JP2010022293A - Method for examination of non-alcoholic fatty liver disorder - Google Patents

Method for examination of non-alcoholic fatty liver disorder Download PDF

Info

Publication number
JP2010022293A
JP2010022293A JP2008188560A JP2008188560A JP2010022293A JP 2010022293 A JP2010022293 A JP 2010022293A JP 2008188560 A JP2008188560 A JP 2008188560A JP 2008188560 A JP2008188560 A JP 2008188560A JP 2010022293 A JP2010022293 A JP 2010022293A
Authority
JP
Japan
Prior art keywords
base
sequence
fatty liver
nafld
snp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188560A
Other languages
Japanese (ja)
Inventor
Kikuko Hotta
紀久子 堀田
Atsushi Nakajima
淳 中島
Satoshi Saito
聡 斉藤
Hiroyuki Kirikoshi
博之 桐越
Masato Yoneda
正人 米田
Koji Fujita
浩司 藤田
Takashi Uchiyama
崇 内山
Hironori Mawatari
弘典 馬渡
Yuichi Nozaki
雄一 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Yokohama National University NUC
Yokohama City University
Original Assignee
RIKEN Institute of Physical and Chemical Research
Yokohama National University NUC
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Yokohama National University NUC, Yokohama City University filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2008188560A priority Critical patent/JP2010022293A/en
Publication of JP2010022293A publication Critical patent/JP2010022293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an examination method for estimating non-alcoholic fatty liver disorder. <P>SOLUTION: The method includes analyzing a single nucleotide polymorphism of a base corresponding to the base No.61 of a specific base sequence on an iNOS gene or a single nucleotide polymorphism of a base of the state of linkage disequilibrium with the base and examining non-alcoholic fatty liver disorder based on the analytic results. Also, a probe for the examination of non-alcoholic fatty liver disorder having a sequence of ≥10 bases including the base No.61 in a specific base sequence or its complimentary sequence, and a primer for the examination of non-alcoholic fatty liver disorder capable of amplifying a region including the base No.61 in a specific base sequence are provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非アルコール性脂肪肝障害の検査方法およびそれに使用するプローブやプライマーに関する。   The present invention relates to a test method for non-alcoholic fatty liver disease and a probe or primer used therefor.

非アルコール性脂肪肝障害(NAFLD)は、現在、重要な健康問題のひとつとして認識されている。NAFLDは、単純性脂肪肝から非アルコール性脂肪肝炎(NASH)に至るまでの幅広い症状を有する。NAFLDは自覚症状がなく、判定が困難である。NAFLDは種々の臨床面(ALTの上昇、肥満及び2型糖尿病の存在)に基づいて推測されるが、これらの臨床面はNAFLDの診断及び予測を確立するには十分ではない。現在のところ、NAFLDとNASHの間の境界も肝臓の生検によってのみ判定でき、それ以外の検査方法によっては予測することはできない。そして、肝臓への過剰な脂肪の蓄積は先進国の人口の20−30%に観察され、人口の約1−3%が肝臓への過剰な脂肪の蓄積、すなわち脂肪肝からNASHへと進展する。
NAFLDの進行には、環境要因と同様に遺伝的要因が重要であると考えられている(非特許文献1〜4)。しかしながら、遺伝学的な研究報告は僅かしかない。
Nonalcoholic fatty liver disorder (NAFLD) is now recognized as one of the important health problems. NAFLD has a wide range of symptoms ranging from simple fatty liver to nonalcoholic steatohepatitis (NASH). NAFLD has no subjective symptoms and is difficult to determine. Although NAFLD is speculated on the basis of various clinical aspects (increased ALT, obesity and presence of type 2 diabetes), these clinical aspects are not sufficient to establish the diagnosis and prediction of NAFLD. At present, the boundary between NAFLD and NASH can also be determined only by biopsy of the liver and cannot be predicted by other testing methods. Excessive fat accumulation in the liver is observed in 20-30% of the population of developed countries, and about 1-3% of the population develops from excessive fat accumulation in the liver, ie from fatty liver to NASH. .
Genetic factors are considered to be important for the progression of NAFLD as well as environmental factors (Non-Patent Documents 1 to 4). However, there are only a few genetic research reports.

誘導型NO合成酵素(inducible nitric oxide synthase: iNOS)は炎症やストレスによ
って誘導され、フリーラジカルである一酸化窒素を合成し、様々な病態に関与している。iNOSが重度のNASH患者において高発現しているという報告(非特許文献5)や、iNOSのノックアウトマウスが高脂肪食による肝線維化を受けやすいという報告がある(非特許文献6)。また、iNOSの選択的阻害剤がラットの肝硬変モデルにおいて線維化を抑制したという報告もある(非特許文献7)。
しかしながら、iNOS遺伝子の一塩基多型がNAFLDと関連するという報告はない。
Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol. 2004;40:781-6 Gambino R, Cassader M, Pagano G, Durazzo M, Musso G. Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology. 2007;45:1097-107. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, et al. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007;46:1104-10. Merriman RB, Aouizerat BE, Bass NM. Genetic influences in nonalcoholic fatty liver disease. J Clin Gastroenterol. 2006;40:S30-3. Garcia-Monzon C, Martin-Perez E, Iacono OL, Fernandez-Bermejo M, Majano PL, Apolinario A, Larranaga E, Moreno-Otero R. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepetitis associated with obesity. J Hepatol 2000;33:716-724 Chen Y, Hozawa S, Sawamura S Sato S, Fukuyama N, Tsuji C, Mine T, Okada Y, Tanino R, Osugi Y, Nakazawa H. Defiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet. Biochem Biophys Res Commun 2005;326:45-51 Kikuchi H, Katsuramaki T, Kukita K, Taketani S, Meguro M, Nagayama M, Isobe M, Mizuguchu T, Hirata K. New straregy for the antifibrotic therapy woth oral administration of FR260330 (a slective inducible nitiric oxide synthase inhibitor) in rat experimental liver cirrhosis. Wound Repair Regen 2007;15:881-888
Inducible nitric oxide synthase (iNOS) is induced by inflammation and stress, synthesizes free radical nitric oxide, and is involved in various pathological conditions. There are reports that iNOS is highly expressed in severe NASH patients (Non-patent Document 5) and that iNOS knockout mice are susceptible to liver fibrosis due to a high-fat diet (Non-patent Document 6). There is also a report that a selective inhibitor of iNOS suppressed fibrosis in a rat cirrhosis model (Non-patent Document 7).
However, there is no report that a single nucleotide polymorphism of the iNOS gene is associated with NAFLD.
Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol. 2004; 40: 781-6 Gambino R, Cassader M, Pagano G, Durazzo M, Musso G. Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology. 2007; 45: 1097-107. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, et al. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007; 46: 1104-10. Merriman RB, Aouizerat BE, Bass NM. Genetic influences in nonalcoholic fatty liver disease.J Clin Gastroenterol. 2006; 40: S30-3. Garcia-Monzon C, Martin-Perez E, Iacono OL, Fernandez-Bermejo M, Majano PL, Apolinario A, Larranaga E, Moreno-Otero R. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepetitis associated with obesity. J Hepatol 2000; 33 : 716-724 Chen Y, Hozawa S, Sawamura S Sato S, Fukuyama N, Tsuji C, Mine T, Okada Y, Tanino R, Osugi Y, Nakazawa H. Defiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet.Biochem Biophys Res Commun 2005; 326: 45-51 Kikuchi H, Katsuramaki T, Kukita K, Taketani S, Meguro M, Nagayama M, Isobe M, Mizuguchu T, Hirata K. New straregy for the antifibrotic therapy woth oral administration of FR260330 (a slective inducible nitiric oxide synthase inhibitor) in rat experimental liver cirrhosis. Wound Repair Regen 2007; 15: 881-888

本発明は、NAFLDの発症や進行を正確に予測するための検査方法を提供することを課題とする。   An object of the present invention is to provide a test method for accurately predicting the onset and progression of NAFLD.

本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、iNOS遺伝子上に存在する特定の塩基の一塩基多型または該塩基と連鎖不平衡にある塩基の一塩基多型がNAFLDに関連することを見出し、本発明を完成するに至った。   The present inventors have made extensive studies to solve the above problems. As a result, it was found that a single nucleotide polymorphism of a specific base present on the iNOS gene or a single nucleotide polymorphism of a base in linkage disequilibrium with the base is related to NAFLD, and the present invention has been completed.

すなわち、本発明は以下の通りである。
(1)iNOS遺伝子上の、配列番号1〜4のいずれかの塩基配列の塩基番号61番目の塩基に相当する塩基における一塩基多型または該塩基と連鎖不平衡にある塩基の一塩基多型を分析し、該分析結果に基づいて非アルコール性脂肪肝障害を検査する方法。
(2)配列番号1〜4のいずれかの塩基配列において、塩基番号61番目の塩基を含む10塩基以上の配列、又はその相補配列を有する非アルコール性脂肪肝障害検査用プローブ。
(3)配列番号1〜4のいずれかの塩基配列において、塩基番号61番目の塩基を含む領域を増幅することのできる非アルコール性脂肪肝障害検査用プライマー。
That is, the present invention is as follows.
(1) A single nucleotide polymorphism in the base corresponding to the 61st base of the nucleotide sequence of any one of SEQ ID NOs: 1 to 4 on the iNOS gene or a single nucleotide polymorphism of a base in linkage disequilibrium with the base And testing non-alcoholic fatty liver disorder based on the analysis result.
(2) A non-alcoholic fatty liver injury test probe having a sequence of 10 bases or more including the base at the 61st base in the base sequence of any one of SEQ ID NOs: 1 to 4 or a complementary sequence thereof.
(3) A non-alcoholic fatty liver injury test primer capable of amplifying a region containing the 61st base in the base sequence of any one of SEQ ID NOs: 1 to 4.

本発明の検査方法により、NAFLDの発症リスクや進行を正確に非侵襲的に予測することができるため、NAFLDを予防したり、進行を抑えたりすることができる。また、iNOS遺伝子の多型は、NAFLDになりやすい素因(SNP)をもっている人にiNOS阻害剤を投与
したとき、NAFLD やNASHを発症、あるいは増悪させるといった副作用のリスク判断にも優れた指標となりうる。
Since the onset risk and progression of NAFLD can be accurately and non-invasively predicted by the test method of the present invention, NAFLD can be prevented or progress can be suppressed. In addition, iNOS polymorphisms can be an excellent index for determining the risk of side effects such as the onset or exacerbation of NAFLD or NASH when an iNOS inhibitor is administered to a person who has a predisposition to becoming NAFLD (SNP). .

<1>本発明の検査方法
本発明の検査方法は、inducible nitric oxide synthase(iNOS)遺伝子上に存在する
塩基の一塩基多型(SNP;single nucleotide polymorphism)または該塩基と連鎖不平衡
にある塩基の一塩基多型を分析し、該分析に基づいてNAFLDを検査する方法である。NAFLDとは、感染性肝炎、自己免疫性肝炎、原発性胆汁性肝硬変、硬化性胆管炎、ヘモクロマトーシス、α1−抗トリプシン欠損症、ウィルソン病、薬剤性肝炎またはアルコ
ール性肝炎の患者、及び大量飲酒者以外において、例えば、Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterol. 2002:123:1705-25の基準によって診断される病態をいう。なお、本発明において、「検査」とは将来、NAFLDになるかどうかを予測するための検査、及びNAFLDの程度が悪化する(例えば、NASHに進行する)かどうかを予測するための検査を含む。
<1> Test Method of the Present Invention The test method of the present invention comprises a single nucleotide polymorphism (SNP) present on an inducible nitric oxide synthase (iNOS) gene or a base in linkage disequilibrium with the base. This is a method for analyzing a single nucleotide polymorphism of NAF and examining NAFLD based on the analysis. NAFLD means infectious hepatitis, autoimmune hepatitis, primary biliary cirrhosis, sclerosing cholangitis, hemochromatosis, α 1 -antitrypsin deficiency, Wilson disease, drug hepatitis or alcoholic hepatitis, and It refers to a pathological condition diagnosed according to the criteria of, for example, Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterol. 2002: 123: 1705-25. In the present invention, “inspection” includes an inspection for predicting whether or not NAFLD will occur in the future, and an inspection for predicting whether or not the degree of NAFLD will deteriorate (for example, progress to NASH). .

iNOS遺伝子としては、ヒトiNOS遺伝子が好ましく、例えば、GenBank Accession No. NM_000625に登録された配列を有する遺伝子を挙げることができる。ただし、該遺伝子は人
種の違いなどによって1又は複数の塩基に置換や欠失等が存在する可能性があるため、上記配列の遺伝子に限定されない。
The iNOS gene is preferably a human iNOS gene, and examples thereof include a gene having a sequence registered in GenBank Accession No. NM_000625. However, the gene is not limited to the gene of the above sequence because substitution or deletion may exist in one or a plurality of bases due to differences in race.

NAFLDに関連するiNOS遺伝子の一塩基多型は、以下に示すSNP-1〜SNP-4が挙げられる。   SNP-1 to SNP-4 shown below are listed as single nucleotide polymorphisms of the iNOS gene related to NAFLD.

Figure 2010022293
Figure 2010022293

表1において、例えば、SNP-1はGenBank Accession No. NT_010799.14の827748番目の
塩基におけるシトシン(C)/チミン(T)の多型を意味し、この塩基がTである場合はN
AFLDになる確率が高い。また、アレルを考慮して解析した場合は、SNP-1がTT>TC>CCの順でNAFLDになる確率が高い。SNP-1はiNOS遺伝子のイントロン21に存在するSNPである。dbSNPはNational Center for Biotechnology InformationのdbSNPデータベース(//www.ncbi.nlm.nih.gov/projects/SNP/)の登録番号を示す。
その他のSNPについても同様であるが、いずれについても右側の塩基がNAFLDになりやすい塩基である(例えば、SNP-2の場合、T/CのうちCの場合がNAFLDになりや
すく、SNP-3の場合、A/GのうちGの場合がNAFLDになりやすく、SNP-4の場合、C/Tの
うちTの場合がNAFLDになりやすい)。
なお、SNP-1〜SNP-4について、SNP塩基及びその前後60bpの領域を含む合計121bpの長さの配列を、それぞれ配列番号1〜4に示した。それぞれ61番目の塩基が多型を有する。
これらの塩基に相当する塩基を本発明においては解析する。ここで、「相当する」とは、ヒトiNOS遺伝子上の上記配列を有する領域中の該当塩基を意味し、仮に、人種の違いなどによって上記配列がSNP以外の位置で若干変化したとしても、その中の該当塩基を解析することも含む。
In Table 1, for example, SNP-1 means a polymorphism of cytosine (C) / thymine (T) in the 827748th base of GenBank Accession No. NT_010799.14, and when this base is T, N
There is a high probability of becoming AFLD. Moreover, when analyzing in consideration of alleles, there is a high probability that SNP-1 becomes NAFLD in the order of TT>TC> CC. SNP-1 is an SNP present in intron 21 of the iNOS gene. dbSNP indicates the registration number of the dbSNP database (//www.ncbi.nlm.nih.gov/projects/SNP/) of National Center for Biotechnology Information.
The same applies to other SNPs, but the right base is a base that is likely to be NAFLD in all cases (for example, in the case of SNP-2, the case of C in T / C is likely to be NAFLD, and SNP-3 In the case of A / G, G is likely to be NAFLD, and in the case of SNP-4, T of C / T is likely to be NAFLD).
For SNP-1 to SNP-4, sequences having a total length of 121 bp including the SNP base and the region of 60 bp before and after that are shown in SEQ ID NOs: 1 to 4, respectively. Each 61st base has a polymorphism.
Bases corresponding to these bases are analyzed in the present invention. Here, “corresponding” means a corresponding base in the region having the sequence on the human iNOS gene, and even if the sequence is slightly changed at a position other than the SNP due to a difference in race, It also includes analyzing the corresponding base in it.

上記SNPの塩基の種類を調べることによって、NAFLDを検査することができる。検査するSNPの数は、一種類でもよいし、複数(ハプロタイプ解析)でもよい。なお、SNP-1がCであれば他のSNPも左側の塩基(SNP-2=T、SNP-3=A、SNP-4=C)であるというように、上記SNPのタイプは互いに相関するため、一箇所のみを解析することによって
も十分正確なNAFLDの予測を行うことができる。なお、iNOS遺伝子の配列はセンス鎖を解析してもよいし、アンチセンス鎖を解析してもよい。
また、本発明において解析する塩基は上記のものに限定されず、上記の塩基と連鎖不平衡にある塩基の多型を分析してもよい。ここで「上記の塩基と連鎖不平衡にある塩基」とは、上記の塩基とr2>0.5の関係を満たす塩基をいう。
NAFLD can be examined by examining the type of base of the SNP. The number of SNPs to be inspected may be one type or plural (haplotype analysis). If SNP-1 is C, the other SNPs are the left bases (SNP-2 = T, SNP-3 = A, SNP-4 = C), and the SNP types correlate with each other. Therefore, sufficiently accurate NAFLD prediction can be performed by analyzing only one location. As for the iNOS gene sequence, the sense strand may be analyzed, or the antisense strand may be analyzed.
In addition, the base to be analyzed in the present invention is not limited to the above, and a polymorphism of a base in linkage disequilibrium with the above base may be analyzed. Here, the “base in linkage disequilibrium with the above-mentioned base” refers to a base that satisfies the relationship of r 2 > 0.5 with the above-mentioned base.

iNOS遺伝子の一塩基多型の解析に用いる試料としては、染色体DNAを含む試料であれば特に制限されないが、例えば、血液、尿等の体液サンプル、細胞、毛髪等の体毛、爪などが挙げられる。一塩基多型の解析にはこれらの試料を直接使用することもできるが、これらの試料から染色体DNAを常法により単離し、これを用いて解析することが好ましい。   The sample used for the analysis of the single nucleotide polymorphism of the iNOS gene is not particularly limited as long as it is a sample containing chromosomal DNA. Examples thereof include body fluid samples such as blood and urine, body hair such as cells and hair, and nails. . Although these samples can be used directly for analysis of single nucleotide polymorphisms, it is preferred to isolate chromosomal DNA from these samples by a conventional method and analyze them.

iNOS遺伝子の一塩基多型の解析は、通常の一塩基多型解析方法によって行うことができる。例えば、シークエンス解析、PCR、ハイブリダイゼーションなどが挙げられるが、これらに限定されない。   Analysis of a single nucleotide polymorphism of the iNOS gene can be performed by a usual single nucleotide polymorphism analysis method. Examples include, but are not limited to, sequence analysis, PCR, hybridization, and the like.

シークエンスは通常の方法により行うことができる。具体的には、多型を示す塩基の5’側 数十塩基の位置に設定したプライマーを使用してシークエンス反応を行い、その解
析結果から、該当する位置がどの種類の塩基であるかを決定することができる。なお、シークエンスを行う場合、あらかじめ多型を含む断片をPCRなどによって増幅しておくことが好ましい。
The sequence can be performed by a usual method. Specifically, a sequence reaction is performed using a primer set at a position of several tens of bases on the 5 ′ side of a base showing polymorphism, and the type of base at the corresponding position is determined from the analysis result. can do. When sequencing is performed, it is preferable to amplify a fragment containing a polymorphism in advance by PCR or the like.

また、PCRによる増幅の有無を調べることによっても解析することができる。例えば、多型を示す塩基を含む領域に対応する配列を有し、かつ、各多型に対応するプライマーをそれぞれ用意する。それぞれのプライマーを使用してPCRを行い、増幅産物の有無によってどのタイプの多型であるかを決定することができる。   It can also be analyzed by examining the presence or absence of amplification by PCR. For example, a primer having a sequence corresponding to a region containing a base showing a polymorphism and corresponding to each polymorphism is prepared. PCR can be performed using each primer, and the type of polymorphism can be determined depending on the presence or absence of an amplification product.

また、多型を含むDNA断片を増幅し、増幅産物の電気泳動における移動度の違いによっ
てどのタイプの多型であるかを決定することもできる。このような方法としては、例えば、PCR-SSCP(single−strand conformation polymorphism)法(Genomics. 1992 Jan 1; 12(1): 139−146.)が挙げられる。具体的には、まず、iNOS遺伝子の多型部位を含むDNAを増幅し、増幅したDNAを一本鎖DNAに解離させる。次いで、解離させた一本鎖DNAを非変性ゲル上で分離し、分離した一本鎖DNAのゲル上での移動度の違いによってどのタイプの多型であるかを決定することができる。
It is also possible to amplify a DNA fragment containing a polymorphism and determine which type of polymorphism is based on the difference in mobility in electrophoresis of the amplified product. Examples of such a method include a PCR-SSCP (single-strand conformation polymorphism) method (Genomics. 1992 Jan 1; 12 (1): 139-146.). Specifically, first, DNA containing a polymorphic site of the iNOS gene is amplified, and the amplified DNA is dissociated into single-stranded DNA. Next, the dissociated single-stranded DNA is separated on a non-denaturing gel, and the type of polymorphism can be determined by the difference in mobility of the separated single-stranded DNA on the gel.

さらに、多型を示す塩基が制限酵素認識配列に含まれる場合は、制限酵素による切断の有無によって解析することもできる(RFLP法)。この場合、まず、DNA試料をPCRで増幅し、それを制限酵素により切断する。次いで、DNA断片を分離し、検出されたDNA断片の大きさによってどのタイプの多型であるかを決定することができる。   Furthermore, when a base showing polymorphism is included in the restriction enzyme recognition sequence, it can be analyzed by the presence or absence of cleavage by a restriction enzyme (RFLP method). In this case, first, a DNA sample is amplified by PCR and cut with a restriction enzyme. The DNA fragments can then be separated and the type of polymorphism can be determined by the size of the detected DNA fragment.

ハイブリダイゼーションの有無を調べることによって多型の種類を解析することも可能である。すなわち、各塩基に対応するプローブを用意し、いずれのプローブにハイブリダイズするかを調べることによってSNPがいずれの塩基であるかを調べることもできる。   It is also possible to analyze the type of polymorphism by examining the presence or absence of hybridization. That is, it is possible to determine which base an SNP is by preparing probes corresponding to each base and examining which probe hybridizes.

<2>本発明の検査用試薬
本発明はまた、NAFLDを検査するためのプライマーやプローブなどの検査試薬を提供する。このようなプローブとしては、iNOS遺伝子における上記多型部位を含み、ハイブリダイズの有無によって多型部位の塩基の種類を判定できるプローブが挙げられる。具体的には、配列番号1〜4のいずれかの塩基配列の61番目の塩基を含む配列、又はその相補配列を有する15塩基以上の長さのプローブが挙げられる。プローブの長さは好ましくは15〜35塩基、より好ましくは20〜35塩基である。このようなプローブとして、配列番号11や配列番号12のプローブ(SNP-3)、配列番号13や配列番号14のプローブ(SNP-4)などが例示される。SNP-1およびSNP-2についても配列番号1および2に基づいて設計できる。
<2> Reagent for test | inspection of this invention This invention also provides test reagents, such as a primer and a probe for test | inspecting NAFLD. Examples of such a probe include a probe that includes the polymorphic site in the iNOS gene and can determine the type of base at the polymorphic site based on the presence or absence of hybridization. Specifically, a probe having a length of 15 bases or more having a sequence containing the 61st base of any one of SEQ ID NOs: 1 to 4 or a complementary sequence thereof can be mentioned. The length of the probe is preferably 15 to 35 bases, more preferably 20 to 35 bases. Examples of such probes include probes of SEQ ID NO: 11 and SEQ ID NO: 12 (SNP-3), probes of SEQ ID NO: 13 and SEQ ID NO: 14 (SNP-4), and the like. SNP-1 and SNP-2 can also be designed based on SEQ ID NOs: 1 and 2.

また、プライマーとしては、iNOS遺伝子における上記多型部位を増幅するためのPCRに
用いることのできるプライマー、又は上記多型部位を配列解析(シークエンシング)するために用いることのできるプライマーが挙げられる。具体的には、配列番号1〜4のいずれかの塩基配列の61番目の塩基を含む領域を増幅したりシークエンシングしたりすることのできるプライマーが挙げられる。このようなプライマーの長さは15〜50塩基が好ましく、20〜35塩基がより好ましい。このようなプライマーは、例えば、配列番号1〜4において、多型部位の上流または下流の位置に設定することができる。
上記多型部位をシークエンシングするためのプライマーとしては、上記多型塩基の5’側領域、好ましくは30〜100塩基上流の配列を有するプライマーや、上記多型塩基の3’
側領域、好ましくは30〜100塩基下流の領域に相補的な配列を有するプライマーが例示さ
れる。PCRによる増幅の有無で多型を判定するために用いるプライマーとしては、上記多
型塩基を含む配列を有し、上記多型塩基を3’側に含むプライマーや、上記多型塩基を含む配列の相補配列を有し、上記多型塩基の相補塩基を3’側に含むプライマーなどが例示される。
なお、本発明の検査用試薬はこれらのプライマーやプローブに加えて、PCR用のポリメ
ラーゼやバッファー、ハイブリダイゼーション用試薬などを含むものであってもよい。
Examples of the primer include a primer that can be used for PCR for amplifying the polymorphic site in the iNOS gene, or a primer that can be used for sequence analysis (sequencing) of the polymorphic site. Specifically, a primer that can amplify or sequence the region containing the 61st base of any one of the nucleotide sequences of SEQ ID NOS: 1 to 4 can be mentioned. The length of such a primer is preferably 15 to 50 bases, more preferably 20 to 35 bases. Such primers can be set, for example, at positions upstream or downstream of the polymorphic site in SEQ ID NOs: 1-4.
As a primer for sequencing the polymorphic site, a primer having a sequence 5′-side of the polymorphic base, preferably 30 to 100 bases upstream, or 3 ′ of the polymorphic base is used.
Examples include a primer having a sequence complementary to a side region, preferably a region downstream of 30 to 100 bases. Primers used to determine polymorphism based on the presence or absence of amplification by PCR have a sequence containing the polymorphic base, a primer containing the polymorphic base on the 3 ′ side, or a sequence containing the polymorphic base. Examples thereof include a primer having a complementary sequence and containing a complementary base of the polymorphic base on the 3 ′ side.
The test reagent of the present invention may contain PCR polymerases, buffers, hybridization reagents, etc. in addition to these primers and probes.

以下、本発明を実施例によりさらに具体的に説明する。但し、本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

材料と方法
被検者
115人の日本人NAFLD患者(65人のNASHと50人の単純性脂肪肝)と、435人の健常な対照被検者は横浜市立大学病院において募集された。
全ての対照被検者は正常な肝機能を有し、ウィルス性肝炎の感染がなく、アルコール依存症ではないことが確認された。対照被検者は、BMI<25kg/m2であり、空腹時
血糖(<110mg/dl)、中性脂肪(<150mg/dl)、HDLコレステロール(>40mg/dl)は正常であり、最高血圧(<130mmHg)および最低血圧(<85mmHg)も正常であった。
一方、115人全ての患者は、肝生検によってNAFLDと確認された。すなわち、肝生検組織は、ヘマトキシリン−エオジン、レチクリン、及びマッソントリクローム染色により染色され、二人の病理学者によって調べられた。NAFLDの診断のための組織学的基準は、細胞の縁への核の移動を伴う、肝細胞の大滴性脂肪化の存在であり(Sanyal AJ.
AGA technical review on nonalcoholic fatty liver disease. Gastroenterol. 2002:123:1705-25)、この基準によってNAFLDと診断された。5%を超える肝細胞に大滴性脂肪化が認められた場合、その患者を単純性脂肪肝かあるいはNASHに分類した。NASHの診断の基準は、肝細胞の大滴性脂肪化に加え、小葉内炎症、zone3における肝細胞の風船様腫大(あるいは風船様膨化ともいう)、中心静脈周囲繊維化、肝細胞周囲の繊維化の存在である(Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413-1419.;Teli MR, James OF, Burt AD, Bennett MK, Day CP. The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology. 1995;22:1714-1719.)。
なお、以下の疾病の患者は本研究からは除外した:感染性肝炎(B型およびC型肝炎、エプスタイン−バーウイルス感染症)、自己免疫性肝炎、原発性胆汁性肝硬変(PBC)、硬化性胆管炎、ヘモクロマトーシス、α1−抗トリプシン欠損症、ウィルソン病、薬剤
性肝炎、アルコール性肝炎、及び大量飲酒者(現在もしくは過去の1日当りアルコール消費量が20gを超える者)。
被検者としたいずれのNAFLD患者にも、肝代償不全の臨床的所見(肝性脳症、腹水、静脈瘤出血、または正常上限値の2倍を超える血清ビリルビン濃度等)は認められなかった。
全ての被検者から、本研究への参加に先立って書面によるインフォームド・コンセントを得た。研究のプロトコルは、1975年のヘルシンキ宣言の倫理指針に準拠しており、横浜市立病院および理化学研究所の研究委員会の承認を得たものである。
Materials and Methods Subjects 115 Japanese NAFLD patients (65 NASH and 50 simple fatty liver) and 435 healthy control subjects were recruited at Yokohama City University Hospital.
All control subjects were confirmed to have normal liver function, no viral hepatitis infection, and no alcoholism. Control subjects had BMI <25 kg / m 2 , fasting blood glucose (<110 mg / dl), neutral fat (<150 mg / dl), HDL cholesterol (> 40 mg / dl) normal, and systolic blood pressure (<130 mmHg) and diastolic blood pressure (<85 mmHg) were also normal.
On the other hand, all 115 patients were confirmed as NAFLD by liver biopsy. That is, liver biopsy tissue was stained with hematoxylin-eosin, reticuline, and Masson trichrome stain and examined by two pathologists. The histological criteria for the diagnosis of NAFLD is the presence of large lipid steatosis of hepatocytes, with nuclear movement to the cell edge (Sanyal AJ.
AGA technical review on nonalcoholic fatty liver disease. Gastroenterol. 2002: 123: 1705-25). Based on this standard, NAFLD was diagnosed. If greater than 5% of hepatocytes were found to have large lipid steatosis, the patient was classified as either simple fatty liver or NASH. The criteria for diagnosis of NASH include hepatocyte macrophageous lipidation, intralobular inflammation, balloon-like swelling of hepatocytes in zone 3 (also called balloon-like swelling), pericentral fibrosis, Fibrosis is present (Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999; 116: 1413-1419 .; MR, James OF, Burt AD, Bennett MK, Day CP. The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology. 1995; 22: 1714-1719.).
Patients with the following diseases were excluded from this study: infectious hepatitis (B and C, Epstein-Barr virus infection), autoimmune hepatitis, primary biliary cirrhosis (PBC), sclerosis Cholangitis, hemochromatosis, α 1 -antitrypsin deficiency, Wilson's disease, drug-induced hepatitis, alcoholic hepatitis, and heavy drinkers (those with current or past daily alcohol consumption> 20 g).
None of the NAFLD patients as subjects had clinical findings of liver decompensation (such as hepatic encephalopathy, ascites, variceal bleeding, or serum bilirubin concentration exceeding twice the normal upper limit).
Written informed consent was obtained from all subjects prior to participation in the study. The research protocol complies with the ethical guidelines of the Declaration of Helsinki in 1975, and has been approved by the Yokohama City Hospital and the RIKEN Research Committee.

臨床および実験室評価
静脈血サンプルは、一晩絶食(12時間)後の被検者から採取し、血清中のアスパラギン酸アミノ基転移酵素(AST)、アラニンアミノ基転移酵素(ALT)、グルコース、ヘモグロビンA1c(HbA1c)、免疫反応性インスリン、総コレステロール、および
中性脂肪を測定した。全ての実験の生化学的パラメータは自動化分析器で測定した。
Clinical and laboratory evaluations Venous blood samples are taken from subjects after an overnight fast (12 hours), and serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), glucose, Hemoglobin A1c (HbA1c), immunoreactive insulin, total cholesterol, and neutral fat were measured. The biochemical parameters of all experiments were measured with an automated analyzer.

DNAの調製およびSNPのジェノタイピング
ゲノムDNAは、それぞれの血液サンプルからGenomix(Talent SRL, Trieste, Italy
)を用いて調製した。iNOS内でのSNPsは、IMS−JST(医科学研究所−科学技術振興機構)のSNPデータベースから選択した。マイナーアレル頻度が0.1を超え、観測された遺伝子多型(例えばTT、CT、CC)の頻度がハーディ・ワインベルグ平衡(Hardy-Weinberg equilibrium)から大きく外れなかった10のSNPsを選択した(P>0.001)。これらのSNPsに対してインベーダープローブ(Third Wave Technologies, Madison, WI)を合成し、以前に報告した多重PCRとインベーダーアッセイの組合せにより、患者及び対照におけるSNPsをジェノタイピングした(Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001;46:471-477)。
DNA preparation and SNP genotyping Genomic DNA was obtained from each blood sample with Genomix (Talent SRL, Trieste, Italy).
). SNPs in iNOS were selected from the SNP database of IMS-JST (Institute for Medical Science-Japan Science and Technology Agency). Ten SNPs were selected in which the minor allele frequency exceeded 0.1 and the observed genetic polymorphism (eg, TT, CT, CC) frequency did not deviate significantly from the Hardy-Weinberg equilibrium ( P> 0.001). Invader probes (Third Wave Technologies, Madison, Wis.) Were synthesized for these SNPs, and SNPs in patients and controls were genotyped by a combination of previously reported multiplex PCR and invader assays (Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001; 46: 471-477).

統計分析
それぞれのNAFLD患者−対照の比較については、χ2テストを用い、3つの異なる
モードにおいて、遺伝子型またはアレルの頻度をNAFLD患者と対照の間で比較した。第1のモード(アレル頻度モード)では、2×2分割表を用いて、NAFLD患者と対照の間でアレル頻度を比較した。第2のモード(劣性モード)では、2×2分割表を用いて、アレル1に関してホモ接合性である被検者の頻度をその他の被検者と比較し、第3のモード(優性モード)では、2×2分割表を用いて、アレル1を有する被検者(アレル1のホモ接合性及びヘテロ接合性)の頻度をその他の被検者と比較した。オッズ比およびその95%信頼区間(CI)はウルフ法(Woolf's method)によって算出した。ハーディ・ワインベルグ平衡は、χ2テストを用いて評価した。ハプロタイプブロックはハプロビュー
3.2(Haploview 3.2)を用いて決定した(Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263-265.)。臨床データは平均±標準偏差(SD)で表した。NAFLD患者群
と対照群の間の臨床的パラメータは、スチューデントtテストによって比較した。
Statistical analysis For each NAFLD patient-control comparison, a chi 2 test was used to compare genotype or allele frequencies between NAFLD patients and controls in three different modes. In the first mode (allele frequency mode), allele frequencies were compared between NAFLD patients and controls using a 2 × 2 contingency table. In the second mode (recessive mode), the frequency of subjects who are homozygous for allele 1 is compared with other subjects using a 2 × 2 contingency table, and the third mode (dominant mode) Then, using a 2 × 2 contingency table, the frequency of subjects having allele 1 (homozygosity and heterozygosity of allele 1) was compared with other subjects. The odds ratio and its 95% confidence interval (CI) were calculated by the Wolff's method. Hardy-Weinberg equilibrium was evaluated using the χ 2 test. Haplotype blocks were determined using Haploview 3.2 (Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21: 263-265. ). Clinical data were expressed as mean ± standard deviation (SD). Clinical parameters between NAFLD patient group and control group were compared by Student t test.

結果
NAFLD患者−対照相関解析
NAFLD患者群および対照群の臨床データを表2に示す。
Results NAFLD patient-control correlation analysis Table 2 shows the clinical data of NAFLD patient group and control group.

Figure 2010022293
Figure 2010022293

IMS−JSTのSNPデータベースから、0.1を超えるマイナーアレル頻度を持つiNOS遺伝子内の10のSNPs(rs3794756、rs2255929、rs2297510、rs2297511、rs2297512、rs1060822、rs2297516、rs2248814、rs2297520、rs3794764)を選択し、NAFLDとの相関を調べた。その結果、10のSNPsのうち、4つのSNPs(rs2297510、rs2297511、rs2297512、rs1060822)に有意な相関がみられ、これらは、劣性モデルにおいて
最も低いP値を示した(P=0.0008、表3)。OR(95%信頼区間)は劣性モデルにおいて0.70(0.51−0.97)であり、従って、メジャーアレルがNAFLD発症に対して保護的であることがわかった。
なお、rs3794756、rs2255929、rs2297516、rs2248814、rs2297520、rs3794764について、それぞれ、SNPsとその前後60bpを含む配列をそれぞれ、配列番号5〜10に示す。
From the IMS-JST SNP database, select 10 SNPs (rs3794756, rs2255929, rs2297510, rs2297511, rs2297512, rs1060822, rs2297516, rs2248814, rs2297520, rs3794764) within the iNOS gene with a minor allele frequency greater than 0.1; The correlation with NAFLD was examined. As a result, among the 10 SNPs, 4 SNPs (rs2297510, rs2297511, rs2297512, rs1060822) were significantly correlated, and these showed the lowest P value in the recessive model (P = 0.0008, table). 3). The OR (95% confidence interval) is 0.70 (0.51-0.97) in the recessive model, thus indicating that the major allele is protective against the development of NAFLD.
For rs3794756, rs2255929, rs2297516, rs2248814, rs2297520, and rs3794764, the sequences including SNPs and 60 bp before and after thereof are shown in SEQ ID NOs: 5 to 10, respectively.

Figure 2010022293
Figure 2010022293

さらに、rs2297510及びrs1060822について詳細に検討した(表4)。
NAFLD群をNASHおよび単純性脂肪肝(simple stearosis)に分け、rs2297510
及びrs1060822を用いてNAFLD患者−対照相関解析を実施した。rs2297510及びrs1060822におけるアレル1ホモザイゴートの頻度は、NASH被検者では対照被検者と比較し
て有意に低かった。NASH患者のアレル1ホモザイゴートの頻度を単純性脂肪肝の被検者と比較した場合には、これらのグループ間での頻度は有意なものではなかった。従って、rs2297510及びrs1060822はNASH及び単純性脂肪肝を合わせたNAFLDと有意に相
関していた。
Furthermore, rs2297510 and rs1060822 were examined in detail (Table 4).
Divide the NAFLD group into NASH and simple stearosis, rs2297510
And rs1060822 were used to perform NAFLD patient-control correlation analysis. The frequency of allele 1 homozygotes at rs2297510 and rs1060822 was significantly lower in NASH subjects compared to control subjects. When comparing the frequency of allele 1 homozygotes in NASH patients with simple fatty liver subjects, the frequency between these groups was not significant. Therefore, rs2297510 and rs1060822 were significantly correlated with NAFLD combined with NASH and simple fatty liver.

Figure 2010022293
Figure 2010022293

また、連鎖不均衡分析により、上記4つのSNPs(rs2297510、rs2297511、rs2297512、rs1060822)は絶対的な連鎖不平衡(r2=1)にあることがわかった(表5)。 Further, linkage disequilibrium analysis revealed that the above four SNPs (rs2297510, rs2297511, rs2297512, rs1060822) were in absolute linkage disequilibrium (r 2 = 1) (Table 5).

Figure 2010022293
Figure 2010022293

考察
NAFLD表現型は、無症状から肝不全の合併症及び肝細胞癌を伴う肝硬変にわたるまで様々である。現在のところ、肝臓の生検がNAFLDの診断及び予測を評価し得る唯一の方法である。今回、我々はiNOS遺伝子の多型がNAFLDに関連していることを発見し
た。これらの多型はNAFLDの診断及び/又は予測の有用な手段となると考えられた。
Discussion The NAFLD phenotype varies from asymptomatic to liver cirrhosis with liver complications and hepatocellular carcinoma. Currently, liver biopsy is the only method that can evaluate the diagnosis and prediction of NAFLD. This time, we found that polymorphisms in the iNOS gene are related to NAFLD. These polymorphisms were considered to be useful tools for the diagnosis and / or prediction of NAFLD.

Claims (3)

iNOS遺伝子上の、配列番号1〜4のいずれかの塩基配列の塩基番号61番目の塩基に相当する塩基における一塩基多型または該塩基と連鎖不平衡にある塩基の一塩基多型を分析し、該分析結果に基づいて非アルコール性脂肪肝障害を検査する方法。 Analyzes a single nucleotide polymorphism in the base corresponding to the base number 61 in the nucleotide sequence of any one of SEQ ID NOs: 1 to 4 on the iNOS gene, or a single nucleotide polymorphism of the base in linkage disequilibrium with the base. And a method for examining nonalcoholic fatty liver disorder based on the analysis result. 配列番号1〜4のいずれかの塩基配列において、塩基番号61番目の塩基を含む10塩基以上の配列、又はその相補配列を有する非アルコール性脂肪肝障害検査用プローブ。 A non-alcoholic fatty liver injury test probe having a sequence of 10 bases or more including the 61st base in the base sequence of any one of SEQ ID NOs: 1 to 4 or a complementary sequence thereof. 配列番号1〜4のいずれかの塩基配列において、塩基番号61番目の塩基を含む領域を増幅することのできる非アルコール性脂肪肝障害検査用プライマー。 A primer for non-alcoholic fatty liver injury test, which can amplify a region containing the base at position 61 in any one of SEQ ID NOs: 1 to 4.
JP2008188560A 2008-07-22 2008-07-22 Method for examination of non-alcoholic fatty liver disorder Pending JP2010022293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188560A JP2010022293A (en) 2008-07-22 2008-07-22 Method for examination of non-alcoholic fatty liver disorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188560A JP2010022293A (en) 2008-07-22 2008-07-22 Method for examination of non-alcoholic fatty liver disorder

Publications (1)

Publication Number Publication Date
JP2010022293A true JP2010022293A (en) 2010-02-04

Family

ID=41728739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188560A Pending JP2010022293A (en) 2008-07-22 2008-07-22 Method for examination of non-alcoholic fatty liver disorder

Country Status (1)

Country Link
JP (1) JP2010022293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178898A (en) * 2015-03-24 2016-10-13 国立大学法人旭川医科大学 Determination methods for risk of onset and/or severity of nonalcoholic fatty liver disease and/or nonalcoholic steatohepatitis, as well as oligonucleotide kit for determination thereof
WO2017217340A1 (en) * 2016-06-13 2017-12-21 国立大学法人九州大学 Free radical consumption speed information acquisition method and nash determination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178898A (en) * 2015-03-24 2016-10-13 国立大学法人旭川医科大学 Determination methods for risk of onset and/or severity of nonalcoholic fatty liver disease and/or nonalcoholic steatohepatitis, as well as oligonucleotide kit for determination thereof
WO2017217340A1 (en) * 2016-06-13 2017-12-21 国立大学法人九州大学 Free radical consumption speed information acquisition method and nash determination method
JPWO2017217340A1 (en) * 2016-06-13 2019-04-11 国立大学法人九州大学 Free radical consumption rate information acquisition method and NASH determination method

Similar Documents

Publication Publication Date Title
JP7000658B2 (en) How to assess liver lesions
JP4606877B2 (en) Mutations in NOD2 are associated with fibrotic stenosis in patients with Crohn&#39;s disease
Ren et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo
KR101459057B1 (en) Method for predicting the development of type 2 diabetes after gestational diabetes pregnancy
Iida et al. A functional variant in ZNF512B is associated with susceptibility to amyotrophic lateral sclerosis in Japanese
Sakiyama et al. Ethnic differences in ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): genotype combinations and estimated functions
EP3332031B1 (en) Snp rs12603226 as a predictive marker for nafld
Karmelić et al. Adiponectin level and gene variability are obesity and metabolic syndrome markers in a young population
Chen et al. Diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency using high-resolution melting analysis and a clinical scoring system
Hill et al. Rapid genetic analysis of X-linked chronic granulomatous disease by high-resolution melting
Shah et al. Differential methylation of the type 2 diabetes susceptibility locus KCNQ1 is associated with insulin sensitivity and is predicted by CpG site specific genetic variation
Kitamoto et al. Targeted next-generation sequencing and fine linkage disequilibrium mapping reveals association of PNPLA3 and PARVB with the severity of nonalcoholic fatty liver disease
Liu et al. Prenatal diagnosis of Chinese families with phenylketonuria
Liu et al. Risk loci on chromosome 8q24 are associated with prostate cancer in northern Chinese men
Nissen et al. Identification of rare and frequent variants of the CASR gene by high-resolution melting
JP5807894B2 (en) Test method for prostate cancer based on single nucleotide polymorphism
WO2008144940A1 (en) Biomarker for hypertriglyceridemia
Bodhini et al. Lack of association of PTPN1 gene polymorphisms with type 2 diabetes in south Indians
Cui et al. Development of a high resolution melting method for genotyping of risk HLA-DQA1 and PLA2R1 alleles and ethnic distribution of these risk alleles
CN116574801A (en) PAI-1 gene promoter 4G/5G polymorphism detection kit, composition and application thereof
Svensson et al. Detection of large rearrangements in the cystic fibrosis transmembrane conductance regulator gene by multiplex ligation-dependent probe amplification assay when sequencing fails to detect two disease-causing mutations
Yoneda et al. Influence of inducible nitric oxide synthase polymorphisms in Japanese patients with non‐alcoholic fatty liver disease
JP2010022293A (en) Method for examination of non-alcoholic fatty liver disorder
JP6494356B2 (en) Nonalcoholic fatty liver disease and / or nonalcoholic steatohepatitis risk and / or severity risk determination method, and oligonucleotide kit for determination
Nauwelaerts et al. Selection of a noninvasive source of human DNA envisaging genotyping assays in epidemiological studies: urine or saliva?