion 73 is fixed in an inclined state with respect to the arrangement direction of each of the resistance assemblies R i , S i , T i . In FIG. 6, the outlet 76, the insulating wall 77, the insulating roof 78, and the lead wires 82 and 83, which will be described later, are omitted for convenience of explanation.

[スイッチング部材SWaij,SWbijの構造]
図16は図15に示したスイッチング部材の外観を示す斜視図であり、図17は図16のスイッチング部材の正面図であり、図18は図16のスイッチング部材の側面図であり、図19は図16のスイッチング部材の平面図であり、図20は図16のスイッチング部材の内部構造を示す縦断面図であり、図21は図20に示す内部構造を側方から見たときの縦断面図であり、図22は図21のスイッチング部材の作動説明図であり、図23は図16に示したスイッチング部材の作動制御のための概略回路図である。
[Structure of the switching members SWa ij and SWb ij ]
16 is a perspective view showing the appearance of the switching member shown in FIG. 15, FIG. 17 is a front view of the switching member of FIG. 16, FIG. 18 is a side view of the switching member of FIG. 16 is a plan view of the switching member of FIG. 16, FIG. 20 is a longitudinal sectional view showing the internal structure of the switching member of FIG. 16, and FIG. 21 is a longitudinal sectional view of the internal structure shown in FIG. FIG. 22 is an operation explanatory diagram of the switching member of FIG. 21, and FIG. 23 is a schematic circuit diagram for controlling the operation of the switching member shown in FIG.

第1のスイッチング部材SWaij,SWbijは密封ケース体69と、密封ケース体69内に充填された窒素等の不活性ガスGとを有する。 The first switching members SWa ij and SWb ij have a sealed case body 69 and an inert gas G such as nitrogen filled in the sealed case body 69.

密封ケース体69は、高電圧に耐え得るテフロン(登録商標)等の絶縁材料性の円筒ケース70と、高電圧に耐え得るテフロン等の絶縁材料性の上ケース71とを有し、この円筒ケース70と上ケース71とは互いに超音波溶接等により溶着結合されて分割部分は密封されている。   The sealed case body 69 includes a cylindrical case 70 made of an insulating material such as Teflon (registered trademark) that can withstand a high voltage, and an upper case 71 made of an insulating material such as Teflon that can withstand a high voltage. 70 and the upper case 71 are welded and joined to each other by ultrasonic welding or the like, and the divided portions are sealed.

円筒ケース70は、上方に開放した円筒形状のケース本体72と、このケース本体72の下端部から側方に突出した一対の取付支持部73,73と、各取付支持部73からケース本体72の軸方向に延びる一対の位置決め突条部73a,73aとを有する。   The cylindrical case 70 includes a cylindrical case main body 72 opened upward, a pair of attachment support portions 73, 73 projecting laterally from the lower end portion of the case main body 72, and the case main body 72 from each attachment support portion 73. It has a pair of positioning protrusions 73a, 73a extending in the axial direction.

一対の取付支持部73,73は、ケース本体72の中心を挟んで互いに対向する位置に形成される。また、各取付支持部73は、スイッチング部材を固定する固定ネジ(図示せず)が貫通螺合するネジ孔73bが形成される。   The pair of attachment support portions 73 and 73 are formed at positions facing each other across the center of the case main body 72. In addition, each attachment support portion 73 is formed with a screw hole 73b through which a fixing screw (not shown) for fixing the switching member is screwed.

上ケース71は、円筒ケース70のケース本体72の開放端部を覆うように固定される。この上ケース71の上面71aには、一対の端子Pa,Pbが貫通螺合する一対の端子孔71b,71bが形成される。また、上ケース71の側面には位置決め突条部73a,73aに対向する複数の位置決め突起71c,…が形成される。   The upper case 71 is fixed so as to cover the open end of the case main body 72 of the cylindrical case 70. On the upper surface 71a of the upper case 71, a pair of terminal holes 71b and 71b through which the pair of terminals Pa and Pb are screwed are formed. Further, a plurality of positioning protrusions 71c,... Facing the positioning protrusions 73a, 73a are formed on the side surface of the upper case 71.

端子Pa,Pbは、それぞれ一端に端子孔71bに螺合すると共に、この端子孔71bから突出する固定部74a,74bが形成され、他端に円筒ケース70内に挿入される接点部(固定接点)75a,75bが形成されている。ここで、固定部74a,74bは、周面にネジ溝が形成されており、端子孔71bから突出した先端部にボルトB及び複数のナットNが螺着される。また、接点部75a,75bは、周面にネジ溝のない丸棒形状を呈している。   The terminals Pa and Pb are respectively screwed into the terminal hole 71b at one end, and fixed portions 74a and 74b projecting from the terminal hole 71b are formed, and a contact portion (fixed contact) inserted into the cylindrical case 70 at the other end. ) 75a and 75b are formed. Here, the fixing portions 74a and 74b are formed with thread grooves on the peripheral surfaces, and the bolts B and the plurality of nuts N are screwed to the tip portions protruding from the terminal holes 71b. The contact portions 75a and 75b have a round bar shape without a thread groove on the peripheral surface.

さらに、上ケース71の上面71aには、後述するソレノイドSに接続するリード線82,83の引出口76と、一対の端子Pa,Pb間を区画する絶縁壁77と、絶縁壁77に支持されると共に一対の端子Pa,Pbの上方を覆う絶縁屋根78とが形成されている。この引出口76、絶縁壁77、絶縁屋根78は、それぞれ合成樹脂等の絶縁材料により形成されている。   Further, an upper surface 71 a of the upper case 71 is supported by an outlet 76 of lead wires 82 and 83 connected to a solenoid S described later, an insulating wall 77 that partitions a pair of terminals Pa and Pb, and an insulating wall 77. And an insulating roof 78 that covers the upper side of the pair of terminals Pa and Pb. The outlet 76, the insulating wall 77, and the insulating roof 78 are each formed of an insulating material such as synthetic resin.

引出口76は、上端に向かって次第に細くなる筒形状を呈し上ケース71と一体成形されている。また、この引出口76をリード線82,83が貫通している。   The outlet 76 has a cylindrical shape that gradually decreases toward the upper end, and is integrally formed with the upper case 71. Further, lead wires 82 and 83 pass through the outlet 76.

絶縁壁77と絶縁屋根78とは一体形成されており、ネジ77aにより上ケース71に固定されている。絶縁屋根78は、平面視した際に上ケース71を覆う円板形状を呈している(図19参照)。なお、図20〜図23においては、説明の便宜上絶縁壁77及び絶縁屋根78の図示を省略している。   The insulating wall 77 and the insulating roof 78 are integrally formed, and are fixed to the upper case 71 by screws 77a. The insulating roof 78 has a disk shape that covers the upper case 71 when viewed from above (see FIG. 19). 20 to 23, illustration of the insulating wall 77 and the insulating roof 78 is omitted for convenience of explanation.

一方、円筒ケース70には、ソレノイド保持枠79に保持された駆動手段としてのソレノイドSと、このソレノイドSに対して進退回動可能に保持された接点保持板80と、接点保持板80に取り付けられた可動接点Mと、ソレノイドSに接続されると共に、引出口76から外部に引き出される一対のリード線82,83とが内蔵される。   On the other hand, the cylindrical case 70 is attached to a solenoid S as a driving means held by a solenoid holding frame 79, a contact holding plate 80 held so as to be able to advance and retreat with respect to the solenoid S, and the contact holding plate 80. The movable contact M and a pair of lead wires 82 and 83 that are connected to the solenoid S and drawn out from the outlet 76 are incorporated.

ソレノイドSは、円筒ケース70の底面に固定された鉄心83aと、鉄心83aに捲回されたコイル(ソレノイド本体)83bと、接点保持板80の下端部近傍に取り付けられて鉄心83aに対向する可動鉄板83cとを有する。   The solenoid S is attached to the iron core 83a fixed to the bottom surface of the cylindrical case 70, a coil (solenoid main body) 83b wound around the iron core 83a, and a movable member attached to the vicinity of the lower end of the contact holding plate 80 and facing the iron core 83a. And an iron plate 83c.

接点保持板80は、テフロン等の高電圧に耐え得る材料から形成され、且つ先端部が一対の接点部75a,75bに対向するように左右に分岐したT字状を呈している(図20参照)。この接点保持板80は可動鉄板83cから更に下方に突出していて、下端部がトーションバネ80aを介して円筒ケース70のケース本体72の底面72aに回動可能に固定されている。なお、トーションバネ80aは、通常接点保持板80の先端部がソレノイドSから離反する方向に付勢している。   The contact holding plate 80 is formed of a material that can withstand high voltages such as Teflon, and has a T-shape that branches to the left and right so that the tip portion faces the pair of contact portions 75a and 75b (see FIG. 20). ). The contact holding plate 80 protrudes further downward from the movable iron plate 83c, and a lower end portion is rotatably fixed to the bottom surface 72a of the case main body 72 of the cylindrical case 70 via a torsion spring 80a. The torsion spring 80a normally urges the tip of the contact holding plate 80 in a direction away from the solenoid S.

可動接点Mは、左右に分岐した接点保持板80の先端部に固着された導電性の板材から形成され、端子Pa,Pbの接点部75a,75bに対向させられている。しかも、通常この可動接点Mはトーションバネ80aのバネ力により接点部75a,75bから離反させられていて、接点部75a,75bは常開接点となっている。   The movable contact M is formed of a conductive plate material fixed to the tip of the contact holding plate 80 branched to the left and right, and is opposed to the contact portions 75a and 75b of the terminals Pa and Pb. Moreover, the movable contact M is normally separated from the contact portions 75a and 75b by the spring force of the torsion spring 80a, and the contact portions 75a and 75b are normally open contacts.

リード線82,83は、それぞれ一端がコイル83bの端部に接続されると共に、他端が引出口76から外部に引き出されて通電制御回路84(図23参照)に接続されている。このとき、円筒ケース70内において接点部75a,75bや可動接点Mからリード線82,83が離れるように設定されるので、接点部75a,75bや可動接点Mとリード線82,83との耐電圧度が向上する。   One end of each of the lead wires 82 and 83 is connected to the end of the coil 83b, and the other end is drawn out from the outlet 76 and connected to the energization control circuit 84 (see FIG. 23). At this time, since the lead wires 82 and 83 are set apart from the contact portions 75a and 75b and the movable contact M in the cylindrical case 70, the resistance between the contact portions 75a and 75b and the movable contact M and the lead wires 82 and 83 is set. The voltage degree is improved.

そして、通電制御回路84からリード線82,83を介してコイル83bに通電させると、可動鉄板83cが鉄心83aに磁力で吸引移動されられて、鉄心83aに磁着され、ソレノイドSが作動(ON)した状態となる。しかも、この吸引移動により可動鉄板83cと一体に移動する接点保持板80がトーションバネ80aのバネ力に抗して起立するように、図22に示す矢印X方向に回動する。これにより、接点保持板80の先端部に固着された可動接点Mが接点部75a,75bに当接(接触)させられ、接点部75a,75bが導通(短絡)させられる。   When the coil 83b is energized from the energization control circuit 84 via the lead wires 82 and 83, the movable iron plate 83c is attracted and moved to the iron core 83a by magnetic force, and is magnetically attached to the iron core 83a, and the solenoid S is activated (ON). ). Moreover, the contact holding plate 80 that moves integrally with the movable iron plate 83c by this suction movement is rotated in the direction of the arrow X shown in FIG. 22 so as to stand up against the spring force of the torsion spring 80a. Thereby, the movable contact M fixed to the tip of the contact holding plate 80 is brought into contact (contact) with the contact portions 75a and 75b, and the contact portions 75a and 75b are brought into conduction (short circuit).

[スイッチング部材SWaij,SWbijの導電性接続片58a,58bへの接続]
図8に示すように、第1のスイッチング部材SWaijは、一方の端子Paが導電性接続片58aにそれぞれ接続され、他方の端子Pbが組立体間導電部材Caにそれぞれ接続されて、互いに導通している。
[Connection of Switching Members SWa ij and SWb ij to Conductive Connection Pieces 58a j and 58b j ]
As shown in FIG. 8, the first switching member SWa ij has one terminal Pa connected to the conductive connection piece 58a j and the other terminal Pb connected to the inter-assembly conductive member Ca j . They are connected to each other.

また、第1のスイッチング部材SWbi1は、抵抗組立体R,S,Tの最も端に位置する一列における一方の端子Paが抵抗素子rの導電性接続片が取り付けられていない端部Fに接続され、残りの第1のスイッチング部材SWbijの一方の端子Paが導電性接続片58bj−1にそれぞれ接続されている。そして、全ての第1のスイッチング部材SWbi1は、他方の端子Pbが組立体間導電部材Cbにそれぞれ接続されて、互いに導通している。 In addition, the first switching member SWb i1 is an end where one terminal Pa in one row located at the most end of the resistance assemblies R i , S i , T i is not attached to the conductive connection piece of the resistance element r 1. It is connected to the section F, the remaining first one terminal Pa of the switching member SWb ij is connected to the conductive connecting piece 58b j-one. All the first switching members SWb i1 are electrically connected to each other with the other terminal Pb connected to the inter-assembly conductive member Cb j .

[組立体間導電部材Cb
組立体間導電部材Ca[j=1,2,3・・・m/2]は、上下に多段に配設された多数の抵抗組立体R,S,Tの高さ方向に延びており、第1のスイッチング部材SWaの他方の端子Pbを互いに導通している。同様に、組立体間導電部材Cb[j=1,2,3・・・m/2]は、上下に多段に配設された多数の抵抗組立体R,S,Tの高さ方向に延びており(図6参照)、第1のスイッチング部材SWbの他方の端子Pbを互いに導通している。なお、多数の抵抗組立体R,S,Tの抵抗素子rのうち、最も端に位置して導電性接続片58bが取り付けられていない端部Eは、組立体間導電部材Cb(m/2)+1に接続されて、互いに導通している(図8参照)。
[Inter-Assembly Conductive Member Cb j ]
Inter-assembly conductive members Ca j [j = 1, 2, 3... M / 2] are arranged in the height direction of a large number of resistance assemblies R i , S i , T i arranged in multiple stages in the vertical direction. It extends and has the other terminal Pb of the first switching member SWa j electrically connected to each other. Similarly, the inter-assembly conductive member Cb j [j = 1, 2, 3... M / 2] is the height of a large number of resistance assemblies R i , S i , T i arranged in multiple stages up and down. It extends in the vertical direction (see FIG. 6), and the other terminal Pb of the first switching member SWb i is electrically connected to each other. Incidentally, a large number of resistor assemblies R i, S i, of the resistive element r m of T i, the most on the edge by conductive connecting piece 58b j is not attached end E An assembly between conductive members They are connected to Cb (m / 2) +1 and are electrically connected to each other (see FIG. 8).

[抵抗組立体R,S,Tの接続関係]
抵抗組立体R,S,Tの接続関係は図14に示したようになっている。この図14は抵抗組立体R,S,Tを同時に図示しているので、図14では図示の便宜上符号は必要最小限のものを付して説明し、詳細な説明は図15で説明する。尚、図14,15では説明の便宜上、図8に示した絶縁板67,68の図示は省略してある。
[Relationships of resistance assemblies R i , S i , T i ]
The connection relationship of the resistance assemblies R i , S i , T i is as shown in FIG. 14 shows the resistance assemblies R i , S i , and T i at the same time. Therefore, in FIG. 14, for convenience of illustration, the reference numerals are given with the minimum necessary number, and the detailed explanation is shown in FIG. explain. 14 and 15, the illustration of the insulating plates 67 and 68 shown in FIG. 8 is omitted for convenience of explanation.

この抵抗組立体Rの組立体間導電部材Cb(m/2)+1は配線85Rを介してメインの真空遮断器(VCB−M)86の接点86Rに接続され、抵抗組立体Sの組立体間導電部材Cb(m/2)+1は配線85Sを介して高電圧用スイッチであるメインの真空遮断器86の接点86Sに接続され、抵抗組立体Tの組立体間導電部材Cb(m/2)+1は配線85Tを介してメインの真空遮断器86の接点86Tに接続されている。この真空遮断器86の接点86R,86S,86Tは配線87R,87S,87Tを介して被試験用電源である三相交流発電機88のR,S,T相の接点88R,88S,88Tに接続されている(図5参照)。 The inter-assembly conductive member Cb (m / 2) +1 of the resistance assembly R i is connected to the contact 86R 1 of the main vacuum circuit breaker (VCB-M) 86 via the wiring 85R, and the resistance assembly S i assembly between conductive members Cb (m / 2) +1 are connected to the contacts 86S 1 of the main vacuum circuit breaker 86 is a high voltage switch through a wiring 85S, the resistance assembly T assembly between conductive members of i Cb (m / 2) +1 are connected to the contacts 86T 1 of the main vacuum circuit breaker 86 through a wiring 85T. The contacts 86R 2 , 86S 2 , 86T 2 of the vacuum circuit breaker 86 are connected to the R, S, T phase contacts 88R, 88S of the three-phase AC generator 88 which is a power source for testing via wirings 87R, 87S, 87T. 88T (see FIG. 5).

上述したように、スイッチング部材SWaij,SWbijと組立体間導電部材Ca,Cb,Cb(m/2)+1を設けることで、高電圧用スイッチとして一つのメインの真空遮断器86のみとなる。 As described above, by providing the switching members SWa ij , SWb ij and the inter-assembly conductive members Ca j , Cb j , Cb (m / 2) +1 , only one main vacuum circuit breaker 86 is used as a high voltage switch. It becomes.

[短絡手段]
乾式負荷試験装置40は、抵抗組立体R,S,Tのいくつかの抵抗素子rを適宜切り換えて短絡させる短絡手段を有する。この短絡手段としては、短絡用の接続線89,89、短絡用の接続線90,90,90、導電板(導電性接続部材)91,91,91及び互いに接続された導電板(導電性接続部材)92,92,92を用意しておく。
[Short-circuit means]
The dry load test apparatus 40 includes a short-circuit unit that switches and short-circuits several resistance elements r j of the resistance assemblies R i , S i , T i as appropriate. The short-circuit means includes short-circuit connection wires 89 and 89, short-circuit connection wires 90, 90 and 90, conductive plates (conductive connection members) 91, 91 and 91, and conductive plates connected to each other (conductive connection). Members) 92, 92, 92 are prepared.

[通電制御回路84]
図24は図15に示したスイッチング部材の制御回路図である。通電制御回路84には、低電圧負荷試験用の低圧スイッチ93、高電圧負荷試験用の高圧スイッチ94、高電圧負荷試験用の高圧スイッチ95が接続されていると共に、電源96が電源スイッチ97を介して接続されている。また、電動ファン50は通電制御回路84により駆動制御される様になっている。
[Energization control circuit 84]
FIG. 24 is a control circuit diagram of the switching member shown in FIG. A low voltage switch 93 for a low voltage load test, a high voltage switch 94 for a high voltage load test, and a high voltage switch 95 for a high voltage load test are connected to the energization control circuit 84, and a power source 96 connects a power switch 97. Connected through. The electric fan 50 is driven and controlled by an energization control circuit 84.

次に、この様な構成の乾式負荷試験装置40の作用を説明する。
この乾式負荷試験装置40においては、まずトラック30により負荷試験を行う現場まで乾式負荷試験装置40を移動させる。本実施例1では、電圧負荷試験の対象となる被試験用発電機の三相交流発電機88が設置されている場所となる。
Next, the operation of the dry load test apparatus 40 having such a configuration will be described.
In the dry load test apparatus 40, first, the dry load test apparatus 40 is moved to the site where the load test is performed by the truck 30. In the present Example 1, it becomes a place where the three-phase AC generator 88 of the generator under test to be subjected to the voltage load test is installed.

尚、上述したように、本実施例1の各抵抗ユニット42,43,44に設けた抵抗本体57R,57S,57Tは、22段の扁平状の抵抗組立体R,S,Tを有する。しかも、抵抗組立体R,S,Tの棒状の抵抗素子rは16本設けられている。さらに、上述したスイッチング部材列SWa,SWbのスイッチング部材SWaij,SWbijは各8個設けられている。 As described above, the resistor main bodies 57R, 57S, and 57T provided in the resistor units 42, 43, and 44 of the first embodiment have 22-stage flat resistor assemblies R i , S i , and T i , respectively. Have. Moreover, 16 rod-like resistance elements r j of the resistance assemblies R i , S i , T i are provided. Furthermore, eight switching members SWa ij and SWb ij of the above-described switching member rows SWa i and SWb i are provided.

従って、スイッチング部材SWaijのソレノイド本体であるコイル83bを図24のS1〜S8で示したように対応させ、スイッチング部材SWbijのソレノイド本体であるコイル83bをS9〜S16で示したように対応させて電圧負荷試験の例を以下に説明する。 Therefore, in correspondence as shown the coil 83b is a solenoid body of the switching members SWa ij in S1~S8 in FIG. 24, in correspondence as shown the coil 83b is a solenoid body of the switching members SWb ij in S9~S16 An example of the voltage load test will be described below.

また、本実施例1では、電圧負荷試験の対象となる被試験用発電機として三相交流発電機88を用いているので、この三相交流発電機88を乾式負荷試験装置40の抵抗本体57R,57S,57Tに図5の如く接続した場合について説明する。   In the first embodiment, since the three-phase AC generator 88 is used as the generator under test to be subjected to the voltage load test, the three-phase AC generator 88 is used as the resistance main body 57R of the dry load test apparatus 40. , 57S, 57T will be described with reference to FIG.

[低電圧負荷試験時]
図25は図14に示した抵抗組立体の抵抗素子の接続例を示す概略説明図であり、図26は図25の部分拡大説明図であり、図27は図25の接続による抵抗組立体の抵抗値説明図である。
[Low voltage load test]
25 is a schematic explanatory view showing a connection example of the resistance element of the resistance assembly shown in FIG. 14, FIG. 26 is a partially enlarged explanatory view of FIG. 25, and FIG. 27 is a diagram of the resistance assembly by the connection of FIG. It is resistance value explanatory drawing.

例えば400Vの低電圧負荷試験を行う場合には、まず、抵抗本体57Rの組立体間導電部材Cb〜Cb(m/2)+1を導電板91で導通(短絡)させ、抵抗本体57Sの組立体間導電部材Cb〜Cb(m/2)+1を導電板91で導通(短絡)させ、抵抗本体57Tの組立体間導電部材Cb〜Cb(m/2)+1を導電板91で導通(短絡)させる。 For example, when a low voltage load test of 400 V is performed, first, the inter-assembly conductive members Cb 1 to Cb (m / 2) +1 of the resistor main body 57R are conducted (short-circuited) by the conductive plate 91, and the resistance main body 57S is assembled. Conductive members Cb 1 to Cb (m / 2) +1 between the three-dimensional objects are conducted (short-circuited) by the conductive plate 91, and conductive members Cb 1 to Cb (m / 2) +1 between the assemblies of the resistor main body 57T are conducted by the conductive plate 91. (Short circuit).

これにより、三相交流発電機88のR,S,T相には、導電性接続片58b〜58b(m/2),スイッチング部材列SWb〜SWbの全てのスイッチング部材SWbij,抵抗本体57R,57S,57Tの組立体間導電部材Cb〜Cb(m/2)+1,導電板91,配線85R,85S,85T及び真空遮断器86を介して抵抗組立体R,S,Tの抵抗素子rが接続される。 As a result, the R, S, and T phases of the three-phase AC generator 88 include all the switching members SWb ij and resistors of the conductive connection pieces 58b 1 to 58b (m / 2) and the switching member rows SWb 1 to SWb n. Inter-assembly conductive members Cb 1 to Cb (m / 2) +1 of the main bodies 57R, 57S, and 57T, the conductive plates 91, the wirings 85R, 85S, and 85T, and the resistance assemblies R i , S i , via the vacuum circuit breaker 86, A resistance element r j of T i is connected.

一方、抵抗本体57Rの組立体間導電部材Ca〜Cam/2を導電板92で導通(短絡)させ、抵抗本体57Sの組立体間導電部材Ca〜Cam/2を導電板92で導通(短絡)させ、抵抗本体57Tの組立体間導電部材Ca〜Cam/2を導電板92で導通(短絡)させる。これにより、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tの抵抗素子rは、導電性接続片58a〜58am/2,組立体間導電部材Ca〜Cam/2,スイッチング部材列SWa〜SWai(m/2)の全てのスイッチング部材SWaij及び導電板92を介して電圧が0となる中性点に互いに接続される。 On the other hand, the assembly between the conductive members Ca 1 ~Ca m / 2 of the resistor body 57R conduction conductive plate 92 is (short), a conductive inter-assembly of the resistance body 57S members Ca 1 ~Ca m / 2 with a conductive plate 92 Conduction (short circuit) is performed, and the inter-assembly conductive members Ca 1 to Cam / 2 of the resistance main body 57T are conducted (short circuit) by the conductive plate 92. As a result, the resistance elements r j of the resistance assemblies R i , S i , T i constituting the resistance main bodies 57R, 57S, 57T are connected to the conductive connection pieces 58a 1 to 58a m / 2 , and the inter-assembly conductive member Ca 1. ~Ca m / 2, are connected together to a neutral point where all the voltage via a switching member SWa ij and the conductive plate 92 of the switching member columns SWa 1 ~SWa i (m / 2 ) becomes zero.

この状態では、図27に示したように、抵抗組立体R,S,Tの16本の抵抗素子rは全て並列に接続した状態となる。しかも、三相交流発電機88のR,S,T相には、全ての抵抗素子rを並列に接続して負荷抵抗値を小さくした抵抗組立体R,S,T(即ち低抵抗値の抵抗素子本体57R,57S,57T)が接続されることになる。 In this state, as shown in FIG. 27, the 16 resistance elements r j of the resistance assemblies R i , S i , T i are all connected in parallel. In addition, the R, S, and T phases of the three-phase AC generator 88 include resistance assemblies R i , S i , T i (ie, low resistances) in which all resistance elements r j are connected in parallel to reduce the load resistance value. Resistance element bodies 57R, 57S, and 57T having resistance values are connected.

この様な接続において、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。この後、低圧用スイッチ93をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86をONさせた後、スイッチング部材SWaij,SWbijのコイル83b(S1〜S16)の全てに通電させて、スイッチング部材SWaij,SWbijの全てをONさせる。 In such a connection, the three-phase AC generator 88 is activated, while the power switch 97 is turned on to activate the energization control circuit 84. Thereafter, the low pressure switch 93 is turned on. Energization control circuit 84 by the ON operation, after first main ON the vacuum circuit breaker 86, by energizing all of the switching member SWa ij, SWb ij coil 83 b (S1 to S16), the switching member SWa ij, make ON all SWb ij.

これにより、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗素子rに入力され、負荷試験が開始される。これにより、抵抗組立体R,S,Tの抵抗素子rに通電されて、抵抗素子rが発熱する。 As a result, the output (voltage, current) from the three-phase AC generator 88 is input to the resistance elements r j of the resistance assemblies R i , S i , T i , and the load test is started. As a result, the resistance element r j of the resistance assembly R i , S i , T i is energized, and the resistance element r j generates heat.

この際、通電制御回路84は、抵抗ユニット42,43,44の各電動ファン50を作動させて、各電動ファン50からの冷却風を抵抗ユニット42,43,44のハウジング52に送風する。そして、この冷却風は、抵抗ユニット42,43,44の抵抗素子rで発生した熱を放熱フィン60の周囲を流れる際に吸収して、抵抗素子rを冷却した後、荷室33を形成するボックス32の図示しない排気口から外部に排気される。 At this time, the energization control circuit 84 operates the electric fans 50 of the resistance units 42, 43, 44 and blows cooling air from the electric fans 50 to the housing 52 of the resistance units 42, 43, 44. Then, the cooling air absorbs the heat generated in the resistive element r j of resistor units 42, 43 and 44 as they flow around the heat radiation fins 60, after the resistive element r j is cooled, the luggage compartment 33 The air is exhausted from an exhaust port (not shown) of the box 32 to be formed.

尚、この場合でも、各段のスイッチング部材SWaij,SWbijのON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例1では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Incidentally, even in this case, the switching member SWa ij of each stage, by the ON · OFF control of SWb ij, resistor body 57R, 57S, load resistance value applied to three phase AC generator 88 from 57T for every predetermined time For example, the load test is performed with 25%, 50%, 75%, and 100%. In the first embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 should be set more finely. You can also. For example, a load test can be performed every 5% or 10%.

[300Vの高電圧負荷試験時]
図28は図14に示した抵抗組立体の抵抗素子の他の接続例を示す概略説明図であり、図29は図28の部分拡大説明図であり、図30は図28の接続による抵抗組立体の抵抗値説明図である。
[300V high voltage load test]
28 is a schematic explanatory view showing another connection example of the resistance element of the resistance assembly shown in FIG. 14, FIG. 29 is a partially enlarged explanatory view of FIG. 28, and FIG. 30 is a resistance set by connection of FIG. It is resistance value explanatory drawing of a solid | solid.

例えば3300Vの高電圧負荷試験を行う場合には、まず、抵抗本体57Rの組立体間導電部材Cbと抵抗本体57Sの組立体間導電部材Cbを接続線89で接続して短絡させ、抵抗本体57Sの組立体間導電部材Cbと抵抗本体57Tの組立体間導電部材Cbを接続線89で接続して短絡させる。また、各抵抗本体57R,57S,57Tの組立体間導電部材CbとCb(m/2)+1を接続線90,90,90でそれぞれ接続して短絡させる(図29参照)。 For example, when performing a high voltage load test of 3300V, first, the assembly between the conductive members Cb 5 of the assembly between the conductive members Cb 5 of the resistor body 57R resistor body 57S are short connected by connection lines 89, the resistance shorting by connecting assembly between conductive members Cb 5 of the assembly between the conductive members Cb 5 of the body 57S resistor body 57T in connecting line 89. Further, the inter-assembly conductive members Cb 1 and Cb (m / 2) +1 of the resistor main bodies 57R, 57S, and 57T are connected by connection lines 90, 90, and 90, respectively, so as to be short-circuited (see FIG. 29).

この状態では、図30に示したように、各抵抗組立体R,S,Tの各16本の抵抗素子rは半分の8本の抵抗素子rが並列に接続された値の抵抗体8r,8rを2つ並列に接続して、並列な抵抗体8r,8rの一端側をスイッチング部材SWbi5及び接続線89,89介して電圧が0となる中性点に互いに接続される。 In this state, as shown in FIG. 30, each of the 16 resistance elements r j of each of the resistance assemblies R i , S i , T i is a value in which half of the 8 resistance elements r j are connected in parallel. Are connected in parallel, and one end side of the parallel resistors 8r, 8r is connected to a neutral point where the voltage becomes 0 via the switching member SWb i5 and connection lines 89, 89. The

また、三相交流発電機88のR,S,T相には、抵抗本体57R,57S,57Tの各組立体間導電部材Cb,Cb(m/2)+1が配線90,90,90、配線85R,85S,85T及び真空遮断器86を介して接続されている。 In addition, the R, S, and T phases of the three-phase AC generator 88 include inter-assembly conductive members Cb 1 , Cb (m / 2) +1 of the resistance main bodies 57R, 57S, and 57T, which are wired 90, 90, 90, The wirings 85R, 85S, and 85T and the vacuum circuit breaker 86 are connected.

従って、三相交流発電機88のR,S,T相には、並列に接続して抵抗値を中ぐらいの値にした抵抗体8r,8rを有する抵抗組立体R,S,T(即ち中抵抗値の抵抗本体57R,57S,57T)が接続されることになる。 Accordingly, the R, S, and T phases of the three-phase AC generator 88 include resistance assemblies R i , S i , and T i having resistors 8 r and 8 r that are connected in parallel and have a medium resistance value. That is, the resistance main bodies 57R, 57S, and 57T having medium resistance values are connected.

この様な接続において、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。この後、高圧用スイッチ94をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86をONさせた後、スイッチング部材SWbi1,SWbi5のコイル83b(S1,S5)にのみ通電させて、スイッチング部材SWbi1,SWbi5をONさせる。これにより、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗体8r,8rに入力され、負荷試験が開始される。これにより、抵抗体8r,8rを構成する各抵抗素子rに通電されて、抵抗素子rが発熱する。 In such a connection, the three-phase AC generator 88 is activated, while the power switch 97 is turned on to activate the energization control circuit 84. Thereafter, the high voltage switch 94 is turned on. With this ON operation, the energization control circuit 84 first turns on the main vacuum circuit breaker 86, and then energizes only the coils 83b (S1, S5) of the switching members SWb i1 and SWb i5 , thereby switching the switching members SWb i1 and SWb. Turn on i5 . As a result, the output (voltage, current) from the three-phase AC generator 88 is input to the resistors 8r, 8r of the resistor assemblies R i , S i , T i , and the load test is started. As a result, each resistance element r j constituting the resistors 8r, 8r is energized, and the resistance element r j generates heat.

この際、通電制御回路84は、抵抗ユニット42,43,44の各電動ファン50を作動させて、各電動ファン50からの冷却風を抵抗ユニット42,43,44のハウジング52に送風する。そして、この冷却風は、抵抗ユニット42,43,44の抵抗素子rで発生した熱を放熱フィン60の周囲を流れる際に吸収して、抵抗素子rを冷却した後、荷室33を形成するボックス32の図示しない排気口から外部に排気される。 At this time, the energization control circuit 84 operates the electric fans 50 of the resistance units 42, 43, 44 and blows cooling air from the electric fans 50 to the housing 52 of the resistance units 42, 43, 44. Then, the cooling air absorbs the heat generated in the resistive element r j of resistor units 42, 43 and 44 as they flow around the heat radiation fins 60, after the resistive element r j is cooled, the luggage compartment 33 The air is exhausted from an exhaust port (not shown) of the box 32 to be formed.

尚、この場合でも、各段のスイッチング部材SWbi1,SWbi5のON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例1では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Even in this case, the ON / OFF control of the switching members SWb i1 and SWb i5 at each stage allows the load resistance value applied to the three-phase AC generator 88 from the resistor main bodies 57R, 57S, and 57T to be set at predetermined intervals. For example, the load test is performed with 25%, 50%, 75%, and 100%. In the first embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 should be set more finely. You can also. For example, a load test can be performed every 5% or 10%.

[6600Vの高電圧負荷試験時]
図31は図14に示した抵抗組立体の抵抗素子のさらに他の接続例を示す概略説明図であり、図32は図31の部分拡大説明図であり、図33は図31の接続による抵抗組立体の抵抗値説明図である。
[6600V high voltage load test]
31 is a schematic explanatory view showing still another connection example of the resistance element of the resistance assembly shown in FIG. 14, FIG. 32 is a partially enlarged explanatory view of FIG. 31, and FIG. 33 is a resistance due to the connection of FIG. It is resistance value explanatory drawing of an assembly.

例えば6600Vの高電圧負荷試験を行う場合には、各抵抗本体57R,57S,57Tの組立体間導電部材Cb,Cb,Cbを接続線89,89,89でそれぞれ接続して短絡させる。これにより、各抵抗組立体R,S,Tの各抵抗素子r,r,rはスイッチング部材,SWbi1,SWbi1,SWbi1及び接続線89,89を介して電圧が0となる中性点に互いに接続される。 For example, when a high voltage load test of 6600 V is performed, the inter-assembly conductive members Cb 1 , Cb 1 , Cb 1 of the resistor bodies 57R, 57S, 57T are respectively connected by connection lines 89, 89, 89 and short-circuited. . Thereby, each resistance element r 1 , r 1 , r 1 of each resistance assembly R i , S i , T i is supplied with a voltage via the switching member, SWb i1 , SWb i1 , SWb i1 and connection lines 89, 89. They are connected to each other at a neutral point that becomes zero.

また、三相交流発電機88のR,S,T相には、抵抗本体57R,57S,57Tの各組立体間導電部材Cb(m/2)+1が配線85R,85S,85T及び真空遮断器86を介して接続されている。この状態では、図33に示したように、各抵抗組立体R,S,Tは、16本の抵抗素子rの全ての抵抗素子rが直列に接続されて、抵抗値が高抵抗となった状態となる。 Further, in the R, S, and T phases of the three-phase AC generator 88, the inter-assembly conductive member Cb (m / 2) +1 of the resistance main bodies 57R, 57S, and 57T is provided with wirings 85R, 85S, and 85T and a vacuum circuit breaker. 86 is connected. In this state, as shown in FIG. 33, each resistance assembly R i , S i , T i has all the resistance elements r j of the 16 resistance elements r j connected in series, and has a resistance value of It becomes the state where it became high resistance.

従って、三相交流発電機88のR,S,T相には、全ての抵抗素子rを直列に接続した高抵抗値の抵抗組立体R,S,T(即ち高抵抗値の抵抗本体57R,57S,57T)が接続されることになる。 Accordingly, the R, S, and T phases of the three-phase AC generator 88 have a high resistance value assembly R i , S i , T i (ie, a high resistance value) in which all the resistance elements r j are connected in series. Resistor bodies 57R, 57S, 57T) are connected.

この様な接続において、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。この後、高圧用スイッチ95をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86をONさせた後、スイッチング部材SWbi1のコイル83b(S1)にのみ通電させて、スイッチング部材SWbi1をONさせる。これにより、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗素子rに通電されて、抵抗素子rが発熱する。 In such a connection, the three-phase AC generator 88 is activated, while the power switch 97 is turned on to activate the energization control circuit 84. Thereafter, the high voltage switch 95 is turned on. Energization control circuit 84 by the ON operation, after first main ON the vacuum circuit breaker 86, only by energizing the coil 83b of the switching member SWb i1 (S1), causing ON the switching element SWb i1. As a result, the output (voltage, current) from the three-phase AC generator 88 is energized to the resistance element r j of the resistance assemblies R i , S i , T i , and the resistance element r j generates heat.

この際、通電制御回路84は、抵抗ユニット42,43,44の各電動ファン50を作動させて、各電動ファン50からの冷却風を抵抗ユニット42,43,44のハウジング52に送風する。そして、この冷却風は、抵抗ユニット42,43,44の抵抗素子rで発生した熱を放熱フィン60の周囲を流れる際に吸収して、抵抗素子rを冷却した後、荷室33を形成するボックス32の図示しない排気口から外部に排気される。 At this time, the energization control circuit 84 operates the electric fans 50 of the resistance units 42, 43, 44 and blows cooling air from the electric fans 50 to the housing 52 of the resistance units 42, 43, 44. Then, the cooling air absorbs the heat generated in the resistive element r j of resistor units 42, 43 and 44 as they flow around the heat radiation fins 60, after the resistive element r j is cooled, the luggage compartment 33 The air is exhausted from an exhaust port (not shown) of the box 32 to be formed.

尚、この場合でも、各段のスイッチング部材SWbi1のON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例1では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Even in this case, the load resistance value applied to the three-phase AC generator 88 from the resistor main bodies 57R, 57S, 57T is set to, for example, 25% every predetermined time by controlling the ON / OFF of the switching member SWb i1 at each stage. , 50%, 75%, and 100%, and load test is performed. In the first embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 should be set more finely. You can also. For example, a load test can be performed every 5% or 10%.

尚、この様な負荷試験は、低電圧負荷試験用の低圧スイッチ93、高電圧負荷試験用の高圧スイッチ94、高電圧負荷試験用の高圧スイッチ95をオン操作したときに、負荷試験のためのプログラムに従って自動的に通電制御回路84により行われるようになっている。このプログラムは、通電制御回路84の図示しないROM等の記憶手段に予め記憶させておくこともできるし、ハードディスク等の記録媒体に記録させておいて、負荷試験開始時に通電制御回路84の図示しないCPUに読み込ませて用いることもできる。   Such a load test is performed when the low voltage switch 93 for low voltage load test, the high voltage switch 94 for high voltage load test, and the high voltage switch 95 for high voltage load test are turned on. This is automatically performed by the energization control circuit 84 according to the program. This program can be stored in advance in a storage means such as a ROM (not shown) of the energization control circuit 84, or is recorded in a recording medium such as a hard disk, and the energization control circuit 84 is not shown at the start of the load test. It can also be read and used by the CPU.

[スパーク防止作用]
上記負荷試験時において、ON操作された各スイッチング部材SWaij,SWbijには高電圧が印加する。ここで、スイッチング部材SWaij,SWbijに内蔵されたソレノイドS、固定接点である接点部75a,75b、可動接点Mは密封ケース体69内に不活性ガスGと共に密封されている。そのため、この乾式負荷試験装置40を長期間屋外に設置した場合であっても、塵埃が密封ケース体69内に入り込んで細塵が各接点等に付着することを防止できる。さらに、不活性ガスGを密封ケース体69内に充填することで悪性ガスの侵入をより効果的に防止することができる。これにより、屋外等に長期間設置しておいても、スイッチング部材SWaij,SWbij内でのスパーク発生を抑制することができる。
[Spark prevention]
During the load test, a high voltage is applied to each of the switching members SWa ij and SWb ij that are turned on. Here, the solenoid S built in the switching members SWa ij and SWb ij , the contact portions 75 a and 75 b which are fixed contacts, and the movable contact M are sealed together with the inert gas G in the sealing case body 69. Therefore, even when this dry load test apparatus 40 is installed outdoors for a long period of time, it is possible to prevent dust from entering the sealed case body 69 and adhering to each contact or the like. Furthermore, the invasion of malignant gas can be more effectively prevented by filling the sealed case body 69 with the inert gas G. Thereby, even if it is installed outdoors for a long time, the occurrence of sparks in the switching members SWa ij and SWb ij can be suppressed.

また、本実施例1では、密封ケース体69の上ケース71の上面71aに、一対の端子Pa,Pbの固定部74a,74bを配置している。そのため、端子Pa,Pbが密封ケース体69の側方に突出することがなく、スイッチング部材SWaij,SWbijをコンパクトに形成することができる。また、各端子Pa,Pbに接触しにくくなり、短絡等の発生を防止することができる。 In the first embodiment, the fixing portions 74 a and 74 b of the pair of terminals Pa and Pb are disposed on the upper surface 71 a of the upper case 71 of the sealing case body 69. Therefore, it is possible that the terminal Pa, Pb protrudes to the side of the sealing case 69 without forming the switching member SWa ij, the SWb ij compact. Moreover, it becomes difficult to contact each terminal Pa and Pb, and generation | occurrence | production of a short circuit etc. can be prevented.

さらに、本実施例1では、密封ケース体69の上ケース71の上面71aに、ソレノイドSに接続する一対のリード線82,83の引出口76を設けた。そのため、各リード線82,83と固定部74a,74bとの絶縁距離を十分に確保することができ、リード線82,83はある程度の高電圧に耐えうることができる。   Furthermore, in the first embodiment, the outlet 76 of the pair of lead wires 82 and 83 connected to the solenoid S is provided on the upper surface 71a of the upper case 71 of the sealing case body 69. Therefore, a sufficient insulation distance between the lead wires 82 and 83 and the fixing portions 74a and 74b can be secured, and the lead wires 82 and 83 can withstand a certain level of high voltage.

そして、本実施例1では、密封ケース体69の上ケース71の上面71aに、一対の端子Pa,Pb間を区画する絶縁壁77と、この絶縁壁77に支持されると共に一対の端子Pa,Pbの上方を覆う絶縁屋根78とを設けている。そのため、一対の端子Pa,Pb間の絶縁性を確保すると共に、端子Pa,Pbへの接触をより効果的に防止することができる。   In the first embodiment, the upper surface 71a of the upper case 71 of the sealing case 69 has an insulating wall 77 that partitions the pair of terminals Pa and Pb, and is supported by the insulating wall 77 and a pair of terminals Pa, An insulating roof 78 covering the upper side of Pb is provided. Therefore, insulation between the pair of terminals Pa and Pb can be ensured and contact with the terminals Pa and Pb can be more effectively prevented.

さらに、本実施例1では、各第1のスイッチング部材SWaij,SWbijは、取付支持部73が互いに干渉しあわないように、各第1のスイッチング部材列SWa,SWbの並び方向、すなわち抵抗組立体R,S,Tの水平方向及び鉛直方向に対して、取付支持部73が傾いた状態で固定される。これにより、スイッチング部材SWaij,SWbijを近接した状態で配置可能となり、各抵抗本体57R,57S,57Tをコンパクトにすることができる。 Furthermore, in the first embodiment, the first switching members SWa ij and SWb ij are arranged in the direction in which the first switching member rows SWa i and SWb i are arranged so that the mounting support portions 73 do not interfere with each other. That is, the attachment support portion 73 is fixed in a tilted state with respect to the horizontal direction and the vertical direction of the resistance assemblies R i , S i , T i . As a result, the switching members SWa ij and SWb ij can be arranged close to each other, and the resistor bodies 57R, 57S, and 57T can be made compact.

[変形例]
以上説明した実施例1では、低電圧負荷試験用の低圧スイッチ93、高電圧負荷試験用の高圧スイッチ94、高電圧負荷試験用の高圧スイッチ95をオン操作したときに、プログラムに従って負荷検査を行うようにしたが、必ずしもこれに限定されるものではない。
[Modification]
In the first embodiment described above, when the low voltage switch 93 for the low voltage load test, the high voltage switch 94 for the high voltage load test, and the high voltage switch 95 for the high voltage load test are turned on, the load inspection is performed according to the program. Although it did, it is not necessarily limited to this.

例えば、図34に示したように、S1〜S8で示したスイッチング部材SWaijのコイル83b及びS9〜S16で示したスイッチング部材SWbijのコイル83bに対応させて、各段のスイッチング部材SWaij,SWbijのON・OFF操作用のスイッチSW1〜SW16を設け、スイッチSW1〜SW16によりS1〜S16で示したコイル83bへの通電制御をそれぞれさせるようにすることもできる。また、真空遮断器86もスイッチ98でON・OFF操作するようにすることもできる。 For example, as shown in FIG. 34, corresponding to the coil 83b of the switching member SWb ij indicated by the coils 83b and S9~S16 switching member SWa ij shown in S1 to S8, the switching member SWa ij of each stage, the switch SW1~SW16 for oN · OFF operation of the SWb ij provided, may be adapted to the respective control of energization of the coil 83b shown in S1~S16 by the switch SW1~SW16. The vacuum circuit breaker 86 can also be turned ON / OFF with the switch 98.

また、上記実施例1では、抵抗組立体R,S,Tの導電性接続片58a〜58a(m/2),58b〜58b(m/2)(抵抗素子rの端部に接続)の全てにスイッチング部材SWaij,SWbijを接続しているが、必ずしもこれに限定されるものではない。例えば、本実施例の場合、スイッチング部材は、Cb,Cb,Cb(m/2)+1(m=16故にCb)にのみ設けた構成とすることもできる。 Further, in the first embodiment, the resistor assemblies R i, S i, T i of the conductive connecting piece 58a 1 ~58a (m / 2) , 58b 1 ~58b (m / 2) ( the end of the resistive element r j The switching members SWa ij and SWb ij are connected to all of the connection parts), but are not necessarily limited to this. For example, in the case of the present embodiment, the switching member may be provided only in Cb 1 , Cb 5 , Cb (m / 2) +1 (m = 16, so Cb 9 ).

上述の実施例1では、低電圧負荷試験、3300Vの電圧負荷試験、6600の高電圧負荷試験をする前に、接続線89,90や導電板91,92等を用いて予め抵抗組立体R,S,Tの抵抗素子rのいくつかを手作業で接続(短絡)させる様にしたが、必ずしもこれに限定されるものではない。 In the first embodiment described above, the resistance assembly R i is used in advance using the connection wires 89 and 90, the conductive plates 91 and 92, and the like before the low voltage load test, the 3300V voltage load test, and the 6600 high voltage load test. , S i , T i of some of the resistance elements r j are connected (short-circuited) manually, but are not necessarily limited to this.

例えば、図35に示したように、接続線(短絡手段)99,99で直列に接続された3つの導電板(短絡手段)92を設け、各導電板92を抵抗本体57R,57S,57Tの組立体間導電部材Caに短絡手段である第2のスイッチング部材SWc[j=1,2,3・・・m/2]を介して接続すると共に、3つの導電板91を抵抗本体57R,57S,57Tの組立体間導電部材Cbに短絡手段である第2のスイッチング部材SWd[j=1,2,3・・・(m/2)+1]を介して接続する(詳細は図36参照)。 For example, as shown in FIG. 35, three conductive plates (short-circuit means) 92 connected in series with connection lines (short-circuit means) 99, 99 are provided, and each of the conductive plates 92 is connected to the resistor bodies 57R, 57S, 57T. The inter-assembly conductive member Ca j is connected via a second switching member SWc j [j = 1, 2, 3... M / 2] as a short-circuit means, and the three conductive plates 91 are connected to the resistor main body 57R. , 57S, 57T are connected to the inter-assembly conductive member Cb j via the second switching member SWd j [j = 1, 2, 3... (M / 2) +1] which is a short-circuit means (for details, see FIG. (See FIG. 36).

尚、短絡手段である第2のスイッチング部材SWc,SWdは、短絡手段である第1のスイッチング部材SWaij,SWdijと同じ構成(図16〜図23の構成)のマグネットスイッチを用いることができる。しかも、第1のスイッチング部材SWaij,SWdijの列は各抵抗組立体R,S,Tのごとに設けられて多段となる。しかし、第2のスイッチング部材SWc,SWdは、組立体間導電部材Caや組立体間導電部材Cbを短絡させることができればよいので、一列のみでよい。 The second switching members SWc j and SWd j that are short-circuit means use the same magnetic switch (configuration shown in FIGS. 16 to 23) as the first switching members SWa ij and SWd ij that are short-circuit means. Can do. In addition, the first switching members SWa ij and SWd ij are provided for each of the resistance assemblies R i , S i , and T i and have multiple stages. However, the second switching members SWc j and SWd j need only be arranged in one row because they can short-circuit the inter-assembly conductive member Ca j and the inter-assembly conductive member Cb j .

また、抵抗本体57R,57S,57Tの組立体間導電部材Cb,Cb,Cb同士を高電圧スイッチである真空遮断器(VCB)100で互いに導通(短絡)可能に接続し、抵抗本体57R,57S,57Tの組立体間導電部材Cb,Cb,Cb同士を高電圧スイッチである真空遮断器(VCB)101で互いに導通(短絡)可能に接続すると共に、抵抗本体57R,57S,57Tの組立体間導電部材Cb,Cb,CbとCb(m/2)+1,Cb(m/2)+1,Cb(m/2)+1(本実施例2ではm/2=8であるのでCb(m/2)+1=Cb)とを高電圧スイッチである真空遮断器(VCB)102で接続する。 Also, the inter-assembly conductive members Cb 1 , Cb 1 , Cb 1 of the resistor main bodies 57R, 57S, 57T are connected to each other by a vacuum circuit breaker (VCB) 100 that is a high voltage switch so that they can be electrically connected (short-circuited). The inter-assembly conductive members Cb 5 , Cb 5 , and Cb 5 of 57R, 57S, and 57T are connected to each other by a vacuum circuit breaker (VCB) 101 that is a high voltage switch so that they can be electrically connected (short-circuited), and the resistor bodies 57R and 57S , 57T inter-assembly conductive members Cb 1 , Cb 1 , Cb 1 and Cb (m / 2) +1 , Cb (m / 2) +1 , Cb (m / 2) +1 (in the second embodiment, m / 2 = Therefore, Cb (m / 2) + 1 = Cb 9 ) is connected by a vacuum circuit breaker (VCB) 102 which is a high voltage switch.

また、図37に示したように、第2のスイッチング部材SWcのコイル83bをS17〜S24とし、第2のスイッチング部材SWdのコイル83bをS25〜S33とすると、これらのソレノイドS17〜S33も通電制御回路84により作動制御されるようになる。尚、図24と同じ部分については、図24に付した符号を付してその説明は省略する。 Further, as shown in FIG. 37, the coil 83b of the second switching member SWc j and S17~S24, when the coil 83b of the second switching member SWd j and S25~S33, also these solenoids S17~S33 The operation is controlled by the energization control circuit 84. 24 that are the same as those in FIG. 24 are denoted by the same reference numerals as those in FIG. 24, and description thereof is omitted.

[低電圧負荷試験時]
この様な接続において、例えば400Vの低電圧負荷試験を行う場合には、まず、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。
[Low voltage load test]
In such a connection, when a low voltage load test of 400 V, for example, is performed, first, the three-phase AC generator 88 is activated, and the power switch 97 is turned on to activate the energization control circuit 84.

この後、低圧用スイッチ93をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86をONさせた後、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWaijのコイル83b(S1〜S8)の全てに通電させて、スイッチング部材SWaijをONさせると共に、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWcのコイル83b(S17〜S24)の全てに通電させて、スイッチング部材SWcの全てをONさせる。 Thereafter, the low pressure switch 93 is turned on. By this ON operation, the energization control circuit 84 first turns on the main vacuum circuit breaker 86 and then switches the switching members SWa ij of the resistance assemblies R i , S i , T i constituting the resistance bodies 57R, 57S, 57T. by energizing all of the coils 83 b (S1 to S8), along with turning oN the switching element SWa ij, resistor body 57R, 57S, resistor assemblies R i constituting the 57T, S i, of the switching member SWc j of T i by energizing all of the coil 83b (S17~S24), causes oN all the switching members SWc j.

これにより、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tの抵抗素子rは、導電性接続片58a〜58a(m/2),全てのスイッチング部材SWai1〜SWai(m/2),組立体間導電部材Ca〜Cam/2,スイッチング部材SWc〜SWcm/2及び導電板92を介して電圧が0となる中性点に互いに接続される。 Thereby, the resistance elements r j of the resistance assemblies R i , S i , T i constituting the resistance main bodies 57R, 57S, 57T are connected to the conductive connection pieces 58a 1 to 58a (m / 2) and all the switching members SWa. i1 ~SWa i (m / 2) , the assembly between the conductive members Ca 1 ~Ca m / 2, each other connected to the neutral point at which voltage becomes 0 through the switching member SWc 1 ~SWc m / 2 and the conductive plate 92 Is done.

しかも、これと共に電制御回路84は、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWbijのコイル83b(S9〜S16)の全てに通電させて、スイッチング部材SWbijの全てをONさせると共に、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWdのコイル83b(S25〜S33)の全てに通電させて、スイッチング部材SWdの全てをONさせる。 And this with electric control circuit 84, the resistor body 57R, 57S, resistor assemblies R i constituting the 57T, S i, by energizing all the T i of the switching member SWb ij coil 83 b (S9 to S16) , energizing all the switching members SWb ij causes turned oN, the resistor body 57R, 57S, resistor assemblies R i constituting the 57T, S i, for all coil 83b of the switching member SWd j of T i (S25~S33) Then, all the switching members SWd j are turned on.

これにより、三相交流発電機88のR,S,T相には、導電性接続片58b〜58b(m/2)−1,スイッチング部材列SWb〜SWb(m/2)の全てのスイッチング部材SWbij(SWbi1〜SWbi(m/2)),抵抗本体57R,57S,57Tの組立体間導電部材Cb〜Cb(m/2)+1,導電板91,配線85R,85S,85T及び真空遮断器86を介して抵抗組立体R,S,Tの抵抗素子rが接続されている。 As a result, the R, S, and T phases of the three-phase AC generator 88 include all of the conductive connection pieces 58b 1 to 58b (m / 2) -1 and the switching member rows SWb 1 to SWb (m / 2) . Switching member SWb ij (SWb i1 to SWb i (m / 2) ), inter-assembly conductive members Cb 1 to Cb (m / 2) +1 of the resistor bodies 57R, 57S, 57T, conductive plate 91, wirings 85R, 85S, The resistance elements r j of the resistance assemblies R i , S i , T i are connected via the 85T and the vacuum circuit breaker 86.

この状態では、図27に示したように、抵抗組立体R,S,Tの16本の抵抗素子rは全て並列に接続した状態となる。しかも、三相交流発電機88のR,S,T相には、全ての抵抗素子rを並列に接続して負荷抵抗値を小さくした抵抗組立体R,S,T(即ち低抵抗値の抵抗本体57R,57S,57T)が接続されることになる。これにより、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗素子rに入力され、負荷試験が開始される。これにより、抵抗組立体R,S,Tの抵抗素子rに通電されて、抵抗素子rが発熱する。 In this state, as shown in FIG. 27, the 16 resistance elements r j of the resistance assemblies R i , S i , T i are all connected in parallel. In addition, the R, S, and T phases of the three-phase AC generator 88 include resistance assemblies R i , S i , T i (ie, low resistances) in which all resistance elements r j are connected in parallel to reduce the load resistance value. Resistance main bodies 57R, 57S, and 57T having resistance values are connected. As a result, the output (voltage, current) from the three-phase AC generator 88 is input to the resistance elements r j of the resistance assemblies R i , S i , T i , and the load test is started. As a result, the resistance element r j of the resistance assembly R i , S i , T i is energized, and the resistance element r j generates heat.

この際、通電制御回路84は、抵抗ユニット42,43,44の各電動ファン50を作動させて、各電動ファン50からの冷却風を抵抗ユニット42,43,44のハウジング52に送風する。そして、この冷却風は、抵抗ユニット42,43,44の抵抗素子rで発生した熱を放熱フィン60の周囲を流れる際に吸収して、抵抗素子rを冷却した後、荷室33を形成するボックス32の図示しない排気口から外部に排気される。 At this time, the energization control circuit 84 operates the electric fans 50 of the resistance units 42, 43, 44 and blows cooling air from the electric fans 50 to the housing 52 of the resistance units 42, 43, 44. Then, the cooling air absorbs the heat generated in the resistive element r j of resistor units 42, 43 and 44 as they flow around the heat radiation fins 60, after the resistive element r j is cooled, the luggage compartment 33 The air is exhausted from an exhaust port (not shown) of the box 32 to be formed.

尚、この場合でも、各段のスイッチング部材SWaij,SWbijのON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Incidentally, even in this case, the switching member SWa ij of each stage, by the ON · OFF control of SWb ij, resistor body 57R, 57S, load resistance value applied to three phase AC generator 88 from 57T for every predetermined time For example, the load test is performed with 25%, 50%, 75%, and 100%. In this embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 may be set more finely. it can. For example, a load test can be performed every 5% or 10%.

[3300Vの高電圧負荷試験時]
例えば3300Vの高電圧負荷試験を行う場合には、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。この後、高圧用スイッチ94をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86,真空遮断器101をONさせた後、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWbijのコイル83b(S5)に通電して、スイッチング部材SWbi5をONさせる。これにより、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tの抵抗素子rは、導電性接続片58b,スイッチング部材SWbi5,組立体間導電部材Cb及び真空遮断器101を介して電圧が0となる中性点に互いに接続される。
[At 3300V high voltage load test]
For example, when a high voltage load test of 3300 V is performed, the three-phase AC generator 88 is operated, while the power switch 97 is turned on to operate the energization control circuit 84. Thereafter, the high voltage switch 94 is turned on. With this ON operation, the energization control circuit 84 first turns on the main vacuum circuit breaker 86 and the vacuum circuit breaker 101, and then the resistance assemblies R i , S i , T i constituting the resistance bodies 57R, 57S, 57T. by energizing the switching member SWb ij coil 83b (S5), causing oN the switching element SWb i5. As a result, the resistance elements r j of the resistance assemblies R i , S i , T i constituting the resistance bodies 57R, 57S, 57T include the conductive connection pieces 58b 5 , the switching members SWb i5 , and the inter-assembly conductive members Cb 5. And a neutral point where the voltage is 0 through the vacuum circuit breaker 101.

即ち、この状態では、図30に示したように、各抵抗組立体R,S,Tの各16本の抵抗素子rは半分の8本の抵抗素子rが並列に接続された値の抵抗体8r,8rを2つ並列に接続して、並列な抵抗体8r,8rの一端側が導電性接続片58b,スイッチング部材SWbi5,組立体間導電部材Cb及び真空遮断器101を介して電圧が0となる中性点に互いに接続される。 That is, in this state, as shown in FIG. 30, each of the sixteen resistance elements r j of each resistance assembly R i , S i , T i is connected in parallel to the half of the eight resistance elements r j. Are connected in parallel, and one end of the parallel resistors 8r, 8r is connected to the conductive connection piece 58b 5 , the switching member SWb i5 , the inter-assembly conductive member Cb 5 and the vacuum circuit breaker. The neutral points at which the voltage is 0 are connected to each other via 101.

しかも、これと共に電制御回路84は、真空遮断器102をONさせると共に、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWbijのコイル83b(S9)に通電して、各抵抗組立体R,S,Tのスイッチング部材SWbi1をONさせる。 And this with electric control circuit 84, together with the turning ON of the vacuum circuit breaker 102, the resistor body 57R, 57S, resistor assemblies R i constituting the 57T, S i, T i of the switching member SWb ij coil 83 b (S9 ) To turn on the switching member SWb i1 of each resistance assembly R i , S i , T i .

これにより、三相交流発電機88のR,S,T相には、導電性接続片58b〜58b(m/2),スイッチング部材列SWb〜SWbのスイッチング部材SWbi1,抵抗本体57R,57S,57Tの組立体間導電部材Cb,Cb(m/2)+1(=Cb),真空遮断器102,導電板91,配線85R,85S,85T及び真空遮断器86を介して抵抗組立体R,S,Tの抵抗素子rが接続される。 Accordingly, the R, S, and T phases of the three-phase AC generator 88 include the conductive connection pieces 58b 1 to 58b (m / 2) , the switching member SWb i1 of the switching member row SWb 1 to SWb n , and the resistance body 57R. , 57S, 57T, the inter-assembly conductive members Cb 1 , Cb (m / 2) +1 (= Cb 9 ), the vacuum circuit breaker 102, the conductive plate 91, the wires 85R, 85S, 85T, and the resistance through the vacuum circuit breaker 86. The resistance elements r j of the assemblies R i , S i , T i are connected.

これにより、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗体8r,8rに入力され、負荷試験が開始される。これにより、抵抗体8r,8rを構成する各抵抗素子rに通電されて、抵抗素子rが発熱する。 As a result, the output (voltage, current) from the three-phase AC generator 88 is input to the resistors 8r, 8r of the resistor assemblies R i , S i , T i , and the load test is started. As a result, each resistance element r j constituting the resistors 8r, 8r is energized, and the resistance element r j generates heat.

尚、この場合でも、各段のスイッチング部材SWaij,SWbijのON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Incidentally, even in this case, the switching member SWa ij of each stage, by the ON · OFF control of SWb ij, resistor body 57R, 57S, load resistance value applied to three phase AC generator 88 from 57T for every predetermined time For example, the load test is performed with 25%, 50%, 75%, and 100%. In this embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 may be set more finely. it can. For example, a load test can be performed every 5% or 10%.

[6600Vの高電圧負荷試験時]
例えば6600Vの高電圧負荷試験を行う場合には、三相交流発電機88を作動させる一方、電源スイッチ97をONさせて通電制御回路84を作動させる。この後、高圧用スイッチ95をONさせる。このON操作により通電制御回路84は、まずメインの真空遮断器86,真空遮断器100をONさせた後、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tのスイッチング部材SWbijのコイル83b(S1)に通電して、スイッチング部材SWbi1をONさせる。
[6600V high voltage load test]
For example, when a high voltage load test of 6600 V is performed, the three-phase AC generator 88 is activated, while the power switch 97 is turned on to activate the energization control circuit 84. Thereafter, the high voltage switch 95 is turned on. With this ON operation, the energization control circuit 84 first turns on the main vacuum circuit breaker 86 and the vacuum circuit breaker 100, and then the resistance assemblies R i , S i , T i constituting the resistance bodies 57R, 57S, 57T. by energizing the switching member SWb ij coil 83b (S1), causing oN the switching element SWb i1.

これにより、抵抗本体57R,57S,57Tを構成する抵抗組立体R,S,Tの抵抗素子rは、導電性接続片58b,スイッチング部材SWbi1,組立体間導電部材Cb及び真空遮断器100を介して電圧が0となる中性点に互いに接続される。 As a result, the resistance elements r j of the resistance assemblies R i , S i , T i constituting the resistance bodies 57R, 57S, 57T include the conductive connection pieces 58b 1 , the switching members SWb i1 , and the inter-assembly conductive members Cb 1. And the neutral point where the voltage is zero through the vacuum circuit breaker 100.

また、三相交流発電機88のR,S,T相には、抵抗本体57R,57S,57Tの各組立体間導電部材Cb(m/2)+1が配線90,90,90、配線85R,85S,85T及び真空遮断器86を介して接続されている。 Further, in the R, S, and T phases of the three-phase AC generator 88, the inter-assembly conductive members Cb (m / 2) +1 of the resistance main bodies 57R, 57S, and 57T are connected to the wirings 90, 90, 90, the wiring 85R, 85S, 85T and the vacuum circuit breaker 86 are connected.

この状態では、図33に示したように、各抵抗組立体R,S,Tは、16本の抵抗素子rの全ての抵抗素子rが直列に接続されて、抵抗値が高抵抗となった状態となる。従って、三相交流発電機88のR,S,T相には、全ての抵抗素子rを直列に接続した高抵抗値の抵抗組立体R,S,T(即ち高抵抗値の抵抗本体57R,57S,57T)が接続されることになる。 In this state, as shown in FIG. 33, each resistance assembly R i , S i , T i has all the resistance elements r j of the 16 resistance elements r j connected in series, and has a resistance value of It becomes the state where it became high resistance. Accordingly, the R, S, and T phases of the three-phase AC generator 88 have a high resistance value assembly R i , S i , T i (ie, a high resistance value) in which all the resistance elements r j are connected in series. Resistor bodies 57R, 57S, 57T) are connected.

この様な通電制御回路84による制御動作により、三相交流発電機88からの出力(電圧,電流)がこの抵抗組立体R,S,Tの抵抗素子rに通電されて、抵抗素子rが発熱する。 By such a control operation by the energization control circuit 84, the output (voltage, current) from the three-phase AC generator 88 is energized to the resistance element r j of the resistance assembly R i , S i , T i , and the resistance element r 1 generates heat.

この際、通電制御回路84は、抵抗ユニット42,43,44の各電動ファン50を作動させて、各電動ファン50からの冷却風を抵抗ユニット42,43,44のハウジング52に送風する。そして、この冷却風は、抵抗ユニット42,43,44の抵抗素子rで発生した熱を放熱フィン60の周囲を流れる際に吸収して、抵抗素子rを冷却した後、荷室33を形成するボックス32の図示しない排気口から外部に排気される。 At this time, the energization control circuit 84 operates the electric fans 50 of the resistance units 42, 43, 44 and blows cooling air from the electric fans 50 to the housing 52 of the resistance units 42, 43, 44. Then, the cooling air absorbs the heat generated in the resistive element r j of resistor units 42, 43 and 44 as they flow around the heat radiation fins 60, after the resistive element r j is cooled, the luggage compartment 33 The air is exhausted from an exhaust port (not shown) of the box 32 to be formed.

尚、この場合でも、各段のスイッチング部材SWaij,SWbijのON・OFF制御をすることで、抵抗本体57R,57S,57Tから三相交流発電機88にかける負荷抵抗値を所定時間毎に例えば25%,50%,75%,100%と変化させて、負荷試験を行う。また、本実施例では、扁平状の抵抗組立体R,S,Tが22段設けられているので、三相交流発電機88にかける負荷抵抗値の割合を更に細かく設定することもできる。例えば、5%、10%ごとの負荷試験を行うこともできる。 Incidentally, even in this case, the switching member SWa ij of each stage, by the ON · OFF control of SWb ij, resistor body 57R, 57S, load resistance value applied to three phase AC generator 88 from 57T for every predetermined time For example, the load test is performed with 25%, 50%, 75%, and 100%. In this embodiment, since the flat resistance assemblies R i , S i , and T i are provided in 22 stages, the ratio of the load resistance value applied to the three-phase AC generator 88 may be set more finely. it can. For example, a load test can be performed every 5% or 10%.

尚、この様な負荷試験は、低電圧負荷試験用の低圧スイッチ93、高電圧負荷試験用の高圧スイッチ94、高電圧負荷試験用の高圧スイッチ95をオン操作したときに、負荷試験のためのプログラムに従って自動的に通電制御回路84により行われるようになっている。このプログラムは、通電制御回路84の図示しないROM等の記憶手段に予め記憶させておくこともできるし、ハードディスク等の記録媒体に記録させておいて、負荷検査開始時に通電制御回路84の図示しないCPUに読み込ませて用いることもできる。   Such a load test is performed when the low voltage switch 93 for low voltage load test, the high voltage switch 94 for high voltage load test, and the high voltage switch 95 for high voltage load test are turned on. This is automatically performed by the energization control circuit 84 according to the program. This program can be stored in advance in a storage means such as a ROM (not shown) of the energization control circuit 84, or is recorded in a recording medium such as a hard disk, and the energization control circuit 84 is not shown at the start of the load inspection. It can also be read and used by the CPU.

この様に、通電制御回路84は、低圧用スイッチ93,高圧用スイッチ94,高圧用スイッチ95をオン操作するのみで、抵抗本体57R,57S,57Tの抵抗組立体R,S,Tの抵抗値を自動的に設定して、負荷試験を自動的に行う。これにより、複雑なスイッチの切換を簡易且つ迅速に最適に(正確に)行うことができる。また、本実施例2によれば、各抵抗本体57R,57S,57Tを構成する多数段(実施例1では22段)の抵抗組立体R,S,T毎に真空遮断器を設ける必要がなく、真空遮断器は100,101,102で示した3つが増えたのみであるので、自動化しても装置が大型化することなく、コストも殆ど増加することはない。 In this way, the energization control circuit 84 simply turns on the low voltage switch 93, the high voltage switch 94, and the high voltage switch 95, and the resistance assemblies R i , S i , T i of the resistance main bodies 57R, 57S, 57T. The resistance value is automatically set and the load test is automatically performed. As a result, it is possible to easily and quickly perform optimal (accurate) switching of complicated switches. Further, according to the second embodiment, a vacuum circuit breaker is provided for each of the multiple stages (22 stages in the first embodiment) of the resistance assemblies R i , S i , T i constituting the resistor main bodies 57R, 57S, 57T. There is no need, and only three vacuum circuit breakers indicated by 100, 101 and 102 have been added. Therefore, even if automated, the apparatus does not increase in size and the cost is hardly increased.

[変形例1]
本実施例2でも、低電圧負荷試験用の低圧スイッチ93、高電圧負荷試験用の高圧スイッチ94、高電圧負荷試験用の高圧スイッチ95をオン操作したときに、プログラムに従って負荷検査を行うようにしたが、必ずしもこれに限定されるものではない。
[Modification 1]
Also in the second embodiment, when the low voltage switch 93 for the low voltage load test, the high voltage switch 94 for the high voltage load test, and the high voltage switch 95 for the high voltage load test are turned on, the load inspection is performed according to the program. However, it is not necessarily limited to this.

例えば、図38に示したように、S1〜S8で示したスイッチング部材SWaijのコイル83b及びS9〜S16で示したスイッチング部材SWbijのコイル83bに対応させて、各段のスイッチング部材SWaij,SWbijのON・OFF操作用のスイッチSW1〜SW16を設け、スイッチSW1〜SW16によりS1〜S16で示したコイル83bへの通電制御それぞれさせるようにすることもできる。また、真空遮断器86,100,101,102もスイッチ98,98a,98b,98cでON・OFF操作するようにすることもできる。 For example, as shown in FIG. 38, corresponding to the coil 83b of the switching member SWb ij indicated by the coils 83b and S9~S16 switching member SWa ij shown in S1 to S8, the switching member SWa ij of each stage, the switch SW1~SW16 for oN · OFF operation of the SWb ij provided, may be adapted to the respective current control to the coil 83b shown in S1~S16 by the switch SW1~SW16. The vacuum circuit breakers 86, 100, 101, 102 can also be turned on and off with the switches 98, 98a, 98b, 98c.

[変形例2]
また、真空遮断器102は必ずしも必要ではない。即ち、高圧用スイッチ94をオン操作したとき、通電制御回路84がスイッチング部材SWd及びSWd(m/2)+1(=SWd)をオン操作すれば、真空遮断器102を省略しできる。この場合には、自動化しても真空遮断器を上述した実施例より1つ削減できるので、よりコストを低減できると共に小型化が図れる。
[Modification 2]
Further, the vacuum circuit breaker 102 is not always necessary. That is, when the high-voltage switch 94 is turned on, the vacuum circuit breaker 102 can be omitted if the energization control circuit 84 turns on the switching members SWd 1 and SWd (m / 2) +1 (= SWd 9 ). In this case, even if it is automated, the vacuum circuit breaker can be reduced by one from the embodiment described above, so that the cost can be further reduced and the size can be reduced.

以上説明した実施例1及び実施例2では、三相交流発電機に用いるタイプの乾式負荷試験装置の例を示したが、必ずしも本発明はこれに限定されるものではない。例えば、抵抗本体57R,57S,57Tの抵抗組立体R,S,Tの一つのみを単体で用いて、発電機やバッテリー等の被試験用電源の電気負荷試験を行うようにしても良い。 In Example 1 and Example 2 demonstrated above, the example of the dry-type load test apparatus of the type used for a three-phase alternating current generator was shown, However, This invention is not necessarily limited to this. For example, by using only one of the resistance assemblies R i , S i , T i of the resistor main bodies 57R, 57S, 57T alone, an electric load test of a power source to be tested such as a generator or a battery is performed. Also good.

以上説明した実施例1及び実施例2では、別々に設けた抵抗ユニット42,43,44を並設して、各抵抗ユニット42,43,44に抵抗本体57R,57S,57Tの抵抗組立体R,S,Tをそれぞれ設けた構成としているが、必ずしもこれに限定されるものではない。 In the first embodiment and the second embodiment described above, the resistance units 42, 43, 44 provided separately are arranged in parallel, and the resistance assemblies R of the resistance main bodies 57R, 57S, 57T are provided in the respective resistance units 42, 43, 44. Although i , S i , and T i are provided, the configuration is not necessarily limited thereto.

例えば、被試験用電源の電圧が高電圧でも比較的小さい場合には、抵抗組立体R,S,Tの段数を少なくして、例えば2〜3段にすると共に、図39,40に示したように別々に設けた抵抗ユニット42,43,44を上下に組み付けて、一つの乾式負荷試験装置300としてもよい。尚、図39,40では図示の便宜上抵抗組立体R,S,Tの段数を1段にしたが、実際には2〜3段となる。 For example, when the voltage of the power supply under test is relatively small even at a high voltage, the number of stages of the resistance assemblies R i , S i , T i is reduced to, for example, 2 to 3 stages, and FIGS. As shown in (1), the resistance units 42, 43, and 44 provided separately may be assembled vertically to form one dry load test apparatus 300. In FIGS. 39 and 40, the number of stages of the resistance assemblies R i , S i , and T i is one for convenience of illustration, but actually, the number is two to three.

この場合、抵抗ユニット42,43,44は金属製の箱状のフレーム301、301,301をそれぞれ有するので、抵抗ユニット42,43,44間に絶縁部材302を配設する必要があると共に、フレーム301と抵抗組立体R,S,Tとの間にある程度の絶縁距離を取る必要がある。このため、抵抗本体57R,57S,57T間の間隔が大きくなって、乾式負荷試験装置300の高さが高くなる傾向にあり、望ましくない。 In this case, since the resistance units 42, 43, and 44 have metal box-shaped frames 301, 301, and 301, respectively, it is necessary to dispose the insulating member 302 between the resistance units 42, 43, and 44. It is necessary to provide a certain insulation distance between 301 and the resistance assemblies R i , S i , T i . For this reason, the space | interval between resistance main bodies 57R, 57S, and 57T becomes large, and there exists a tendency for the height of the dry-type load test apparatus 300 to become high, and is not desirable.

そこで、図41A,図42,図43に示したように、抵抗本体57R,57S,57Tの抵抗組立体R,S,Tのみを組み込んだ乾式負荷試験装置400としても良い。この乾式負荷試験装置400は、側方の4面と上下の2面が開口する直方体状(箱状)の金属製(例えば、鉄製)のフレーム401と、フレーム401の側方への開口を閉成する絶縁板402〜405を有する。そして、上下に配設した抵抗本体57R,57S,57Tの抵抗組立体R,S,Tは、絶縁板402,404間に渡架固定されている。 Therefore, as shown in FIG. 41A, FIG. 42, and FIG. 43, a dry load test apparatus 400 incorporating only the resistance assemblies R i , S i , T i of the resistance main bodies 57R, 57S, 57T may be used. The dry load test apparatus 400 has a rectangular parallelepiped (box-like) metal (for example, iron) frame 401 having four lateral sides and two upper and lower surfaces open, and the lateral opening of the frame 401 is closed. Insulating plates 402 to 405 are formed. The resistance assemblies R i , S i , T i of the resistor main bodies 57R, 57S, 57T arranged above and below are fixed between the insulating plates 402, 404.

この場合には、フレーム401は一つであるので、抵抗本体57R,57S,57T間の間隔を図39,40のものより小さくできる。この結果、乾式負荷試験装置400は、乾式負荷試験装置300よりも高さを遙かに小さくできる。尚、この例の場合も、図示の便宜上抵抗組立体R,S,Tの段数を1段にしたが、実際には2〜3段となる。 In this case, since there is one frame 401, the distance between the resistor bodies 57R, 57S, and 57T can be made smaller than that of FIGS. As a result, the dry load test apparatus 400 can be much smaller in height than the dry load test apparatus 300. In the case of this example as well, the number of stages of the resistance assemblies R i , S i , T i is set to one for convenience of illustration, but actually, the number of stages is two to three.

更に、絶縁板403,405をフレーム401の側面から取り外して、フレーム401の絶縁板402,404間に位置する2つの対向する側面を開口させ、この開口の一方に図41Bの如く電動ファン50を取り付けると共に、フレーム401の上下の開口を閉成した構成としても良い。この場合には、電動ファン50からの冷却風が、矢印401aで示したようにフレーム401の側面の開口からフレーム401内に流入して、内部の抵抗素子を冷却した後、他の側面の開口から排気される。この構成とすることで、乾式負荷試験装置400の高さを更に小さくできるので、乾式負荷試験装置400を小型のトラックに組み込むこともできる。また、設置場所によっては、高さが取れないような場所にも容易に設置できる。尚、電動ファン50はフレーム41に取り付けられ、電動ファン50から発生する冷却風は絶縁フード53を介して矢印401aで示したようにフレーム401の側面の開口からフレーム401内に流入する。   Further, the insulating plates 403 and 405 are removed from the side surface of the frame 401, two opposing side surfaces located between the insulating plates 402 and 404 of the frame 401 are opened, and the electric fan 50 is installed in one of the openings as shown in FIG. 41B. It is good also as a structure which closed the upper and lower openings of the flame | frame 401 while attaching. In this case, the cooling air from the electric fan 50 flows into the frame 401 from the opening on the side surface of the frame 401 as indicated by the arrow 401a, cools the internal resistance element, and then opens on the other side surface. Exhausted from. With this configuration, the height of the dry load test apparatus 400 can be further reduced, so that the dry load test apparatus 400 can be incorporated into a small truck. Also, depending on the installation location, it can be easily installed in a place where the height cannot be taken. The electric fan 50 is attached to the frame 41, and the cooling air generated from the electric fan 50 flows into the frame 401 through the insulating hood 53 through the opening on the side surface of the frame 401 as indicated by the arrow 401a.

[変形例]
また、上述した実施例1〜3では、R相の抵抗ユニット42,S相の抵抗ユニット43,T相の抵抗ユニット44を1つずつ設けた例を示したが、必ずしもこれに限定されるものではない。例えば、図31〜33に示したように抵抗ユニット42,43,44の抵抗素子rを6600Vのための直列接続にすると共に、この直列接続の抵抗ユニット42,43,44を図44Aに示した様に2組設けて、2組の各抵抗ユニット42,42、2組の各抵抗ユニット43,43、2組の各抵抗ユニット44,44を図44Bに示したように各々直列に接続した構成とする事により、13200Vの負荷試験を行うようにすることができる。尚、この接続例は一例で、抵抗ユニット42,43,44の数を増やすことで、負荷試験が可能な電圧を高くすることができる。
[Modification]
In the first to third embodiments, the R-phase resistance unit 42, the S-phase resistance unit 43, and the T-phase resistance unit 44 are provided one by one. However, the present invention is not limited to this. is not. For example, the resistive element r i of the resistor units 42, 43 and 44 as shown in FIG. 31-33 as well as in series connection for 6600 V, shows a resistor units 42, 43 and 44 of the series connection in Figure 44A As shown in FIG. 44B, two sets of resistance units 42 and 42, two sets of resistance units 43 and 43, and two sets of resistance units 44 and 44 are connected in series, respectively. By configuring, a load test of 13200V can be performed. In addition, this connection example is an example and the voltage which can perform a load test can be made high by increasing the number of resistance units 42,43,44.

また、上述の実施例1では、抵抗ユニット42,43,44が設けられた乾式負荷試験装置40をトラック30に搭載しておいて、この乾式負荷試験装置40をトラック30により電気負荷試験を行う現場まで搬送した後、乾式負荷試験装置40をトラック30に搭載した状態で電気負荷試験を行うようにしたが、必ずしもこれに限定されるものではない。   In the first embodiment, the dry load test apparatus 40 provided with the resistance units 42, 43, and 44 is mounted on the truck 30, and the electric load test is performed on the dry load test apparatus 40 using the truck 30. Although the electrical load test is performed with the dry load test apparatus 40 mounted on the truck 30 after being transported to the site, the present invention is not necessarily limited thereto.

例えば、図45に示したように、R相,S相,T相に対応する抵抗ユニット42,43,44をトラック30の荷台に着脱可能に積載しておく。そして、抵抗ユニット42,43,44を、トラック30により電気負荷試験を行う現場まで搬送して、この現場でトラック30から取り外してトラック30から降ろす。この後、抵抗ユニット42,43,44を、実施例1のような構成で現場に設置して、現場の発電機等の電源の電気負荷試験を開始する。   For example, as shown in FIG. 45, resistance units 42, 43, and 44 corresponding to the R phase, S phase, and T phase are detachably loaded on the loading platform of the truck 30. Then, the resistance units 42, 43, and 44 are transported to the site where the electric load test is performed by the truck 30, removed from the truck 30 at this site, and lowered from the truck 30. Thereafter, the resistance units 42, 43, and 44 are installed at the site in the configuration as in the first embodiment, and an electric load test of a power source such as a generator at the site is started.

従って、トラック30は、電気負荷試験中、現場においておく必要がないので、他の抵抗ユニット42,43,44を他の現場に運搬したり、他の現場の抵抗ユニット42,43,44を回収したりするのに用いることができる。この結果、トラック30を有効且つ効果的に使用することができる。   Accordingly, since the truck 30 does not need to be left on site during the electrical load test, the other resistance units 42, 43, 44 are transported to another site or the other resistance units 42, 43, 44 are recovered. Can be used. As a result, the track 30 can be used effectively and effectively.

この発明に係る乾式負荷試験装置を搭載したトラックの平面図である。1 is a plan view of a truck on which a dry load test apparatus according to the present invention is mounted. 図1Aの側面図である。It is a side view of FIG. 1A. 図1A、図1Bに示したボックスを破断して内部の乾式負荷試験装置を概略的に示した概略平面図である。It is the schematic plan view which fractured | ruptured the box shown to FIG. 1A and FIG. 1B, and showed the dry-type load test apparatus inside. 図2の乾式負荷試験装置を矢印A方向から見た概略側面図である。It is the schematic side view which looked at the dry-type load test apparatus of FIG. 2 from the arrow A direction. 図2の乾式負荷試験装置を矢印B方向から見た概略側面図である。It is the schematic side view which looked at the dry-type load test apparatus of FIG. 2 from the arrow B direction. 図1A〜図4の乾式負荷試験装置と被試験用電源との一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the dry-type load test apparatus of FIG. 1A-FIG. 4, and the power supply for test. 図3の一部を拡大して斜めから見た部分斜視図である。It is the fragmentary perspective view which expanded a part of FIG. 3 and was seen from the diagonal. 図3,図4の電動ファンの一部を破断して示した抵抗ユニットの側面図である。FIG. 5 is a side view of the resistance unit shown with a part of the electric fan of FIGS. 3 and 4 cut away. 図7Aの絶縁板の説明図である。It is explanatory drawing of the insulating board of FIG. 7A. 図7Aの抵抗ユニットとスイッチング部材との関係を示す拡大断面図である。It is an expanded sectional view showing the relation between the resistance unit of Drawing 7A, and a switching member. 図1〜図8の乾式負荷試験装置の回路図である。It is a circuit diagram of the dry-type load test apparatus of FIGS. 図9の部分拡大説明図である。FIG. 10 is a partially enlarged explanatory view of FIG. 9. 図8に示した抵抗素子の一部を破断すると共に詳細に図示した説明図である。FIG. 9 is an explanatory diagram illustrating a part of the resistance element illustrated in FIG. 8 in detail while being broken. 図11Aの抵抗素子の端部拡大構造を示す説明図である。It is explanatory drawing which shows the edge part enlarged structure of the resistive element of FIG. 11A. 図11Aの抵抗素子の端部保持構造の他の例を示す説明図である。It is explanatory drawing which shows the other example of the edge part holding structure of the resistive element of FIG. 11A. 図2の矢印A方向から見たスイッチング部材と組立体間導電部材との配置関係を示す説明図である。It is explanatory drawing which shows the arrangement | positioning relationship of the switching member seen from the arrow A direction of FIG. 図2の矢印B方向から見たスイッチング部材と組立体間導電部材との配置関係を示す説明図である。It is explanatory drawing which shows the arrangement | positioning relationship between the switching member seen from the arrow B direction of FIG. 図9の抵抗組立体とその抵抗組立体の抵抗素子を短絡する部材との関係を示す説明図である。It is explanatory drawing which shows the relationship between the resistance assembly of FIG. 9, and the member which short-circuits the resistance element of the resistance assembly. 図14の抵抗組立体とスイッチング部材との関係を示す部分拡大説明図である。FIG. 15 is a partially enlarged explanatory view showing a relationship between the resistance assembly of FIG. 14 and a switching member. 図15に示したスイッチング部材の外観を示す斜視図である。It is a perspective view which shows the external appearance of the switching member shown in FIG. 図16のスイッチング部材の正面図である。It is a front view of the switching member of FIG. 図16のスイッチング部材の側面図である。It is a side view of the switching member of FIG. 図16のスイッチング部材の平面図である。It is a top view of the switching member of FIG. 図16のスイッチング部材の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the switching member of FIG. 図20に示す内部構造を側方から見たときの縦断面図である。It is a longitudinal cross-sectional view when the internal structure shown in FIG. 20 is seen from the side. 図22のスイッチング部材の作動説明図である。It is action | operation explanatory drawing of the switching member of FIG. 図16に示したスイッチング部材の作動制御のための概略回路図である。FIG. 17 is a schematic circuit diagram for controlling the operation of the switching member shown in FIG. 16. 図15に示したスイッチング部材の制御回路図である。It is a control circuit diagram of the switching member shown in FIG. 図14に示した抵抗組立体の抵抗素子の接続例を示す概略説明図である。It is a schematic explanatory drawing which shows the example of a connection of the resistance element of the resistance assembly shown in FIG. 図25の部分拡大説明図である。FIG. 26 is a partially enlarged explanatory view of FIG. 25. 図25の接続による抵抗組立体の抵抗値説明図である。It is resistance value explanatory drawing of the resistance assembly by the connection of FIG. 図14に示した抵抗組立体の抵抗素子の他の接続例を示す概略説明図である。It is a schematic explanatory drawing which shows the other example of a connection of the resistance element of the resistance assembly shown in FIG. 図28の部分拡大説明図である。FIG. 29 is a partially enlarged explanatory view of FIG. 28. 図28の接続による抵抗組立体の抵抗値説明図である。It is resistance value explanatory drawing of the resistance assembly by the connection of FIG. 図14に示した抵抗組立体の抵抗素子の更に他の接続例を示す概略説明図である。FIG. 15 is a schematic explanatory diagram illustrating still another connection example of the resistance element of the resistance assembly illustrated in FIG. 14. 図31の部分拡大説明図である。FIG. 32 is a partially enlarged explanatory view of FIG. 31. 図31の接続による抵抗組立体の抵抗値説明図である。It is resistance value explanatory drawing of the resistance assembly by the connection of FIG. 図15に示したスイッチング部材の制御回路の他の例を示す説明図である。It is explanatory drawing which shows the other example of the control circuit of the switching member shown in FIG. この発明の実施例2にかかる乾式負荷試験装置の概略回路図である。It is a schematic circuit diagram of the dry-type load test apparatus concerning Example 2 of this invention. 図35の部分拡大説明図である。FIG. 36 is a partially enlarged explanatory view of FIG. 35. 図35のスイッチング部材の制御回路図である。It is a control circuit diagram of the switching member of FIG. 図35のスイッチング部材の制御回路図の他の例を示す説明図である。It is explanatory drawing which shows the other example of the control circuit diagram of the switching member of FIG. 他の乾式負荷試験装置の説明図である。It is explanatory drawing of another dry-type load test apparatus. 図39の右側面図である。FIG. 40 is a right side view of FIG. 39. 実施例4にかかる乾式負荷試験装置の一部を破断して示した側面図である。It is the side view which fractured | ruptured and showed a part of dry-type load testing apparatus concerning Example 4. FIG. 一部を破断して示した図41Aの変形例を示す側面図である。FIG. 41B is a side view showing a modification of FIG. 41A partially broken away. 図41Aの乾式負荷試験装置の右側面図である。FIG. 41B is a right side view of the dry load test apparatus of FIG. 41A. 図42の平面図である。FIG. 43 is a plan view of FIG. 42. この発明の抵抗ユニットの接続例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of a connection of the resistance unit of this invention. 図44Aの抵抗ユニットの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of the resistance unit of FIG. 44A. この発明にかかる乾式負荷試験装置を搭載したトラックの他の例を示す平面図である。It is a top view which shows the other example of the truck carrying the dry-type load test apparatus concerning this invention.

符号の説明Explanation of symbols

40 乾式負荷試験装置
抵抗素子
57R 抵抗本体
SWaij,SWbij スイッチング部材
Pa,Pb 端子
75a,75b 固定接点(接点部)
M 可動接点
S 駆動手段(ソレノイド)
G 不活性ガス
69 密封ケース体
Ca,Cb 組立体間導電部材
86 高電圧用スイッチ(真空遮断器)
88 被試験用電源(三相交流発電機)
40 dry load test apparatus r i resistive elements 57R resistor body SWa ij, SWb ij switching member Pa, Pb terminals 75a, 75b fixed contact (contact portion)
M movable contact S drive means (solenoid)
G Inert gas 69 Sealed case body Ca j , Cb j Conductive member between assemblies 86 High voltage switch (vacuum circuit breaker)
88 Power supply for test (three-phase AC generator)

Claims (5)

複数の細長い抵抗素子を水平方向に間隔をあけて並設し且つ直列に接続してなる複数の抵抗組立体と、該複数の抵抗組立体を垂直方向に間隔をあけて並設し、上下方向に並んだ複数の前記抵抗素子からなる複数の抵抗素子列とを有する高電圧負荷試験用の抵抗本体と、
前記複数の抵抗素子列の各抵抗素子の一端部に一方の端子が接続した複数のスイッチング部材からなる複数のスイッチング部材列と、
前記複数のスイッチング部材列の各スイッチング部材の他方の端子が接続した複数の組立体間導電部材と、
前記複数の組立体間導電部材のいくつかを被試験用電源に接続する一つの高電圧用スイッチと、を備えた乾式負荷試験装置において、
前記スイッチング部材は、前記一対の端子のそれぞれに接続した一対の固定接点と、該一対の固定接点を導通する可動接点と、該可動接点を駆動する駆動手段と、前記固定接点、前記可動接点、前記駆動手段を内蔵すると共に、不活性ガスが充填された密封ケース体とを備えたことを特徴とする乾式負荷試験装置。
A plurality of resistor assemblies in which a plurality of elongated resistance elements are arranged in parallel in the horizontal direction and connected in series, and the plurality of resistor assemblies are arranged in parallel in the vertical direction with the vertical direction. A resistance main body for a high-voltage load test having a plurality of resistance element rows composed of a plurality of the resistance elements arranged in a row,
A plurality of switching member rows composed of a plurality of switching members having one terminal connected to one end of each of the resistor elements of the plurality of resistor element rows;
A plurality of inter-assembly conductive members to which the other terminal of each switching member of the plurality of switching member rows is connected;
In a dry load test apparatus comprising: one high voltage switch for connecting some of the plurality of inter-assembly conductive members to a power source for testing;
The switching member includes a pair of fixed contacts connected to each of the pair of terminals, a movable contact that conducts the pair of fixed contacts, a driving unit that drives the movable contact, the fixed contact, the movable contact, A dry load test apparatus characterized by comprising a sealed case body containing the drive means and filled with an inert gas.
請求項1に記載された乾式負荷試験装置において、
前記スイッチング部材は、前記密封ケース体の上面に前記一対の端子を配置したことを特徴とする乾式負荷試験装置。
In the dry load test apparatus according to claim 1,
The dry load test apparatus, wherein the switching member has the pair of terminals arranged on an upper surface of the sealed case body.
請求項2に記載された乾式負荷試験装置において、
前記スイッチング部材は、前記密封ケース体の上面に、前記駆動手段に接続する一対のリード線の引出口を設けたことを特徴とする乾式負荷試験装置。
In the dry load test apparatus according to claim 2,
The dry load test apparatus according to claim 1, wherein the switching member is provided with a pair of lead wire outlets connected to the driving means on an upper surface of the sealing case body.
請求項2又は請求項3に記載された乾式負荷試験装置において、
前記スイッチング部材は、前記密封ケース体の上面に、前記一対の端子間を区画する絶縁壁と、該絶縁壁に支持されると共に前記一対の端子の上方を覆う絶縁屋根とを有することを特徴とする乾式負荷試験装置。
In the dry load test apparatus according to claim 2 or 3,
The switching member has, on the upper surface of the sealing case body, an insulating wall that partitions the pair of terminals, and an insulating roof that is supported by the insulating wall and covers the top of the pair of terminals. Dry load test equipment.
請求項1〜請求項4のいずれか一項に記載された乾式負荷試験装置において、
前記密封ケース体は、円筒形状のケース本体と、該ケース本体の下端部から側方に突出すると共に、前記ケース本体の中心を挟んで互いに対向する位置に配置された一対の取付支持部とを有し、
前記複数のスイッチング部材は、前記取付支持部が互いに干渉しあわないように、前記複数のスイッチング部材列の並び方向に対して前記取付支持部が傾いた状態で、前記抵抗本体の側方に固定されることを特徴とする乾式負荷試験装置。
In the dry-type load test apparatus as described in any one of Claims 1-4,
The sealed case body includes a cylindrical case main body, and a pair of mounting support portions that protrude laterally from a lower end portion of the case main body and that are disposed at positions facing each other across the center of the case main body. Have
The plurality of switching members are fixed to the side of the resistor body in a state where the attachment support portions are inclined with respect to the arrangement direction of the plurality of switching member rows so that the attachment support portions do not interfere with each other. A dry-type load test apparatus.
JP2008187485A 2008-07-18 2008-07-18 Dry load test equipment Active JP5265264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187485A JP5265264B2 (en) 2008-07-18 2008-07-18 Dry load test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187485A JP5265264B2 (en) 2008-07-18 2008-07-18 Dry load test equipment

Publications (2)

Publication Number Publication Date
JP2010025752A true JP2010025752A (en) 2010-02-04
JP5265264B2 JP5265264B2 (en) 2013-08-14

Family

ID=41731726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187485A Active JP5265264B2 (en) 2008-07-18 2008-07-18 Dry load test equipment

Country Status (1)

Country Link
JP (1) JP5265264B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169086A1 (en) 2011-06-09 2012-12-13 株式会社辰巳菱機 Load system
JP5497234B1 (en) * 2013-08-20 2014-05-21 株式会社辰巳菱機 Load testing equipment
KR101413141B1 (en) * 2013-01-21 2014-07-01 가부시키가이샤다쓰미료키 Load testing machine
JP5702038B1 (en) * 2014-02-24 2015-04-15 株式会社辰巳菱機 Load testing machine
JP5702039B1 (en) * 2014-02-24 2015-04-15 株式会社辰巳菱機 Load tester and connection switching part of load tester
CN104793137A (en) * 2015-03-10 2015-07-22 南京工程学院 Abnormal load type distinguishing method based on motor motion feature values
WO2015125182A1 (en) * 2014-02-24 2015-08-27 株式会社辰巳菱機 Load tester and connection-selecting unit for load tester
WO2015125181A1 (en) * 2014-02-24 2015-08-27 株式会社辰巳菱機 Load tester
JP2016024108A (en) * 2014-07-23 2016-02-08 株式会社辰巳菱機 Load testing device
JP2016133329A (en) * 2015-01-16 2016-07-25 株式会社辰巳菱機 Load testing device
JP5959136B1 (en) * 2015-10-30 2016-08-02 株式会社辰巳菱機 Seeds heater, load test equipment
WO2017072818A1 (en) * 2015-10-30 2017-05-04 株式会社辰巳菱機 Sheathed heater and load testing device
US9885756B2 (en) 2015-05-11 2018-02-06 Tatsumi Ryoki Co., Ltd Load testing apparatus and cap for load testing apparatus
WO2018100761A1 (en) 2016-11-30 2018-06-07 株式会社辰巳菱機 Load test system
TWI628445B (en) * 2014-02-24 2018-07-01 辰巳菱機股份有限公司 Load testing machine
WO2018211574A1 (en) 2017-05-16 2018-11-22 株式会社辰巳菱機 Load system, load test device, and communication terminal
WO2018225152A1 (en) * 2017-06-06 2018-12-13 株式会社辰巳菱機 Compact load testing system
WO2020059159A1 (en) 2018-09-18 2020-03-26 株式会社辰巳菱機 Load resistor
JP2020106548A (en) * 2018-03-13 2020-07-09 株式会社辰巳菱機 Load testing device
WO2020195286A1 (en) 2019-03-25 2020-10-01 株式会社辰巳菱機 Load testing device and insulating frame for load testing device
WO2020225953A1 (en) 2019-05-07 2020-11-12 株式会社辰巳菱機 Load testing device
WO2021053988A1 (en) 2019-09-17 2021-03-25 株式会社辰巳菱機 Relay, device including relay, and load test device including relay
WO2021246158A1 (en) 2020-06-04 2021-12-09 株式会社辰巳菱機 Load test device and cap for load test device
CN114578168A (en) * 2022-03-09 2022-06-03 石家庄铁道大学 Load device for bow net off-line test
WO2022181216A1 (en) * 2021-02-24 2022-09-01 株式会社辰巳菱機 Load testing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253128A (en) * 1990-08-29 1992-09-08 Eaton Corp Two-way dc switch device
JP2000019231A (en) * 1998-07-06 2000-01-21 Tatsumi Ryoki:Kk Dry-type load resistor for continuity test of generator, etc.
WO2001040817A1 (en) * 1999-12-02 2001-06-07 Tatsumi Corporation Dry load test apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253128A (en) * 1990-08-29 1992-09-08 Eaton Corp Two-way dc switch device
JP2000019231A (en) * 1998-07-06 2000-01-21 Tatsumi Ryoki:Kk Dry-type load resistor for continuity test of generator, etc.
WO2001040817A1 (en) * 1999-12-02 2001-06-07 Tatsumi Corporation Dry load test apparatus

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255721A (en) * 2011-06-09 2012-12-27 Tatsumi Ryoki:Kk Load system
CN103582823A (en) * 2011-06-09 2014-02-12 株式会社辰巳菱机 Load system
US8810200B2 (en) 2011-06-09 2014-08-19 Tatsumi Corporation Load system
WO2012169086A1 (en) 2011-06-09 2012-12-13 株式会社辰巳菱機 Load system
RU2554604C1 (en) * 2013-01-21 2015-06-27 Тацуми Риоки Ко. Лтд Load testing machine
KR101413141B1 (en) * 2013-01-21 2014-07-01 가부시키가이샤다쓰미료키 Load testing machine
WO2014111981A1 (en) 2013-01-21 2014-07-24 株式会社辰巳菱機 Load testing device
CN104024876A (en) * 2013-01-21 2014-09-03 株式会社辰巳菱机 Load testing machine
US8878558B2 (en) 2013-01-21 2014-11-04 Tatsumi Corporation Load testing machine
JP5497234B1 (en) * 2013-08-20 2014-05-21 株式会社辰巳菱機 Load testing equipment
JP2015040710A (en) * 2013-08-20 2015-03-02 株式会社辰巳菱機 Load testing device
EP3064951A4 (en) * 2014-02-24 2017-07-26 Tatsumi Ryoki Co., Ltd Load tester and connection-selecting unit for load tester
CN106062578A (en) * 2014-02-24 2016-10-26 株式会社辰巳菱机 Load tester and connection-selecting unit for load tester
TWI658280B (en) * 2014-02-24 2019-05-01 日商辰巳菱機股份有限公司 Load testing machine
WO2015125182A1 (en) * 2014-02-24 2015-08-27 株式会社辰巳菱機 Load tester and connection-selecting unit for load tester
WO2015125181A1 (en) * 2014-02-24 2015-08-27 株式会社辰巳菱機 Load tester
CN106062578B (en) * 2014-02-24 2017-05-24 株式会社辰巳菱机 Load tester and connection-selecting unit for load tester
KR20160085369A (en) 2014-02-24 2016-07-15 가부시키가이샤다쓰미료키 Load Testing Apparatus and Coupling Switch Unit for Load Testing Apparatus
KR20160086422A (en) 2014-02-24 2016-07-19 가부시키가이샤다쓰미료키 Load Testing Apparatus
TWI628445B (en) * 2014-02-24 2018-07-01 辰巳菱機股份有限公司 Load testing machine
JP5702039B1 (en) * 2014-02-24 2015-04-15 株式会社辰巳菱機 Load tester and connection switching part of load tester
CN106030323A (en) * 2014-02-24 2016-10-12 株式会社辰巳菱机 Load tester
JP5702038B1 (en) * 2014-02-24 2015-04-15 株式会社辰巳菱機 Load testing machine
US9488694B2 (en) 2014-02-24 2016-11-08 Tatsumi Ryoki Co., Ltd Load testing apparatus and coupling switch unit for load testing apparatus
US9500718B2 (en) 2014-02-24 2016-11-22 Tatsumi Ryoki Co., Ltd Load testing apparatus
KR101689646B1 (en) * 2014-02-24 2016-12-26 가부시키가이샤다쓰미료키 Load Testing Apparatus
KR101702424B1 (en) * 2014-02-24 2017-02-03 가부시키가이샤다쓰미료키 Load Testing Apparatus and Coupling Switch Unit for Load Testing Apparatus
RU2614652C1 (en) * 2014-02-24 2017-03-28 Тацуми Риоки Ко., Лтд Load testing device and connections switching unit for load testing device
RU2615794C1 (en) * 2014-02-24 2017-04-11 Тацуми Риоки Ко., Лтд Load testing device
CN106030323B (en) * 2014-02-24 2017-10-27 株式会社辰巳菱机 Load test machine
EP3112887A4 (en) * 2014-02-24 2017-10-25 Tatsumi Ryoki Co., Ltd Load tester
JP2016024108A (en) * 2014-07-23 2016-02-08 株式会社辰巳菱機 Load testing device
JP2018054636A (en) * 2015-01-16 2018-04-05 株式会社辰巳菱機 Load testing device
JP2016133329A (en) * 2015-01-16 2016-07-25 株式会社辰巳菱機 Load testing device
CN104793137A (en) * 2015-03-10 2015-07-22 南京工程学院 Abnormal load type distinguishing method based on motor motion feature values
EP3296756A4 (en) * 2015-05-11 2018-12-05 Tatsumi Ryoki Co., Ltd Load testing device and cap of load testing device
US9885756B2 (en) 2015-05-11 2018-02-06 Tatsumi Ryoki Co., Ltd Load testing apparatus and cap for load testing apparatus
WO2017072823A1 (en) * 2015-10-30 2017-05-04 株式会社辰巳菱機 Sheathed heater and load testing device
WO2017072818A1 (en) * 2015-10-30 2017-05-04 株式会社辰巳菱機 Sheathed heater and load testing device
JP5959136B1 (en) * 2015-10-30 2016-08-02 株式会社辰巳菱機 Seeds heater, load test equipment
TWI595246B (en) * 2015-10-30 2017-08-11 辰巳菱機股份有限公司 Sheathed heater and load testing device
WO2018100761A1 (en) 2016-11-30 2018-06-07 株式会社辰巳菱機 Load test system
US10976369B2 (en) 2016-11-30 2021-04-13 Tatsumi Ryoki Co., Ltd Load test system
WO2018211574A1 (en) 2017-05-16 2018-11-22 株式会社辰巳菱機 Load system, load test device, and communication terminal
US10545191B2 (en) 2017-05-16 2020-01-28 Tatsumi Ryoki Co., Ltd. Load system, load test device, and communication terminal
WO2018225152A1 (en) * 2017-06-06 2018-12-13 株式会社辰巳菱機 Compact load testing system
JPWO2018225152A1 (en) * 2017-06-06 2020-08-27 株式会社辰巳菱機 Compact load test system
JP2020106548A (en) * 2018-03-13 2020-07-09 株式会社辰巳菱機 Load testing device
US11828804B2 (en) 2018-03-13 2023-11-28 Tatsumi Ryoki Co., Ltd Load test apparatus
JP7224654B2 (en) 2018-03-13 2023-02-20 株式会社辰巳菱機 load test equipment
WO2020059159A1 (en) 2018-09-18 2020-03-26 株式会社辰巳菱機 Load resistor
EP3855194A4 (en) * 2018-09-18 2022-06-15 Tatsumi Ryoki Co., Ltd Load resistor
US11417446B2 (en) 2018-09-18 2022-08-16 Tatsumi Ryoki Co., Ltd Load resistor
KR20210045448A (en) 2018-09-18 2021-04-26 가부시키가이샤다쓰미료키 Load resistor
JP6770772B1 (en) * 2019-03-25 2020-10-21 株式会社辰巳菱機 Insulation frame for load test equipment and load test equipment
CN113574397A (en) * 2019-03-25 2021-10-29 株式会社辰巳菱机 Load test device and insulating frame of load test device
US11639971B2 (en) 2019-03-25 2023-05-02 Tatsumi Ryoki Co., Ltd Load testing device and insulating frame for load testing device
TWI819193B (en) * 2019-03-25 2023-10-21 日商辰巳菱機股份有限公司 Load testing apparatus, insulated frame of load testing apparatus
WO2020195286A1 (en) 2019-03-25 2020-10-01 株式会社辰巳菱機 Load testing device and insulating frame for load testing device
WO2020225953A1 (en) 2019-05-07 2020-11-12 株式会社辰巳菱機 Load testing device
US11598820B2 (en) 2019-05-07 2023-03-07 Tatsumi Ryoki Co., Ltd Load testing device
JP6925093B1 (en) * 2019-09-17 2021-08-25 株式会社辰巳菱機 Relays, equipment including relays, load test equipment including relays
WO2021053988A1 (en) 2019-09-17 2021-03-25 株式会社辰巳菱機 Relay, device including relay, and load test device including relay
WO2021246158A1 (en) 2020-06-04 2021-12-09 株式会社辰巳菱機 Load test device and cap for load test device
WO2022181216A1 (en) * 2021-02-24 2022-09-01 株式会社辰巳菱機 Load testing device
JP7179397B1 (en) * 2021-02-24 2022-11-29 株式会社辰巳菱機 load test equipment
CN114578168A (en) * 2022-03-09 2022-06-03 石家庄铁道大学 Load device for bow net off-line test

Also Published As

Publication number Publication date
JP5265264B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5265264B2 (en) Dry load test equipment
US6653928B1 (en) Dry load test apparatus
JP6554611B2 (en) relay
KR100723736B1 (en) Dry-type high-voltage load system apparatus and method of preventing chain breaking and arc discharge for use therewith
RU2554604C1 (en) Load testing machine
JP3718874B2 (en) Load resistor for generator current test
CA2488822C (en) High-voltage resistor element
JP5805905B1 (en) Load test equipment, cap of load test equipment
JP3718875B2 (en) Simple load resistor for generator energization test
JP6182151B2 (en) Power storage device
JPH08223719A (en) Gas-insulated switchgear
JP5959136B1 (en) Seeds heater, load test equipment
EP0208241A1 (en) A heating unit
WO2019176132A1 (en) Load testing device
JP3653520B2 (en) Dry high voltage resistance device and method for preventing chain disconnection of the device
JP6831603B1 (en) Load resistor
JP5072024B2 (en) Magnetic contactor
KR100215225B1 (en) Loading resistance elements and resistors for current-passing test of power generators
SU997118A1 (en) High-voltage vacuum switch
CN111986949A (en) Isolating load switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250