JP2010024382A - Flame-retardant resin composition - Google Patents

Flame-retardant resin composition Download PDF

Info

Publication number
JP2010024382A
JP2010024382A JP2008188807A JP2008188807A JP2010024382A JP 2010024382 A JP2010024382 A JP 2010024382A JP 2008188807 A JP2008188807 A JP 2008188807A JP 2008188807 A JP2008188807 A JP 2008188807A JP 2010024382 A JP2010024382 A JP 2010024382A
Authority
JP
Japan
Prior art keywords
resin composition
retardant resin
flame retardant
flame
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188807A
Other languages
Japanese (ja)
Inventor
Yoshimi Yamamoto
良美 山本
Nobuyuki Kondo
信幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008188807A priority Critical patent/JP2010024382A/en
Publication of JP2010024382A publication Critical patent/JP2010024382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant resin composition which exhibits excellent flame retardancy without using a halogen compound nor a phosphorous compound. <P>SOLUTION: The flame-retardant resin composition contains a resin A, a solid acid B, and an inorganic filler whose dehydration starts in a temperature range from -50°C being the thermal decomposition temperature of a mixture of A and B to +50°C. As the resin A, a compound containing an organic acid group and/or an organic acid ester group is preferable. As the solid acid B, a substance containing an oxide of silicon and nitrogen ion is preferable. As the inorganic filler C, a compound selected from the group comprising magnesium oxide, aluminum oxide, basic magnesium carbonate and hydrotalcite is preferable. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハロゲン原子を有さず、また、従来の無機難燃剤よりも高い難燃性を発現可能な難燃樹脂組成物に関する。   The present invention relates to a flame retardant resin composition that does not have a halogen atom and can exhibit higher flame retardancy than a conventional inorganic flame retardant.

従来、ハロゲンを含まない難燃材として金属水酸化物を添加した材料が知られている。高い難燃性能を達成するためには、該金属水酸化物を多量に添加しなければならず、相対的な樹脂量の減少により、難燃性以外の物性、例えば成形加工性や機械特性などが低下するという問題があった。これらを解決するための手段として、既に、次のような技術が開示されている。   Conventionally, a material to which a metal hydroxide is added is known as a flame retardant containing no halogen. In order to achieve high flame retardant performance, a large amount of the metal hydroxide must be added. By reducing the relative resin amount, physical properties other than flame retardant, such as moldability and mechanical properties, etc. There was a problem that decreased. As means for solving these problems, the following techniques have already been disclosed.

特開2002−302613号公報(特許文献1)は、硝酸金属塩を樹脂の酸化分解促進剤として添加しており、燃焼時樹脂が瞬時に酸化分解し、液状化することで燃焼阻害性を得ている。しかし、酸化分解液が燃焼時に滴下するため、落下地点で燃焼が継続されるという懸念がある。   Japanese Patent Laid-Open No. 2002-302613 (Patent Document 1) adds a nitrate metal salt as an oxidative decomposition accelerator for a resin, and the resin during combustion instantaneously oxidatively decomposes and liquefies to obtain combustion inhibition. ing. However, since the oxidative decomposition liquid is dripped at the time of combustion, there is a concern that the combustion is continued at the dropping point.

特表2007−507564号公報(特許文献2)では、ポリリン酸アンモニウムとペンタエリトリトールとを樹脂材料に添加することで、燃焼時に樹脂の発泡と架橋を促し難燃性を付与している。しかし、リンの存在により、土壌・水質汚染や、人体への悪影響が懸念される。   In Japanese translations of PCT publication No. 2007-507564 (Patent Document 2), by adding ammonium polyphosphate and pentaerythritol to a resin material, foaming and crosslinking of the resin are promoted during combustion to impart flame retardancy. However, due to the presence of phosphorus, there are concerns about soil and water pollution and adverse effects on the human body.

特開2002−302613号公報JP 2002-302613 A 特表2007−507564号公報Special Table 2007-507564

本発明の課題は、ハロゲン系化合物やリン系化合物を使用することなしに優れた難燃性を発現させる難燃樹脂組成物を提供することにある。   The subject of this invention is providing the flame-retardant resin composition which expresses the outstanding flame retardance, without using a halogen-type compound and a phosphorus compound.

従来、ノンハロゲン系難燃材では、主材の樹脂に無機充填剤を多量に添加する手法が一般的であった。あるいは特許文献1のように主材を低分子量まで急速に分解させ、液状化させることで消炎させるという手法が用いられてきた。
本発明では、ハロゲン系化合物やリン系化合物を使用せず、従来よりも高い難燃性を発現させることが可能であり、また、燃焼時に主材の樹脂の液状化を起こさない難燃樹脂組成物を提供する。
Conventionally, in a non-halogen flame retardant material, a method of adding a large amount of an inorganic filler to a main resin has been common. Alternatively, as in Patent Document 1, a technique has been used in which the main material is rapidly decomposed to a low molecular weight and liquefied to extinguish the flame.
In the present invention, a flame-retardant resin composition that does not use a halogen-based compound or a phosphorus-based compound, can exhibit higher flame retardance than before, and does not cause liquefaction of the main resin during combustion. Offer things.

すなわち、本発明は、以下の態様を包含する。
1.樹脂A、固体酸B、及びAとBとの混合物の熱分解温度−50℃の温度以上で脱水を開始する無機充填剤Cとを含む難燃樹脂組成物。
2.前記無機充填剤Cが、前記AとBとの混合物の熱分解温度+50℃の温度以下で脱水を開始する前記1に記載の難燃樹脂組成物。
3.前記固体酸Bが珪素の酸化物を含む多孔質体である前記1または前記2に記載の難燃樹脂組成物。
4.前記固体酸Bが、さらにアルミニウムの酸化物を含む前記3に記載の難燃樹脂組成物。
5.前記固体酸Bがシリカアルミナである前記1または前記2に記載の難燃樹脂組成物。
6.前記固体酸Bが、さらに含窒素イオンを含む前記1〜5のいずれか1項に記載の難燃樹脂組成物。
7.前記含窒素イオンが、アンモニウムイオン及び/または硝酸イオンである前記6に記載の難燃樹脂組成物。
8.前記樹脂Aの熱分解温度が、Aと前記固体酸Bとの混合物の熱分解温度よりも高い前記1に記載の難燃樹脂組成物。
9.前記樹脂Aが、有機酸基及び/または有機酸エステル基を有する前記8に記載の難燃樹脂組成物。
10.前記有機酸基がカルボン酸基であり、前記有機酸エステル基がカルボン酸エステル基である前記9に記載の難燃樹脂組成物。
11.前記無機充填剤Cが、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、及びハイドロタルサイトからなる群から選ばれる1種以上である前記1または2に記載の難燃樹脂組成物。
That is, this invention includes the following aspects.
1. A flame retardant resin composition comprising resin A, solid acid B, and inorganic filler C that starts dehydration at a temperature equal to or higher than a thermal decomposition temperature of −50 ° C. of a mixture of A and B.
2. 2. The flame retardant resin composition according to 1, wherein the inorganic filler C starts dehydration at a temperature equal to or lower than a thermal decomposition temperature of the mixture of A and B + 50 ° C.
3. 3. The flame retardant resin composition according to 1 or 2 above, wherein the solid acid B is a porous body containing an oxide of silicon.
4). 4. The flame retardant resin composition according to 3 above, wherein the solid acid B further contains an oxide of aluminum.
5). 3. The flame retardant resin composition according to 1 or 2 above, wherein the solid acid B is silica alumina.
6). 6. The flame retardant resin composition according to any one of 1 to 5, wherein the solid acid B further contains nitrogen-containing ions.
7). 7. The flame retardant resin composition as described in 6 above, wherein the nitrogen-containing ions are ammonium ions and / or nitrate ions.
8). 2. The flame retardant resin composition according to 1, wherein the thermal decomposition temperature of the resin A is higher than the thermal decomposition temperature of the mixture of A and the solid acid B.
9. 9. The flame retardant resin composition as described in 8 above, wherein the resin A has an organic acid group and / or an organic acid ester group.
10. 10. The flame retardant resin composition according to 9, wherein the organic acid group is a carboxylic acid group, and the organic acid ester group is a carboxylic acid ester group.
11. 3. The flame retardant resin composition according to 1 or 2, wherein the inorganic filler C is one or more selected from the group consisting of magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, and hydrotalcite.

本発明の難燃樹脂組成物を添加することにより主材の樹脂材料の難燃性が向上する。   Addition of the flame retardant resin composition of the present invention improves the flame retardancy of the main resin material.

本発明の難燃樹脂組成物は、樹脂A、固体酸B、及びAとBとの混合物の熱分解温度−50℃以上の温度で脱水を開始する無機充填剤Cとを含む難燃樹脂組成物である。さらに、無機充填剤CはAとBとの混合物の熱分解温度の+50℃以下の温度で脱水を開始することが好ましい。   The flame retardant resin composition of the present invention comprises a resin A, a solid acid B, and an inorganic filler C that starts dehydration at a temperature equal to or higher than the thermal decomposition temperature −50 ° C. of the mixture of A and B. It is a thing. Furthermore, the inorganic filler C preferably starts dehydration at a temperature not higher than + 50 ° C. of the thermal decomposition temperature of the mixture of A and B.

熱分解温度は、示差熱熱重量同時測定によって一定速度での昇温時の重量減少を測定することによって求めることができる。   The thermal decomposition temperature can be determined by measuring the weight loss at the time of temperature increase at a constant rate by simultaneous differential thermothermal weight measurement.

本発明における熱分解温度とは、各物質の熱分解開始温度を指し、前記の分析方法により確認された測定物質の空気雰囲気下での重量減少開始温度を意味している。混合物の場合は最初の重量減少開始温度をいう。重量減少の開始点では、データの傾きに変化が見られる。傾きが変化する前後の傾きの接線が交差する点の温度を熱分解温度と定める。変化後の傾きが定まらない場合は熱分解温度が定まらない。そのような場合は、熱分解温度を可能性の範囲で温度域として定める。異なる物質の熱分解温度を比較するとき、温度Aが温度域Bの範囲に入る場合は同等の温度とみなす。また、測定物質間の比較は同一の測定方法で得られたデータを用いて行われる。各測定で得られた熱分解温度の物質間の関係は次のとおりとする。   The thermal decomposition temperature in the present invention refers to the thermal decomposition start temperature of each substance, and means the weight decrease start temperature in the air atmosphere of the measurement substance confirmed by the analysis method. In the case of a mixture, it refers to the initial weight loss onset temperature. There is a change in the slope of the data at the start of weight loss. The temperature at the point where the tangent lines of the slope before and after the slope change intersect is defined as the thermal decomposition temperature. If the slope after the change cannot be determined, the thermal decomposition temperature cannot be determined. In such a case, the thermal decomposition temperature is determined as a temperature range within the range of possibilities. When the thermal decomposition temperatures of different substances are compared, if the temperature A falls within the temperature range B, it is regarded as an equivalent temperature. Further, comparison between measurement substances is performed using data obtained by the same measurement method. The relationship between the pyrolysis temperature materials obtained in each measurement is as follows.

A+B:樹脂Aと固体酸Bとの混合物の熱分解温度、
A:樹脂Aの熱分解温度、
C:無機充填剤Cの脱水開始温度。
T A + B : thermal decomposition temperature of a mixture of resin A and solid acid B,
T A : thermal decomposition temperature of resin A,
T C : Dehydration start temperature of the inorganic filler C

昇温速度が10℃/分のとき、熱分解温度をT(℃)として、TA+B−50≦TCであり、好ましくは、TA+B−50≦TC≦TA+B+50であり、また、TA+B<TAであれば、さらに難燃性が向上する。 When the rate of temperature increase is 10 ° C./min, the thermal decomposition temperature is T (° C.), and T A + B −50 ≦ T C , preferably T A + B −50 ≦ T C ≦ T A + B is +50, also, if T a + B <T a, further improves the flame retardancy.

本発明で用いる固体酸Bとは、固体の状態で表面が酸としての性質を示すものをいう。酸点は、表面に存在していればよく、酸性物質の担持品でもよい。また、固体酸Bは、100ナノメートル以下の細孔、及び/または層間を有する多孔質体が適している。また、含窒素イオンを含む場合も固体酸Bという。酸点は難燃樹脂組成物として完成した段階で固体酸Bに存在するものでもよいし、燃焼の過程で加熱により現れるものでもよい。例えば、アンモニアの吸着によりアンモニウム型に変化したものも固体酸Bである。   The solid acid B used in the present invention refers to a solid acid whose surface exhibits acid properties. The acid point only needs to be present on the surface, and may be an acidic substance-supported product. The solid acid B is suitably a porous body having pores of 100 nanometers or less and / or layers. Moreover, it is also called solid acid B when it contains nitrogen-containing ions. The acid point may be present in the solid acid B when it is completed as a flame retardant resin composition, or may be generated by heating in the course of combustion. For example, the solid acid B is also changed to an ammonium type by adsorption of ammonia.

固体酸Bは、SiO2、あるいはSiO2/Al23を含んでなる多孔質体であり、さらにその他の金属酸化物を含んでなる多孔質体である。具体的には、天然または合成のケイ酸塩系物質、ケイ酸アルミナ系物質、粘土鉱物である。例えば、シリカ、シリカアルミナ、アルミニウム変性シリカ、ケイ酸アルミニウム、ポリケイ酸、ポリアルミノケイ酸モルデナイト、ゼオライト、チタニア、ジルコニア、ヘテロポリ酸、モンモリロナイト、マガティアイト、サポナイト、フラーヘクトライト、ラポナイト、セピオライト、アタパルジャイト、ヘクトライト、ベイデライト、バーミキュライト、カオリナイト、ノントロナイト、ベントナイト、スメクタイト、ハイドロタルサイトなどを主に含む。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。 Solid acid B is a porous body comprising SiO 2 or SiO 2 / Al 2 O 3,, a further porous body comprising other metal oxides. Specifically, natural or synthetic silicate materials, alumina silicate materials, and clay minerals. For example, silica, silica alumina, aluminum modified silica, aluminum silicate, polysilicic acid, polyaluminosilicate mordenite, zeolite, titania, zirconia, heteropolyacid, montmorillonite, magatiite, saponite, fullerhectorite, laponite, sepiolite, attapulgite, hect Mainly includes light, beidellite, vermiculite, kaolinite, nontronite, bentonite, smectite, hydrotalcite. These may be used individually by 1 type and may use 2 or more types together.

上記固体酸Bの中でも、難燃効率を高められることから、含窒素イオンをさらに含むものが好ましい。特に、アンモニウムイオン、及び/または硝酸イオンを含むものが好ましい。窒素を含む物質を固体酸Bに含ませる方法としては次のようなものが挙げられる。固体酸Bを合成する段階で、窒素含有化合物を成分に加える。該固体酸Bをアンモニアガスに接触させたり、アンモニア水に浸漬させたりして処理する。あるいは該固体酸Bにアンモニウム塩、硝酸塩などの窒素含有化合物を担持させる。アンモニウム塩としては、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、酢酸アンモニウムなどが挙げられる。硝酸塩としては、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウム、硝酸アンモニウムなどが挙げられる。含窒素イオンをさらに含む固体酸Bとしては、例えばアンモニウム型シリカアルミナ、アンモニウム型各種ゼオライト、硝酸処理ケイ酸アルミニウム、硝酸カリウム担持ケイ酸アルミニウムなどが挙げられる。また、固体酸Bの仕上げの段階で、不活性ガスパージ、あるいは水洗により、固体酸Bに安定しない物質を取り除く処理を行ってもよい。   Among the solid acids B, those further containing nitrogen-containing ions are preferable because flame retardancy efficiency can be improved. In particular, those containing ammonium ions and / or nitrate ions are preferred. Examples of the method for incorporating the substance containing nitrogen into the solid acid B include the following. During the synthesis of solid acid B, a nitrogen-containing compound is added to the ingredients. The solid acid B is treated by contacting with ammonia gas or immersing in ammonia water. Alternatively, the solid acid B is loaded with a nitrogen-containing compound such as ammonium salt or nitrate. Examples of the ammonium salt include ammonium sulfate, ammonium nitrate, ammonium carbonate, and ammonium acetate. Examples of nitrates include potassium nitrate, sodium nitrate, calcium nitrate, magnesium nitrate, and ammonium nitrate. Examples of the solid acid B further containing nitrogen-containing ions include ammonium-type silica alumina, various ammonium-type zeolites, nitric acid-treated aluminum silicate, potassium nitrate-supported aluminum silicate, and the like. In addition, at the stage of finishing the solid acid B, a treatment that removes a substance that is not stable to the solid acid B may be performed by purging with an inert gas or washing with water.

樹脂Aは、難燃樹脂組成物が最終的に添加される樹脂材料の機能性や相溶性を考慮して選ばれる。樹脂Aとしては、熱硬化性樹脂、熱可塑性樹脂が挙げられ、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等が挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、アクリロニトリルブタジエンスチレン樹脂、アクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリ乳酸、ポリアミド樹脂などが挙げられる。これらは、1種でも2種以上を併用してもよい。   Resin A is selected in consideration of the functionality and compatibility of the resin material to which the flame retardant resin composition is finally added. Examples of the resin A include a thermosetting resin and a thermoplastic resin, and examples of the thermosetting resin include a phenol resin, an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester resin, and a polyimide resin. Examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, polystyrene resin, polyvinyl acetate resin, acrylonitrile butadiene styrene resin, acrylic resin, polyethylene terephthalate, polycarbonate, polylactic acid, and polyamide resin. These may be used alone or in combination of two or more.

さらに、有機酸基、及び/または有機酸エステル基をさらに有するものが好ましい。特に、カルボン酸基、及び/またはカルボン酸エステル基をさらに有するものが好ましい。さらに、アクリル酸基、マレイン酸基、フマル酸基、イタコン酸基、メタクリル酸基、ソルビン酸基、クロトン酸基、シトラコン酸基、フタル酸基、テレフタル酸基、コハク酸基、アジピン酸基等の不飽和カルボン酸基、もしくは不飽和カルボン酸エステル基を共重合したものが好ましい。   Furthermore, what has further an organic acid group and / or an organic acid ester group is preferable. Particularly preferred are those further having a carboxylic acid group and / or a carboxylic acid ester group. Furthermore, acrylic acid group, maleic acid group, fumaric acid group, itaconic acid group, methacrylic acid group, sorbic acid group, crotonic acid group, citraconic acid group, phthalic acid group, terephthalic acid group, succinic acid group, adipic acid group, etc. A copolymer obtained by copolymerizing an unsaturated carboxylic acid group or an unsaturated carboxylic acid ester group is preferred.

前記無機充填剤Cは、前記AとBとの混合物の熱分解温度−50℃以上の温度で脱水を開始し、好ましくは前記AとBとの混合物の熱分解温度+50℃以下の温度で脱水を開始する物質である。脱水開始温度は、一定速度での昇温時、脱水による重量減少が始まる温度を意味する。昇温時の重量減少は、示差熱熱重量同時測定(TG/DTA)で求めることができる。また、昇温時の重量減少が脱水に由来するかどうかは質量分析(MS)で確認できる。   The inorganic filler C starts dehydration at a temperature equal to or higher than the thermal decomposition temperature −50 ° C. of the mixture of A and B, preferably dehydrated at a temperature equal to or lower than the thermal decomposition temperature of the mixture of A and B + 50 ° C. It is a substance that starts. The dehydration start temperature means a temperature at which weight reduction due to dehydration starts when the temperature is increased at a constant rate. The weight loss at the time of temperature rise can be determined by simultaneous differential thermothermal weight measurement (TG / DTA). Moreover, it can be confirmed by mass spectrometry (MS) whether the weight loss at the time of temperature rise originates from dehydration.

脱水開始温度は前記熱分解温度と同様に、傾きの接線が交差する点で定める。
無機充填剤Cとしては、水酸化アルミニウム、水酸化マグネシウム、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム、酸化スズの水和物等の無機金属化合物の水和物、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、ムーカルシウム、炭酸カルシウム、アルミン酸カルシウム、炭酸バリウム等が挙げられる。これらは、1種でも2種以上を併用してもよい。特に、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、ハイドロタルサイトからなる群から選ばれたものでは、熱分解、あるいは脱水による吸熱効果があり、難燃効果が高く好ましい。
Similar to the thermal decomposition temperature, the dehydration start temperature is determined at the point where the tangent lines of the inclination intersect.
As the inorganic filler C, hydrates of inorganic metal compounds such as aluminum hydroxide, magnesium hydroxide, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide, tin oxide hydrate, zinc borate , Zinc metaborate, barium metaborate, zinc carbonate, magnesium carbonate, mu calcium, calcium carbonate, calcium aluminate, barium carbonate and the like. These may be used alone or in combination of two or more. In particular, a material selected from the group consisting of magnesium hydroxide, aluminum hydroxide, calcium hydroxide and hydrotalcite has an endothermic effect due to thermal decomposition or dehydration, and is preferable because of its high flame retardant effect.

また、上記固体酸B、及び無機充填剤Cは、難燃効率が高められることから、樹脂Aに均一に分散させることが好ましい。樹脂Aと固体酸B、及び無機充填剤Cの混合は、樹脂Aが溶融する温度にまで加熱した状態で行い、固体酸Bを添加しミキシングする。ミキシングの方法は、例えば、押出機、ミキサーなどがある。   Further, the solid acid B and the inorganic filler C are preferably dispersed uniformly in the resin A because the flame retardancy efficiency is enhanced. The mixing of the resin A, the solid acid B, and the inorganic filler C is performed in a state where the resin A is heated to a temperature at which the resin A melts, and the solid acid B is added and mixed. Examples of the mixing method include an extruder and a mixer.

また、前記、B、Cは粒子径が小さいほうが効果的である。B、C共に数平均粒子径が100μm以下であることが好ましく、10μm以下がさらに好ましい。数平均粒子径の下限値は10nmである。数平均粒子径はレーザー回折・散乱法、レーザードップラー法などによる粒度分布測定法、粒子画像観察による粒子径測定法などにより求められる。数平均粒子径が100μmを超えると難燃効果が不十分であり、一方、10nm未満だと取り扱いが困難となる。   Further, it is more effective that B and C have smaller particle diameters. For both B and C, the number average particle diameter is preferably 100 μm or less, more preferably 10 μm or less. The lower limit of the number average particle diameter is 10 nm. The number average particle size is determined by a particle size distribution measurement method using a laser diffraction / scattering method, a laser Doppler method, or a particle size measurement method using particle image observation. When the number average particle diameter exceeds 100 μm, the flame retardant effect is insufficient, while when it is less than 10 nm, handling becomes difficult.

また、前記、Aと(B+C)との混合比は質量比でA:(B+C)=100:50〜250が好ましく、さらに好ましくは、100:100〜200である。質量比で(B+C)がA100に対して50未満だと難燃効果が不十分であり、250を超えると成形加工が困難である。
また、前記、BとCとの混合比は質量比でB:C=0.1〜100:100が好ましく、さらに好ましくは、1〜40:100である。Bの質量混合比がC100に対して0.1未満だと難燃効果が不十分であり、100を超えても難燃効果が不十分である。
The mixing ratio of A and (B + C) is preferably A: (B + C) = 100: 50 to 250, more preferably 100: 100 to 200, as a mass ratio. When the mass ratio (B + C) is less than 50 with respect to A100, the flame retardant effect is insufficient, and when it exceeds 250, molding is difficult.
The mixing ratio of B and C is preferably B: C = 0.1 to 100: 100, more preferably 1 to 40: 100 in terms of mass ratio. If the mass mixing ratio of B is less than 0.1 with respect to C100, the flame retardant effect is insufficient, and if it exceeds 100, the flame retardant effect is insufficient.

以上説明した難燃樹脂組成物を各種樹脂材料に添加し、難燃材として使用することが可能である。   The flame retardant resin composition described above can be added to various resin materials and used as a flame retardant.

以下、実施例により本発明を詳細に説明するが、下記の例により本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following example.

実施例1:
EEA(エチレン−エチルアクリレート共重合体:日本ポリエチレン(株)製A1100,熱分解温度:330℃)40gをラボプラストミル(東洋精機(株)製)のミキサー(容量100cc)で溶融し、アンモニウム型無定形シリカアルミナ(モル比:Si/Al=2、数平均粒子径:30μm、調製方法は後述。)12gと混練した。ついで水酸化アルミニウム(昭和電工(株)製,ハイジライトH42M、数平均粒子径:1μm)52gを添加した。180℃、50rpmで10分間混練した。
続いて前記の混合物を170℃に設定したプレス機で2.5mm厚みのシートを作製した。25℃、湿度50%で20hr保管した後、UL94 V−0燃焼試験を行った。
なお、EEA(樹脂A)とアンモニウム型無定形シリカアルミナ(固体酸B)の熱分解温度の測定データを図1に示し、ハイジライトH42M(無機充填剤C)の脱水開始温度の測定データを図2に示す。測定法は示差熱熱重量同時測定(TG/DTA)であり、室温から600℃まで空気雰囲気下10℃/分で一定昇温したときの重量減少率を示している。重量減少曲線のデータの傾きが変化する前後の傾きの接線が交差する点から、A+Bの熱分解温度は270℃であり、Cの脱水開始温度は240℃であった。
UL94 V−0燃焼試験は次の手順で行った。2.5mm厚みのシートを指定サイズの金型で打ち抜き、5本の短冊状の試験片を得た。垂直に支持した試験片の下端にメタンガスバーナー炎を10秒あてた後、離し、炎が消えれば直ちにバーナー炎をさらに10秒間当てた後、離した。1本の試験片につき2回、接炎終了から消炎までの時間を計った。ただし、120秒を経過しても消炎しないときは値を120秒とした。計10回の消炎時間までの数平均値を算出し、表1に消炎時間として示した。また、各試験片の2回の接炎終了から消炎までの時間がすべて10秒以内であり、すべての合計が50秒以内であり、かつ試験片の下に置かれた脱脂綿を着火させないとき、試験に合格したとし、表1にAで示した。それ以外を不合格として表1にBで示した。
アンモニウム型無定形シリカアルミナ(モル比:Si/Al=2)は次の方法で調製した。プロトン型無定形シリカアルミナCSA−H(触媒化成工業(株)製,数平均粒径:30μm)20gを、28質量%アンモニア水20gと純水200gの混合液に添加し撹拌した後12時間静置した。上澄み液を取り出し、200gの純水を添加し撹拌した。遠心分離機にかけ上澄み液を取り出し、200gの純水を添加し撹拌した。純水添加による水洗を4回繰り返した後、得られたケーキを180℃で5時間乾燥しアンモニウム型無定形シリカアルミナを得た。
Example 1:
40 g of EEA (ethylene-ethyl acrylate copolymer: A1100 manufactured by Nippon Polyethylene Co., Ltd., thermal decomposition temperature: 330 ° C.) was melted with a mixer (capacity 100 cc) of Labo Plast Mill (manufactured by Toyo Seiki Co., Ltd.) Kneaded with 12 g of amorphous silica alumina (molar ratio: Si / Al = 2, number average particle size: 30 μm, preparation method will be described later). Next, 52 g of aluminum hydroxide (manufactured by Showa Denko KK, Hydylite H42M, number average particle size: 1 μm) was added. It knead | mixed for 10 minutes at 180 degreeC and 50 rpm.
Subsequently, a 2.5 mm thick sheet was produced with a press machine in which the above mixture was set at 170 ° C. After storage for 20 hours at 25 ° C. and 50% humidity, a UL94 V-0 combustion test was performed.
In addition, the measurement data of the thermal decomposition temperature of EEA (resin A) and ammonium type amorphous silica alumina (solid acid B) are shown in FIG. 1, and the measurement data of the dehydration start temperature of Heidilite H42M (inorganic filler C) is shown. It is shown in 2. The measurement method is differential thermothermogravimetric simultaneous measurement (TG / DTA), which shows the weight reduction rate when the temperature is raised from room temperature to 600 ° C. at a constant temperature of 10 ° C./min in an air atmosphere. The thermal decomposition temperature of A + B was 270 ° C., and the dehydration start temperature of C was 240 ° C. from the point where the tangent lines of the slope before and after the slope of the weight loss curve data changed.
The UL94 V-0 combustion test was performed according to the following procedure. A 2.5 mm-thick sheet was punched out with a die of a specified size, and five strip-shaped test pieces were obtained. The methane gas burner flame was applied to the lower end of the vertically supported test piece for 10 seconds and then released. When the flame disappeared, the burner flame was applied for another 10 seconds and then released. The time from completion of flame contact to flame extinction was measured twice for each test piece. However, when the flame did not extinguish after 120 seconds, the value was set to 120 seconds. The number average value up to a total of 10 flame extinction times was calculated and shown in Table 1 as the flame extinction time. In addition, when the time from the end of two flame contact to the extinction of each test piece is all within 10 seconds, the total of all is within 50 seconds, and the absorbent cotton placed under the test piece is not ignited, The test was passed, and is shown in Table 1 as A. The others were shown as B in Table 1 as rejected.
Ammonium type amorphous silica alumina (molar ratio: Si / Al = 2) was prepared by the following method. 20 g of proton-type amorphous silica alumina CSA-H (manufactured by Catalyst Kasei Kogyo Co., Ltd., number average particle size: 30 μm) was added to a mixed solution of 20 g of 28% by mass of ammonia water and 200 g of pure water, and then allowed to stand for 12 hours. I put it. The supernatant was taken out and 200 g of pure water was added and stirred. The supernatant was taken out through a centrifuge, and 200 g of pure water was added and stirred. The washing with pure water was repeated four times, and then the obtained cake was dried at 180 ° C. for 5 hours to obtain ammonium type amorphous silica alumina.

実施例2:
ハイジライトH42Mをハイドロタルサイト(協和化学工業(株)製,DHT−4A)に変えたこと以外は実施例1と同様にサンプルを作製し、UL94 V−0燃焼試験を行った。DHT−4Aの脱水開始温度は250℃であった(ただし、燃焼試験サンプルの作製までに180℃で加熱されるため、一度180℃に加熱した後の測定で得られた脱水開始温度である。)。
Example 2:
A sample was prepared in the same manner as in Example 1 except that Hydrite H42M was changed to hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd., DHT-4A), and a UL94 V-0 combustion test was performed. The dehydration start temperature of DHT-4A was 250 ° C. (However, since it was heated at 180 ° C. until the preparation of the combustion test sample, it was the dehydration start temperature obtained by measurement after heating to 180 ° C. once. ).

実施例3:
固体酸Bを以下のように調製したものに変更した以外は実施例と同様にしてサンプルを作製した。硝酸イオン含有無定形シリカアルミナ(モル比:Si/Al=2)を次の方法で調製した。硝酸カリウム50gを純水200gに溶かした水溶液に、プロトン型無定形シリカアルミナCSA−H(触媒化成工業(株)製)20gを添加し撹拌した後12時間静置した。上澄み液を取り出し、200gの純水を添加し撹拌した。遠心分離機にかけ上澄み液を取り出し、200gの純水を添加し撹拌した。純水添加による水洗を4回繰り返した後得られたケーキを180℃で5時間乾燥し硝酸イオン含有無定形シリカアルミナを得た。
Example 3:
A sample was prepared in the same manner as in Example except that the solid acid B was changed to the one prepared as follows. Nitrate ion-containing amorphous silica alumina (molar ratio: Si / Al = 2) was prepared by the following method. To an aqueous solution in which 50 g of potassium nitrate was dissolved in 200 g of pure water, 20 g of proton type amorphous silica alumina CSA-H (manufactured by Catalytic Chemical Industry Co., Ltd.) was added and stirred for 12 hours. The supernatant was taken out and 200 g of pure water was added and stirred. The supernatant was taken out through a centrifuge, and 200 g of pure water was added and stirred. The cake obtained after repeating washing with pure water 4 times was dried at 180 ° C. for 5 hours to obtain a nitrate ion-containing amorphous silica alumina.

実施例4:
固体酸Bを以下のように調製したものに変更した以外は実施例と同様にしてサンプルを作製した。アンモニウム型Xタイプゼオライト(モル比:Si/Al=1.2)を次の方法で調製した。純水200gにモレキュラーシーブ13X(昭和ユニオン(株)製,数平均粒径:5μm)20gを添加し撹拌しながら硝酸を加えpH5に調整した後、遠心分離機にかけ上澄み液を取り出した。28質量%アンモニア水20gと純水200gの混合液を加え撹拌した後12時間静置した。上澄み液を取り出し、200gの純水を添加し撹拌した。遠心分離機にかけ上澄み液を取り出し、200gの純水を添加し撹拌した。純水添加による水洗を4回繰り返した後得られたケーキを180℃で5時間乾燥し硝酸イオン含有無定形シリカアルミナを得た。
Example 4:
A sample was prepared in the same manner as in Example except that the solid acid B was changed to the one prepared as follows. An ammonium type X type zeolite (molar ratio: Si / Al = 1.2) was prepared by the following method. After adding 20 g of molecular sieve 13X (manufactured by Showa Union Co., Ltd., number average particle size: 5 μm) to 200 g of pure water and adjusting the pH to 5 by adding nitric acid while stirring, the supernatant was taken out through a centrifuge. A mixed solution of 20 g of 28% by mass ammonia water and 200 g of pure water was added and stirred, and then allowed to stand for 12 hours. The supernatant was taken out and 200 g of pure water was added and stirred. The supernatant was taken out through a centrifuge, and 200 g of pure water was added and stirred. The cake obtained after repeating washing with pure water 4 times was dried at 180 ° C. for 5 hours to obtain a nitrate ion-containing amorphous silica alumina.

比較例1:
水酸化アルミニウム(ハイジライトH42M)を64g使用し、アンモニウム型無定形シリカアルミナを添加しなかったこと以外は実施例1と同様にサンプルを作製し、UL94 V−0燃焼試験を行った。
Comparative Example 1:
A sample was prepared in the same manner as in Example 1 except that 64 g of aluminum hydroxide (Hidilite H42M) was used and no ammonium type amorphous silica alumina was added, and a UL94 V-0 combustion test was performed.

比較例2:
アンモニウム型無定形シリカアルミナをモレキュラーシーブ4A(昭和ユニオン(株)製、数平均粒径10μm)に変えたこと以外は実施例1と同様にサンプルを作製し、UL94 V−0燃焼試験を行った。
Comparative Example 2:
A sample was prepared in the same manner as in Example 1 except that the ammonium type amorphous silica alumina was changed to molecular sieve 4A (manufactured by Showa Union Co., Ltd., number average particle size 10 μm), and a UL94 V-0 combustion test was performed. .

比較例3:
硝酸亜鉛40gを溶かした200gの水溶液にハイジライトH42M120gを添加し撹拌した。その後180℃で5時間乾燥して得た無機充填剤64gを実験に用い、ハイジライトH42Mと固体酸Bを添加しなかったこと以外は実施例1と同様にサンプルを作製し、UL94 V−0燃焼試験を行った。また、この混合無機充填剤Cの脱水開始温度は240℃であった。
Comparative Example 3:
120 g of Hydrite H42M was added to 200 g of an aqueous solution containing 40 g of zinc nitrate and stirred. Thereafter, 64 g of an inorganic filler obtained by drying at 180 ° C. for 5 hours was used in the experiment, and a sample was prepared in the same manner as in Example 1 except that Hijilite H42M and solid acid B were not added. UL94 V-0 A combustion test was conducted. Moreover, the dehydration start temperature of this mixed inorganic filler C was 240 ° C.

[結果の説明]
以上のUL94 V−0燃焼試験から、水酸化アルミニウムの一部をアンモニウム型無定形シリカアルミナ、硝酸イオン含有無定形シリカアルミナ、またはアンモニウム型Xタイプゼオライトで置換した場合は、置換前の水酸化アルミニウムのみを添加した場合と比較して、難燃性が向上した。一方、ナトリウム型Aタイプゼオライトで置換した場合は、難燃性が低下した。また、水酸化アルミニウムへの含浸処理により水酸化アルミニウムの一部を硝酸亜鉛で置換した場合は、燃焼時に滴下物が生じ、脱脂綿への着火が起こるためV−0試験不合格となった。
[Explanation of results]
From the above UL94 V-0 combustion test, when a part of aluminum hydroxide was replaced with ammonium-type amorphous silica alumina, nitrate-containing amorphous silica alumina, or ammonium-type X-type zeolite, aluminum hydroxide before replacement Compared with the case of adding only the flame retardancy improved. On the other hand, when the sodium type A type zeolite was substituted, the flame retardancy decreased. In addition, when a part of aluminum hydroxide was replaced with zinc nitrate by impregnation treatment with aluminum hydroxide, dripping matter was generated during combustion, and the absorbent cotton was ignited, resulting in V-0 test failure.

Figure 2010024382
Figure 2010024382

実施例1の樹脂A(エチレン−エチルアクリレート共重合体)と固体酸B(アンモニウム型無定形シリカアルミナ)との混合物の熱分解温度の測定データを示す。The measurement data of the thermal decomposition temperature of the mixture of resin A (ethylene-ethyl acrylate copolymer) of Example 1 and solid acid B (ammonium type amorphous silica alumina) are shown. 実施例1の無機充填剤C(水酸化アルミニウム;昭和電工(株)製ハイジライトH42M)の脱水開始温度の測定データを示す。The measurement data of the dehydration start temperature of the inorganic filler C of Example 1 (aluminum hydroxide; Hygielite H42M manufactured by Showa Denko KK) are shown.

Claims (11)

樹脂A、固体酸B、及びAとBとの混合物の熱分解温度−50℃の温度以上で脱水を開始する無機充填剤Cとを含む難燃樹脂組成物。   A flame retardant resin composition comprising resin A, solid acid B, and inorganic filler C that starts dehydration at a temperature equal to or higher than a thermal decomposition temperature of −50 ° C. of a mixture of A and B. 前記無機充填剤Cが、前記AとBとの混合物の熱分解温度+50℃の温度以下で脱水を開始する請求項1に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 1, wherein the inorganic filler C starts dehydration at a temperature equal to or lower than a thermal decomposition temperature of the mixture of A and B + 50 ° C. 前記固体酸Bが珪素の酸化物を含む多孔質体である請求項1または請求項2に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 1 or 2, wherein the solid acid B is a porous body containing an oxide of silicon. 前記固体酸Bが、さらにアルミニウムの酸化物を含む請求項3に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 3, wherein the solid acid B further contains an oxide of aluminum. 前記固体酸Bがシリカアルミナである請求項1または請求項2に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 1 or 2, wherein the solid acid B is silica alumina. 前記固体酸Bが、さらに含窒素イオンを含む請求項1〜5のいずれか1項に記載の難燃樹脂組成物。   The flame retardant resin composition according to any one of claims 1 to 5, wherein the solid acid B further contains a nitrogen-containing ion. 前記含窒素イオンが、アンモニウムイオン及び/または硝酸イオンである請求項6に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 6, wherein the nitrogen-containing ions are ammonium ions and / or nitrate ions. 前記樹脂Aの熱分解温度が、Aと前記固体酸Bとの混合物の熱分解温度よりも高い請求項1に記載の難燃樹脂組成物。   The flame-retardant resin composition according to claim 1, wherein the thermal decomposition temperature of the resin A is higher than the thermal decomposition temperature of a mixture of A and the solid acid B. 前記樹脂Aが、有機酸基及び/または有機酸エステル基を有する請求項8に記載の難燃樹脂組成物。   The flame-retardant resin composition according to claim 8, wherein the resin A has an organic acid group and / or an organic acid ester group. 前記有機酸基がカルボン酸基であり、前記有機酸エステル基がカルボン酸エステル基である請求項9に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 9, wherein the organic acid group is a carboxylic acid group, and the organic acid ester group is a carboxylic acid ester group. 前記無機充填剤Cが、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、及びハイドロタルサイトからなる群から選ばれる1種以上である請求項1または2に記載の難燃樹脂組成物。   The flame retardant resin composition according to claim 1 or 2, wherein the inorganic filler C is at least one selected from the group consisting of magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, and hydrotalcite.
JP2008188807A 2008-07-22 2008-07-22 Flame-retardant resin composition Pending JP2010024382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188807A JP2010024382A (en) 2008-07-22 2008-07-22 Flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188807A JP2010024382A (en) 2008-07-22 2008-07-22 Flame-retardant resin composition

Publications (1)

Publication Number Publication Date
JP2010024382A true JP2010024382A (en) 2010-02-04

Family

ID=41730498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188807A Pending JP2010024382A (en) 2008-07-22 2008-07-22 Flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JP2010024382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006597A (en) * 2009-06-26 2011-01-13 Nec Corp Polylactic acid resin composition and molded article thereof
JP2012162613A (en) * 2011-02-04 2012-08-30 Tohoku Ricoh Co Ltd Flame-retardant composition
JP2014237256A (en) * 2013-06-07 2014-12-18 株式会社クラレ Laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006597A (en) * 2009-06-26 2011-01-13 Nec Corp Polylactic acid resin composition and molded article thereof
JP2012162613A (en) * 2011-02-04 2012-08-30 Tohoku Ricoh Co Ltd Flame-retardant composition
JP2014237256A (en) * 2013-06-07 2014-12-18 株式会社クラレ Laminate

Similar Documents

Publication Publication Date Title
Lim et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites
Mngomezulu et al. Review on flammability of biofibres and biocomposites
Laachachi et al. Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA
JP2003517493A (en) Flame retardant intumescent coating for lignocellulosic materials
Majka et al. Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites
Qian et al. Preparation of mesoporous silica-LDHs system and its coordinated flame-retardant effect on EVA
da Silva Ribeiro et al. Effect of clay minerals structure on the polymer flame retardancy intumescent process
MX2007003113A (en) Method for manufacturing a fine crystalline boehmite and application of the boehmite as a flame retardant agent in plastics.
Estevão et al. Spent refinery catalyst as a synergistic agent in intumescent formulations: influence of the catalyst's particle size and constituents
ES2415241B1 (en) PROCEDURE FOR OBTAINING HIERARCHIC ORDERED STRUCTURES OF INORGANIC PHOSPHATES ON PHILOSILICATES
JPWO2015152279A1 (en) Liquid coating agent and flame retardant coating using the same
JP2010024382A (en) Flame-retardant resin composition
JP6511557B1 (en) Wet mixed sheet for air cleaning
Lindholm et al. Cone calorimeter study of inorganic salts as flame retardants in polyurethane adhesive with limestone filler
Wang et al. Effect of flaky graphite with different particle sizes on flame resistance of intumescent flame retardant coating
Chen et al. Synergistic effects of strontium carbonate on a novel intumescent flame‐retardant polypropylene system
JPH02225573A (en) Method for modifying flame retardant, and modified flame retardant
CN108698017B (en) Volatile organic compound adsorbent and resin composition blended with volatile organic compound adsorbent
Ma et al. The synergistic role of acidic molecular sieve on flame retardant performance in PLA/MF@ APP composite
US20090077760A9 (en) Fire-retardant, method for manufacturing fire-retardant cellulose-based
JP6144341B2 (en) Flame retardant inorganic filler and flame retardant polymer composition
Ribeiro et al. Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations
JPH1121392A (en) Flame-retardant polyolefin resin molding
JP2010285495A (en) Flame retardant composition and flame retardant resin composition
Jin et al. Assessment of the fire risk rating for wood specimens coated with titanium dioxide/talc/water glass mixtures