JP2010024141A - Method for producing morphine - Google Patents

Method for producing morphine Download PDF

Info

Publication number
JP2010024141A
JP2010024141A JP2008179499A JP2008179499A JP2010024141A JP 2010024141 A JP2010024141 A JP 2010024141A JP 2008179499 A JP2008179499 A JP 2008179499A JP 2008179499 A JP2008179499 A JP 2008179499A JP 2010024141 A JP2010024141 A JP 2010024141A
Authority
JP
Japan
Prior art keywords
general formula
compound represented
group
morphine
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179499A
Other languages
Japanese (ja)
Inventor
Toru Fukuyama
透 福山
Satoshi Yokoshima
聡 横島
Hifumi Koizumi
一二三 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2008179499A priority Critical patent/JP2010024141A/en
Priority to PCT/JP2009/058040 priority patent/WO2009154041A1/en
Publication of JP2010024141A publication Critical patent/JP2010024141A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D489/00Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula:
    • C07D489/02Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula: with oxygen atoms attached in positions 3 and 6, e.g. morphine, morphinone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a useful compound for the efficient production method of morphine. <P>SOLUTION: This compound is expressed by general formula (I), (II), or (III) [wherein R<SP>1</SP>is a 1-6C alkyl; R<SP>2</SP>is an amino-protecting group without substantially being eliminated under a strongly acidic condition; and R<SP>3</SP>and R<SP>4</SP>are each a 1-6C alkyl]. Preferably the compound is expressed by any of general formulae (I) to (III), wherein R<SP>1</SP>is methyl and R<SP>2</SP>is a 2,4-dinitrobenzene sulfonic acid group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は効率的なモルヒネの製造方法に関する。   The present invention relates to an efficient method for producing morphine.

モルヒネは癌性疼痛などの強い疼痛を緩和する目的で末期がん患者などに処方される麻薬性鎮痛剤であり、WHOによりモルヒネを用いたがん疼痛治療法が提唱され、依存形成を回避しつつ疼痛管理を行う方法が医療現場に普及したことから、近年その使用量が大幅に増大している。モルヒネはアヘンから抽出されるが、従来より天然物であるアヘンを原料とした製造方法に代えて化学合成によりモルヒネを安価に安定供給する試みがなされている(下記の式中、Meはメチル基を示す。以下、本明細書において同様である)。   Morphine is a narcotic analgesic prescribed to patients with end-stage cancer for the purpose of alleviating strong pain such as cancer pain, and WHO has proposed a cancer pain treatment using morphine to avoid dependence formation. However, since the method of managing pain while spreading in the medical field, the amount of use has increased significantly in recent years. Morphine is extracted from opium, but an attempt has been made to stably supply morphine stably at low cost by chemical synthesis instead of a production method using natural opium as a raw material (in the following formula, Me is a methyl group). The same applies hereinafter).

モルヒネの合成方法については種々の報告がなされている(総説としてSynlett, 388, 2005などを参照のこと)。モルヒネ合成において最も重要な点は四級炭素を含む五環性の骨格の効率的構築にあり、この観点から数々の優れた方法が開発されてきた。しかしながら、それらの鍵反応は比較的単純化された基質を用いて達成される場合が多い。その結果、合成の終盤にモルヒネの下部C環アリルアルコール部位を構築するために、煩雑な官能基変換を行う必要がある。例えば、Org. Lett., 8, 5311, 2006に記載されたモルヒネの合成方法ではC環アリルアルコール部位の構築にケトンからエノンへの酸化反応等を含む8工程を要するなど効率の点で問題がある。   Various reports have been made on morphine synthesis methods (for review, see Synlett, 388, 2005, etc.). The most important point in the synthesis of morphine is the efficient construction of a pentacyclic skeleton containing a quaternary carbon. From this viewpoint, a number of excellent methods have been developed. However, these key reactions are often achieved using relatively simplified substrates. As a result, in order to construct the lower C ring allyl alcohol part of morphine at the end of the synthesis, it is necessary to perform complicated functional group conversion. For example, the method for synthesizing morphine described in Org. Lett., 8, 5311, 2006 has problems in terms of efficiency, such as the construction of C-ring allyl alcohol site requires 8 steps including oxidation reaction from ketone to enone. is there.

また、窒素原子がトリメチルシリルエチルオキシカルボニル(Teoc)で保護された中間体化合物から酸性条件下において該保護基を脱離してD環を構築する方法が知られている(J. Org. Chem., 51, 2594, 1986; J. Org. Chem., 53, 4694, 1988)。しかしながら、この保護基(Teoc)で保護された中間体化合物を製造するためには保護基の開裂を回避するために酸性条件下での反応(特にB環の構築)を行えず、またその構築法は多段階を要するものであり、効率の面で問題を残している。
Synlett, 388, 2005 J. Org. Chem., 71, 449, 2006 J. Am. Chem. Soc., 127, 14785, 2005 Org. Lett., 8, 5311, 2006 J. Org. Chem., 51, 2594, 1986 J. Org. Chem., 53, 4694, 1988 Tetrahedron Lett., 49, 358, 2008 Synlett, 2859, 2007
Further, a method is known in which a D ring is constructed by removing the protecting group from an intermediate compound in which a nitrogen atom is protected with trimethylsilylethyloxycarbonyl (Teoc) under acidic conditions (J. Org. Chem., 51, 2594, 1986; J. Org. Chem., 53, 4694, 1988). However, in order to produce an intermediate compound protected with this protecting group (Teoc), in order to avoid the cleavage of the protecting group, the reaction under acidic conditions (particularly the construction of the B ring) cannot be performed, and the construction The law requires multiple steps, leaving problems in terms of efficiency.
Synlett, 388, 2005 J. Org. Chem., 71, 449, 2006 J. Am. Chem. Soc., 127, 14785, 2005 Org. Lett., 8, 5311, 2006 J. Org. Chem., 51, 2594, 1986 J. Org. Chem., 53, 4694, 1988 Tetrahedron Lett., 49, 358, 2008 Synlett, 2859, 2007

本発明の課題はモルヒネの効率的な製造方法、及びモルヒネの効率的な製造方法に好適に使用可能な製造用中間体を提供することにある。   An object of the present invention is to provide an efficient production method of morphine and an intermediate for production that can be suitably used in the efficient production method of morphine.

本発明者らは上記の課題を解決すべく鋭意研究を行った結果、A、C、及びE環を有し酸性条件下において安定な保護基で保護された3環系製造中間体を利用することにより酸性条件下においてB環を効率的に構築できること、及び得られた4環系化合物から保護基を脱保護して塩基性条件下で環化反応を行うことにより、コデイノンを極めて高い収率で製造できることを見出した。コデイノンからモルヒネへの変換は簡便に高収率で行うことができることから、この方法により極めて効率的かつ高い収率でモルヒネを全合成できる。本発明は上記の知見を基にして完成されたものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors utilize a tricyclic production intermediate having A, C, and E rings and protected with a protecting group that is stable under acidic conditions. The ring B can be efficiently constructed under acidic conditions, and by carrying out the cyclization reaction under basic conditions by deprotecting the protecting group from the obtained tetracyclic compound, a very high yield of codeinone is obtained. It was found that it can be manufactured. Since conversion from codeinone to morphine can be easily carried out in a high yield, morphine can be completely synthesized in a highly efficient and high yield by this method. The present invention has been completed based on the above findings.

すなわち、本発明により、下記の一般式(I)、(II)、又は(III):
(式中、R1はC1-6アルキル基を示し、R2は強酸性条件下において実質的に脱離することがないアミノ保護基を示し;R3及びR4はそれぞれ独立にC1-6アルキル基を示す)
で表される化合物が提供される。好ましい態様によれば、R1がメチル基である上記の一般式(I)ないし(III)で表される化合物;R2が2,4-ジニトロベンゼンスルホニル基である上記の一般式(I)ないし(III)で表される化合物;並びにR3及びR4がメチル基である上記の一般式(III)で表される化合物が提供される。
That is, according to the present invention, the following general formula (I), (II), or (III):
(Wherein R 1 represents a C 1-6 alkyl group, R 2 represents an amino protecting group that is not substantially eliminated under strongly acidic conditions; R 3 and R 4 are each independently C 1 -6 represents an alkyl group)
Is provided. According to a preferred embodiment, the compounds represented by the above general formulas (I) to (III) wherein R 1 is a methyl group; the above general formula (I) wherein R 2 is a 2,4-dinitrobenzenesulfonyl group Or a compound represented by the above general formula (III), wherein R 3 and R 4 are methyl groups.

これらの化合物はモルヒネ又はその類縁化合物、例えばモルヒネ、コデイノン、又はコデインなどの製造用中間体として有用である。従って、本発明により、モルヒネ又はその類縁化合物の製造用中間体として用いるための上記の一般式(I)、(II)、又は(III)で表される化合物、及び上記の一般式(I)、(II)、又は(III)で表される化合物のモルヒネ又はその類縁化合物の製造用中間体としての使用が提供される。   These compounds are useful as intermediates for the production of morphine or related compounds such as morphine, codeinone, or codeine. Therefore, according to the present invention, a compound represented by the above general formula (I), (II), or (III) for use as an intermediate for the production of morphine or a similar compound, and the above general formula (I) , (II), or (III) is used as an intermediate for producing morphine or a related compound thereof.

別の観点からは、上記一般式(II)で表される化合物の製造方法であって、上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化する工程を含む方法;上記一般式(I)で表される化合物の製造方法であって、上記一般式(II)で表される化合物を脱水反応に付する工程を含む方法;並びに、上記一般式(I)で表される化合物の製造方法であって、(a)上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して上記一般式(II)で表される化合物を製造する工程、及び(b)上記工程(a)で得られた一般式(II)で表される化合物を脱水反応に付する工程を含む方法が本発明により提供される。   Another aspect of the present invention is a method for producing a compound represented by the above general formula (II), wherein the hydroxyl group of the compound represented by the above general formula (III) is oxidized to convert it into a ketone, and then subjected to acidic conditions. A method comprising a step of cyclizing with a compound represented by the general formula (I), the method comprising a step of subjecting the compound represented by the general formula (II) to a dehydration reaction; A method for producing the compound represented by the general formula (I), wherein (a) the hydroxyl group of the compound represented by the general formula (III) is oxidized to be converted to a ketone, and then the reaction mixture is cyclized under acidic conditions. And a step of producing a compound represented by the above general formula (II) and (b) subjecting the compound represented by the general formula (II) obtained in the above step (a) to a dehydration reaction. A method is provided by the present invention.

また、コデイノンの製造方法であって、上記一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程を含む方法;並びに、コデイノンの製造方法であって、(a)上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して上記一般式(II)で表される化合物を製造する工程、(b)上記工程(a)で得られた一般式(II)で表される化合物を脱水反応に付する工程、及び(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程を含む方法が本発明により提供される。さらに本発明により、上記工程(a)ないし(c)に加えてコデイノンのケトンを還元する工程、及び脱メチル化する工程を含むモルヒネの製造方法が提供される。   A method for producing codeinone, the method comprising a step of cyclizing by deprotecting the amino protecting group of the compound represented by the general formula (I) and treating with a base; and a method for producing codeinone (A) oxidizing the hydroxyl group of the compound represented by the above general formula (III) to convert it to a ketone, and then cyclizing under acidic conditions to produce the compound represented by the above general formula (II) (B) a step of subjecting the compound represented by the general formula (II) obtained in the step (a) to a dehydration reaction, and (c) a general formula (I) obtained in the step (b). The present invention provides a method comprising the step of cyclization by deprotecting the amino protecting group of the compound represented by) and treating with a base. Furthermore, according to the present invention, there is provided a method for producing morphine, which comprises a step of reducing a ketone of codeinone and a step of demethylation in addition to the steps (a) to (c).

さらに、本発明により、モルヒネ又はその類縁化合物の製造方法であって、上記工程(a)、工程(b)、及び工程(c)からなる群から選ばれる少なくとも1工程を含む方法が本発明により提供される。   Further, according to the present invention, there is provided a method for producing morphine or an analogous compound thereof, the method comprising at least one step selected from the group consisting of the above step (a), step (b), and step (c) according to the present invention. Provided.

また、本発明により、下記の一般式(IV)及び(V):
(式中、R1、R2、R3、及びR4は上記と同義である。)が提供される。これらの化合物もモルヒネ又はその類縁化合物の製造用中間体として有用である。特に、上記一般式(IV)で表される化合物は上記一般式(I)で表される化合物の製造用中間体として有用である。また、上記一般式(V)で表される化合物は、上記の製造方法において工程(a)のケトンへの変換により製造される化合物であることから、この化合物を出発原料として用い、工程(a)に替えて上記化合物(V)を酸性条件下で環化して上記一般式(II)で表される化合物を製造する工程を採用することもできる。本発明の範囲には上記の態様も包含される。
Further, according to the present invention, the following general formulas (IV) and (V):
(Wherein R 1 , R 2 , R 3 , and R 4 are as defined above). These compounds are also useful as intermediates for the production of morphine or related compounds. In particular, the compound represented by the general formula (IV) is useful as an intermediate for producing the compound represented by the general formula (I). In addition, since the compound represented by the general formula (V) is a compound produced by the conversion to the ketone in the step (a) in the above production method, this compound is used as a starting material, and the step (a In place of), the above compound (V) may be cyclized under acidic conditions to produce a compound represented by the above general formula (II). The above embodiments are also included in the scope of the present invention.

本発明により提供される化合物はモルヒネ又はその類縁化合物の製造用中間体として有用であり、これらの化合物を用いることによってモルヒネ又はその類縁化合物を極めて収率よく簡便に製造することができる。   The compounds provided by the present invention are useful as intermediates for the production of morphine or its related compounds. By using these compounds, morphine or its related compounds can be easily produced with a very high yield.

本明細書において示される化学式における立体配置の表記は通常用いられる表記と同じであり、一般式における立体配置は相対配置又は絶対配置を示し、好ましくは絶対配置を示す。式中の波線はその結合がα結合若しくはβ結合のいずれかの結合、又はそれらの両方の結合(この場合には化合物はジアステレオマーの混合物となる)であることを示す。   The notation of configuration in the chemical formulas shown in the present specification is the same as the notation normally used, and the configuration in the general formula indicates a relative configuration or an absolute configuration, preferably an absolute configuration. The wavy line in the formula indicates that the bond is either an α bond or a β bond, or a combination of both (in which case the compound is a mixture of diastereomers).

R1、R3、及びR4が示すC1-6アルキル基としては、直鎖状、分枝鎖状、環状、又はそれらの組合わせからなるアルキル基を用いることができるが、好ましくは直鎖状又は分枝鎖状アルキル基を用いることができ、さらに好ましくは直鎖状又は分枝鎖状のC1-4アルキル基を用いることができる。特に好ましくはメチル基又はエチル基を用いることができ、最も好ましいのはメチル基である。 As the C 1-6 alkyl group represented by R 1 , R 3 , and R 4 , an alkyl group composed of linear, branched, cyclic, or a combination thereof can be used. A chain or branched alkyl group can be used, and a linear or branched C 1-4 alkyl group can be more preferably used. A methyl group or an ethyl group can be particularly preferably used, and a methyl group is most preferable.

R2は強酸性条件下において実質的に脱離することがないアミノ保護基を示す。アミノ保護基については、例えば、Greenら、Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc.などの成書を参照することができる。強酸性条件は特に限定されないが、例えば、酢酸、トリフルオロ酢酸、塩酸、トリフルオロメタンスルホン酸などの酸の存在下で実質的に脱離しない保護基を選択することが好ましい。上記の保護基としては、酸性条件以外の反応条件、例えば塩基性条件下や他の試薬の存在下において容易に脱離可能な保護基であることが好ましい。例えば、2,4-ジニトロベンゼンスルホニル基(DNs)、2-ニトロベンゼンスルホニル基(Ns)、4-ニトロベンゼンスルホニル基(Ns)、アリルオキシカルボニル基(Alloc)、2,2,2-トリクロロエチルカルボニル基(Troc)、9-フルオレニルメチル基(Fmoc)、又は2-クロロエチルカルボニル基などを挙げることができるが、これらに限定されることはない。特に好ましくは2,4-ジニトロベンゼンスルホニル基を用いることができる。 R 2 represents an amino protecting group that does not substantially leave under strongly acidic conditions. For the amino protecting group, reference can be made, for example, to Green et al., Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc. The strongly acidic conditions are not particularly limited, but it is preferable to select a protecting group that does not substantially desorb in the presence of an acid such as acetic acid, trifluoroacetic acid, hydrochloric acid, trifluoromethanesulfonic acid, and the like. The protecting group is preferably a protecting group that can be easily removed under reaction conditions other than acidic conditions, for example, under basic conditions or in the presence of other reagents. For example, 2,4-dinitrobenzenesulfonyl group (DNs), 2-nitrobenzenesulfonyl group (Ns), 4-nitrobenzenesulfonyl group (Ns), allyloxycarbonyl group (Alloc), 2,2,2-trichloroethylcarbonyl group (Troc), 9-fluorenylmethyl group (Fmoc), 2-chloroethylcarbonyl group and the like can be mentioned, but are not limited thereto. Particularly preferably, a 2,4-dinitrobenzenesulfonyl group can be used.

本発明の方法のうち典型的かつ好ましい方法の一例をスキームに示す。以下、これらの方法について具体的に説明するが、本発明の方法は下記の方法に限定されることはなく、また、下記スキームに示された特定の反応条件や試薬に限定されることもない。
An example of a typical and preferred method of the present invention is shown in the scheme. Hereinafter, these methods will be specifically described, but the method of the present invention is not limited to the following methods, and is not limited to the specific reaction conditions and reagents shown in the following scheme. .

上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件でケタールを開裂させて環化することにより、上記一般式(II)で表される化合物を製造することができる。上記一般式(II)で表される化合物において、波線で示された水酸基はα結合若しくはβ結合、またはそれらの両方のいずれかの立体配置を有する。上記スキームには、本発明の特に好ましい態様としてR1、R3、及びR4がメチル基であり、R2が2,4-ジニトロベンゼンスルホニル基(DNs)の場合を示す。環化反応の第一工程は水酸基をケトンに酸化する反応であり、この反応は、例えばデス・マーチン・ペルヨージナン(DMP)などを用いて収率よく行うことができる。もっとも、酸化剤はDMPに限定されることはなく、適宜の酸化剤を選択することができることは当業者に容易に理解されることである。 The compound represented by the above general formula (II) is produced by oxidizing the hydroxyl group of the compound represented by the above general formula (III) to convert it to a ketone, and then cleaving the ketal under acidic conditions to cyclize. can do. In the compound represented by the general formula (II), the hydroxyl group indicated by the wavy line has an α bond, a β bond, or a configuration of either of them. In the above scheme, a case where R 1 , R 3 , and R 4 are methyl groups and R 2 is a 2,4-dinitrobenzenesulfonyl group (DNs) is shown as a particularly preferred embodiment of the present invention. The first step of the cyclization reaction is a reaction in which a hydroxyl group is oxidized to a ketone, and this reaction can be performed with high yield using, for example, Dess-Martin periodinane (DMP). However, the oxidizing agent is not limited to DMP, and it is easily understood by those skilled in the art that an appropriate oxidizing agent can be selected.

得られたケトン化合物を単離した後、あるいは単離することなく、酸処理に付してケタールを開裂させることによりB環を効率よく構築することができる。ケタールの開裂は、例えば、酢酸、トリフルオロ酢酸、塩酸、トリフルオロメタンスルホン酸などの酸の存在下に行うことができ、特に好ましくはトリフルオロ酢酸の存在下で反応を行うことができる。上記の酸化反応及びケタール開裂による環化反応は、好ましくは不活性溶媒の存在下で行うことができ、前者の反応は例えばジクロルメタンなどの溶媒中、後者は水の存在下でトルエンなどの溶媒の存在下に行うことができ、一般的には室温から60℃程度の範囲の温度で行うことができる。いかなる特定の理論に拘泥するわけではないが、上記スキーム中には合理的に想定される反応機構を示した。   The ring B can be efficiently constructed by subjecting the obtained ketone compound to acid treatment to cleave the ketal after or without isolation. The cleavage of the ketal can be performed in the presence of an acid such as acetic acid, trifluoroacetic acid, hydrochloric acid or trifluoromethanesulfonic acid, and the reaction can be particularly preferably performed in the presence of trifluoroacetic acid. The oxidation reaction and the cyclization reaction by ketal cleavage can be preferably carried out in the presence of an inert solvent. The former reaction is carried out in a solvent such as dichloromethane, and the latter is carried out in a solvent such as toluene in the presence of water. The reaction can be carried out in the presence, and can generally be carried out at a temperature ranging from room temperature to about 60 ° C. Without being bound by any particular theory, the above scheme shows a reaction mechanism that is reasonably assumed.

B環の構築後、得られた一般式(II)で表される化合物(一般的にはジアステレオマー混合物として得られる)を脱水することにより上記一般式(I)で表される化合物を製造することができる。脱水反応は、例えば水酸基にメタンスルホニルクロリドやp-トルエンスルホニルクロリドなどを塩基の存在下で反応させることにより行うことができる。塩基としては、例えばトリエチルアミンなどの有機アミン化合物を用いることが好ましい。この反応は、例えばジクロルメタンなどの不活性溶媒の存在下に行うことができ、通常は氷冷下から50℃程度の加温下、好ましくは室温から50℃の範囲で行うことができる。   After the construction of the B ring, the compound represented by the above general formula (I) is produced by dehydrating the obtained compound represented by the general formula (II) (generally obtained as a diastereomer mixture). can do. The dehydration reaction can be performed, for example, by reacting a hydroxyl group with methanesulfonyl chloride or p-toluenesulfonyl chloride in the presence of a base. As the base, for example, an organic amine compound such as triethylamine is preferably used. This reaction can be performed, for example, in the presence of an inert solvent such as dichloromethane. Usually, the reaction can be performed under ice cooling to about 50 ° C., preferably from room temperature to 50 ° C.

得られた一般式(I)で表される化合物の保護基を脱離することによりD環が閉環したコデイノンを得ることができる。保護基としてDNsを用いる場合には、保護基の除去のために塩基の存在下でチオール化合物、例えばHSCH2COOHなどの試薬を用いることができる。塩基としては、例えばトリエチルアミンなどの有機アミン化合物を用いることができる。この反応はジクロルメタンなどの不活性溶媒の存在下に行うことができ、一般的にはアルゴンなどの不活性ガスの存在下で室温ないし40℃程度の温度、好ましくは室温下に反応を行うことができる。この反応では、コデイノンのほか構造異性体であるネオピノンが副生成物として得らる場合があるが、ネオピノンを酸で処理することによりコデイノンに効率よく変換できることは当業者に周知である。この変換反応には、酸として例えば塩酸を用いることができ、酢酸エチルなどの不活性溶媒の存在下に反応を行うことが好ましい。 By removing the protecting group from the compound represented by the general formula (I), a codeinone in which the D ring is closed can be obtained. When DNs is used as a protecting group, a reagent such as a thiol compound, such as HSCH 2 COOH, can be used in the presence of a base for the removal of the protecting group. As the base, for example, an organic amine compound such as triethylamine can be used. This reaction can be carried out in the presence of an inert solvent such as dichloromethane, and is generally carried out in the presence of an inert gas such as argon at a temperature of about room temperature to 40 ° C., preferably at room temperature. it can. In this reaction, neopinone which is a structural isomer in addition to codeinone may be obtained as a by-product, but it is well known to those skilled in the art that neopinone can be efficiently converted to cordinone by treating with acid. In this conversion reaction, for example, hydrochloric acid can be used as the acid, and the reaction is preferably performed in the presence of an inert solvent such as ethyl acetate.

得られたコデイノンのケトンを還元することによりコデインに変換することができ、さらにコデインのメトキシ基を水酸基に変換することにより目的物であるモルヒネを製造することができるが、これらの反応も当業者に周知である。本発明の方法により製造可能なモルヒネの類縁化合物としては、下記に示したコデイノンやコデインのほか、ヘロイン、ジヒドロコデイン、ナロキソン、ナロルフィンなどを挙げることができるが、これらに限定されることはない。コデイノンからこれらの類縁化合物への変換方法は当業者に周知である。
The obtained ketone of codeinone can be converted into codeine by reducing it, and the target product morphine can be produced by converting the methoxy group of codeine into a hydroxyl group. Is well known. Examples of morphine-related compounds that can be produced by the method of the present invention include heroin, dihydrocodeine, naloxone, nalolphine and the like in addition to codeinone and codeine shown below, but are not limited thereto. Methods for converting codeinone to these related compounds are well known to those skilled in the art.

一般式(III)で表される化合物は、例えば、以下のスキームに示した方法に従って、A環に対応する上側ユニットとC環に対応する下側ユニットとを光延反応によりエーテル結合させ、得られたエーテル化合物を分子内ヘック反応により環化してE環を構築し、必要に応じてアミノ保護基をR2に変換することにより製造することができる(スキーム中、Cbzはベンジルオキシカルボニル基を示し、TBSはtert-ブチルジメチルシリル基を示す)。 The compound represented by the general formula (III) is obtained, for example, by ether-bonding an upper unit corresponding to the A ring and a lower unit corresponding to the C ring by Mitsunobu reaction according to the method shown in the following scheme. The ether compound is cyclized by intramolecular Heck reaction to construct E ring, and if necessary, the amino protecting group can be converted to R 2 (in the scheme, Cbz represents benzyloxycarbonyl group). , TBS represents a tert-butyldimethylsilyl group).

A環に対応する上側ユニットは、例えば以下のスキームに示した方法により製造することができる(スキーム中、MOMはメトキシメチル基を示す)。
The upper unit corresponding to the A ring can be produced, for example, by the method shown in the following scheme (in the scheme, MOM represents a methoxymethyl group).

また、C環に対応する下側ユニットは、例えば以下のスキームに示した方法により製造することができる。
Further, the lower unit corresponding to the C ring can be produced, for example, by the method shown in the following scheme.

本明細書の実施例には、上記スキームにおける各反応をさらに具体的に示した。従って、当業者はこれらのスキームに示した一般的な説明及び実施例の具体的説明を参照し、必要に応じて適宜の試薬や反応条件を選択し、さらにこれらの方法に適宜の修飾ないし改変を加えることにより、一般式(I)ないし(III)で表される化合物、及び目的物であるモルヒネ又はその類縁化合物を容易に製造することができる。なお、一般式(III)で表される化合物の製造方法はこれらの一般的説明に示された方法及び実施例の具体的説明の細部に限定されることはなく、当業者が任意の方法を採用できることは言うまでもない。   In the examples of the present specification, each reaction in the above scheme is shown more specifically. Accordingly, those skilled in the art will refer to the general description shown in these schemes and the specific description of the examples, select appropriate reagents and reaction conditions as necessary, and further modify or modify these methods as appropriate. By adding, the compound represented by the general formulas (I) to (III) and the target product, morphine or its related compounds, can be easily produced. The production method of the compound represented by the general formula (III) is not limited to the details shown in these general explanations and the details of the concrete explanations of the examples, and those skilled in the art can use any method. Needless to say, it can be adopted.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。下記の実施例においてAcはアセチル基を示す。
例1
2-シクロヘキセン-1-オン(1)3.06 g(30.0 mmol)をトルエン60 mlに溶かし、この中にPb(OAc)4 28.0 g(60.0 mmol)を加え、加熱還流させた。4時間後、エーテル、1 M HCl水溶液を加え、セライト濾過により固形物を取り除いた。有機層をH2Oで洗浄後、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、アセテート2 3.80 g(収率82%)を得た。
1H NMR (400 MHz, CDCl3) δ 6.97(m, 1 H), 6.07(d, J = 10.1 Hz, 1 H), 5.37(dd, J = 4.6 Hz, 13.7 Hz, 1 H), 2.58(m, 2 H), 2.29(m, 1 H), 2.19(s, 3 H), 2.16(m, 1 H)
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples. In the following examples, Ac represents an acetyl group.
Example 1
2-cyclohexen-1-one (1) (3.06 g, 30.0 mmol) was dissolved in 60 ml of toluene, and Pb (OAc) 4 (28.0 g, 60.0 mmol) was added thereto, followed by heating to reflux. After 4 hours, ether and 1 M HCl aqueous solution were added, and solids were removed by Celite filtration. The organic layer was washed with H 2 O and then dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 2.80 g (yield 82%) of acetate 2.
1 H NMR (400 MHz, CDCl 3) δ 6.97 (m, 1 H), 6.07 (d, J = 10.1 Hz, 1 H), 5.37 (dd, J = 4.6 Hz, 13.7 Hz, 1 H), 2.58 ( m, 2 H), 2.29 (m, 1 H), 2.19 (s, 3 H), 2.16 (m, 1 H)

アセテート2 1.02 g(6.61 mmol)とDMAP 162 mg(1.32 mmol)をピリジン8 mlと四塩化炭素22 mlに溶かし、その中にI2 2.51 g(9.92 mmol)を加えた。室温で30分撹拌した後、3 M HCl水溶液で中和した。ジクロロメタンで抽出した後、有機層を飽和Na2S2O3水溶液で洗浄し、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 2:1)で精製し、α-ヨードエノン3 1.67 g(収率90%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.69(dd, J = 2.8 Hz, 4.9 Hz, 1 H), 5.47(dd, J = 5.5 Hz, 13.7 Hz, 1 H), 2.58(m, 2 H), 2.26(m, 2 H), 2.18(s, 3 H)
Acetate 2 1.02 g (6.61 mmol) and DMAP 162 mg (1.32 mmol) were dissolved in pyridine 8 ml and carbon tetrachloride 22 ml, and I 2 2.51 g (9.92 mmol) was added thereto. The mixture was stirred at room temperature for 30 minutes and then neutralized with 3 M aqueous HCl. After extraction with dichloromethane, the organic layer was washed with saturated aqueous Na 2 S 2 O 3 and dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain 1.67 g (yield 90%) of α-iodoenone.
1 H NMR (400 MHz, CDCl 3 ) δ 7.69 (dd, J = 2.8 Hz, 4.9 Hz, 1 H), 5.47 (dd, J = 5.5 Hz, 13.7 Hz, 1 H), 2.58 (m, 2 H) , 2.26 (m, 2 H), 2.18 (s, 3 H)

α-ヨードエノン3 14.1 g(50.2 mmol)をテトラヒドロフラン100 mlとpH 7.41リン酸緩衝液150 mlに溶かし、その中にリパーゼAK 3.5 gを加えた。室温で6時間撹拌した後、エーテルで抽出し、Na2SO4で乾燥した。濾過後濃縮し、粗生成物としてアルコール4とアセテート5の混合物14.1 gを得た。 α-iodoenone 3 14.1 g (50.2 mmol) was dissolved in 100 ml of tetrahydrofuran and 150 ml of pH 7.41 phosphate buffer, and 3.5 g of lipase AK was added thereto. The mixture was stirred at room temperature for 6 hours, extracted with ether, and dried over Na 2 SO 4 . After filtration and concentration, 14.1 g of a mixture of alcohol 4 and acetate 5 was obtained as a crude product.

アルコール4とアセテート5の混合物14.1 gをジクロロメタン200 mlに溶かし、0 ℃冷却下で2,6-ルチジン 5.85 ml(50.2 mmol)とTBSOTf (tert-ブチルジメチルシリル トリフルオロメタンスルホン酸エステル) 5.76 ml(25.1 mmol)を加えた。0 ℃で30分撹拌した後、1 M HCl水溶液で中和した。ジクロロメタンで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 10:1)で精製し、TBSエーテル6 7.89 g(収率45%)とアセテート5 7.17 g(収率51%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.66(t, J = 4.4 Hz, 1 H), 4.30(dd, J = 4.8 Hz, 10.8 Hz, 1 H), 2.51(m, 2 H), 2.18(m, 2 H), 0.90(s, 9 H), 0.16(s, 3 H), 0.08(s, 3 H)
14.1 g of a mixture of alcohol 4 and acetate 5 was dissolved in 200 ml of dichloromethane, and cooled to 0 ° C., 5.85 ml (50.2 mmol) of 2,6-lutidine and 5.76 ml (25.1 ml of TBSOTf (tert-butyldimethylsilyl trifluoromethanesulfonate) mmol) was added. After stirring at 0 ° C. for 30 minutes, the mixture was neutralized with 1 M HCl aqueous solution. After extraction with dichloromethane, it was dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1) to obtain 6.89 g (yield 45%) of TBS ether 6 and 7.17 g (yield 51%) of acetate 5.
1 H NMR (400 MHz, CDCl 3 ) δ 7.66 (t, J = 4.4 Hz, 1 H), 4.30 (dd, J = 4.8 Hz, 10.8 Hz, 1 H), 2.51 (m, 2 H), 2.18 ( m, 2 H), 0.90 (s, 9 H), 0.16 (s, 3 H), 0.08 (s, 3 H)

ケトン6 7.83 g(22.2 mmol)とCeCl3・7H20 10.8 g(28.9 mmol)をメタノール111 mlに溶かし、0 ℃冷却下でNaBH4 1.09 g(28.9 mmol)を少量ずつゆっくり加えた。0 ℃で30分撹拌した後、1 M HCl水溶液で中和し、減圧下メタノールを除去した。ジクロロメタンで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン = 1:1)で精製し、アルコール77.76 g(収率99%)を得た。キラルカラムHPLCを用いた測定により、アルコール7の光学純度を100% eeと決定した。
1H NMR (400 MHz, CDCl3) δ 6.50(t, J = 3.9 Hz, 1 H), 4.10(dd, J = 4.1 Hz, J = 4.1 Hz, 1 H), 3.97(ddd, J = 4.1 Hz, J = 4.1 Hz, J = 9.8 Hz, 1 H), 2.76(d, J = 4.1 Hz, 1 H), 2.21(m, 1 H), 2.05(m, 1 H), 1.85(m, 1 H), 1.67(m, 1 H), 0.91(s, 9 H), 0.11(s, 3 H), 0.11(s, 3 H)
7.83 g (22.2 mmol) of ketone 6 and 20.8 mmol (28.9 mmol) of CeCl 3 · 7H 2 0 were dissolved in 111 ml of methanol, and 1.09 g (28.9 mmol) of NaBH 4 was slowly added little by little while cooling at 0 ° C. After stirring at 0 ° C. for 30 minutes, the mixture was neutralized with 1 M aqueous HCl and methanol was removed under reduced pressure. After extraction with dichloromethane, it was dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: dichloromethane = 1: 1) to obtain 77.76 g of alcohol (yield 99%). The optical purity of alcohol 7 was determined to be 100% ee by measurement using chiral column HPLC.
1 H NMR (400 MHz, CDCl 3 ) δ 6.50 (t, J = 3.9 Hz, 1 H), 4.10 (dd, J = 4.1 Hz, J = 4.1 Hz, 1 H), 3.97 (ddd, J = 4.1 Hz , J = 4.1 Hz, J = 9.8 Hz, 1 H), 2.76 (d, J = 4.1 Hz, 1 H), 2.21 (m, 1 H), 2.05 (m, 1 H), 1.85 (m, 1 H ), 1.67 (m, 1 H), 0.91 (s, 9 H), 0.11 (s, 3 H), 0.11 (s, 3 H)

ビニルカルバミン酸ベンジルエステル1.58 g(8.90 mmol)を含むテトラヒドロフラン11 ml溶液を凍結脱気し、アルゴン雰囲気下(9-BBN)2 1.08 g(4.45 mmol)を加えた。室温で30分撹拌した後、アルコール7 1.97 g(5.56 mmol)とPdCl2dppf・CH2Cl2 227 mg(0.28 mmol)を含む3 M NaOH水溶液5.6 mlとテトラヒドロフラン11 mlを凍結脱気した溶液に加えた。室温で2時間撹拌した後、エーテルとリン酸緩衝液で希釈し、0 ℃で30% H2O水溶液を滴下した。有機層と水層を分離し、水層をジクロロメタンで抽出した後Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、カルバミン酸エステル8 1.85 g(収率82%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.35(m, 5 H), 5.59(br, 1 H), 5.38(br, 1 H), 5.09(s, 2 H), 3.85(br, 1 H), 3.75(ddd, J = 3.6 Hz, J = 3.6 Hz, J = 11.2 Hz, 1 H), 3.35(m, 2 H), 2.80(d, J = 3.6 Hz, 1 H), 2.41(m, 1 H), 2.17(m, 2 H), 1.97(m, 1 H), 1.75(m, 1 H), 1.54(m, 1 H), 0.91(s, 9 H), 0.10(s, 6 H)
A tetrahydrofuran 11 ml solution containing 1.58 g (8.90 mmol) of vinylcarbamic acid benzyl ester was freeze-degassed, and 1.08 g (4.45 mmol) of 9 (BBN) 2 was added under an argon atmosphere. After stirring at room temperature for 30 minutes, 5.6 ml of 3 M NaOH solution containing 1.97 g (5.56 mmol) of alcohol and 227 mg (0.28 mmol) of PdCl 2 dppfCH 2 Cl 2 and 11 ml of tetrahydrofuran were frozen and degassed. added. After stirring at room temperature for 2 hours, the mixture was diluted with ether and phosphate buffer, and 30% aqueous H 2 O solution was added dropwise at 0 ° C. The organic layer and the aqueous layer were separated, and the aqueous layer was extracted with dichloromethane and then dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 1.85 g (82% yield) of carbamate 8.
1 H NMR (400 MHz, CDCl 3 ) δ 7.35 (m, 5 H), 5.59 (br, 1 H), 5.38 (br, 1 H), 5.09 (s, 2 H), 3.85 (br, 1 H) , 3.75 (ddd, J = 3.6 Hz, J = 3.6 Hz, J = 11.2 Hz, 1 H), 3.35 (m, 2 H), 2.80 (d, J = 3.6 Hz, 1 H), 2.41 (m, 1 H), 2.17 (m, 2 H), 1.97 (m, 1 H), 1.75 (m, 1 H), 1.54 (m, 1 H), 0.91 (s, 9 H), 0.10 (s, 6 H)

アルコール8 1.60 g(3.94 mmol)とフェノール9 1.33 g(3.94 mmol)を含むテトラヒドロフラン19.7 ml溶液に、アルゴン雰囲気下nBu3P 1.97 ml(7.88 mmol)とアゾジカルボン酸ジエチル(DEAD) 3.58 ml(7.88 mmol)を加えた。室温で30分撹拌した後、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、アリールエーテル10 2.75 g(収率96%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.34(m, 5 H), 6.99(d, J = 8.2 Hz, 1 H), 6.83(d, J = 8.2 Hz, 1 H), 5.81(br, 1 H), 5.07(s, 2 H), 4.91(br, 1 H), 4.57(br, 1 H), 4.54(t, J = 5.5 Hz, 1 H), 4.02(br, 1 H), 3.82(s, 3 H), 3.46(m, 1 H), 3.34(s, 3 H), 3.34(s, 3 H), 3.27(m, 1 H), 3.06(d, J = 5.5 Hz, 2 H), 2.46(m, 1 H), 2.33(m, 1 H), 2.25(m, 2 H), 2.05(m, 1 H), 1.64(m, 1 H), 0.75(s, 9 H), -0.14(s, 3 H), -0.18(s, 3 H)
In a 19.7 ml solution of tetrahydrofuran containing 1.60 g (3.94 mmol) of alcohol 8 and 1.33 g (3.94 mmol) of phenol, 1.97 ml (7.88 mmol) of n Bu 3 P (7.88 mmol) and 3.58 ml (7.88) of diethyl azodicarboxylate under an argon atmosphere mmol) was added. After stirring at room temperature for 30 minutes, the mixture was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 102.75 g (yield 96%) of aryl ether.
1 H NMR (400 MHz, CDCl 3 ) δ 7.34 (m, 5 H), 6.99 (d, J = 8.2 Hz, 1 H), 6.83 (d, J = 8.2 Hz, 1 H), 5.81 (br, 1 H), 5.07 (s, 2 H), 4.91 (br, 1 H), 4.57 (br, 1 H), 4.54 (t, J = 5.5 Hz, 1 H), 4.02 (br, 1 H), 3.82 ( s, 3 H), 3.46 (m, 1 H), 3.34 (s, 3 H), 3.34 (s, 3 H), 3.27 (m, 1 H), 3.06 (d, J = 5.5 Hz, 2 H) , 2.46 (m, 1 H), 2.33 (m, 1 H), 2.25 (m, 2 H), 2.05 (m, 1 H), 1.64 (m, 1 H), 0.75 (s, 9 H),- 0.14 (s, 3 H), -0.18 (s, 3 H)

ヨードベンゼン10 1.98 g(2.73 mmol)とPd2(dba)3 250 mg(0.27 mmol)とP(o-tol)3 166 mg(0.55 mmol)を含むアセトニトリル18.2 ml溶液に、アルゴン雰囲気下Et3N 1.13 ml(8.19 mmol)を加え、加熱還流させた。2時間後、減圧下溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、カルバミン酸エステル11 1.64 g(収率100%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.33(m, 5 H), 6.71(s, 2 H), 5.97(d, J = 10.1 Hz, 1 H), 5.69(m, 1 H), 5.05(s, 2 H), 4.75(br, 1 H), 4.56(t, J = 4.8 Hz, 1 H), 4.48 (d, J = 7.3 Hz, 1 H), 3.96(dd, J = 7.3 Hz, J = 12.2 Hz, 1 H), 3.82(s, 3 H), 3.35(s, 3 H), 3.31(s, 3 H), 3.21(m, 1 H), 3.13(m, 1 H), 2.88(d, J = 4.8 Hz, 2 H), 2.25(m, 1 H), 2.29(m, 1 H), 1.98(m, 2 H), 0.89(s, 9 H), 0.13(s, 6 H)
Iodobenzene 10 1.98 g (2.73 mmol) and the Pd 2 (dba) 3 250 mg (0.27 mmol) and P (o-tol) acetonitrile 18.2 ml solution containing 3 166 mg (0.55 mmol), under an argon atmosphere Et 3 N 1.13 ml (8.19 mmol) was added and heated to reflux. After 2 hours, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 1.64 g (yield 100%) of carbamic acid ester 11.
1 H NMR (400 MHz, CDCl 3 ) δ 7.33 (m, 5 H), 6.71 (s, 2 H), 5.97 (d, J = 10.1 Hz, 1 H), 5.69 (m, 1 H), 5.05 ( s, 2 H), 4.75 (br, 1 H), 4.56 (t, J = 4.8 Hz, 1 H), 4.48 (d, J = 7.3 Hz, 1 H), 3.96 (dd, J = 7.3 Hz, J = 12.2 Hz, 1 H), 3.82 (s, 3 H), 3.35 (s, 3 H), 3.31 (s, 3 H), 3.21 (m, 1 H), 3.13 (m, 1 H), 2.88 ( d, J = 4.8 Hz, 2 H), 2.25 (m, 1 H), 2.29 (m, 1 H), 1.98 (m, 2 H), 0.89 (s, 9 H), 0.13 (s, 6 H)

カルバミン酸エステル11 1.20 g(2.01 mmol)を含むテトラヒドロフラン10.0 ml溶液に、アルゴン雰囲気下にリチウムアルミニウムハイドライド(LAH) 226 mg(6.02 mmol)を少量ずつ加え、加熱還流させた。1時間後、エーテルで希釈し、0 ℃でH2O、3 M NaOH水溶液を滴下した。セライト濾過により固形物を除いた後、濃縮した。得られた粗生成物をジクロロメタン10.0 mlと飽和NaHCO3水溶液10.0 mlに溶かし、2,4-ジニトロベンゼンスルホニルクロリド(DNsCl) 643 mg(2.41 mmol)を加えた。室温で30分撹拌した後、ジクロロメタンで抽出し、Na2SO4で乾燥した。濾過後濃縮し、粗生成物としてスルホンアミド12 1.77 gを得た。
1H NMR (400 MHz, CDCl3) δ 8.44(d, J = 9.1 Hz, 1 H), 8.43(s, 1 H), 8.04(d, J = 9.1 Hz, 1 H), 6.75(s, 2 H), 5.98(d, J = 9.8 Hz, 1 H), 5.75(m, 1 H), 4.56(t, J = 5.7 Hz, 1 H), 3.89(m, 1 H), 3.82(s, 3 H), 3.37(s, 3 H), 3.35(m, 1 H), 3.33(s, 3 H), 2.98(m, 1 H), 2.92(s, 3 H), 2.86(d, J = 5.7 Hz, 2 H), 2.27(m, 1 H), 2.06(m, 3 H), 0.89(s, 9 H), 0.12(s, 6 H)
Lithium aluminum hydride (LAH) 226 mg (6.02 mmol) was added little by little to a 10.0 ml tetrahydrofuran solution containing 1.20 g (2.01 mmol) of carbamate 11 and refluxed under heating. After 1 hour, the mixture was diluted with ether, and H 2 O, 3 M NaOH aqueous solution was added dropwise at 0 ° C. The solid was removed by Celite filtration and then concentrated. The obtained crude product was dissolved in 10.0 ml of dichloromethane and 10.0 ml of a saturated aqueous NaHCO 3 solution, and 643 mg (2.41 mmol) of 2,4-dinitrobenzenesulfonyl chloride (DNsCl) was added. The mixture was stirred at room temperature for 30 minutes, extracted with dichloromethane, and dried over Na 2 SO 4 . After filtration, the filtrate was concentrated to obtain 1.77 g of sulfonamide 12 as a crude product.
1 H NMR (400 MHz, CDCl 3 ) δ 8.44 (d, J = 9.1 Hz, 1 H), 8.43 (s, 1 H), 8.04 (d, J = 9.1 Hz, 1 H), 6.75 (s, 2 H), 5.98 (d, J = 9.8 Hz, 1 H), 5.75 (m, 1 H), 4.56 (t, J = 5.7 Hz, 1 H), 3.89 (m, 1 H), 3.82 (s, 3 H), 3.37 (s, 3 H), 3.35 (m, 1 H), 3.33 (s, 3 H), 2.98 (m, 1 H), 2.92 (s, 3 H), 2.86 (d, J = 5.7 Hz, 2 H), 2.27 (m, 1 H), 2.06 (m, 3 H), 0.89 (s, 9 H), 0.12 (s, 6 H)

粗生成物として得たスルホンアミド12 1.77 g(22.2 mmol)をメタノール10.0 mlに溶かし、CSA 140 mg(0.60 mmol)を加えた。3時間撹拌した後、飽和NaHCO3水溶液で中和し、ジクロロメタンで抽出し、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 1:1)で精製し、アルコール13 905 mg(収率76%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.44(d, J = 8.5 Hz, 1 H), 8.44(s, 1 H), 8.07(d, J = 8.5 Hz, 1 H), 6.78(d, J = 8.5 Hz, 1 H), 6.75(d, J = 8.5 Hz, 1 H), 6.02(d, J = 11.2 Hz, 1 H), 5.83(m, 1 H), 4.53(t, J = 4.8 Hz, 1 H), 4.37(d, J = 8.5 Hz, 1 H), 3.85(s, 3 H), 3.85(m, 1 H), 3.37(s, 3 H), 3.35(m, 1 H), 3.32(s, 3 H), 2.97(m, 1 H), 2.92(s, 3 H), 2.87(d, J = 4.8 Hz, 2 H), 2.65(br, 1 H), 2.41(m, 1 H), 2.15(m, 2 H), 1.97(m, 1 H)
The sulfonamide 12 1.77 g (22.2 mmol) obtained as a crude product was dissolved in 10.0 ml of methanol, and 140 mg (0.60 mmol) of CSA was added. After stirring for 3 hours, the mixture was neutralized with a saturated aqueous NaHCO 3 solution, extracted with dichloromethane, and dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain 905 mg of alcohol (76% yield).
1 H NMR (400 MHz, CDCl 3 ) δ 8.44 (d, J = 8.5 Hz, 1 H), 8.44 (s, 1 H), 8.07 (d, J = 8.5 Hz, 1 H), 6.78 (d, J = 8.5 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 H), 6.02 (d, J = 11.2 Hz, 1 H), 5.83 (m, 1 H), 4.53 (t, J = 4.8 Hz , 1 H), 4.37 (d, J = 8.5 Hz, 1 H), 3.85 (s, 3 H), 3.85 (m, 1 H), 3.37 (s, 3 H), 3.35 (m, 1 H), 3.32 (s, 3 H), 2.97 (m, 1 H), 2.92 (s, 3 H), 2.87 (d, J = 4.8 Hz, 2 H), 2.65 (br, 1 H), 2.41 (m, 1 H), 2.15 (m, 2 H), 1.97 (m, 1 H)

アルコール13 402 mg(0.677 mmol)をジクロロメタン6.7 mlに溶かし、デス・マーチン・ペルヨージナン 430 mg(1.02 mmol)を加えた。40 ℃で10分撹拌した後、飽和Na2S2O3水溶液を加え、ジクロロメタンで抽出し、Na2SO4で乾燥した。濾過後濃縮し、粗生成物としてβ,γ-不飽和ケトン14 442 mgを得た。 Alcohol 13 402 mg (0.677 mmol) was dissolved in dichloromethane 6.7 ml, and Dess-Martin periodinane 430 mg (1.02 mmol) was added. After stirring at 40 ° C. for 10 minutes, a saturated aqueous Na 2 S 2 O 3 solution was added, extracted with dichloromethane, and dried over Na 2 SO 4 . After filtration and concentration, β, γ-unsaturated ketone 14 442 mg was obtained as a crude product.

β,γ-不飽和ケトン14 442 mgをトルエン6.7 mlに溶かし、50% トリフルオロ酢酸(TFA)水溶液2.3 mlを加えた。50 ℃で3時間撹拌した後、飽和NaHCO3水溶液で中和し、酢酸エチルで抽出し、Na2SO4で乾燥した。濾過後濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 1:2)で精製し、ジアステレオマーの混合物としてアルコール15 282 mg(収率77%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.45(m, 2 H), 8.45(m, 2/3 H), 8.13(d, J = 8.3 Hz, 1/3 H), 8.04(d, J = 10.1 Hz, 1 H), 7.09(dd, J = 11.0 Hz, J = 4.4 Hz, 1/3 H), 7.06(dd, J = 11.0 Hz, J = 4.4 Hz, 1 H), 6.73(d, J = 8.3 Hz, 4/3 H), 6.70(d, J = 8.3 Hz, 4/3 H), 6.24(d, J = 11.0 Hz, 1/3 H), 6.14(d, J = 11.0 Hz, 1 H), 4.83(s, 1 H), 4.78(s, 1/3 H), 3.87(s, 3 H), 3.85(s, 3/3 H), 3.62(m, 4/3 H), 3.48(m, 4/3 H), 3.14(m, 4/3 H), 3.04(m, 4/3 H), 2.94(s, 3/3 H), 2.92(s, 3 H), 2.88(m, 2 H), 2.85(m, 2/3 H), 2.53(d, J = 9.2 Hz, 4/3 H),
2.21(m, 4/3 H), 2.12(m, 4/3 H)
442 mg of β, γ-unsaturated ketone 14 was dissolved in 6.7 ml of toluene, and 2.3 ml of 50% aqueous trifluoroacetic acid (TFA) solution was added. After stirring at 50 ° C. for 3 hours, the mixture was neutralized with saturated aqueous NaHCO 3 solution, extracted with ethyl acetate, and dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 1: 2) to obtain 15282 mg of alcohol (77% yield) as a mixture of diastereomers.
1 H NMR (400 MHz, CDCl 3 ) δ 8.45 (m, 2 H), 8.45 (m, 2/3 H), 8.13 (d, J = 8.3 Hz, 1/3 H), 8.04 (d, J = 10.1 Hz, 1 H), 7.09 (dd, J = 11.0 Hz, J = 4.4 Hz, 1/3 H), 7.06 (dd, J = 11.0 Hz, J = 4.4 Hz, 1 H), 6.73 (d, J = 8.3 Hz, 4/3 H), 6.70 (d, J = 8.3 Hz, 4/3 H), 6.24 (d, J = 11.0 Hz, 1/3 H), 6.14 (d, J = 11.0 Hz, 1 H), 4.83 (s, 1 H), 4.78 (s, 1/3 H), 3.87 (s, 3 H), 3.85 (s, 3/3 H), 3.62 (m, 4/3 H), 3.48 (m, 4/3 H), 3.14 (m, 4/3 H), 3.04 (m, 4/3 H), 2.94 (s, 3/3 H), 2.92 (s, 3 H), 2.88 (m , 2 H), 2.85 (m, 2/3 H), 2.53 (d, J = 9.2 Hz, 4/3 H),
2.21 (m, 4/3 H), 2.12 (m, 4/3 H)

ジアステレオマー混合物であるアルコール15 3.2 mg(0.0059 mmol)とトリエチルアミン(Et3N) 4.1 μl(0.0295 mmol)を含むジクロロメタン0.2 ml溶液にメタンスルホニルクロリド(MsCl) 1.3 μlを加え、室温で10分撹拌した。室温から50 ℃に昇温し、30分撹拌した。飽和NH4Cl水溶液を加え、酢酸エチルで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、分取薄層クロマトグラフィーで精製し、ジエノン16 2.5 mg(80%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.45(d, J = 10.1 Hz, 1 H), 8.44(s, 1 H), 8.07(d, J = 10.1 Hz, 1 H), 7.28(d, J = 10.1 Hz, 1 H), 6.76(d, J = 8.3 Hz, 1 H), 6.70(d, J = 8.3 Hz, 1 H), 6.41(d, J = 4.6 Hz, 1 H), 5.98(d, J = 10.1 Hz, 1 H), 5.00(s, 1 H), 3.87(s, 3 H), 3.59(d, J = 20.2 Hz, 1 H), 3.43(d, J = 20.2 Hz, 1 H), 3.42(m, 1 H), 3.11(m, 1 H), 2.91(s, 3 H), 2.16(m, 2 H)
Diastereomeric alcohols 15 3.2 mg a-mer mixture (0.0059 mmol) and triethylamine (Et 3 N) 4.1 μl ( 0.0295 mmol) in dichloromethane 0.2 ml solution methanesulfonyl chloride (MsCl) and 1.3 [mu] l was added containing, stirred for 10 minutes at room temperature did. The temperature was raised from room temperature to 50 ° C. and stirred for 30 minutes. A saturated aqueous NH 4 Cl solution was added, and the mixture was extracted with ethyl acetate, and then dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by preparative thin layer chromatography to obtain 16 2.5 mg (80%) of dienone.
1 H NMR (400 MHz, CDCl 3 ) δ 8.45 (d, J = 10.1 Hz, 1 H), 8.44 (s, 1 H), 8.07 (d, J = 10.1 Hz, 1 H), 7.28 (d, J = 10.1 Hz, 1 H), 6.76 (d, J = 8.3 Hz, 1 H), 6.70 (d, J = 8.3 Hz, 1 H), 6.41 (d, J = 4.6 Hz, 1 H), 5.98 (d , J = 10.1 Hz, 1 H), 5.00 (s, 1 H), 3.87 (s, 3 H), 3.59 (d, J = 20.2 Hz, 1 H), 3.43 (d, J = 20.2 Hz, 1 H ), 3.42 (m, 1 H), 3.11 (m, 1 H), 2.91 (s, 3 H), 2.16 (m, 2 H)

ジエノン16 4.0 mg(0.0076 mmol)とトリエチルアミン 3.2 μl(0.0227 mmol)を含むジクロロメタン0.2 ml溶液に、アルゴン雰囲気下HSCH2CO2H 0.8 μl(0.0091 mmol)を加えた。室温で5分撹拌した後、飽和NaHCO3水溶液を加え、さらに30分撹拌した。クロロホルムで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、分取薄層クロマトグラフィーで精製し、ネオピノン(17)とコデイノン(18) の混合物1.8 mg(収率80%)を得た。 HSCH 2 CO 2 H 0.8 μl (0.0091 mmol) was added to a dichloromethane 0.2 ml solution containing dienone 16 4.0 mg (0.0076 mmol) and triethylamine 3.2 μl (0.0227 mmol) under an argon atmosphere. After stirring at room temperature for 5 minutes, a saturated aqueous NaHCO 3 solution was added, and the mixture was further stirred for 30 minutes. After extraction with chloroform, and dried over Na 2 SO 4. After filtration, the filtrate was concentrated and purified by preparative thin layer chromatography to obtain 1.8 mg (yield 80%) of a mixture of neopinone (17) and codeinone (18).

ネオピノン(17)とコデイノン(18) の混合物1.8 mg(0.0061 mmol)を4 M HCl酢酸溶液に溶かした。室温で30分撹拌した後、飽和NaHCO3水溶液を加えて中和した。ジクロロメタンで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、粗生成物としてコデイノン(18) 1.8 mgを得た。得られたコデイノン(18) 1.8 mgをメタノール0.2 mlに溶かし、NaBH4 0.3 mgを加え、室温で10分撹拌した。H2Oを加え、ジクロロメタンで抽出した後、Na2SO4で乾燥した。濾過後濃縮し、分取薄層クロマトグラフィーで精製し、コデイン(19) 1.8 mg(99%)を得た。
1H NMR (400 MHz, CDCl3) δ 6.66(d, J = 8.0 Hz, 1 H), 6.57(d, J = 8.0 Hz, 1 H), 5.72(d, J = 11.0 Hz, 1 H), 5.29(d, J = 11.0 Hz, 1 H), 4.91(d, J = 6.6 Hz, 1 H), 4.18(s, 1 H), 3.85(s, 3 H), 3.36(m, 1 H), 3.05(d, J = 18.8 Hz, 1 H), 2.87(br, 1 H), 2.67(s, 1 H), 2.60(s, 1 H), 2.42(s, 3 H), 2.38(s, 1 H), 2.30(s, 1 H), 2.07(s, 1 H), 1.88(d, J = 10.8 Hz, 1 H)
A mixture of neopinone (17) and codeinone (18) (1.8 mg, 0.0061 mmol) was dissolved in 4 M HCl acetic acid solution. After stirring at room temperature for 30 minutes, a saturated aqueous NaHCO 3 solution was added to neutralize. After extraction with dichloromethane, it was dried over Na 2 SO 4 . After filtration, the filtrate was concentrated to obtain 1.8 mg of codeinone (18) as a crude product. 1.8 mg of the resulting codeinone (18) was dissolved in 0.2 ml of methanol, 0.3 mg of NaBH 4 was added, and the mixture was stirred at room temperature for 10 minutes. H 2 O was added, extracted with dichloromethane, and dried over Na 2 SO 4 . After filtration, the filtrate was concentrated and purified by preparative thin layer chromatography to obtain 1.8 mg (99%) of codeine (19).
1 H NMR (400 MHz, CDCl 3 ) δ 6.66 (d, J = 8.0 Hz, 1 H), 6.57 (d, J = 8.0 Hz, 1 H), 5.72 (d, J = 11.0 Hz, 1 H), 5.29 (d, J = 11.0 Hz, 1 H), 4.91 (d, J = 6.6 Hz, 1 H), 4.18 (s, 1 H), 3.85 (s, 3 H), 3.36 (m, 1 H), 3.05 (d, J = 18.8 Hz, 1 H), 2.87 (br, 1 H), 2.67 (s, 1 H), 2.60 (s, 1 H), 2.42 (s, 3 H), 2.38 (s, 1 H), 2.30 (s, 1 H), 2.07 (s, 1 H), 1.88 (d, J = 10.8 Hz, 1 H)

Claims (11)

下記の一般式(I)、(II)、又は(III):
(式中、R1はC1-6アルキル基を示し、R2は強酸性条件下において実質的に脱離することがないアミノ保護基を示し;R3及びR4はそれぞれ独立にC1-6アルキル基を示す)
で表される化合物。
The following general formula (I), (II), or (III):
(Wherein R 1 represents a C 1-6 alkyl group, R 2 represents an amino protecting group that is not substantially eliminated under strongly acidic conditions; R 3 and R 4 are each independently C 1 -6 represents an alkyl group)
A compound represented by
R1がメチル基であり、R2が2,4-ジニトロベンゼンスルホニル基である請求項1に記載の一般式(I)ないし(III)のいずれかで表される化合物。 The compound represented by any one of formulas (I) to (III) according to claim 1, wherein R 1 is a methyl group and R 2 is a 2,4-dinitrobenzenesulfonyl group. R1がメチル基であり、R2が2,4-ジニトロベンゼンスルホニル基であり、R3及びR4がメチル基である請求項1に記載の一般式(III)で表される化合物。 R 1 is a methyl group, R 2 is 2,4-nitrobenzenesulfonyl group, compounds wherein R 3 and R 4 is represented by the general formula of claim 1 is a methyl group (III). モルヒネ又はその類縁化合物の製造用中間体として用いるための請求項1ないし3のいずれか1項に記載の一般式(I)、(II)、又は(III)で表される化合物。 The compound represented by the general formula (I), (II), or (III) according to any one of claims 1 to 3, for use as an intermediate for the production of morphine or a related compound thereof. モルヒネ又はその類縁化合物がモルヒネ、コデイノン、又はコデインである請求項4に記載の化合物。 The compound according to claim 4, wherein the morphine or a related compound thereof is morphine, codeinone, or codeine. 請求項1に記載の一般式(II)で表される化合物の製造方法であって、請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化する工程を含む方法。 A method for producing a compound represented by the general formula (II) according to claim 1, wherein the hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized and converted into a ketone. , Cyclization under acidic conditions. 請求項1に記載の一般式(I)で表される化合物の製造方法であって、請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程を含む方法。 A method for producing a compound represented by the general formula (I) according to claim 1, comprising a step of subjecting the compound represented by the general formula (II) according to claim 1 to a dehydration reaction. 請求項1に記載の一般式(I)で表される化合物の製造方法であって、下記の工程:
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;及び
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程
を含む方法。
It is a manufacturing method of the compound represented by general formula (I) of Claim 1, Comprising: The following processes:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compounds represented; and
(b) A method comprising a step of subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction.
モルヒネ又はその類縁化合物の製造方法であって、下記の工程:
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程;及び
(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程
からなる群から選ばれる少なくとも1つの工程を含む方法。
A method for producing morphine or a related compound thereof, comprising the following steps:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compound represented;
(b) subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction; and
(c) at least one selected from the group consisting of a step of cyclization by deprotecting the amino protecting group of the compound represented by the general formula (I) obtained in the step (b) and treating with a base A method comprising the steps.
モルヒネ又はその類縁化合物の製造方法であって、下記の工程:
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程;及び
(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化してコデイノンを製造する工程
を含む方法。
A method for producing morphine or a related compound thereof, comprising the following steps:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compound represented;
(b) subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction; and
(c) A method comprising a step of producing codeinone by cyclization by deprotecting the amino protecting group of the compound represented by the general formula (I) obtained in the step (b) and treating with a base.
モルヒネの製造方法であって、請求項10の工程(a)ないし(c)に加えてさらに下記の工程:
(d)上記工程(c)で得られたコデイノンのケトンを還元する工程、及び脱メチル化する工程を含む方法。
A method for producing morphine, which comprises the following steps in addition to steps (a) to (c) of claim 10:
(d) A method comprising a step of reducing the codeinone ketone obtained in the step (c) and a step of demethylation.
JP2008179499A 2008-06-20 2008-07-09 Method for producing morphine Pending JP2010024141A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008179499A JP2010024141A (en) 2008-06-20 2008-07-09 Method for producing morphine
PCT/JP2009/058040 WO2009154041A1 (en) 2008-06-20 2009-04-23 Method for producing morphine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008161165 2008-06-20
JP2008179499A JP2010024141A (en) 2008-06-20 2008-07-09 Method for producing morphine

Publications (1)

Publication Number Publication Date
JP2010024141A true JP2010024141A (en) 2010-02-04

Family

ID=41433958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179499A Pending JP2010024141A (en) 2008-06-20 2008-07-09 Method for producing morphine

Country Status (2)

Country Link
JP (1) JP2010024141A (en)
WO (1) WO2009154041A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013022139; TRAUNER,D. et al: 'Synthesis of Enantiomerically Pure Morphine Alkaloids: The Hydrophenanthrene Route' Journal of Organic Chemistry Vol.63, No.17, 1998, p.5908-5918 *
JPN6013022140; TOTH,J.E. et al: 'Formation of the neopinone/codeinone ring system via intramolecular 1,6-addition of an amino moiety' Journal of Organic Chemistry Vol.51, No.13, 1986, p.2594-2596 *

Also Published As

Publication number Publication date
WO2009154041A1 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
May et al. The structural and synthetic implications of the biosynthesis of the calycanthaceous alkaloids, the communesins, and nomofungin
US7060832B2 (en) Nitrogen-containing fused heterocyclic carboxylic acids having an absolute configuration of “R”
Cheng et al. Construction of functionalized B/C/D ring system of C19-diterpenoid alkaloids via intramolecular Diels–Alder reaction followed by Wagner–Meerwein rearrangement
US11339179B2 (en) Preparation for natural product trabectedin
Wang et al. Planned and unplanned halogenations in route to selected oroidin alkaloids
KR101810717B1 (en) Novel process for the preparation of asenapine
Jiang et al. Mg (ClO4) 2-catalyzed intramolecular allylic amination: application to the total synthesis of demethoxyfumitremorgin C
Lee et al. Organocatalytic enantioselective formal synthesis of bromopyrrole alkaloids via aza-Michael addition
AU607337B2 (en) Intermediates for the production of epipodophyllotoxin and related compounds and processes for the preparation and use thereof
MaGee et al. The use of the Ramberg Bäcklund rearrangement for the formation of aza-macrocycles: a total synthesis of manzamine C
Aitken et al. Enantioselective access to benzannulated spiroketals using a chiral sulfoxide auxiliary
CN109265386B (en) Novel method for synthesizing 3-acylated indole derivative through C-H activation
Donohoe et al. Synthesis of cylindricine C and a formal synthesis of cylindricine A
Nishi et al. An efficient synthesis of enantiomerically pure 2-[(2R)-arylmorpholin-2-yl] ethanols, key intermediates of tachykinin receptor antagonist
Li et al. A Concise Synthesis of (±)‐Yaequinolone A2
EP1856124B1 (en) New synthesis of a camptothecin subunit
Mizutani et al. The second generation synthesis of (±)-berkeleyamide D
JP2010024141A (en) Method for producing morphine
MXPA01011977A (en) 1-trifluoromethyl-4-hydroxy-7-piperidinyl-aminomethylchroman derivatives.
Chrzanowska et al. Synthesis of (S)-(−)-and (R)-(+)-O-methylbharatamine using a diastereoselective Pomeranz–Fritsch–Bobbitt methodology
Uchida et al. Total Synthesis of (+/-)-Morphine
Li et al. Concise formal synthesis of (+)-pyripyropene A
Dhanjee et al. Synthetic studies toward tetrapetalone A: attempted palladium π-allyl cascades toward a fused tricyclic intermediate
Kato et al. Convergent approach to the maduropeptin chromophore: aryl ether formation of (R)-3-aryl-3-hydroxypropanamide and cyclization of macrolactam
Ung et al. Synthesis of alkaloid-like compounds via the bridging Ritter reactions II

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917