JP2010025725A - Wavelength dispersion measuring device and method for measuring wavelength dispersion - Google Patents

Wavelength dispersion measuring device and method for measuring wavelength dispersion Download PDF

Info

Publication number
JP2010025725A
JP2010025725A JP2008186856A JP2008186856A JP2010025725A JP 2010025725 A JP2010025725 A JP 2010025725A JP 2008186856 A JP2008186856 A JP 2008186856A JP 2008186856 A JP2008186856 A JP 2008186856A JP 2010025725 A JP2010025725 A JP 2010025725A
Authority
JP
Japan
Prior art keywords
chromatic dispersion
light
medium
component
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008186856A
Other languages
Japanese (ja)
Other versions
JP5179277B2 (en
Inventor
Takashi Yamamoto
貴司 山本
Kenji Kurokawa
賢二 黒河
Chisato Fukai
千里 深井
Yasushi Sakamoto
泰志 坂本
Toshio Kurashima
利雄 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008186856A priority Critical patent/JP5179277B2/en
Publication of JP2010025725A publication Critical patent/JP2010025725A/en
Application granted granted Critical
Publication of JP5179277B2 publication Critical patent/JP5179277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength dispersion measuring device capable of precisely measuring a wavelength dispersion without being affected by an α parameter, a modulation index and a loss in a measuring system of a modulator each being a cause that increases a measuring error. <P>SOLUTION: After a phase modulation of an optional modulation index is applied to continuous light output from a light source 10 by a phase modulator 12, the light is incident on a dispersion medium 13. The phase modulator 12 is driven by means of a sine wave signal output from a frequency variable oscillator 11. Output light of the dispersion medium 13 is converted into an electric signal by a light receiver 14 and an alternate current component of the electric signal is observed by means of a spectrum analyzer 15. While phase modulation-intensity modulation conversion occurs in the dispersion medium 13, when a phase modulation frequency is sweeped, a time waveform of the output light of the dispersion medium 13 does not have an intensity modulation component, that is, there is a modulation frequency becoming continuous light. The wavelength dispersion of the dispersion medium is precisely and directly derived from the value of the modulation frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバや光部品の基本特性の一つである波長分散値を測定する波長分散測定装置及び波長分散測定方法に関するものである。   The present invention relates to a chromatic dispersion measuring apparatus and a chromatic dispersion measuring method for measuring a chromatic dispersion value which is one of basic characteristics of optical fibers and optical components.

光通信システムを構築する光ファイバや光部品の基本特性の一つである波長分散は、光通信システムにおける光信号の伝送特性に大きな影響を与える。この波長分散による光通信システムの特性劣化を抑制するためには、光ファイバや光部品の波長分散を正確に測定する技術がまず必要とされる。一方、通信容量の拡大への需要の高まりから、1.0μm帯等、これまで利用されてきた通信波長帯以外の波長帯を新規に開拓する試みが進められている(下記非特許文献1参照)。このような新規波長帯についても波長分散測定技術が確立することが望まれる。   Chromatic dispersion, which is one of the basic characteristics of optical fibers and optical components that make up an optical communication system, greatly affects the transmission characteristics of optical signals in an optical communication system. In order to suppress the characteristic deterioration of the optical communication system due to the chromatic dispersion, a technique for accurately measuring the chromatic dispersion of the optical fiber or the optical component is first required. On the other hand, due to the growing demand for expansion of communication capacity, an attempt to newly cultivate a wavelength band other than the communication wavelength band that has been used so far, such as the 1.0 μm band, has been advanced (see Non-Patent Document 1 below). ). It is desirable to establish a chromatic dispersion measurement technique for such a new wavelength band.

波長分散の測定方法としては、位相シフト法(下記非特許文献2参照)、光パルス法(下記非特許文献3参照)、干渉法(下記非特許文献4参照)のように測定波長をステップ状に掃引して群遅延時間特性を測定し、これを波長で微分することにより波長分散を求める方法がある。しかし、これらの測定法においては、波長掃引可能な光源、又は複数の波長の光源が必要とされ、これは上述の1.0μm帯等、技術的な開拓がまだ十分に行われていない波長帯においては実現が容易でない場合もありうる。   As a method for measuring chromatic dispersion, the measurement wavelength is stepped like a phase shift method (see the following non-patent document 2), an optical pulse method (see the following non-patent document 3), or an interference method (see the following non-patent document 4). There is a method of measuring chromatic dispersion by measuring the group delay time characteristic by sweeping and then differentiating it by wavelength. However, in these measurement methods, a light source capable of wavelength sweeping or a light source having a plurality of wavelengths is required. This is a wavelength band in which technical development has not been sufficiently performed, such as the above-described 1.0 μm band. In some cases, it may not be easy to implement.

波長掃引可能な光源、又は、複数の波長の光源を必要としない波長分散測定法として、ベースバンドAM応答測定法(下記非特許文献5及び下記非特許文献6参照)がある。
下記非特許文献6に示されている、この方法による波長分散測定の構成を図14に示す。
As a wavelength dispersion measurement method that does not require a wavelength-swept light source or a light source having a plurality of wavelengths, there is a baseband AM response measurement method (see Non-Patent Document 5 and Non-Patent Document 6 below).
The configuration of chromatic dispersion measurement by this method shown in Non-Patent Document 6 below is shown in FIG.

図14に示すように、本方法においては、光源10から出力された光を強度変調器40により強度変調した際に発生する変調側波帯の位相関係が分散媒体13中の波長分散より変化し、その結果、光の時間波形が変化することを利用する。強度変調周波数を変化させた場合、光の時間波形の強度変調成分が極小値を取る強度変調周波数が周期的に存在する。その周波数の観測を受光器14及びネットワークアナライザ41を用いて行う。強度変調成分が極小値を取る周波数fmは式(1)で与えられる。

Figure 2010025725
As shown in FIG. 14, in this method, the phase relationship of the modulation sidebands generated when the light output from the light source 10 is intensity-modulated by the intensity modulator 40 changes from the chromatic dispersion in the dispersion medium 13. As a result, the fact that the time waveform of light changes is utilized. When the intensity modulation frequency is changed, an intensity modulation frequency at which the intensity modulation component of the time waveform of light takes a minimum value periodically exists. The frequency is observed using the light receiver 14 and the network analyzer 41. The frequency f m at which the intensity modulation component takes a minimum value is given by Equation (1).
Figure 2010025725

ここで、nは極小値の次数(1、2、3、....)、Dは分散媒体の単位長さ当たりの波長分散値、Lは分散媒体長、λは測定波長(光源波長)である。また、強度変調器40のチャープパラメータ(αパラメータ)は0であるとしている。強度変調成分が極小値を取る周波数を測定し、式(1)から波長分散値DLを得ることができる。   Here, n is the order of the minimum value (1, 2, 3,...), D is the chromatic dispersion value per unit length of the dispersion medium, L is the dispersion medium length, and λ is the measurement wavelength (light source wavelength). It is. The chirp parameter (α parameter) of the intensity modulator 40 is assumed to be zero. The frequency at which the intensity modulation component takes a minimum value is measured, and the chromatic dispersion value DL can be obtained from Equation (1).

一方、波長掃引可能な光源、又は複数の波長の光源を必要としない別の波長分散測定法として、位相変調器を用いる方法が提案されている(下記非特許文献7及び下記特許文献参照)。本方法においては光源からの光が特定の周波数で位相変調を施された後に分散媒体に入射される。分散媒体中では位相変調成分が強度変調成分に変換されるが、その変換の割合が波長分散に依存することを利用して、分散媒体の波長分散を導出するものである。   On the other hand, a method using a phase modulator has been proposed as another wavelength dispersion measurement method that does not require a wavelength-swept light source or a light source having a plurality of wavelengths (see Non-Patent Document 7 and Patent Document below). In this method, light from a light source is incident on a dispersion medium after being subjected to phase modulation at a specific frequency. In the dispersion medium, the phase modulation component is converted into the intensity modulation component, and the chromatic dispersion of the dispersion medium is derived using the fact that the conversion ratio depends on the chromatic dispersion.

下記特許文献1において実施例として示されている波長分散測定装置の構成を図15に示す。
図15に示すように、光源10からの光は外部位相変調器12によって特定の周波数で変調される。位相変調器12は周波数固定で動作させる発振器50により駆動する。また、位相変調器12の出力光の一部を分波器51により分波し、光スペクトラムアナライザ52によって光スペクトルを観測することにより、位相変調の変調指数を求める。
FIG. 15 shows the configuration of a chromatic dispersion measuring apparatus shown as an example in Patent Document 1 below.
As shown in FIG. 15, the light from the light source 10 is modulated at a specific frequency by the external phase modulator 12. The phase modulator 12 is driven by an oscillator 50 that operates at a fixed frequency. Further, a part of the output light of the phase modulator 12 is demultiplexed by the demultiplexer 51, and the optical spectrum is observed by the optical spectrum analyzer 52 to obtain the modulation index of phase modulation.

分散媒体13を通過した後の位相変調光は分散に応じて一部が強度変調成分に変換されている。そこで、受光器14の出力に含まれる交流成分と直流成分をそれぞれ交流電圧計53、直流電圧計54にて測定し、その強度比を比較器58により求めることによって分散媒体13の波長分散を知ることが可能となる。交流電圧計53の前段にはバンドパスフィルタ55を挿入する。   A part of the phase-modulated light after passing through the dispersion medium 13 is converted into an intensity-modulated component according to the dispersion. Therefore, the AC component and the DC component included in the output of the light receiver 14 are measured by the AC voltmeter 53 and the DC voltmeter 54, respectively, and the intensity ratio is obtained by the comparator 58 to know the wavelength dispersion of the dispersion medium 13. Is possible. A band pass filter 55 is inserted in front of the AC voltmeter 53.

なお、下記特許文献1においては、分散媒体13へ入射する位相変調光の強度を光増幅器56又は可変光減衰器57の設定により変化させ、分散媒体中での自己位相変調の効果を変化させることによって分散媒体の波長分散の符号を特定する方法を提案している。また、下記特許文献1中に記述があるように、下記特許文献1で提案されている波長分散測定法においては、位相変調周波数を固定した状態で波長分散測定が行われる。   In Patent Document 1 below, the intensity of phase-modulated light incident on the dispersion medium 13 is changed by setting the optical amplifier 56 or the variable optical attenuator 57 to change the effect of self-phase modulation in the dispersion medium. Proposes a method for identifying the chromatic dispersion sign of a dispersion medium. Further, as described in the following Patent Document 1, in the chromatic dispersion measuring method proposed in the following Patent Document 1, chromatic dispersion measurement is performed with the phase modulation frequency fixed.

特許第3237684号公報Japanese Patent No. 3237684 Kenji Kurokawa、外5名、“High Capacity WDM Transmission in 1.0μm Band over Low Loss PCF Using Supercontinuum Source”、2008 Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference(OFC/NFOEC2008)、2008、OMH5Kenji Kurokawa, outside five, "High Capacity WDM Transmission in 1.0μm Band over Low Loss PCF Using Supercontinuum Source", 2008 Optical Fiber Communication Conference and Exhibition / National Fiber Optic Engineers Conference (OFC / NFOEC2008), 2008, OMH5 Bruno Costa、外3名、“Phase Shift Technique for the Measurement of Chromatic Dispersion in Optical Fibers Using LED’s”、IEEE JOURNAL OF QUANTUM ELECTRONICS、Vol.QE−18、No.10、1982年10月、p.1509−1515Bruno Costa, 3 others, “Phase Shift Technology for the Measurement of Chromatical Dispersion in Optical Fibers Using LED's”, IEEE JOURNAL QE-18, no. 10, October 1982, p. 1509-1515 L.G.Cohen、外1名、“Pulse delay measurements in zero material dispersion wavelength region for optical fibers”、APPLIED OPTICS、Vol.16、No.12、1977年12月、p.3136−3139L. G. Cohen, 1 other person, “Pulse delay measurements in zero material dispersal wave length region for optical fibers”, APPLIED OPTICs, Vol. 16, no. 12, December 1977, p. 3136-3139 Mitsuhiro Tateda、外2名、“Interferometric method for Chromatic Dispersion Measurement in a Single−Mode Optical Fiber”、IEEE JOURNAL OF QUANTUM ELECTRONICS、Vol.QE−17、No.3、1981年3月、p.404−407Mitshiro Tateda, two others, “Interferometric method for Chromatic Dispersion Measurement in a Single-Optical Fiber”, IEEE JOURNAL OF QUALANT QE-17, no. 3, March 1981, p. 404-407 B.Christensen、外2名、“SIMPLE DISPERSION MEASUREMENT TECHNIQUE WITH HIGH RESOLUTION”、ELECTRONICS LETTERS、Vol.29、No.1、1993年1月7日、p.132−134B. Christensen, two others, "SIMPLE DISPERSION MEASUREMENT TECHNIQUE WITH HIGH RESOLUTION", ELECTRONICS LETTERS, Vol. 29, no. 1, January 7, 1993, p. 132-134 波平宣敬編、「DWDM光測定技術」、第1版、株式会社オプトロニクス社、平成13年3月10日、p.42−43Nobuyoshi Namihira, "DWDM optical measurement technology", 1st edition, Optronics, Inc., March 10, 2001, p. 42-43 A.R.Chraplyvy、外3名、“PHASE MODULATION TO AMPLITUDE MODULATION CONVERSION OF CW LASER LIGHT IN OPTICAL FIBRES”、ELECTRONICS LETTERS、Vol.22、No.8、1986年4月10日、p.409−411A. R. Craplyvy, three others, “PHASE MODULATION TO AMPLITUDE MODULATION CONVERSION OF CW LASER LIGHT IN OPTICAL FIBRES”, ELECTRONICS LETTERS, Vol. 22, no. 8, April 10, 1986, p. 409-411

図14に示した強度変調器40を用いる波長分散測定法(ベースバンドAM応答測定法)においては、光源10の波長と、強度変調成分が極小値を取る周波数の2つの測定値のみから式(1)より波長分散を導出できる。この場合、これらの2つのパラメータは高精度に測定可能であるため、波長分散を正確に導出することが可能である。   In the chromatic dispersion measurement method (baseband AM response measurement method) using the intensity modulator 40 shown in FIG. 14, an equation (2) is obtained from only two measurement values of the wavelength of the light source 10 and the frequency at which the intensity modulation component takes a minimum value. The chromatic dispersion can be derived from 1). In this case, since these two parameters can be measured with high accuracy, chromatic dispersion can be accurately derived.

しかし、式(1)は、強度変調器40のチャープパラメータ(αパラメータ)が0であることを前提としている。実際の強度変調器は有限のαパラメータを有しており、この影響を考慮して波長分散を導出する必要がある。しかしながら、強度変調器40のαパラメータを正確に求めるのは容易でなく、その結果、実際に測定される波長分散値は誤差を含んでしまう。   However, equation (1) assumes that the chirp parameter (α parameter) of the intensity modulator 40 is zero. An actual intensity modulator has a finite α parameter, and it is necessary to derive chromatic dispersion in consideration of this influence. However, it is not easy to accurately obtain the α parameter of the intensity modulator 40, and as a result, the actually measured chromatic dispersion value includes an error.

また、図15に示した位相変調器12を用いる波長分散測定法においては、波長分散を導出するために位相変調指数を正確に測定する必要があり、この位相変調指数の測定誤差が波長分散の測定誤差につながる。また、本方法においては受光器14の出力信号を2分岐して、交流成分と直流成分の比を求める必要があるが、受光部14後の直流電圧計54、交流電圧計53までの系に損失の差がある場合、これが波長分散値の測定誤差につながる。   In the chromatic dispersion measurement method using the phase modulator 12 shown in FIG. 15, it is necessary to accurately measure the phase modulation index in order to derive the chromatic dispersion. This leads to measurement errors. Further, in this method, it is necessary to divide the output signal of the light receiver 14 into two to determine the ratio between the AC component and the DC component. This leads to a measurement error of the chromatic dispersion value.

本発明は、上述した事情に鑑みてなされたものであり、連続光を出力する光源と光変調器を利用した波長分散測定装置において、測定誤差を増大させる要因である変調器のαパラメータ、変調指数、測定系の損失の影響を含有せず、高精度な波長分散測定を可能とする波長分散測定装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and in a chromatic dispersion measuring device using a light source that outputs continuous light and an optical modulator, the α parameter of the modulator, which is a factor that increases measurement error, and modulation It is an object of the present invention to provide a chromatic dispersion measuring apparatus that does not include the influence of the index and the loss of the measurement system and enables highly accurate chromatic dispersion measurement.

上記の課題を解決する第1の発明に係る波長分散測定装置は、
被測定媒体の波長分散値を求める波長分散測定装置において、
連続光を発生させる光源と、
周波数掃引可能な正弦波信号を発生する電気信号発生器と、
前記電気信号発生器から出力される正弦波信号によって駆動され、前記光源の出力光に対して位相変調を行う位相変調器と、
前記位相変調器から出力される出力光を、前記被測定媒体に入射した際の出力光を電気信号に変換する受光器と、
前記受光器から出力される電気信号の交流成分の強度を観測する交流成分観測手段と
を具備し、
前記交流成分観測手段により交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める
ことを特徴とする。
The chromatic dispersion measuring apparatus according to the first invention for solving the above-mentioned problems is
In the chromatic dispersion measuring device for obtaining the chromatic dispersion value of the measured medium,
A light source that generates continuous light;
An electrical signal generator for generating a frequency sweepable sinusoidal signal;
A phase modulator driven by a sine wave signal output from the electrical signal generator and performing phase modulation on the output light of the light source;
A light receiver that converts the output light output from the phase modulator into an electrical signal when the light is incident on the measured medium; and
AC component observation means for observing the intensity of the AC component of the electrical signal output from the light receiver,
A frequency at which the AC component takes a minimum value is obtained by the AC component observation means, and a chromatic dispersion value of the medium to be measured is obtained from this frequency.

上記の課題を解決する第2の発明に係る波長分散測定装置は、
被測定媒体の波長分散値を求める波長分散測定装置において、
連続光を発生させる光源と、
広帯域な電気雑音成分を発生する雑音発生器と、
前記雑音発生器から出力される電気雑音成分によって駆動され、前記光源の出力光に対して位相変調を行う位相変調器と、
前記位相変調器から出力される出力光を前記被測定媒体に入射した際の出力光を電気信号に変換する受光器と、
前記受光器から出力される電気信号の交流成分の強度を観測する交流成分観測手段と
を具備し、
前記交流成分観測手段により交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める
ことを特徴とする。
The chromatic dispersion measuring apparatus according to the second invention for solving the above-mentioned problems is
In the chromatic dispersion measuring device for obtaining the chromatic dispersion value of the measured medium,
A light source that generates continuous light;
A noise generator that generates a wide-band electrical noise component;
A phase modulator driven by an electrical noise component output from the noise generator and performing phase modulation on the output light of the light source;
A light receiver for converting the output light output from the phase modulator into an electric signal when the output light is incident on the measured medium;
AC component observation means for observing the intensity of the AC component of the electrical signal output from the light receiver,
A frequency at which the AC component takes a minimum value is obtained by the AC component observation means, and a chromatic dispersion value of the medium to be measured is obtained from this frequency.

上記の課題を解決する第3の発明に係る波長分散測定装置は、第1の発明又は第2の発明に係る波長分散測定装置において、
前記位相変調器の後段に波長分散値が既知である分散媒体を具備し、
前記位相変調器から出力される出力光を前記波長分散値が既知である分散媒体を通した後に前記被測定媒体に入射した場合と、前記位相変調器から出力される出力光を前記被測定媒体に直接入射した場合との2通りについて前記交流成分観測手段により交流成分が極小値を取る周波数を求め、これらの周波数から前記被測定媒体の波長分散値を符号も含めて求める
ことを特徴とする。
A chromatic dispersion measuring apparatus according to a third invention for solving the above-mentioned problems is the chromatic dispersion measuring apparatus according to the first invention or the second invention.
A dispersion medium having a known chromatic dispersion value is provided after the phase modulator,
When the output light output from the phase modulator passes through the dispersion medium whose chromatic dispersion value is known and then enters the measured medium, and the output light output from the phase modulator is the measured medium The frequency at which the AC component takes a minimum value is obtained by the AC component observation means for the two cases of direct incidence on the light, and the chromatic dispersion value of the measured medium including the sign is obtained from these frequencies. .

上記の課題を解決する第4の発明に係る波長分散測定装置は、第1の発明から第3の発明のいずれかひとつに係る波長分散測定装置において、
前記光源は前記連続光の波長が可変の波長可変光源であり、
前記被測定媒体の波長分散値の波長依存性を測定する
ことを特徴とする。
A chromatic dispersion measuring apparatus according to a fourth invention for solving the above-mentioned problems is the chromatic dispersion measuring apparatus according to any one of the first to third inventions,
The light source is a wavelength variable light source in which the wavelength of the continuous light is variable;
The wavelength dependence of the wavelength dispersion value of the measured medium is measured.

上記の課題を解決する第5の発明に係る波長分散測定方法は、
被測定媒体の波長分散値を求める波長分散測定方法において、
連続光を発生する工程と、
周波数掃引可能な正弦波信号を発生する工程と、
前記正弦波信号を用いて前記連続光に対して位相変調を行う工程と、
位相変調された前記連続光を前記被測定媒体に入射した際の出力光を電気信号に変換する工程と、
前記電気信号の交流成分の強度を観測する工程と、
前記交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める工程と
を具備する
ことを特徴とする。
A chromatic dispersion measuring method according to a fifth invention for solving the above-mentioned problems is as follows.
In the chromatic dispersion measuring method for obtaining the chromatic dispersion value of the measured medium,
A process of generating continuous light;
Generating a frequency sweepable sinusoidal signal;
Performing phase modulation on the continuous light using the sine wave signal;
Converting the output light when the phase-modulated continuous light is incident on the measured medium into an electrical signal;
Observing the intensity of the alternating current component of the electrical signal;
Obtaining a frequency at which the AC component takes a minimum value, and obtaining a chromatic dispersion value of the medium to be measured from this frequency.

上記の課題を解決する第6の発明に係る波長分散測定方法は、
被測定媒体の波長分散値を求める波長分散測定方法において、
連続光を発生させる工程と、
広帯域な電気雑音成分を発生させる工程と、
前記電気雑音成分を用いて前記連続光に対して位相変調を行う工程と、
位相変調された前記連続光を前記被測定媒体に入射した際の出力光を電気信号に変換する工程と、
前記電気信号の交流成分の強度を観測する工程と、
前記交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める工程と
を具備する
ことを特徴とする。
A chromatic dispersion measuring method according to a sixth invention for solving the above-described problems is as follows.
In the chromatic dispersion measuring method for obtaining the chromatic dispersion value of the measured medium,
A step of generating continuous light;
Generating a wide-band electrical noise component;
Performing phase modulation on the continuous light using the electrical noise component;
Converting the output light when the phase-modulated continuous light is incident on the measured medium into an electrical signal;
Observing the intensity of the alternating current component of the electrical signal;
Obtaining a frequency at which the AC component takes a minimum value, and obtaining a chromatic dispersion value of the medium to be measured from this frequency.

上記の課題を解決する第7の発明に係る波長分散測定方法は、第5の発明又は第6の発明に係る波長分散測定方法において、
位相変調された前記連続光を波長分散値が既知である分散媒体を通す工程と、
位相変調された前記連続光を前記分散媒体を通した後に前記被測定媒体に入射した場合と、位相変調された前記連続光を前記被測定媒体に直接入射した場合との2通りについて交流成分が極小値を取る周波数を求め、これらの周波数から前記被測定媒体の波長分散値を符号も含めて求める工程と
を具備する
ことを特徴とする。
A chromatic dispersion measuring method according to a seventh invention for solving the above-mentioned problems is the chromatic dispersion measuring method according to the fifth invention or the sixth invention,
Passing the phase-modulated continuous light through a dispersion medium having a known chromatic dispersion value;
The AC component is divided into two types: a case where the phase-modulated continuous light passes through the dispersion medium and then enters the medium to be measured, and a case where the phase-modulated continuous light directly enters the medium to be measured. And obtaining a frequency having a minimum value and obtaining a chromatic dispersion value of the measured medium including a sign from these frequencies.

上記の課題を解決する第8の発明に係る波長分散測定方法は、第5の発明から第6の発明のいずれかひとつに係る波長分散測定方法において、
前記連続光は波長を可変とし、
前記被測定媒体の波長分散値の波長依存性を測定する
ことを特徴とする。
A chromatic dispersion measuring method according to an eighth invention for solving the above-described problem is the chromatic dispersion measuring method according to any one of the fifth to sixth inventions,
The continuous light has a variable wavelength,
The wavelength dependence of the wavelength dispersion value of the measured medium is measured.

本発明により、変調器のαパラメータ、変調指数、測定系の損失といった測定誤差を増大させる要因の影響を含まず、変調周波数のみから波長分散を高精度に導出できる波長分散測定装置を提供することが可能となる。   According to the present invention, there is provided a chromatic dispersion measuring apparatus capable of deriving chromatic dispersion with high accuracy only from a modulation frequency without including the influence of factors that increase measurement errors such as an α parameter of a modulator, a modulation index, and a measurement system loss. Is possible.

以下、本発明に係る波長分散測定装置及び波長分散測定方法の実施例について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a wavelength dispersion measuring apparatus and a wavelength dispersion measuring method according to the present invention will be described in detail with reference to the drawings.

本発明に係る波長分散測定装置及び波長分散測定方法の第1の実施例について説明する。
図1は本実施例に係る波長分散測定装置の一例を示す構成図、図2は位相変調直後、及び分散媒体出力において位相変調光が強度変調成分を持たなくなる条件における各変調側波帯の位相相関を模式的に示した説明図、図3は分散媒体出力において位相変調光が強度変調成分を持たなくなる条件における各変調側波帯の位相相関を模式的に示した説明図、図4は分散媒体出力での光の時間波形の計算結果を示すグラフ、図5は受光器出力における交流成分強度と周波数の相関の計算結果を示すグラフ、図6は本実施例に係る波長分散方法の手順を説明するフローチャートである。
A first embodiment of a wavelength dispersion measuring apparatus and a wavelength dispersion measuring method according to the present invention will be described.
FIG. 1 is a block diagram showing an example of a chromatic dispersion measuring apparatus according to the present embodiment. FIG. 2 shows the phase of each modulation sideband immediately after phase modulation and under the condition that the phase modulated light has no intensity modulation component at the output of the dispersion medium. FIG. 3 is an explanatory diagram schematically showing the correlation, FIG. 3 is an explanatory diagram schematically showing the phase correlation of each modulation sideband under the condition that the phase modulated light has no intensity modulation component at the output of the dispersion medium, and FIG. 5 is a graph showing the calculation result of the time waveform of light at the medium output, FIG. 5 is a graph showing the calculation result of the correlation between the AC component intensity and the frequency at the receiver output, and FIG. 6 is the procedure of the wavelength dispersion method according to this embodiment. It is a flowchart to explain.

図1に示すように、本実施例に係る波長分散測定装置においては、まず光源10から出力される単一波長の連続光に対し任意の変調指数の正弦波位相変調を位相変調器12により施した後に、分散媒体13に入射する。位相変調器12は周波数可変発振器11出力の正弦波信号により駆動される。   As shown in FIG. 1, in the chromatic dispersion measuring apparatus according to the present embodiment, a sine wave phase modulation having an arbitrary modulation index is first performed by a phase modulator 12 on continuous light having a single wavelength output from a light source 10. Then, the light enters the dispersion medium 13. The phase modulator 12 is driven by a sine wave signal output from the frequency variable oscillator 11.

分散媒体13の出力を受光器14で電気信号に変換し、スペクトラムアナライザ15により交流成分を観測する。位相変調器12直後の光は正弦波状にチャープした連続光であるが、分散媒体13中において位相変調−強度変調変換により強度変調成分が発生する。   The output of the dispersion medium 13 is converted into an electric signal by the light receiver 14, and the AC component is observed by the spectrum analyzer 15. The light immediately after the phase modulator 12 is a continuous light chirped into a sine wave, but an intensity modulation component is generated in the dispersion medium 13 by phase modulation-intensity modulation conversion.

ここで、周波数可変発振器11出力の正弦波信号周波数を掃引させると、分散媒体出力光の時間波形が強度変調成分を持たない、すなわち連続光になる変調周波数が存在する。そして、この変調周波数の値のみから分散媒体13の波長分散を直接導出することが可能となる。   Here, when the sinusoidal signal frequency output from the variable frequency oscillator 11 is swept, there is a modulation frequency at which the time waveform of the dispersion medium output light has no intensity modulation component, that is, becomes continuous light. The chromatic dispersion of the dispersion medium 13 can be directly derived from only the value of the modulation frequency.

上記の動作を順を追って説明する。光源10出力の連続光の光周波数及び電界振幅をそれぞれω0、E0とする。このとき連続光の電界は式(2)で表わされる。

Figure 2010025725
The above operations will be described in order. The optical frequency and electric field amplitude of the continuous light output from the light source 10 are assumed to be ω 0 and E 0 , respectively. At this time, the electric field of continuous light is expressed by equation (2).
Figure 2010025725

この連続光に対して位相変調器12により正弦波位相変調を施すと、位相変調器12出力における光の電界は式(3)で表わされる。

Figure 2010025725
ここで、fmは位相変調周波数、Δθは位相変調の変調指数、Jnは第1種ベッセル関数である。また、nは整数であり、変調側波帯の番号を示す。
すなわち、式(3)はJn(Δθ)で表わされる振幅を有する変調側波帯の電界が角周波数間隔2πfmで発生することを示している。nの絶対値は元の連続光から離れるにしたがって大きくなり、その符号はもとの連続光周波数より高周波側が正となる。 When sinusoidal phase modulation is performed on the continuous light by the phase modulator 12, the electric field of the light at the output of the phase modulator 12 is expressed by Expression (3).
Figure 2010025725
Here, f m is a phase modulation frequency, Δθ is a modulation index of phase modulation, and J n is a first type Bessel function. Further, n is an integer indicating the modulation sideband number.
That is, Equation (3) shows that the electric field of modulation sidebands having an amplitude represented by J n ([Delta] [theta]) is generated at the angular frequency interval 2 [pi] f m. The absolute value of n increases as the distance from the original continuous light increases, and the sign is positive on the higher frequency side than the original continuous light frequency.

図2に位相変調により発生する変調側波帯の位相相関をt=0の場合について模式的に示す。図2中のEnはn番目の変調側波帯を表している。なお、実際の変調側波帯の振幅はE0・Jn(Δθ)で与えられ、それらはおのおの異なった大きさを有しているが、図2では簡略化のためにこの振幅偏差を無視している。 FIG. 2 schematically shows the phase correlation of the modulation sideband generated by the phase modulation when t = 0. E n in FIG. 2 represents the n-th modulation sidebands. The actual amplitude of the modulation sideband is given by E 0 · J n (Δθ), and they have different sizes, but in FIG. 2, this amplitude deviation is ignored for simplification. is doing.

図2のIm{E}−Re{E}平面上におけるEnのRe{E}軸からの角度が、Enの相対的な位相を示している。nが負の奇数である場合Jn(Δθ)は負の値を取り、それ以外のnの値についてはJn(Δθ)は正の値を取る。このため、図2に示されるようにnが負の奇数である場合の変調側波帯は他の変調側波帯と位相がπずれている。 Angle from Re {E} axis E n in the Im {E} -Re {E} plane 2 is shows the relative phase of E n. When n is a negative odd number, J n (Δθ) takes a negative value, and for other values of n, J n (Δθ) takes a positive value. For this reason, as shown in FIG. 2, the phase of the modulation sideband when n is a negative odd number is shifted by π from the other modulation sideband.

位相変調器12出力の光を分散媒体13に入射すると、おのおのの変調側波帯は波長分散による位相変化を受け、その結果、位相変調−強度変調変換が起こり、強度変調成分が発生する。分散媒体13の群速度分散値と長さをそれぞれβ2、Lとすると、分散媒体13後の光の電界は式(4)で表わされる。

Figure 2010025725
When the light output from the phase modulator 12 is incident on the dispersion medium 13, each modulation sideband receives a phase change due to chromatic dispersion. As a result, phase modulation-intensity modulation conversion occurs, and an intensity modulation component is generated. Assuming that the group velocity dispersion value and length of the dispersion medium 13 are β 2 and L, respectively, the electric field of light after the dispersion medium 13 is expressed by Expression (4).
Figure 2010025725

t=0の場合について考えると、式(4)より、β2Lの群速度分散を有する分散媒体13を通過することによる各変調側波帯の位相変化は、図2のIm{E}−Re{E}平面を2π22(fm 2β2L)だけ回転することに相当する。すなわち、群速度分散により各変調側波帯が受ける相対的な位相変化量はn2に比例する。ここで、n=±1の場合、すなわちE±1の変調側波帯について考えると、この変調側波帯がβ2Lの群速度分散を有する分散媒体13を通過後に受ける位相変化量は2π2(fm 2β2L)となる。 Considering the case of t = 0, from Equation (4), the phase change of each modulation sideband caused by passing through the dispersion medium 13 having the group velocity dispersion of β 2 L is Im {E} − in FIG. This corresponds to rotating the Re {E} plane by 2π 2 n 2 (f m 2 β 2 L). That is, the relative amount of phase change received by each modulation sideband due to group velocity dispersion is proportional to n 2 . Here, in the case of n = ± 1, that is, when the modulation sideband of E ± 1 is considered, the amount of phase change that the modulation sideband receives after passing through the dispersion medium 13 having the group velocity dispersion of β 2 L is 2π. 2 a (f m 2 β 2 L) .

この位相変化量がπの偶数倍となる場合、すなわちkを自然数として以下の式(5)が成り立つ場合、各変調側波帯の位相は図2に示すような相関関係に戻る。

Figure 2010025725
すなわち、この場合、分散媒体13後の光は強度変調成分を持たない連続光に戻ることになる。 When the amount of phase change is an even multiple of π, that is, when the following equation (5) is satisfied with k as a natural number, the phase of each modulation sideband returns to the correlation as shown in FIG.
Figure 2010025725
That is, in this case, the light after the dispersion medium 13 returns to continuous light having no intensity modulation component.

ここで、式(5)をfmについて解くと、以下の式(6)が得られる。

Figure 2010025725
Here, by solving equation (5) f m, of the formula (6) below is obtained.
Figure 2010025725

一方、位相変化量2π2(fm 2β2L)がπの奇数倍となる場合、すなわちkを自然数として以下の式(7)が成り立つ場合、各変調側波帯の位相は図3に示すような相関関係になる。

Figure 2010025725
この場合、図2と図3に示される位相関係は、元の連続光の光周波数を中心として対称的な関係になっている。したがって、式(7)が成り立つ場合においても、分散媒体13後の光は強度変調成分を持たない連続光に戻ることになる。 On the other hand, when the phase change amount 2π 2 (f m 2 β 2 L) is an odd multiple of π, that is, when k is a natural number and the following equation (7) holds, the phase of each modulation sideband is shown in FIG. The correlation is as shown.
Figure 2010025725
In this case, the phase relationships shown in FIGS. 2 and 3 are symmetrical with respect to the optical frequency of the original continuous light. Therefore, even when Expression (7) is satisfied, the light after the dispersion medium 13 returns to continuous light having no intensity modulation component.

ここで、式(7)をfmについて解くと、以下の式(8)となる。

Figure 2010025725
Here, by solving equation (7) f m, and becomes the following equation (8).
Figure 2010025725

式(6)と式(8)をまとめると、位相変調周波数が以下の式(9)を満たす場合、分散媒体13出力における位相変調光は、強度変調成分を持たない連続光に戻ることになる。

Figure 2010025725
ただし、kは自然数とする。なお、式(9)は位相変調指数Δθを含まないため、式(9)が成立する場合に位相変調光が連続光に戻るという振舞いは、いかなる位相変調指数Δθについても成立する。 Summarizing Equation (6) and Equation (8), when the phase modulation frequency satisfies the following Equation (9), the phase modulated light at the output of the dispersion medium 13 returns to continuous light having no intensity modulation component. .
Figure 2010025725
However, k is a natural number. Since equation (9) does not include the phase modulation index Δθ, the behavior that the phase-modulated light returns to continuous light when equation (9) is satisfied holds for any phase modulation index Δθ.

なお、波長λにおける群速度分散β2と単位長さ当たりの波長分散Dの関係は以下の式(10)で表わされる。

Figure 2010025725
ただし、cは真空中の光速度である。 The relationship between the group velocity dispersion β 2 at the wavelength λ and the chromatic dispersion D per unit length is expressed by the following equation (10).
Figure 2010025725
Where c is the speed of light in vacuum.

ここで、式(10)を式(9)に代入することによって、以下の式(11)が得られる。

Figure 2010025725
Here, the following equation (11) is obtained by substituting equation (10) into equation (9).
Figure 2010025725

さらに、この式(11)を分散媒体13の総波長分散量|D|Lについて解くと、以下の式(12)が得られる。

Figure 2010025725
ただし、kは自然数とする。 Further, when the equation (11) is solved for the total chromatic dispersion amount | D | L of the dispersion medium 13, the following equation (12) is obtained.
Figure 2010025725
However, k is a natural number.

このように、正弦波位相変調の変調周波数を掃引させて分散媒体13出力における光の時間波形が強度変調成分を持たない、すなわち連続光になる変調周波数を求めることにより、式(12)より分散媒体13の総波長分散量|D|Lを求めることが可能となる。式(12)から分かるように、本実施例に係る波長分散測定装置及び波長分散測定方法における分散測定においては、使用する光源10の出力光の波長λ、及び分散媒体13出力における光が連続光となる変調周波数fmという2つのパラメータのみから正確に波長分散を導出することが可能である。そして、これらの2つのパラメータはともに精度の高い測定が可能であり、その結果、得られる波長分散の値も精度の高いものとなる。 In this way, by sweeping the modulation frequency of the sine wave phase modulation and obtaining the modulation frequency in which the time waveform of the light at the output of the dispersion medium 13 does not have an intensity modulation component, that is, continuous light, dispersion is performed from the equation (12). The total chromatic dispersion amount | D | L of the medium 13 can be obtained. As can be seen from the equation (12), in the dispersion measurement in the wavelength dispersion measuring apparatus and the wavelength dispersion measuring method according to the present embodiment, the wavelength λ of the output light of the light source 10 used and the light at the output of the dispersion medium 13 are continuous light. It is possible to accurately derive chromatic dispersion from only two parameters of the modulation frequency f m . Both of these two parameters can be measured with high accuracy. As a result, the obtained chromatic dispersion value also has high accuracy.

ここで、分散媒体13を波長分散Dが17[ps/(nm・km)]、長さLが80[km]のファイバとし、上述した波長分散測定方法の動作確認を数値計算にて行った結果を示す。
光源の波長は1550[nm]とした。これらの条件を式(11)に入れると以下の式(13)が得られる。

Figure 2010025725
Here, the dispersion medium 13 is a fiber having a chromatic dispersion D of 17 [ps / (nm · km)] and a length L of 80 [km], and the operation check of the above-described chromatic dispersion measurement method was performed by numerical calculation. Results are shown.
The wavelength of the light source was 1550 [nm]. When these conditions are put into the equation (11), the following equation (13) is obtained.
Figure 2010025725

式(13)においてk=0.5、1、1.5、2の場合について、すなわちfm=6.77、9.58、11.73、13.55[GHz]の場合について、上記の長さ80[km]のファイバ出力における光の時間波形を、数値計算で求めた結果を図4に示す。
ここでは、位相変調の変調指数0.07πと0.19πの2つの場合について計算した。いずれの位相変調指数においても、kが自然数の場合、すなわちfm=9.58、13.55[GHz]の場合、光の時間波形は強度変調成分を持たない連続光となり、それ以外の場合は強度変調された光になっていることが分かる。
In the case of k = 0.5, 1, 1.5, 2 in equation (13), that is, for the case of f m = 6.77, 9.58, 11.73, 13.55 [GHz] FIG. 4 shows a result obtained by numerical calculation of a time waveform of light at a fiber output having a length of 80 [km].
Here, calculation was performed for two cases of modulation index 0.07π and 0.19π of phase modulation. In any phase modulation index, when k is a natural number, that is, when f m = 9.58, 13.55 [GHz], the time waveform of light is continuous light having no intensity modulation component, otherwise It can be seen that the light is intensity modulated.

また、上記と同じ系で位相変調周波数を0.5[GHz]から20[GHz]まで変化させた場合における、受光器出力中の変調周波数成分の強度を数値計算により求めた結果を図5に示す。
図5においては、変調周波数fm=9.6、13.6、16.6、19.2[GHz]の各周波数成分において交流成分強度が極小値を取っていることが分かる。これらの4つの周波数は式(12)におけるk=1、2、3、4の場合に相当する。これらの値から被測定媒体13の|D|Lの値1360[ps/nm]が導出される。
Further, FIG. 5 shows the result of the numerical calculation of the intensity of the modulation frequency component in the output of the light receiver when the phase modulation frequency is changed from 0.5 [GHz] to 20 [GHz] in the same system as described above. Show.
In FIG. 5, it can be seen that the AC component intensity has a minimum value in each frequency component of the modulation frequency f m = 9.6, 13.6, 16.6, 19.2 [GHz]. These four frequencies correspond to the cases of k = 1, 2, 3, 4 in equation (12). From these values, the value 1360 [ps / nm] of | D | L of the measured medium 13 is derived.

ここで、本実施例に係る波長分散方法の手順について説明する。
図6に示すように、はじめに、ステップS10において、光源10、位相変調器12、発振器11、分散媒体(被測定媒体)13、受光器14、スペクトラムアナライザ15を接続する。
Here, the procedure of the wavelength dispersion method according to the present embodiment will be described.
As shown in FIG. 6, first, in step S10, the light source 10, the phase modulator 12, the oscillator 11, the dispersion medium (measuring medium) 13, the light receiver 14, and the spectrum analyzer 15 are connected.

次に、ステップS11において、発振器11の周波数を掃引し、スペクトラムアナライザ15によって各変調周波数における交流成分強度を測定する。
次に、ステップS12において、交流成分強度が極小値を取る変調周波数fmを求める。
最後に、ステップS13において、式(12)より分散媒体(被測定媒体)13の総波長分散値|D|Lを求める。
Next, in step S11, the frequency of the oscillator 11 is swept, and the AC component intensity at each modulation frequency is measured by the spectrum analyzer 15.
Next, in step S12, obtains the modulation frequency f m of the AC component intensity takes a minimum value.
Finally, in step S13, the total chromatic dispersion value | D | L of the dispersion medium (measuring medium) 13 is obtained from Expression (12).

本発明に係る波長分散測定装置及び波長分散測定方法の第2の実施例について説明する。
図7は本実施例に係る波長分散測定装置の一例を示す構成図、図8は受光器出力における交流成分強度と周波数の相関の計算結果を示すグラフ、図9は本実施例に係る波長分散方法の手順を説明するフローチャートである。
A second embodiment of the chromatic dispersion measuring apparatus and chromatic dispersion measuring method according to the present invention will be described.
FIG. 7 is a block diagram showing an example of a chromatic dispersion measuring apparatus according to the present embodiment, FIG. 8 is a graph showing a calculation result of the correlation between the AC component intensity and the frequency at the receiver output, and FIG. 9 is a chromatic dispersion according to the present embodiment. It is a flowchart explaining the procedure of a method.

図7に示すように、本実施例においては、図1に示した第1の実施例と異なり、周波数可変の発振器11の代わりに雑音発生器20が用いられる。この雑音発生器20から出力された広帯域の白色雑音信号を位相変調器12に入力し、光源10からの光に位相変調を施した後に分散媒体13に入射する。   As shown in FIG. 7, in this embodiment, unlike the first embodiment shown in FIG. 1, a noise generator 20 is used instead of the frequency variable oscillator 11. The broadband white noise signal output from the noise generator 20 is input to the phase modulator 12, phase-modulated to the light from the light source 10, and then incident on the dispersion medium 13.

分散媒体13の出力を受光器14で電気信号に変換し、スペクトラムアナライザ15により白色雑音信号周波数範囲内の交流成分を観測する。分散媒体13中においては各周波数成分に対して位相変調−強度変調変換により強度変調成分が発生する。しかしながら、式(11)を満たす周波数については強度変調成分が0になるため、この周波数については交流成分強度が極小値を取る。この極小値を取る周波数から式(12)より分散媒体の波長分散を直接導出することが可能となる。   The output of the dispersion medium 13 is converted into an electric signal by the light receiver 14, and the AC component within the white noise signal frequency range is observed by the spectrum analyzer 15. In the dispersion medium 13, an intensity modulation component is generated by phase modulation-intensity modulation conversion for each frequency component. However, since the intensity modulation component becomes 0 for the frequency satisfying Equation (11), the AC component intensity takes a minimum value for this frequency. It is possible to directly derive the chromatic dispersion of the dispersion medium from Equation (12) from the frequency that takes this minimum value.

第1の実施例と同じ波長分散Dが17[ps/(nm・km)]、長さLが80[km]のファイバを被測定媒体13として、本実施例における波長分散測定方法の動作確認を数値計算にて行った結果を図8に示す。
図8においては、変調周波数fm=9.6、13.6、16.6、19.2[GHz]の各周波数成分において交流成分強度が極小値を取っている。これらの4つの周波数は式(12)におけるk=1、2、3、4の場合に相当する。これらの値から被測定媒体13の|D|Lの値1360[ps/nm]が導出される。
Operation confirmation of the chromatic dispersion measuring method in this embodiment using a fiber having a chromatic dispersion D of 17 [ps / (nm · km)] and a length L of 80 [km] as in the first embodiment as a measured medium 13. FIG. 8 shows the result obtained by numerical calculation.
In FIG. 8, the AC component intensity has a minimum value in each frequency component of the modulation frequency f m = 9.6, 13.6, 16.6, 19.2 [GHz]. These four frequencies correspond to the cases of k = 1, 2, 3, 4 in equation (12). From these values, the value 1360 [ps / nm] of | D | L of the measured medium 13 is derived.

ここで、本実施例に係る波長分散方法の手順について説明する。
図9に示すように、はじめに、ステップS20において、光源10、位相変調器12、雑音発生器20、分散媒体(被測定媒体)13、受光器14、スペクトラムアナライザ15を接続する。
Here, the procedure of the wavelength dispersion method according to the present embodiment will be described.
As shown in FIG. 9, first, in step S20, the light source 10, the phase modulator 12, the noise generator 20, the dispersion medium (measuring medium) 13, the light receiver 14, and the spectrum analyzer 15 are connected.

次に、ステップS21において、スペクトラムアナライザ15によって交流成分強度の変調周波数依存性を測定する。
次に、ステップS22において、交流成分強度が極小値を取る変調周波数fmを求める。
最後に、ステップS23において、式(12)より分散媒体(被測定媒体)13の総波長分散値|D|Lを求める。
Next, in step S21, the spectrum analyzer 15 measures the modulation frequency dependence of the AC component intensity.
Next, in step S22, obtains the modulation frequency f m of the AC component intensity takes a minimum value.
Finally, in step S23, the total chromatic dispersion value | D | L of the dispersion medium (measuring medium) 13 is obtained from Expression (12).

本発明に係る波長分散測定装置及び波長分散測定方法の第3の実施例について説明する。
図10は本実施例に係る波長分散測定装置の一例を示す構成図、図11は本実施例に係る波長分散方法の手順を説明するフローチャートである。
図10に示すように、本実施例においては、図1に示した第1の実施例の構成に加えて、位相変調器12の後段に波長分散値が既知である分散媒体30が挿入されている。この分散媒体30が挿入された状態と、これを除いた状態の2回について分散測定を行うことにより、被測定媒体13の波長分散値と長さの積DLの値を、正負の符号も含めて導出することが可能となる。以下にその測定原理を示す。
A third embodiment of the wavelength dispersion measuring apparatus and wavelength dispersion measuring method according to the present invention will be described.
FIG. 10 is a configuration diagram illustrating an example of a chromatic dispersion measuring apparatus according to the present embodiment, and FIG. 11 is a flowchart illustrating a procedure of a chromatic dispersion method according to the present embodiment.
As shown in FIG. 10, in this embodiment, in addition to the configuration of the first embodiment shown in FIG. 1, a dispersion medium 30 whose chromatic dispersion value is known is inserted after the phase modulator 12. Yes. The dispersion measurement is performed twice for the state in which the dispersion medium 30 is inserted and the state in which the dispersion medium 30 is removed, so that the value of the product DL of the wavelength dispersion value and the length of the medium to be measured 13 includes the positive and negative signs. Can be derived. The measurement principle is shown below.

波長分散値が既知である分散媒体30について、その波長分散値と長さをそれぞれD0、L0とおく。一方、被測定媒体13について、その波長分散値と長さをそれぞれD、Lとおく。これらの2つのファイバを接続して位相変調光を入射した場合について、強度変調周波数成分の強度が極小値を取る周波数の最小値(すなわち、式(11)において、k=1の場合の周波数)を、fm1とおく。この場合、以下の式(14)が成り立つ。

Figure 2010025725
For a dispersion medium 30 with a known chromatic dispersion value, the chromatic dispersion value and length are set to D 0 and L 0 , respectively. On the other hand, with respect to the measured medium 13, the chromatic dispersion value and the length are set to D and L, respectively. In the case where phase modulation light is incident after connecting these two fibers, the minimum value of the frequency at which the intensity of the intensity modulation frequency component takes the minimum value (that is, the frequency when k = 1 in Equation (11)). Is set to f m1 . In this case, the following formula (14) is established.
Figure 2010025725

続いて、波長分散値が既知である分散媒体30を除去し、被測定媒体13のみに位相変調光を入射した場合について、強度変調周波数成分の強度が極小値を取る周波数の最小値(すなわち、式(11)において、k=1の場合の周波数)を、fm2とおく。この場合、以下の式(15)が成り立つ。

Figure 2010025725
Subsequently, when the dispersion medium 30 having a known chromatic dispersion value is removed and the phase-modulated light is incident only on the measured medium 13, the minimum value of the frequency at which the intensity of the intensity modulation frequency component takes the minimum value (that is, In Equation (11), f m2 is the frequency when k = 1. In this case, the following formula (15) is established.
Figure 2010025725

式(15)の両辺の2乗から式(14)の両辺の2乗を引くことにより、以下の式(16)が得られる。

Figure 2010025725
式(16)から分かるように、本実施例に係る波長分散測定装置及び波長分散測定方法により、被測定媒体13の波長分散値と長さの積DLの値を、正負の符号も含めて導出することが可能である。 By subtracting the square of both sides of equation (14) from the square of both sides of equation (15), the following equation (16) is obtained.
Figure 2010025725
As can be seen from Expression (16), the value of the product DL of the chromatic dispersion value and the length of the measured medium 13 including the positive and negative signs is derived by the chromatic dispersion measuring apparatus and the chromatic dispersion measuring method according to the present embodiment. Is possible.

ここで、本実施例に係る波長分散方法の手順について説明する。
図11に示すように、はじめに、ステップS30において、光源10、位相変調器12、発振器11、分散媒体(分散量既知)30、分散媒体(被測定媒体)13、受光器14、スペクトラムアナライザ15を接続する。
Here, the procedure of the wavelength dispersion method according to the present embodiment will be described.
As shown in FIG. 11, first, in step S30, the light source 10, the phase modulator 12, the oscillator 11, the dispersion medium (dispersion amount known) 30, the dispersion medium (measuring medium) 13, the light receiver 14, and the spectrum analyzer 15 are displayed. Connecting.

次に、ステップS31において、発振器11の周波数を掃引し、スペクトラムアナライザ15によって各変調周波数における交流成分強度を測定する。
次に、ステップS32において、交流成分強度が極小値を取る変調周波数fm1を求める。
次に、ステップS33において、分散媒体(分散量既知)30を除去し、位相変調器12出力を分散媒体(被測定媒体)13に接続する。
Next, in step S31, the frequency of the oscillator 11 is swept, and the AC component intensity at each modulation frequency is measured by the spectrum analyzer 15.
Next, in step S32, a modulation frequency f m1 at which the AC component intensity takes a minimum value is obtained.
Next, in step S33, the dispersion medium (dispersion amount known) 30 is removed, and the output of the phase modulator 12 is connected to the dispersion medium (measuring medium) 13.

次に、ステップS34において、発振器11の周波数を掃引し、スペクトラムアナライザ15によって各変調周波数における交流成分強度を測定する。
次に、ステップS35において、交流成分強度が極小値を取る変調周波数fm2を求める。
最後に、ステップS36において、式(16)より分散媒体(被測定媒体)13の総波長分散値DLを求める。
Next, in step S34, the frequency of the oscillator 11 is swept, and the AC component intensity at each modulation frequency is measured by the spectrum analyzer 15.
Next, in step S35, it obtains the modulation frequency f m2 where the AC component intensity takes a minimum value.
Finally, in step S36, the total chromatic dispersion value DL of the dispersion medium (measuring medium) 13 is obtained from equation (16).

本発明に係る波長分散測定装置及び波長分散測定方法の第4の実施例について説明する。
図12は本実施例に係る波長分散測定装置の一例を示す構成図、図13は本実施例に係る波長分散方法の手順を説明するフローチャートである。
図12に示すように、本実施例においては、使用される光源が波長可変光源31であることが特徴となる。これにより、波長可変光源31の出力可能な波長範囲内で分散測定を行うことが可能となる。
A fourth embodiment of the chromatic dispersion measuring apparatus and chromatic dispersion measuring method according to the present invention will be described.
FIG. 12 is a block diagram showing an example of a chromatic dispersion measuring apparatus according to this embodiment, and FIG. 13 is a flowchart for explaining the procedure of the chromatic dispersion method according to this embodiment.
As shown in FIG. 12, this embodiment is characterized in that the light source used is a wavelength variable light source 31. As a result, dispersion measurement can be performed within a wavelength range that can be output from the wavelength tunable light source 31.

ここで、本実施例に係る波長分散方法の手順について説明する。
図13に示すように、はじめに、ステップS40において、波長可変光源31、位相変調器12、雑音発生器20、分散媒体(被測定媒体)13、受光器14、スペクトラムアナライザ15を接続する。
Here, the procedure of the wavelength dispersion method according to the present embodiment will be described.
As shown in FIG. 13, first, in step S40, the wavelength tunable light source 31, the phase modulator 12, the noise generator 20, the dispersion medium (measuring medium) 13, the light receiver 14, and the spectrum analyzer 15 are connected.

次に、ステップS41において、スペクトラムアナライザ15によって交流成分強度の変調周波数依存性を測定する。
次に、ステップS42において、交流成分強度が極小値を取る変調周波数fmを求める。
次に、ステップS43において、式(12)より分散媒体(被測定媒体)13の総波長分散値|D|Lを求める。
Next, in step S41, the spectrum analyzer 15 measures the modulation frequency dependence of the AC component intensity.
Next, in step S42, obtains the modulation frequency f m of the AC component intensity takes a minimum value.
Next, in step S43, the total chromatic dispersion value | D | L of the dispersion medium (measuring medium) 13 is obtained from Expression (12).

次に、ステップS44において、波長可変光源の設定波長を変化させる。波長可変光源の設定波長を変化後、再度ステップS41からステップS43を実行する。そして、波長可変光源31の出力可能な波長範囲内、又は波長分散測定を必要とする範囲内で設定波長を変化させ終えた後、ステップS45へ移行する。
最後に、ステップS45において、分散媒体(被測定媒体)13の総波長分散値|D|Lを求める。
Next, in step S44, the set wavelength of the wavelength tunable light source is changed. After changing the set wavelength of the wavelength tunable light source, steps S41 to S43 are executed again. Then, after changing the set wavelength within the wavelength range that can be output from the wavelength tunable light source 31, or within the range that requires chromatic dispersion measurement, the process proceeds to step S45.
Finally, in step S45, the total chromatic dispersion value | D | L of the dispersion medium (measuring medium) 13 is obtained.

〔他の実施例〕
以上、本発明に係る波長分散測定装置及び波長分散測定方法の好適な実施例を例示して説明したが、本発明の実施形態は上述した実施例に限定されるものではなく、本発明の範囲内において、その構成部材等の置換、変更、追加、個数の増減、形状の設計変更、設定パラメータの変更等を行うことは、全て本発明の範囲に含まれるものである。
[Other Examples]
The preferred embodiments of the chromatic dispersion measuring apparatus and the chromatic dispersion measuring method according to the present invention have been illustrated and described above, but the embodiments of the present invention are not limited to the above-described embodiments, and the scope of the present invention. It is within the scope of the present invention to replace, change, add, increase / decrease the number of components, change the shape design, change the setting parameters, and the like.

上記非特許文献5及び上記非特許文献6の波長分散測定装置においては、強度変調器のαパラメータの値の誤差が波長分散の測定誤差につながる。また、上記特許文献1の波長分散測定装置においては、波長分散を導出するために、位相変調指数が既知の測定系を用意するか、位相変調指数を別途測定する必要がある。さらに、上記特許文献1の波長分散測定装置においては、受光器出力における直流成分と交流成分の強度比の測定誤差が波長分散の測定誤差につながる。   In the chromatic dispersion measuring devices of Non-Patent Document 5 and Non-Patent Document 6, an error in the value of the α parameter of the intensity modulator leads to a measurement error of chromatic dispersion. Further, in the chromatic dispersion measuring apparatus of Patent Document 1, it is necessary to prepare a measurement system with a known phase modulation index or to separately measure the phase modulation index in order to derive chromatic dispersion. Further, in the chromatic dispersion measuring apparatus of Patent Document 1, a measurement error of the intensity ratio of the direct current component to the alternating current component at the light receiver output leads to a measurement error of chromatic dispersion.

これに対し、本発明に係る波長分散測定装置及び波長分散測定方法においては、測定誤差を増大させる要因である位相変調器12のαパラメータ、変調指数、測定系の損失の各々の影響が含有されず、交流信号の周波数の値のみから高精度な波長分散値を導出することが可能である。   On the other hand, the chromatic dispersion measuring device and the chromatic dispersion measuring method according to the present invention include the effects of the α parameter of the phase modulator 12, the modulation index, and the loss of the measurement system, which are factors that increase the measurement error. It is possible to derive a highly accurate chromatic dispersion value from only the frequency value of the AC signal.

本発明は、光ファイバや光部品の基本特性の一つである波長分散値を測定する波長分散測定装置に利用することが可能である。   The present invention can be used in a chromatic dispersion measuring apparatus that measures a chromatic dispersion value, which is one of the basic characteristics of optical fibers and optical components.

第1の実施例に係る波長分散測定装置の一例を示す構成図である。It is a block diagram which shows an example of the chromatic dispersion measuring apparatus which concerns on a 1st Example. 位相変調直後、及び分散媒体出力において位相変調光が強度変調成分を持たなくなる条件における各変調側波帯の位相相関を模式的に示した説明図である。It is explanatory drawing which showed typically the phase correlation of each modulation sideband in the conditions which phase modulation light does not have an intensity | strength modulation component in a dispersion medium output immediately after phase modulation. 分散媒体出力において位相変調光が強度変調成分を持たなくなる条件における各変調側波帯の位相相関を模式的に示した説明図である。It is explanatory drawing which showed typically the phase correlation of each modulation sideband in the conditions from which a phase modulation light does not have an intensity | strength modulation component in a dispersion medium output. 分散媒体出力での光の時間波形の計算結果を示すグラフである。It is a graph which shows the calculation result of the time waveform of light in a dispersion medium output. 受光器出力における交流成分強度と周波数の相関の計算結果を示すグラフである。It is a graph which shows the calculation result of the correlation of the alternating current component intensity in an optical receiver output, and a frequency. 第1の実施例に係る波長分散方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the wavelength dispersion method which concerns on a 1st Example. 第2の実施例に係る波長分散測定装置の一例を示す構成図である。It is a block diagram which shows an example of the chromatic dispersion measuring apparatus which concerns on a 2nd Example. 受光器出力における交流成分強度と周波数の相関の計算結果を示すグラフである。It is a graph which shows the calculation result of the correlation of the alternating current component intensity in an optical receiver output, and a frequency. 第2の実施例に係る波長分散方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the wavelength dispersion method which concerns on a 2nd Example. 第3の実施例に係る波長分散測定装置の一例を示す構成図である。It is a block diagram which shows an example of the chromatic dispersion measuring apparatus which concerns on a 3rd Example. 第3の実施例に係る波長分散方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the wavelength dispersion method which concerns on a 3rd Example. 第4の実施例に係る波長分散測定装置の一例を示す構成図である。It is a block diagram which shows an example of the chromatic dispersion measuring apparatus which concerns on a 4th Example. 第4の実施例に係る波長分散方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the wavelength dispersion method which concerns on a 4th Example. 従来の波長分散測定装置の第1の構成例を示す図である。It is a figure which shows the 1st structural example of the conventional chromatic dispersion measuring apparatus. 従来の波長分散測定装置の第2の構成例を示す図である。It is a figure which shows the 2nd structural example of the conventional chromatic dispersion measuring apparatus.

符号の説明Explanation of symbols

10 光源
11 位相変調器
12 発振器(周波数可変)
13 分散媒体(被測定媒体)
14 受光器
15 スペクトラムアナライザ
20 雑音発生器
30 波長分散量が既知である分散媒体
31 波長可変光源
40 強度変調器
41 ネットワークアナライザ
50 発振器(周波数固定)
51 分波器
52 光スペクトラムアナライザ
53 交流電圧計
54 直流電圧計
55 バンドパスフィルタ
56 光増幅器
57 可変光減衰器
58 比較器
10 Light source 11 Phase modulator 12 Oscillator (frequency variable)
13 Dispersion medium (measuring medium)
14 Photoreceiver 15 Spectrum analyzer 20 Noise generator 30 Dispersion medium 31 with known chromatic dispersion amount Wavelength variable light source 40 Intensity modulator 41 Network analyzer 50 Oscillator (frequency fixed)
51 Splitter 52 Optical Spectrum Analyzer 53 AC Voltmeter 54 DC Voltmeter 55 Bandpass Filter 56 Optical Amplifier 57 Variable Optical Attenuator 58 Comparator

Claims (8)

被測定媒体の波長分散値を求める波長分散測定装置において、
連続光を発生させる光源と、
周波数掃引可能な正弦波信号を発生する電気信号発生器と、
前記電気信号発生器から出力される正弦波信号によって駆動され、前記光源の出力光に対して位相変調を行う位相変調器と、
前記位相変調器から出力される出力光を、前記被測定媒体に入射した際の出力光を電気信号に変換する受光器と、
前記受光器から出力される電気信号の交流成分の強度を観測する交流成分観測手段と
を具備し、
前記交流成分観測手段により交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める
ことを特徴とする波長分散測定装置。
In the chromatic dispersion measuring device for obtaining the chromatic dispersion value of the measured medium,
A light source that generates continuous light;
An electrical signal generator for generating a frequency sweepable sinusoidal signal;
A phase modulator driven by a sine wave signal output from the electrical signal generator and performing phase modulation on the output light of the light source;
A light receiver that converts the output light output from the phase modulator into an electrical signal when the light is incident on the measured medium; and
AC component observation means for observing the intensity of the AC component of the electrical signal output from the light receiver,
A chromatic dispersion measuring apparatus characterized in that a frequency at which an AC component takes a minimum value is obtained by the AC component observation means, and a chromatic dispersion value of a medium to be measured is obtained from this frequency.
被測定媒体の波長分散値を求める波長分散測定装置において、
連続光を発生させる光源と、
広帯域な電気雑音成分を発生する雑音発生器と、
前記雑音発生器から出力される電気雑音成分によって駆動され、前記光源の出力光に対して位相変調を行う位相変調器と、
前記位相変調器から出力される出力光を前記被測定媒体に入射した際の出力光を電気信号に変換する受光器と、
前記受光器から出力される電気信号の交流成分の強度を観測する交流成分観測手段と
を具備し、
前記交流成分観測手段により交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める
ことを特徴とする波長分散測定装置。
In the chromatic dispersion measuring device for obtaining the chromatic dispersion value of the measured medium,
A light source that generates continuous light;
A noise generator that generates a wide-band electrical noise component;
A phase modulator driven by an electrical noise component output from the noise generator and performing phase modulation on the output light of the light source;
A light receiver for converting the output light output from the phase modulator into an electric signal when the output light is incident on the measured medium;
AC component observation means for observing the intensity of the AC component of the electrical signal output from the light receiver,
A chromatic dispersion measuring apparatus characterized in that a frequency at which an AC component takes a minimum value is obtained by the AC component observation means, and a chromatic dispersion value of a medium to be measured is obtained from this frequency.
前記位相変調器の後段に波長分散値が既知である分散媒体を具備し、
前記位相変調器から出力される出力光を前記波長分散値が既知である分散媒体を通した後に前記被測定媒体に入射した場合と、前記位相変調器から出力される出力光を前記被測定媒体に直接入射した場合との2通りについて前記交流成分観測手段により交流成分が極小値を取る周波数を求め、これらの周波数から前記被測定媒体の波長分散値を符号も含めて求める
ことを特徴とする請求項1又は請求項2に記載の波長分散測定装置。
A dispersion medium having a known chromatic dispersion value is provided after the phase modulator,
When the output light output from the phase modulator passes through the dispersion medium whose chromatic dispersion value is known and then enters the measured medium, and the output light output from the phase modulator is the measured medium The frequency at which the AC component takes a minimum value is obtained by the AC component observation means for the two cases of direct incidence on the light, and the chromatic dispersion value of the measured medium including the sign is obtained from these frequencies. The chromatic dispersion measuring apparatus according to claim 1 or 2.
前記光源は前記連続光の波長が可変の波長可変光源であり、
前記被測定媒体の波長分散値の波長依存性を測定する
ことを特徴とする請求項1から請求項3のいずれか1項に記載の波長分散測定装置。
The light source is a wavelength variable light source in which the wavelength of the continuous light is variable;
The wavelength dispersion measuring apparatus according to any one of claims 1 to 3, wherein wavelength dependency of a wavelength dispersion value of the medium to be measured is measured.
被測定媒体の波長分散値を求める波長分散測定方法において、
連続光を発生する工程と、
周波数掃引可能な正弦波信号を発生する工程と、
前記正弦波信号を用いて前記連続光に対して位相変調を行う工程と、
位相変調された前記連続光を前記被測定媒体に入射した際の出力光を電気信号に変換する工程と、
前記電気信号の交流成分の強度を観測する工程と、
前記交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める工程と
を具備する
ことを特徴とする波長分散測定方法。
In the chromatic dispersion measuring method for obtaining the chromatic dispersion value of the measured medium,
A process of generating continuous light;
Generating a frequency sweepable sinusoidal signal;
Performing phase modulation on the continuous light using the sine wave signal;
Converting the output light when the phase-modulated continuous light is incident on the measured medium into an electrical signal;
Observing the intensity of the alternating current component of the electrical signal;
And a step of obtaining a frequency at which the AC component takes a minimum value, and obtaining a chromatic dispersion value of the medium to be measured from the frequency.
被測定媒体の波長分散値を求める波長分散測定方法において、
連続光を発生させる工程と、
広帯域な電気雑音成分を発生させる工程と、
前記電気雑音成分を用いて前記連続光に対して位相変調を行う工程と、
位相変調された前記連続光を前記被測定媒体に入射した際の出力光を電気信号に変換する工程と、
前記電気信号の交流成分の強度を観測する工程と、
前記交流成分が極小値を取る周波数を求め、この周波数から被測定媒体の波長分散値を求める工程と
を具備する
ことを特徴とする波長分散測定方法。
In the chromatic dispersion measuring method for obtaining the chromatic dispersion value of the measured medium,
A step of generating continuous light;
Generating a wide-band electrical noise component;
Performing phase modulation on the continuous light using the electrical noise component;
Converting the output light when the phase-modulated continuous light is incident on the measured medium into an electrical signal;
Observing the intensity of the alternating current component of the electrical signal;
And a step of obtaining a frequency at which the AC component takes a minimum value, and obtaining a chromatic dispersion value of the medium to be measured from the frequency.
位相変調された前記連続光を波長分散値が既知である分散媒体を通す工程と、
位相変調された前記連続光を前記分散媒体を通した後に前記被測定媒体に入射した場合と、位相変調された前記連続光を前記被測定媒体に直接入射した場合との2通りについて交流成分が極小値を取る周波数を求め、これらの周波数から前記被測定媒体の波長分散値を符号も含めて求める工程と
を具備する
ことを特徴とする請求項5又は請求項6に記載の波長分散測定方法。
Passing the phase-modulated continuous light through a dispersion medium having a known chromatic dispersion value;
The AC component is divided into two types: a case where the phase-modulated continuous light passes through the dispersion medium and then enters the medium to be measured, and a case where the phase-modulated continuous light directly enters the medium to be measured. 7. A method for measuring chromatic dispersion according to claim 5 or 6, further comprising: obtaining a frequency that takes a minimum value, and obtaining a chromatic dispersion value of the measured medium including a sign from these frequencies. .
前記連続光は波長を可変とし、
前記被測定媒体の波長分散値の波長依存性を測定する
ことを特徴とする請求項5から請求項7のいずれか1項に記載の波長分散測定方法。
The continuous light has a variable wavelength,
The chromatic dispersion measuring method according to claim 5, wherein wavelength dependency of a chromatic dispersion value of the medium to be measured is measured.
JP2008186856A 2008-07-18 2008-07-18 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method Expired - Fee Related JP5179277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186856A JP5179277B2 (en) 2008-07-18 2008-07-18 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186856A JP5179277B2 (en) 2008-07-18 2008-07-18 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Publications (2)

Publication Number Publication Date
JP2010025725A true JP2010025725A (en) 2010-02-04
JP5179277B2 JP5179277B2 (en) 2013-04-10

Family

ID=41731704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186856A Expired - Fee Related JP5179277B2 (en) 2008-07-18 2008-07-18 Chromatic dispersion measuring apparatus and chromatic dispersion measuring method

Country Status (1)

Country Link
JP (1) JP5179277B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113722A (en) * 1993-10-19 1995-05-02 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion measuring device for optical fiber
JPH1062570A (en) * 1996-06-12 1998-03-06 Oyo Koden Kenkiyuushitsu:Kk Method and apparatus for measuring time lag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113722A (en) * 1993-10-19 1995-05-02 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion measuring device for optical fiber
JPH1062570A (en) * 1996-06-12 1998-03-06 Oyo Koden Kenkiyuushitsu:Kk Method and apparatus for measuring time lag

Also Published As

Publication number Publication date
JP5179277B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
Li et al. Few-mode fiber based optical sensors
Zou et al. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair
Chen et al. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer
He et al. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing
JP2000180265A (en) Brillouin gain spectrum measuring method and device
CN108917804A (en) Quick long-distance distributed Brillouin light fiber sensing equipment based on chirp chain
Baker et al. Chromatic-dispersion measurement by modulation phase-shift method using a Kerr phase-interrogator
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
Wen et al. Accuracy-enhanced wideband optical vector network analyzer based on double-sideband modulation
Liang et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform
Ahn et al. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber
US11698277B2 (en) Method and system for determining grating perturbation by modulated light
Sakhbiev et al. Optical vector network analyzer based on unbalanced amplitude-phase modulation
EP2562527B1 (en) Method, apparatus, and program for measuring wavelength dispersion of optical waveguide
Zou et al. Self-calibrated electrical measurement of magnitude response of optical filters based on dual-frequency-shifted heterodyne
Pan et al. Optical vector network analyzer based on optical single-sideband modulation
Costa et al. Fast and direct measurement of the linear birefringence profile in standard single-mode optical fibers
JP2011102795A (en) Wavelength dispersion measuring device and method using the same
JP5179277B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method
JP2014149190A (en) Measuring device, measuring method, light source device, and article manufacturing method
JP6281864B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
Takada et al. Coherent frequency-modulated continuous wave reflectometry for measuring stationary Brillouin grating induced under uniform pumping by counterpropagating nonmodulated light waves
Fu et al. Simple and precise characterization of differential modal group delay arising in few-mode fiber
JP2018021890A (en) Device for measuring difference in inter-spatial channel propagation delay time and method for measuring difference in inter-spatial channel propagation delay time
Jeon et al. Optical fiber chromatic dispersion measurement using bidirectional modulation of an optical intensity modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees