JP2010024141A - Method for producing morphine - Google Patents
Method for producing morphine Download PDFInfo
- Publication number
- JP2010024141A JP2010024141A JP2008179499A JP2008179499A JP2010024141A JP 2010024141 A JP2010024141 A JP 2010024141A JP 2008179499 A JP2008179499 A JP 2008179499A JP 2008179499 A JP2008179499 A JP 2008179499A JP 2010024141 A JP2010024141 A JP 2010024141A
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- compound represented
- group
- morphine
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 title claims abstract description 66
- 229960005181 morphine Drugs 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 150000001875 compounds Chemical class 0.000 claims abstract description 78
- 230000002378 acidificating effect Effects 0.000 claims abstract description 19
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 10
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 27
- 125000006239 protecting group Chemical group 0.000 claims description 21
- XYYVYLMBEZUESM-CMKMFDCUSA-N codeinone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=CC(=O)[C@@H]1OC1=C2C3=CC=C1OC XYYVYLMBEZUESM-CMKMFDCUSA-N 0.000 claims description 20
- -1 2,4-dinitrobenzenesulfonyl group Chemical group 0.000 claims description 19
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 claims description 19
- 150000002576 ketones Chemical class 0.000 claims description 16
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 9
- 238000006297 dehydration reaction Methods 0.000 claims description 8
- 238000007363 ring formation reaction Methods 0.000 claims description 7
- 229960004126 codeine Drugs 0.000 claims description 6
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 claims description 6
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 3
- 230000017858 demethylation Effects 0.000 claims description 2
- 238000010520 demethylation reaction Methods 0.000 claims description 2
- OVOJUAKDTOOXRF-UHFFFAOYSA-N 2,4-dinitrobenzenesulfonic acid Chemical group OS(=O)(=O)C1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O OVOJUAKDTOOXRF-UHFFFAOYSA-N 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 54
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 33
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 17
- 238000001914 filtration Methods 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000000543 intermediate Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000010898 silica gel chromatography Methods 0.000 description 9
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 8
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 239000012043 crude product Substances 0.000 description 6
- LJVKMVSYTWPNGA-UUWFMWQGSA-N neopinone Chemical compound O=C([C@@H]1O2)CC=C3[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C LJVKMVSYTWPNGA-UUWFMWQGSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000012442 inert solvent Substances 0.000 description 4
- LJVKMVSYTWPNGA-UHFFFAOYSA-N neopinone Natural products O1C2C(=O)CC=C3C4CC5=CC=C(OC)C1=C5C23CCN4C LJVKMVSYTWPNGA-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 3
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical group OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 238000012746 preparative thin layer chromatography Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 206010058019 Cancer Pain Diseases 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000008896 Opium Substances 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WLLIXJBWWFGEHT-UHFFFAOYSA-N [tert-butyl(dimethyl)silyl] trifluoromethanesulfonate Chemical compound CC(C)(C)[Si](C)(C)OS(=O)(=O)C(F)(F)F WLLIXJBWWFGEHT-UHFFFAOYSA-N 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 229960001027 opium Drugs 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 1
- SSFSNKZUKDBPIT-UHFFFAOYSA-N 2,4-dinitrobenzenesulfonyl chloride Chemical compound [O-][N+](=O)C1=CC=C(S(Cl)(=O)=O)C([N+]([O-])=O)=C1 SSFSNKZUKDBPIT-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 238000006617 Intramolecular Heck reaction Methods 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 238000006751 Mitsunobu reaction Methods 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- WJGAPUXHSQQWQF-UHFFFAOYSA-N acetic acid;hydrochloride Chemical compound Cl.CC(O)=O WJGAPUXHSQQWQF-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- YGBQZFPEMRCQRY-UHFFFAOYSA-N benzyl n-ethenylcarbamate Chemical compound C=CNC(=O)OCC1=CC=CC=C1 YGBQZFPEMRCQRY-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006567 deketalization reaction Methods 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- 229960000920 dihydrocodeine Drugs 0.000 description 1
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- 239000004084 narcotic analgesic agent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/91—Dibenzofurans; Hydrogenated dibenzofurans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D489/00—Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula:
- C07D489/02—Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula: with oxygen atoms attached in positions 3 and 6, e.g. morphine, morphinone
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pain & Pain Management (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Furan Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は効率的なモルヒネの製造方法に関する。 The present invention relates to an efficient method for producing morphine.
モルヒネは癌性疼痛などの強い疼痛を緩和する目的で末期がん患者などに処方される麻薬性鎮痛剤であり、WHOによりモルヒネを用いたがん疼痛治療法が提唱され、依存形成を回避しつつ疼痛管理を行う方法が医療現場に普及したことから、近年その使用量が大幅に増大している。モルヒネはアヘンから抽出されるが、従来より天然物であるアヘンを原料とした製造方法に代えて化学合成によりモルヒネを安価に安定供給する試みがなされている(下記の式中、Meはメチル基を示す。以下、本明細書において同様である)。 Morphine is a narcotic analgesic prescribed to patients with end-stage cancer for the purpose of alleviating strong pain such as cancer pain, and WHO has proposed a cancer pain treatment using morphine to avoid dependence formation. However, since the method of managing pain while spreading in the medical field, the amount of use has increased significantly in recent years. Morphine is extracted from opium, but an attempt has been made to stably supply morphine stably at low cost by chemical synthesis instead of a production method using natural opium as a raw material (in the following formula, Me is a methyl group). The same applies hereinafter).
モルヒネの合成方法については種々の報告がなされている(総説としてSynlett, 388, 2005などを参照のこと)。モルヒネ合成において最も重要な点は四級炭素を含む五環性の骨格の効率的構築にあり、この観点から数々の優れた方法が開発されてきた。しかしながら、それらの鍵反応は比較的単純化された基質を用いて達成される場合が多い。その結果、合成の終盤にモルヒネの下部C環アリルアルコール部位を構築するために、煩雑な官能基変換を行う必要がある。例えば、Org. Lett., 8, 5311, 2006に記載されたモルヒネの合成方法ではC環アリルアルコール部位の構築にケトンからエノンへの酸化反応等を含む8工程を要するなど効率の点で問題がある。 Various reports have been made on morphine synthesis methods (for review, see Synlett, 388, 2005, etc.). The most important point in the synthesis of morphine is the efficient construction of a pentacyclic skeleton containing a quaternary carbon. From this viewpoint, a number of excellent methods have been developed. However, these key reactions are often achieved using relatively simplified substrates. As a result, in order to construct the lower C ring allyl alcohol part of morphine at the end of the synthesis, it is necessary to perform complicated functional group conversion. For example, the method for synthesizing morphine described in Org. Lett., 8, 5311, 2006 has problems in terms of efficiency, such as the construction of C-ring allyl alcohol site requires 8 steps including oxidation reaction from ketone to enone. is there.
また、窒素原子がトリメチルシリルエチルオキシカルボニル(Teoc)で保護された中間体化合物から酸性条件下において該保護基を脱離してD環を構築する方法が知られている(J. Org. Chem., 51, 2594, 1986; J. Org. Chem., 53, 4694, 1988)。しかしながら、この保護基(Teoc)で保護された中間体化合物を製造するためには保護基の開裂を回避するために酸性条件下での反応(特にB環の構築)を行えず、またその構築法は多段階を要するものであり、効率の面で問題を残している。
本発明の課題はモルヒネの効率的な製造方法、及びモルヒネの効率的な製造方法に好適に使用可能な製造用中間体を提供することにある。 An object of the present invention is to provide an efficient production method of morphine and an intermediate for production that can be suitably used in the efficient production method of morphine.
本発明者らは上記の課題を解決すべく鋭意研究を行った結果、A、C、及びE環を有し酸性条件下において安定な保護基で保護された3環系製造中間体を利用することにより酸性条件下においてB環を効率的に構築できること、及び得られた4環系化合物から保護基を脱保護して塩基性条件下で環化反応を行うことにより、コデイノンを極めて高い収率で製造できることを見出した。コデイノンからモルヒネへの変換は簡便に高収率で行うことができることから、この方法により極めて効率的かつ高い収率でモルヒネを全合成できる。本発明は上記の知見を基にして完成されたものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors utilize a tricyclic production intermediate having A, C, and E rings and protected with a protecting group that is stable under acidic conditions. The ring B can be efficiently constructed under acidic conditions, and by carrying out the cyclization reaction under basic conditions by deprotecting the protecting group from the obtained tetracyclic compound, a very high yield of codeinone is obtained. It was found that it can be manufactured. Since conversion from codeinone to morphine can be easily carried out in a high yield, morphine can be completely synthesized in a highly efficient and high yield by this method. The present invention has been completed based on the above findings.
すなわち、本発明により、下記の一般式(I)、(II)、又は(III):
で表される化合物が提供される。好ましい態様によれば、R1がメチル基である上記の一般式(I)ないし(III)で表される化合物;R2が2,4-ジニトロベンゼンスルホニル基である上記の一般式(I)ないし(III)で表される化合物;並びにR3及びR4がメチル基である上記の一般式(III)で表される化合物が提供される。
That is, according to the present invention, the following general formula (I), (II), or (III):
Is provided. According to a preferred embodiment, the compounds represented by the above general formulas (I) to (III) wherein R 1 is a methyl group; the above general formula (I) wherein R 2 is a 2,4-dinitrobenzenesulfonyl group Or a compound represented by the above general formula (III), wherein R 3 and R 4 are methyl groups.
これらの化合物はモルヒネ又はその類縁化合物、例えばモルヒネ、コデイノン、又はコデインなどの製造用中間体として有用である。従って、本発明により、モルヒネ又はその類縁化合物の製造用中間体として用いるための上記の一般式(I)、(II)、又は(III)で表される化合物、及び上記の一般式(I)、(II)、又は(III)で表される化合物のモルヒネ又はその類縁化合物の製造用中間体としての使用が提供される。 These compounds are useful as intermediates for the production of morphine or related compounds such as morphine, codeinone, or codeine. Therefore, according to the present invention, a compound represented by the above general formula (I), (II), or (III) for use as an intermediate for the production of morphine or a similar compound, and the above general formula (I) , (II), or (III) is used as an intermediate for producing morphine or a related compound thereof.
別の観点からは、上記一般式(II)で表される化合物の製造方法であって、上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化する工程を含む方法;上記一般式(I)で表される化合物の製造方法であって、上記一般式(II)で表される化合物を脱水反応に付する工程を含む方法;並びに、上記一般式(I)で表される化合物の製造方法であって、(a)上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して上記一般式(II)で表される化合物を製造する工程、及び(b)上記工程(a)で得られた一般式(II)で表される化合物を脱水反応に付する工程を含む方法が本発明により提供される。 Another aspect of the present invention is a method for producing a compound represented by the above general formula (II), wherein the hydroxyl group of the compound represented by the above general formula (III) is oxidized to convert it into a ketone, and then subjected to acidic conditions. A method comprising a step of cyclizing with a compound represented by the general formula (I), the method comprising a step of subjecting the compound represented by the general formula (II) to a dehydration reaction; A method for producing the compound represented by the general formula (I), wherein (a) the hydroxyl group of the compound represented by the general formula (III) is oxidized to be converted to a ketone, and then the reaction mixture is cyclized under acidic conditions. And a step of producing a compound represented by the above general formula (II) and (b) subjecting the compound represented by the general formula (II) obtained in the above step (a) to a dehydration reaction. A method is provided by the present invention.
また、コデイノンの製造方法であって、上記一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程を含む方法;並びに、コデイノンの製造方法であって、(a)上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して上記一般式(II)で表される化合物を製造する工程、(b)上記工程(a)で得られた一般式(II)で表される化合物を脱水反応に付する工程、及び(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程を含む方法が本発明により提供される。さらに本発明により、上記工程(a)ないし(c)に加えてコデイノンのケトンを還元する工程、及び脱メチル化する工程を含むモルヒネの製造方法が提供される。 A method for producing codeinone, the method comprising a step of cyclizing by deprotecting the amino protecting group of the compound represented by the general formula (I) and treating with a base; and a method for producing codeinone (A) oxidizing the hydroxyl group of the compound represented by the above general formula (III) to convert it to a ketone, and then cyclizing under acidic conditions to produce the compound represented by the above general formula (II) (B) a step of subjecting the compound represented by the general formula (II) obtained in the step (a) to a dehydration reaction, and (c) a general formula (I) obtained in the step (b). The present invention provides a method comprising the step of cyclization by deprotecting the amino protecting group of the compound represented by) and treating with a base. Furthermore, according to the present invention, there is provided a method for producing morphine, which comprises a step of reducing a ketone of codeinone and a step of demethylation in addition to the steps (a) to (c).
さらに、本発明により、モルヒネ又はその類縁化合物の製造方法であって、上記工程(a)、工程(b)、及び工程(c)からなる群から選ばれる少なくとも1工程を含む方法が本発明により提供される。 Further, according to the present invention, there is provided a method for producing morphine or an analogous compound thereof, the method comprising at least one step selected from the group consisting of the above step (a), step (b), and step (c) according to the present invention. Provided.
また、本発明により、下記の一般式(IV)及び(V):
本発明により提供される化合物はモルヒネ又はその類縁化合物の製造用中間体として有用であり、これらの化合物を用いることによってモルヒネ又はその類縁化合物を極めて収率よく簡便に製造することができる。 The compounds provided by the present invention are useful as intermediates for the production of morphine or its related compounds. By using these compounds, morphine or its related compounds can be easily produced with a very high yield.
本明細書において示される化学式における立体配置の表記は通常用いられる表記と同じであり、一般式における立体配置は相対配置又は絶対配置を示し、好ましくは絶対配置を示す。式中の波線はその結合がα結合若しくはβ結合のいずれかの結合、又はそれらの両方の結合(この場合には化合物はジアステレオマーの混合物となる)であることを示す。 The notation of configuration in the chemical formulas shown in the present specification is the same as the notation normally used, and the configuration in the general formula indicates a relative configuration or an absolute configuration, preferably an absolute configuration. The wavy line in the formula indicates that the bond is either an α bond or a β bond, or a combination of both (in which case the compound is a mixture of diastereomers).
R1、R3、及びR4が示すC1-6アルキル基としては、直鎖状、分枝鎖状、環状、又はそれらの組合わせからなるアルキル基を用いることができるが、好ましくは直鎖状又は分枝鎖状アルキル基を用いることができ、さらに好ましくは直鎖状又は分枝鎖状のC1-4アルキル基を用いることができる。特に好ましくはメチル基又はエチル基を用いることができ、最も好ましいのはメチル基である。 As the C 1-6 alkyl group represented by R 1 , R 3 , and R 4 , an alkyl group composed of linear, branched, cyclic, or a combination thereof can be used. A chain or branched alkyl group can be used, and a linear or branched C 1-4 alkyl group can be more preferably used. A methyl group or an ethyl group can be particularly preferably used, and a methyl group is most preferable.
R2は強酸性条件下において実質的に脱離することがないアミノ保護基を示す。アミノ保護基については、例えば、Greenら、Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc.などの成書を参照することができる。強酸性条件は特に限定されないが、例えば、酢酸、トリフルオロ酢酸、塩酸、トリフルオロメタンスルホン酸などの酸の存在下で実質的に脱離しない保護基を選択することが好ましい。上記の保護基としては、酸性条件以外の反応条件、例えば塩基性条件下や他の試薬の存在下において容易に脱離可能な保護基であることが好ましい。例えば、2,4-ジニトロベンゼンスルホニル基(DNs)、2-ニトロベンゼンスルホニル基(Ns)、4-ニトロベンゼンスルホニル基(Ns)、アリルオキシカルボニル基(Alloc)、2,2,2-トリクロロエチルカルボニル基(Troc)、9-フルオレニルメチル基(Fmoc)、又は2-クロロエチルカルボニル基などを挙げることができるが、これらに限定されることはない。特に好ましくは2,4-ジニトロベンゼンスルホニル基を用いることができる。 R 2 represents an amino protecting group that does not substantially leave under strongly acidic conditions. For the amino protecting group, reference can be made, for example, to Green et al., Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc. The strongly acidic conditions are not particularly limited, but it is preferable to select a protecting group that does not substantially desorb in the presence of an acid such as acetic acid, trifluoroacetic acid, hydrochloric acid, trifluoromethanesulfonic acid, and the like. The protecting group is preferably a protecting group that can be easily removed under reaction conditions other than acidic conditions, for example, under basic conditions or in the presence of other reagents. For example, 2,4-dinitrobenzenesulfonyl group (DNs), 2-nitrobenzenesulfonyl group (Ns), 4-nitrobenzenesulfonyl group (Ns), allyloxycarbonyl group (Alloc), 2,2,2-trichloroethylcarbonyl group (Troc), 9-fluorenylmethyl group (Fmoc), 2-chloroethylcarbonyl group and the like can be mentioned, but are not limited thereto. Particularly preferably, a 2,4-dinitrobenzenesulfonyl group can be used.
本発明の方法のうち典型的かつ好ましい方法の一例をスキームに示す。以下、これらの方法について具体的に説明するが、本発明の方法は下記の方法に限定されることはなく、また、下記スキームに示された特定の反応条件や試薬に限定されることもない。
上記一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件でケタールを開裂させて環化することにより、上記一般式(II)で表される化合物を製造することができる。上記一般式(II)で表される化合物において、波線で示された水酸基はα結合若しくはβ結合、またはそれらの両方のいずれかの立体配置を有する。上記スキームには、本発明の特に好ましい態様としてR1、R3、及びR4がメチル基であり、R2が2,4-ジニトロベンゼンスルホニル基(DNs)の場合を示す。環化反応の第一工程は水酸基をケトンに酸化する反応であり、この反応は、例えばデス・マーチン・ペルヨージナン(DMP)などを用いて収率よく行うことができる。もっとも、酸化剤はDMPに限定されることはなく、適宜の酸化剤を選択することができることは当業者に容易に理解されることである。 The compound represented by the above general formula (II) is produced by oxidizing the hydroxyl group of the compound represented by the above general formula (III) to convert it to a ketone, and then cleaving the ketal under acidic conditions to cyclize. can do. In the compound represented by the general formula (II), the hydroxyl group indicated by the wavy line has an α bond, a β bond, or a configuration of either of them. In the above scheme, a case where R 1 , R 3 , and R 4 are methyl groups and R 2 is a 2,4-dinitrobenzenesulfonyl group (DNs) is shown as a particularly preferred embodiment of the present invention. The first step of the cyclization reaction is a reaction in which a hydroxyl group is oxidized to a ketone, and this reaction can be performed with high yield using, for example, Dess-Martin periodinane (DMP). However, the oxidizing agent is not limited to DMP, and it is easily understood by those skilled in the art that an appropriate oxidizing agent can be selected.
得られたケトン化合物を単離した後、あるいは単離することなく、酸処理に付してケタールを開裂させることによりB環を効率よく構築することができる。ケタールの開裂は、例えば、酢酸、トリフルオロ酢酸、塩酸、トリフルオロメタンスルホン酸などの酸の存在下に行うことができ、特に好ましくはトリフルオロ酢酸の存在下で反応を行うことができる。上記の酸化反応及びケタール開裂による環化反応は、好ましくは不活性溶媒の存在下で行うことができ、前者の反応は例えばジクロルメタンなどの溶媒中、後者は水の存在下でトルエンなどの溶媒の存在下に行うことができ、一般的には室温から60℃程度の範囲の温度で行うことができる。いかなる特定の理論に拘泥するわけではないが、上記スキーム中には合理的に想定される反応機構を示した。 The ring B can be efficiently constructed by subjecting the obtained ketone compound to acid treatment to cleave the ketal after or without isolation. The cleavage of the ketal can be performed in the presence of an acid such as acetic acid, trifluoroacetic acid, hydrochloric acid or trifluoromethanesulfonic acid, and the reaction can be particularly preferably performed in the presence of trifluoroacetic acid. The oxidation reaction and the cyclization reaction by ketal cleavage can be preferably carried out in the presence of an inert solvent. The former reaction is carried out in a solvent such as dichloromethane, and the latter is carried out in a solvent such as toluene in the presence of water. The reaction can be carried out in the presence, and can generally be carried out at a temperature ranging from room temperature to about 60 ° C. Without being bound by any particular theory, the above scheme shows a reaction mechanism that is reasonably assumed.
B環の構築後、得られた一般式(II)で表される化合物(一般的にはジアステレオマー混合物として得られる)を脱水することにより上記一般式(I)で表される化合物を製造することができる。脱水反応は、例えば水酸基にメタンスルホニルクロリドやp-トルエンスルホニルクロリドなどを塩基の存在下で反応させることにより行うことができる。塩基としては、例えばトリエチルアミンなどの有機アミン化合物を用いることが好ましい。この反応は、例えばジクロルメタンなどの不活性溶媒の存在下に行うことができ、通常は氷冷下から50℃程度の加温下、好ましくは室温から50℃の範囲で行うことができる。 After the construction of the B ring, the compound represented by the above general formula (I) is produced by dehydrating the obtained compound represented by the general formula (II) (generally obtained as a diastereomer mixture). can do. The dehydration reaction can be performed, for example, by reacting a hydroxyl group with methanesulfonyl chloride or p-toluenesulfonyl chloride in the presence of a base. As the base, for example, an organic amine compound such as triethylamine is preferably used. This reaction can be performed, for example, in the presence of an inert solvent such as dichloromethane. Usually, the reaction can be performed under ice cooling to about 50 ° C., preferably from room temperature to 50 ° C.
得られた一般式(I)で表される化合物の保護基を脱離することによりD環が閉環したコデイノンを得ることができる。保護基としてDNsを用いる場合には、保護基の除去のために塩基の存在下でチオール化合物、例えばHSCH2COOHなどの試薬を用いることができる。塩基としては、例えばトリエチルアミンなどの有機アミン化合物を用いることができる。この反応はジクロルメタンなどの不活性溶媒の存在下に行うことができ、一般的にはアルゴンなどの不活性ガスの存在下で室温ないし40℃程度の温度、好ましくは室温下に反応を行うことができる。この反応では、コデイノンのほか構造異性体であるネオピノンが副生成物として得らる場合があるが、ネオピノンを酸で処理することによりコデイノンに効率よく変換できることは当業者に周知である。この変換反応には、酸として例えば塩酸を用いることができ、酢酸エチルなどの不活性溶媒の存在下に反応を行うことが好ましい。 By removing the protecting group from the compound represented by the general formula (I), a codeinone in which the D ring is closed can be obtained. When DNs is used as a protecting group, a reagent such as a thiol compound, such as HSCH 2 COOH, can be used in the presence of a base for the removal of the protecting group. As the base, for example, an organic amine compound such as triethylamine can be used. This reaction can be carried out in the presence of an inert solvent such as dichloromethane, and is generally carried out in the presence of an inert gas such as argon at a temperature of about room temperature to 40 ° C., preferably at room temperature. it can. In this reaction, neopinone which is a structural isomer in addition to codeinone may be obtained as a by-product, but it is well known to those skilled in the art that neopinone can be efficiently converted to cordinone by treating with acid. In this conversion reaction, for example, hydrochloric acid can be used as the acid, and the reaction is preferably performed in the presence of an inert solvent such as ethyl acetate.
得られたコデイノンのケトンを還元することによりコデインに変換することができ、さらにコデインのメトキシ基を水酸基に変換することにより目的物であるモルヒネを製造することができるが、これらの反応も当業者に周知である。本発明の方法により製造可能なモルヒネの類縁化合物としては、下記に示したコデイノンやコデインのほか、ヘロイン、ジヒドロコデイン、ナロキソン、ナロルフィンなどを挙げることができるが、これらに限定されることはない。コデイノンからこれらの類縁化合物への変換方法は当業者に周知である。
一般式(III)で表される化合物は、例えば、以下のスキームに示した方法に従って、A環に対応する上側ユニットとC環に対応する下側ユニットとを光延反応によりエーテル結合させ、得られたエーテル化合物を分子内ヘック反応により環化してE環を構築し、必要に応じてアミノ保護基をR2に変換することにより製造することができる(スキーム中、Cbzはベンジルオキシカルボニル基を示し、TBSはtert-ブチルジメチルシリル基を示す)。 The compound represented by the general formula (III) is obtained, for example, by ether-bonding an upper unit corresponding to the A ring and a lower unit corresponding to the C ring by Mitsunobu reaction according to the method shown in the following scheme. The ether compound is cyclized by intramolecular Heck reaction to construct E ring, and if necessary, the amino protecting group can be converted to R 2 (in the scheme, Cbz represents benzyloxycarbonyl group). , TBS represents a tert-butyldimethylsilyl group).
A環に対応する上側ユニットは、例えば以下のスキームに示した方法により製造することができる(スキーム中、MOMはメトキシメチル基を示す)。
また、C環に対応する下側ユニットは、例えば以下のスキームに示した方法により製造することができる。
本明細書の実施例には、上記スキームにおける各反応をさらに具体的に示した。従って、当業者はこれらのスキームに示した一般的な説明及び実施例の具体的説明を参照し、必要に応じて適宜の試薬や反応条件を選択し、さらにこれらの方法に適宜の修飾ないし改変を加えることにより、一般式(I)ないし(III)で表される化合物、及び目的物であるモルヒネ又はその類縁化合物を容易に製造することができる。なお、一般式(III)で表される化合物の製造方法はこれらの一般的説明に示された方法及び実施例の具体的説明の細部に限定されることはなく、当業者が任意の方法を採用できることは言うまでもない。 In the examples of the present specification, each reaction in the above scheme is shown more specifically. Accordingly, those skilled in the art will refer to the general description shown in these schemes and the specific description of the examples, select appropriate reagents and reaction conditions as necessary, and further modify or modify these methods as appropriate. By adding, the compound represented by the general formulas (I) to (III) and the target product, morphine or its related compounds, can be easily produced. The production method of the compound represented by the general formula (III) is not limited to the details shown in these general explanations and the details of the concrete explanations of the examples, and those skilled in the art can use any method. Needless to say, it can be adopted.
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。下記の実施例においてAcはアセチル基を示す。
例1
1H NMR (400 MHz, CDCl3) δ 6.97(m, 1 H), 6.07(d, J = 10.1 Hz, 1 H), 5.37(dd, J = 4.6 Hz, 13.7 Hz, 1 H), 2.58(m, 2 H), 2.29(m, 1 H), 2.19(s, 3 H), 2.16(m, 1 H)
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples. In the following examples, Ac represents an acetyl group.
Example 1
1 H NMR (400 MHz, CDCl 3) δ 6.97 (m, 1 H), 6.07 (d, J = 10.1 Hz, 1 H), 5.37 (dd, J = 4.6 Hz, 13.7 Hz, 1 H), 2.58 ( m, 2 H), 2.29 (m, 1 H), 2.19 (s, 3 H), 2.16 (m, 1 H)
1H NMR (400 MHz, CDCl3) δ 7.69(dd, J = 2.8 Hz, 4.9 Hz, 1 H), 5.47(dd, J = 5.5 Hz, 13.7 Hz, 1 H), 2.58(m, 2 H), 2.26(m, 2 H), 2.18(s, 3 H)
1 H NMR (400 MHz, CDCl 3 ) δ 7.69 (dd, J = 2.8 Hz, 4.9 Hz, 1 H), 5.47 (dd, J = 5.5 Hz, 13.7 Hz, 1 H), 2.58 (m, 2 H) , 2.26 (m, 2 H), 2.18 (s, 3 H)
1H NMR (400 MHz, CDCl3) δ 7.66(t, J = 4.4 Hz, 1 H), 4.30(dd, J = 4.8 Hz, 10.8 Hz, 1 H), 2.51(m, 2 H), 2.18(m, 2 H), 0.90(s, 9 H), 0.16(s, 3 H), 0.08(s, 3 H)
1 H NMR (400 MHz, CDCl 3 ) δ 7.66 (t, J = 4.4 Hz, 1 H), 4.30 (dd, J = 4.8 Hz, 10.8 Hz, 1 H), 2.51 (m, 2 H), 2.18 ( m, 2 H), 0.90 (s, 9 H), 0.16 (s, 3 H), 0.08 (s, 3 H)
1H NMR (400 MHz, CDCl3) δ 6.50(t, J = 3.9 Hz, 1 H), 4.10(dd, J = 4.1 Hz, J = 4.1 Hz, 1 H), 3.97(ddd, J = 4.1 Hz, J = 4.1 Hz, J = 9.8 Hz, 1 H), 2.76(d, J = 4.1 Hz, 1 H), 2.21(m, 1 H), 2.05(m, 1 H), 1.85(m, 1 H), 1.67(m, 1 H), 0.91(s, 9 H), 0.11(s, 3 H), 0.11(s, 3 H)
1 H NMR (400 MHz, CDCl 3 ) δ 6.50 (t, J = 3.9 Hz, 1 H), 4.10 (dd, J = 4.1 Hz, J = 4.1 Hz, 1 H), 3.97 (ddd, J = 4.1 Hz , J = 4.1 Hz, J = 9.8 Hz, 1 H), 2.76 (d, J = 4.1 Hz, 1 H), 2.21 (m, 1 H), 2.05 (m, 1 H), 1.85 (m, 1 H ), 1.67 (m, 1 H), 0.91 (s, 9 H), 0.11 (s, 3 H), 0.11 (s, 3 H)
1H NMR (400 MHz, CDCl3) δ 7.35(m, 5 H), 5.59(br, 1 H), 5.38(br, 1 H), 5.09(s, 2 H), 3.85(br, 1 H), 3.75(ddd, J = 3.6 Hz, J = 3.6 Hz, J = 11.2 Hz, 1 H), 3.35(m, 2 H), 2.80(d, J = 3.6 Hz, 1 H), 2.41(m, 1 H), 2.17(m, 2 H), 1.97(m, 1 H), 1.75(m, 1 H), 1.54(m, 1 H), 0.91(s, 9 H), 0.10(s, 6 H)
1 H NMR (400 MHz, CDCl 3 ) δ 7.35 (m, 5 H), 5.59 (br, 1 H), 5.38 (br, 1 H), 5.09 (s, 2 H), 3.85 (br, 1 H) , 3.75 (ddd, J = 3.6 Hz, J = 3.6 Hz, J = 11.2 Hz, 1 H), 3.35 (m, 2 H), 2.80 (d, J = 3.6 Hz, 1 H), 2.41 (m, 1 H), 2.17 (m, 2 H), 1.97 (m, 1 H), 1.75 (m, 1 H), 1.54 (m, 1 H), 0.91 (s, 9 H), 0.10 (s, 6 H)
1H NMR (400 MHz, CDCl3) δ 7.34(m, 5 H), 6.99(d, J = 8.2 Hz, 1 H), 6.83(d, J = 8.2 Hz, 1 H), 5.81(br, 1 H), 5.07(s, 2 H), 4.91(br, 1 H), 4.57(br, 1 H), 4.54(t, J = 5.5 Hz, 1 H), 4.02(br, 1 H), 3.82(s, 3 H), 3.46(m, 1 H), 3.34(s, 3 H), 3.34(s, 3 H), 3.27(m, 1 H), 3.06(d, J = 5.5 Hz, 2 H), 2.46(m, 1 H), 2.33(m, 1 H), 2.25(m, 2 H), 2.05(m, 1 H), 1.64(m, 1 H), 0.75(s, 9 H), -0.14(s, 3 H), -0.18(s, 3 H)
1 H NMR (400 MHz, CDCl 3 ) δ 7.34 (m, 5 H), 6.99 (d, J = 8.2 Hz, 1 H), 6.83 (d, J = 8.2 Hz, 1 H), 5.81 (br, 1 H), 5.07 (s, 2 H), 4.91 (br, 1 H), 4.57 (br, 1 H), 4.54 (t, J = 5.5 Hz, 1 H), 4.02 (br, 1 H), 3.82 ( s, 3 H), 3.46 (m, 1 H), 3.34 (s, 3 H), 3.34 (s, 3 H), 3.27 (m, 1 H), 3.06 (d, J = 5.5 Hz, 2 H) , 2.46 (m, 1 H), 2.33 (m, 1 H), 2.25 (m, 2 H), 2.05 (m, 1 H), 1.64 (m, 1 H), 0.75 (s, 9 H),- 0.14 (s, 3 H), -0.18 (s, 3 H)
1H NMR (400 MHz, CDCl3) δ 7.33(m, 5 H), 6.71(s, 2 H), 5.97(d, J = 10.1 Hz, 1 H), 5.69(m, 1 H), 5.05(s, 2 H), 4.75(br, 1 H), 4.56(t, J = 4.8 Hz, 1 H), 4.48 (d, J = 7.3 Hz, 1 H), 3.96(dd, J = 7.3 Hz, J = 12.2 Hz, 1 H), 3.82(s, 3 H), 3.35(s, 3 H), 3.31(s, 3 H), 3.21(m, 1 H), 3.13(m, 1 H), 2.88(d, J = 4.8 Hz, 2 H), 2.25(m, 1 H), 2.29(m, 1 H), 1.98(m, 2 H), 0.89(s, 9 H), 0.13(s, 6 H)
1 H NMR (400 MHz, CDCl 3 ) δ 7.33 (m, 5 H), 6.71 (s, 2 H), 5.97 (d, J = 10.1 Hz, 1 H), 5.69 (m, 1 H), 5.05 ( s, 2 H), 4.75 (br, 1 H), 4.56 (t, J = 4.8 Hz, 1 H), 4.48 (d, J = 7.3 Hz, 1 H), 3.96 (dd, J = 7.3 Hz, J = 12.2 Hz, 1 H), 3.82 (s, 3 H), 3.35 (s, 3 H), 3.31 (s, 3 H), 3.21 (m, 1 H), 3.13 (m, 1 H), 2.88 ( d, J = 4.8 Hz, 2 H), 2.25 (m, 1 H), 2.29 (m, 1 H), 1.98 (m, 2 H), 0.89 (s, 9 H), 0.13 (s, 6 H)
1H NMR (400 MHz, CDCl3) δ 8.44(d, J = 9.1 Hz, 1 H), 8.43(s, 1 H), 8.04(d, J = 9.1 Hz, 1 H), 6.75(s, 2 H), 5.98(d, J = 9.8 Hz, 1 H), 5.75(m, 1 H), 4.56(t, J = 5.7 Hz, 1 H), 3.89(m, 1 H), 3.82(s, 3 H), 3.37(s, 3 H), 3.35(m, 1 H), 3.33(s, 3 H), 2.98(m, 1 H), 2.92(s, 3 H), 2.86(d, J = 5.7 Hz, 2 H), 2.27(m, 1 H), 2.06(m, 3 H), 0.89(s, 9 H), 0.12(s, 6 H)
1 H NMR (400 MHz, CDCl 3 ) δ 8.44 (d, J = 9.1 Hz, 1 H), 8.43 (s, 1 H), 8.04 (d, J = 9.1 Hz, 1 H), 6.75 (s, 2 H), 5.98 (d, J = 9.8 Hz, 1 H), 5.75 (m, 1 H), 4.56 (t, J = 5.7 Hz, 1 H), 3.89 (m, 1 H), 3.82 (s, 3 H), 3.37 (s, 3 H), 3.35 (m, 1 H), 3.33 (s, 3 H), 2.98 (m, 1 H), 2.92 (s, 3 H), 2.86 (d, J = 5.7 Hz, 2 H), 2.27 (m, 1 H), 2.06 (m, 3 H), 0.89 (s, 9 H), 0.12 (s, 6 H)
1H NMR (400 MHz, CDCl3) δ 8.44(d, J = 8.5 Hz, 1 H), 8.44(s, 1 H), 8.07(d, J = 8.5 Hz, 1 H), 6.78(d, J = 8.5 Hz, 1 H), 6.75(d, J = 8.5 Hz, 1 H), 6.02(d, J = 11.2 Hz, 1 H), 5.83(m, 1 H), 4.53(t, J = 4.8 Hz, 1 H), 4.37(d, J = 8.5 Hz, 1 H), 3.85(s, 3 H), 3.85(m, 1 H), 3.37(s, 3 H), 3.35(m, 1 H), 3.32(s, 3 H), 2.97(m, 1 H), 2.92(s, 3 H), 2.87(d, J = 4.8 Hz, 2 H), 2.65(br, 1 H), 2.41(m, 1 H), 2.15(m, 2 H), 1.97(m, 1 H)
1 H NMR (400 MHz, CDCl 3 ) δ 8.44 (d, J = 8.5 Hz, 1 H), 8.44 (s, 1 H), 8.07 (d, J = 8.5 Hz, 1 H), 6.78 (d, J = 8.5 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 H), 6.02 (d, J = 11.2 Hz, 1 H), 5.83 (m, 1 H), 4.53 (t, J = 4.8 Hz , 1 H), 4.37 (d, J = 8.5 Hz, 1 H), 3.85 (s, 3 H), 3.85 (m, 1 H), 3.37 (s, 3 H), 3.35 (m, 1 H), 3.32 (s, 3 H), 2.97 (m, 1 H), 2.92 (s, 3 H), 2.87 (d, J = 4.8 Hz, 2 H), 2.65 (br, 1 H), 2.41 (m, 1 H), 2.15 (m, 2 H), 1.97 (m, 1 H)
1H NMR (400 MHz, CDCl3) δ 8.45(m, 2 H), 8.45(m, 2/3 H), 8.13(d, J = 8.3 Hz, 1/3 H), 8.04(d, J = 10.1 Hz, 1 H), 7.09(dd, J = 11.0 Hz, J = 4.4 Hz, 1/3 H), 7.06(dd, J = 11.0 Hz, J = 4.4 Hz, 1 H), 6.73(d, J = 8.3 Hz, 4/3 H), 6.70(d, J = 8.3 Hz, 4/3 H), 6.24(d, J = 11.0 Hz, 1/3 H), 6.14(d, J = 11.0 Hz, 1 H), 4.83(s, 1 H), 4.78(s, 1/3 H), 3.87(s, 3 H), 3.85(s, 3/3 H), 3.62(m, 4/3 H), 3.48(m, 4/3 H), 3.14(m, 4/3 H), 3.04(m, 4/3 H), 2.94(s, 3/3 H), 2.92(s, 3 H), 2.88(m, 2 H), 2.85(m, 2/3 H), 2.53(d, J = 9.2 Hz, 4/3 H),
2.21(m, 4/3 H), 2.12(m, 4/3 H)
1 H NMR (400 MHz, CDCl 3 ) δ 8.45 (m, 2 H), 8.45 (m, 2/3 H), 8.13 (d, J = 8.3 Hz, 1/3 H), 8.04 (d, J = 10.1 Hz, 1 H), 7.09 (dd, J = 11.0 Hz, J = 4.4 Hz, 1/3 H), 7.06 (dd, J = 11.0 Hz, J = 4.4 Hz, 1 H), 6.73 (d, J = 8.3 Hz, 4/3 H), 6.70 (d, J = 8.3 Hz, 4/3 H), 6.24 (d, J = 11.0 Hz, 1/3 H), 6.14 (d, J = 11.0 Hz, 1 H), 4.83 (s, 1 H), 4.78 (s, 1/3 H), 3.87 (s, 3 H), 3.85 (s, 3/3 H), 3.62 (m, 4/3 H), 3.48 (m, 4/3 H), 3.14 (m, 4/3 H), 3.04 (m, 4/3 H), 2.94 (s, 3/3 H), 2.92 (s, 3 H), 2.88 (m , 2 H), 2.85 (m, 2/3 H), 2.53 (d, J = 9.2 Hz, 4/3 H),
2.21 (m, 4/3 H), 2.12 (m, 4/3 H)
1H NMR (400 MHz, CDCl3) δ 8.45(d, J = 10.1 Hz, 1 H), 8.44(s, 1 H), 8.07(d, J = 10.1 Hz, 1 H), 7.28(d, J = 10.1 Hz, 1 H), 6.76(d, J = 8.3 Hz, 1 H), 6.70(d, J = 8.3 Hz, 1 H), 6.41(d, J = 4.6 Hz, 1 H), 5.98(d, J = 10.1 Hz, 1 H), 5.00(s, 1 H), 3.87(s, 3 H), 3.59(d, J = 20.2 Hz, 1 H), 3.43(d, J = 20.2 Hz, 1 H), 3.42(m, 1 H), 3.11(m, 1 H), 2.91(s, 3 H), 2.16(m, 2 H)
1 H NMR (400 MHz, CDCl 3 ) δ 8.45 (d, J = 10.1 Hz, 1 H), 8.44 (s, 1 H), 8.07 (d, J = 10.1 Hz, 1 H), 7.28 (d, J = 10.1 Hz, 1 H), 6.76 (d, J = 8.3 Hz, 1 H), 6.70 (d, J = 8.3 Hz, 1 H), 6.41 (d, J = 4.6 Hz, 1 H), 5.98 (d , J = 10.1 Hz, 1 H), 5.00 (s, 1 H), 3.87 (s, 3 H), 3.59 (d, J = 20.2 Hz, 1 H), 3.43 (d, J = 20.2 Hz, 1 H ), 3.42 (m, 1 H), 3.11 (m, 1 H), 2.91 (s, 3 H), 2.16 (m, 2 H)
1H NMR (400 MHz, CDCl3) δ 6.66(d, J = 8.0 Hz, 1 H), 6.57(d, J = 8.0 Hz, 1 H), 5.72(d, J = 11.0 Hz, 1 H), 5.29(d, J = 11.0 Hz, 1 H), 4.91(d, J = 6.6 Hz, 1 H), 4.18(s, 1 H), 3.85(s, 3 H), 3.36(m, 1 H), 3.05(d, J = 18.8 Hz, 1 H), 2.87(br, 1 H), 2.67(s, 1 H), 2.60(s, 1 H), 2.42(s, 3 H), 2.38(s, 1 H), 2.30(s, 1 H), 2.07(s, 1 H), 1.88(d, J = 10.8 Hz, 1 H)
1 H NMR (400 MHz, CDCl 3 ) δ 6.66 (d, J = 8.0 Hz, 1 H), 6.57 (d, J = 8.0 Hz, 1 H), 5.72 (d, J = 11.0 Hz, 1 H), 5.29 (d, J = 11.0 Hz, 1 H), 4.91 (d, J = 6.6 Hz, 1 H), 4.18 (s, 1 H), 3.85 (s, 3 H), 3.36 (m, 1 H), 3.05 (d, J = 18.8 Hz, 1 H), 2.87 (br, 1 H), 2.67 (s, 1 H), 2.60 (s, 1 H), 2.42 (s, 3 H), 2.38 (s, 1 H), 2.30 (s, 1 H), 2.07 (s, 1 H), 1.88 (d, J = 10.8 Hz, 1 H)
Claims (11)
で表される化合物。 The following general formula (I), (II), or (III):
A compound represented by
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;及び
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程
を含む方法。 It is a manufacturing method of the compound represented by general formula (I) of Claim 1, Comprising: The following processes:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compounds represented; and
(b) A method comprising a step of subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction.
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程;及び
(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化する工程
からなる群から選ばれる少なくとも1つの工程を含む方法。 A method for producing morphine or a related compound thereof, comprising the following steps:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compound represented;
(b) subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction; and
(c) at least one selected from the group consisting of a step of cyclization by deprotecting the amino protecting group of the compound represented by the general formula (I) obtained in the step (b) and treating with a base A method comprising the steps.
(a)請求項1に記載の一般式(III)で表される化合物の水酸基を酸化してケトンに変換した後、酸性条件下で環化して請求項1に記載の一般式(II)で表される化合物を製造する工程;
(b)上記工程(a)で得られた請求項1に記載の一般式(II)で表される化合物を脱水反応に付する工程;及び
(c)上記工程(b)で得られた一般式(I)で表される化合物のアミノ保護基を脱保護して塩基で処理することにより環化してコデイノンを製造する工程
を含む方法。 A method for producing morphine or a related compound thereof, comprising the following steps:
(a) The hydroxyl group of the compound represented by the general formula (III) according to claim 1 is oxidized to be converted to a ketone, and then cyclized under acidic conditions to give the general formula (II) according to claim 1 Producing the compound represented;
(b) subjecting the compound represented by the general formula (II) according to claim 1 obtained in the step (a) to a dehydration reaction; and
(c) A method comprising a step of producing codeinone by cyclization by deprotecting the amino protecting group of the compound represented by the general formula (I) obtained in the step (b) and treating with a base.
(d)上記工程(c)で得られたコデイノンのケトンを還元する工程、及び脱メチル化する工程を含む方法。 A method for producing morphine, which comprises the following steps in addition to steps (a) to (c) of claim 10:
(d) A method comprising a step of reducing the codeinone ketone obtained in the step (c) and a step of demethylation.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008179499A JP2010024141A (en) | 2008-06-20 | 2008-07-09 | Method for producing morphine |
PCT/JP2009/058040 WO2009154041A1 (en) | 2008-06-20 | 2009-04-23 | Method for producing morphine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008161165 | 2008-06-20 | ||
JP2008179499A JP2010024141A (en) | 2008-06-20 | 2008-07-09 | Method for producing morphine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010024141A true JP2010024141A (en) | 2010-02-04 |
Family
ID=41433958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008179499A Pending JP2010024141A (en) | 2008-06-20 | 2008-07-09 | Method for producing morphine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010024141A (en) |
WO (1) | WO2009154041A1 (en) |
-
2008
- 2008-07-09 JP JP2008179499A patent/JP2010024141A/en active Pending
-
2009
- 2009-04-23 WO PCT/JP2009/058040 patent/WO2009154041A1/en active Application Filing
Non-Patent Citations (2)
Title |
---|
JPN6013022139; TRAUNER,D. et al: 'Synthesis of Enantiomerically Pure Morphine Alkaloids: The Hydrophenanthrene Route' Journal of Organic Chemistry Vol.63, No.17, 1998, p.5908-5918 * |
JPN6013022140; TOTH,J.E. et al: 'Formation of the neopinone/codeinone ring system via intramolecular 1,6-addition of an amino moiety' Journal of Organic Chemistry Vol.51, No.13, 1986, p.2594-2596 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009154041A1 (en) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
May et al. | The structural and synthetic implications of the biosynthesis of the calycanthaceous alkaloids, the communesins, and nomofungin | |
US7060832B2 (en) | Nitrogen-containing fused heterocyclic carboxylic acids having an absolute configuration of “R” | |
Cheng et al. | Construction of functionalized B/C/D ring system of C19-diterpenoid alkaloids via intramolecular Diels–Alder reaction followed by Wagner–Meerwein rearrangement | |
US11339179B2 (en) | Preparation for natural product trabectedin | |
Wang et al. | Planned and unplanned halogenations in route to selected oroidin alkaloids | |
KR101810717B1 (en) | Novel process for the preparation of asenapine | |
Jiang et al. | Mg (ClO4) 2-catalyzed intramolecular allylic amination: application to the total synthesis of demethoxyfumitremorgin C | |
Lee et al. | Organocatalytic enantioselective formal synthesis of bromopyrrole alkaloids via aza-Michael addition | |
AU607337B2 (en) | Intermediates for the production of epipodophyllotoxin and related compounds and processes for the preparation and use thereof | |
MaGee et al. | The use of the Ramberg Bäcklund rearrangement for the formation of aza-macrocycles: a total synthesis of manzamine C | |
Aitken et al. | Enantioselective access to benzannulated spiroketals using a chiral sulfoxide auxiliary | |
CN109265386B (en) | Novel method for synthesizing 3-acylated indole derivative through C-H activation | |
Donohoe et al. | Synthesis of cylindricine C and a formal synthesis of cylindricine A | |
Nishi et al. | An efficient synthesis of enantiomerically pure 2-[(2R)-arylmorpholin-2-yl] ethanols, key intermediates of tachykinin receptor antagonist | |
Li et al. | A Concise Synthesis of (±)‐Yaequinolone A2 | |
EP1856124B1 (en) | New synthesis of a camptothecin subunit | |
Mizutani et al. | The second generation synthesis of (±)-berkeleyamide D | |
JP2010024141A (en) | Method for producing morphine | |
MXPA01011977A (en) | 1-trifluoromethyl-4-hydroxy-7-piperidinyl-aminomethylchroman derivatives. | |
Chrzanowska et al. | Synthesis of (S)-(−)-and (R)-(+)-O-methylbharatamine using a diastereoselective Pomeranz–Fritsch–Bobbitt methodology | |
Uchida et al. | Total Synthesis of (+/-)-Morphine | |
Li et al. | Concise formal synthesis of (+)-pyripyropene A | |
Dhanjee et al. | Synthetic studies toward tetrapetalone A: attempted palladium π-allyl cascades toward a fused tricyclic intermediate | |
Kato et al. | Convergent approach to the maduropeptin chromophore: aryl ether formation of (R)-3-aryl-3-hydroxypropanamide and cyclization of macrolactam | |
Ung et al. | Synthesis of alkaloid-like compounds via the bridging Ritter reactions II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130917 |