JP2010021033A - Separator for nonaqueous secondary battery - Google Patents

Separator for nonaqueous secondary battery Download PDF

Info

Publication number
JP2010021033A
JP2010021033A JP2008180942A JP2008180942A JP2010021033A JP 2010021033 A JP2010021033 A JP 2010021033A JP 2008180942 A JP2008180942 A JP 2008180942A JP 2008180942 A JP2008180942 A JP 2008180942A JP 2010021033 A JP2010021033 A JP 2010021033A
Authority
JP
Japan
Prior art keywords
separator
heat
resistant layer
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008180942A
Other languages
Japanese (ja)
Inventor
Hideaki Maeda
英明 前田
Takaya Saito
貴也 齊藤
Minhi Kim
ミンヒ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2008180942A priority Critical patent/JP2010021033A/en
Publication of JP2010021033A publication Critical patent/JP2010021033A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous secondary battery improved in adhesion and binding performance of a substrate and a heat resistant layer, and superior in thermal resistance. <P>SOLUTION: This is a separator of which the surface of the separator substrate is coated with a heat resistant layer, and the surface of the separator substrate has a wettability of 40 mN/m or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、基材と耐熱層との密着性及び結着性が向上し、耐熱性に優れた非水系二次電池用セパレータに関するものである。   The present invention relates to a separator for a non-aqueous secondary battery that has improved adhesion and binding properties between a base material and a heat-resistant layer and is excellent in heat resistance.

従来の非水系二次電池は、正極と負極との間に電気絶縁性の多孔質膜からなるセパレータが介在している構造を有しており、当該多孔質膜の空隙内にはリチウム塩を溶解した電解液が含浸している。   A conventional non-aqueous secondary battery has a structure in which a separator made of an electrically insulating porous film is interposed between a positive electrode and a negative electrode, and a lithium salt is placed in the gap of the porous film. The dissolved electrolyte is impregnated.

このような非水系二次電池は、高容量及び高エネルギー密度といった優れた特性を有しているが、充放電サイクルに伴い正極及び負極が収縮と膨張を繰り返すことにより、セパレータや電解液が正極及び負極と反応してこれらが劣化し、電池内外での短絡が起こり、電池温度が急激に上昇することがある。   Such a non-aqueous secondary battery has excellent characteristics such as high capacity and high energy density. However, the separator and the electrolytic solution are positive and negative by repeating contraction and expansion of the positive and negative electrodes in accordance with the charge / discharge cycle. And react with the negative electrode to deteriorate them, causing a short circuit inside and outside the battery, and the battery temperature may rise rapidly.

このため、従来セパレータとしては、シャットダウン特性、取り扱い性、及び、価格面において優れたポリエチレン製の多孔質膜からなるものが広く用いられている。ここで、シャットダウンとは、過充電や、外部又は内部短絡等により電池温度が上がり、セパレータの一部が溶融して空隙が閉塞され、電流が遮断されることをいう。   For this reason, as a conventional separator, what consists of a porous film made from polyethylene excellent in shutdown characteristics, handling property, and price is widely used. Here, the shutdown means that the battery temperature rises due to overcharge, external or internal short circuit, etc., a part of the separator melts, the gap is closed, and the current is cut off.

しかし、更に電池温度が上がると、セパレータが溶融して急激に収縮したり破れたりすることにより、再び短絡してショートが起こる。   However, when the battery temperature further rises, the separator melts and rapidly contracts or breaks, so that a short circuit occurs again.

そこで、電極とセパレータや電解液との反応を抑制し、また、急激な温度上昇に伴うセパレータの破断を防止するために、セパレータに耐熱層を設けることが試みられており、例えば、特許文献1には、耐熱性含窒素芳香族重合体及びセラミック粉末を含む耐熱層を有するセパレータを備えた二次電池が開示されており、特許文献2には、多孔質からなる耐熱層を有するセパレータを備えた二次電池が開示されている。
特開2000−30686 特開2000−327680
Therefore, in order to suppress the reaction between the electrode and the separator or the electrolytic solution, and to prevent the separator from being broken due to a rapid temperature rise, it has been attempted to provide a heat-resistant layer on the separator. Discloses a secondary battery including a separator having a heat-resistant layer containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder, and Patent Document 2 includes a separator having a porous heat-resistant layer. A secondary battery is also disclosed.
JP2000-30686 JP 2000-327680 A

しかしながら、上記の特許文献に記載の二次電池では、セパレータの酸化・劣化や、電池内部抵抗上昇、電極劣化、電解液の分解によるリーク電流、短絡等の問題点が改善できているとは言いがたい。すなわち、特許文献1及び特許文献2に記載の二次電池では、基材表面に均一に耐熱層を設けることが困難であるとともに、耐熱層と基材との密着性及び結着性が低く、これらの間に物理的な界面抵抗が存在しているので、電池特性や安全性は不充分である。   However, in the secondary battery described in the above-mentioned patent document, it is said that problems such as separator oxidation / degradation, battery internal resistance increase, electrode degradation, leakage current due to electrolyte decomposition, short circuit, etc. can be improved. It ’s hard. That is, in the secondary batteries described in Patent Document 1 and Patent Document 2, it is difficult to uniformly provide a heat-resistant layer on the surface of the base material, and adhesion and binding properties between the heat-resistant layer and the base material are low. Since physical interface resistance exists between them, battery characteristics and safety are insufficient.

そこで本発明は、基材と耐熱層との密着性及び結着性が向上し、耐熱性に優れた非水系二次電池用セパレータを提供することを課題とする。   Then, this invention makes it a subject to provide the separator for non-aqueous secondary batteries which the adhesiveness and binding property of a base material and a heat resistant layer improve, and were excellent in heat resistance.

すなわち本発明に係る非水系二次電池用セパレータは、セパレータ基材表面が耐熱層により被覆されてなるセパレータであって、前記セパレータ基材表面は、濡れ性が40mN/m以上であることを特徴とする。   That is, the separator for a non-aqueous secondary battery according to the present invention is a separator in which the separator base material surface is covered with a heat-resistant layer, and the separator base material surface has a wettability of 40 mN / m or more. And

このような本発明に係る非水系二次電池用セパレータ(以下単にセパレータともいう。)は、セパレータ基材表面に充分な親水性が付与されているので、極性の高い耐熱層用塗工液を均一に塗布することができ、その結果、セパレータ基材表面全体に均一に耐熱層を形成することができる。また、セパレータ基材表面に充分な親水性が付与されることにより、セパレータ基材表面と耐熱層との密着性・結着性が向上して、充放電を繰り返しても耐熱層が剥離せず、耐熱性を安定して維持することができる。   Such a separator for a non-aqueous secondary battery according to the present invention (hereinafter also simply referred to as a separator) is provided with sufficient hydrophilicity on the separator substrate surface. It can apply | coat uniformly, As a result, a heat-resistant layer can be uniformly formed in the whole separator base-material surface. In addition, by providing sufficient hydrophilicity to the separator substrate surface, the adhesion and binding properties between the separator substrate surface and the heat-resistant layer are improved, and the heat-resistant layer does not peel even after repeated charge and discharge. , Heat resistance can be stably maintained.

前記耐熱層の融点は、前記セパレータ基材の融点より高いことが好ましい。   The melting point of the heat resistant layer is preferably higher than the melting point of the separator substrate.

このような前記耐熱層としては、例えば、酸化物、炭酸化合物、水酸化物、及び、リン酸化合物からなる群より選ばれる少なくとも1種の無機化合物や、芳香族ポリアミドを含有しているものが挙げられる。   Examples of the heat-resistant layer include those containing at least one inorganic compound selected from the group consisting of oxides, carbonate compounds, hydroxides, and phosphate compounds, and aromatic polyamides. Can be mentioned.

このような本発明に係るセパレータを備えている非水系二次電池もまた、本発明の1つである。   Such a non-aqueous secondary battery including the separator according to the present invention is also one aspect of the present invention.

このような本発明に係るセパレータを製造する方法としては、例えば、前記セパレータ基材の表面を親水基により修飾し、前記セパレータ基材表面の濡れ性を40mN/m以上にする工程と、親水基により修飾された前記セパレータ基材の表面に耐熱層用塗工液を塗布する工程と、を有している製造方法が挙げられる。当該セパレータの製造方法もまた、本発明の1つである。   As a method for producing such a separator according to the present invention, for example, the step of modifying the surface of the separator substrate with a hydrophilic group to make the separator substrate surface have a wettability of 40 mN / m or more; And a step of applying a coating solution for a heat-resistant layer to the surface of the separator base material modified by the above. The manufacturing method of the separator is also one aspect of the present invention.

前記セパレータ基材の表面を親水基により修飾する方法としては、例えば、コロナ放電、プラズマ処理、イオン注入、又は、イオンビームミキシング等を用いるものが挙げられる。   Examples of the method of modifying the surface of the separator substrate with a hydrophilic group include those using corona discharge, plasma treatment, ion implantation, ion beam mixing, and the like.

このように本発明によれば、セパレータ基材と電極との接触が耐熱層により妨げられ、充放電を繰り返したり、高電圧を印加したりしても、セパレータと電極が反応して劣化する事態を抑制できるので、セパレータの急激な収縮、破れを回避・抑制し、短絡も起こりにくく、寿命が長い、安全性及び出力特性、サイクル特性等の電池特性に優れた非水系二次電池を提供することができる。   As described above, according to the present invention, the contact between the separator substrate and the electrode is hindered by the heat-resistant layer, and the separator and the electrode react and deteriorate even when charging / discharging is repeated or a high voltage is applied. Therefore, a non-aqueous secondary battery that has excellent battery characteristics such as safety, output characteristics, and cycle characteristics is provided. be able to.

以下に本発明の一実施形態に係る非水系二次電池について説明する。   Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described.

本実施形態に係る非水系二次電池は、例えば、コイン、ボタン、シート、シリンダー、偏平、角形等の形態をとり、正極、負極、電解質、セパレータ等から構成されている。   The nonaqueous secondary battery according to the present embodiment takes, for example, a coin, a button, a sheet, a cylinder, a flat shape, a square shape, and the like, and includes a positive electrode, a negative electrode, an electrolyte, a separator, and the like.

前記正極としては、例えば、Liを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属の複合酸化物や複合硫化物、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等を活物質とするものが挙げられる。   Examples of the positive electrode include Li-containing Ti, Mo, W, Nb, V, Mn, Fe, Cr, Ni, Co and other transition metal composite oxides, composite sulfides, vanadium oxides, and conjugated polymers. Examples thereof include organic conductive materials such as those having a chevrel phase compound as an active material.

前記負極としては、例えば、グラファイトやコークス等の炭素系活物質、金属リチウム、リチウムバナジウム酸化物、リチウム遷移金属窒化物、シリコン等を活物質とするものが挙げられる。   Examples of the negative electrode include carbon-based active materials such as graphite and coke, metal lithium, lithium vanadium oxide, lithium transition metal nitride, silicon and the like as active materials.

前記正極及び負極は、前記の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤、圧力増強剤等の添加剤が、適宜選択して配合されていてもよい。   In the positive electrode and the negative electrode, additives such as a conductive agent, a binder, a filler, a dispersant, an ionic conductive agent, and a pressure enhancer are appropriately selected and blended in the powder made of the active material. Also good.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned.

前記正極又は負極を製造するには、例えば、前記の活物質と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストをドクターブレード法等を用いて電極支持基板に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする。   In order to produce the positive electrode or the negative electrode, for example, a mixture of the active material and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade method. Etc. are applied to the electrode support substrate, dried, and consolidated with a rolling roll or the like to obtain a positive electrode or a negative electrode.

前記電極支持基板としては、例えば、銅、ニッケル、ステンレス鋼、アルミニウム等からなる箔、シートやネット:炭素繊維からなるシートやネット等から構成されたものが挙げられる。なお、電極支持基板を用いずに、ペレット状に圧密化成形してもよい。   Examples of the electrode support substrate include a foil, a sheet or net made of copper, nickel, stainless steel, aluminum, or the like: a sheet or net made of carbon fiber. Note that compaction molding may be performed in a pellet form without using the electrode support substrate.

前記電解質としては、例えば、有機溶媒にリチウム塩を溶解させた非水電解液、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との複合材等が挙げられる。   Examples of the electrolyte include a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a composite material of a polymer electrolyte and an inorganic solid electrolyte, and the like.

前記非水電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状エステル類:γ−ブチルラクトン等のγ−ラクトン類:1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類:テトラヒドロフラン類の環状エーテル類:アセトニトリル等のニトリル類等が挙げられる。   Examples of the solvent for the non-aqueous electrolyte include chain esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate: γ-lactones such as γ-butyllactone: 1,2-dimethoxy Chain ethers such as ethane, 1,2-diethoxyethane, and ethoxymethoxyethane: Cyclic ethers of tetrahydrofuran: Nitriles such as acetonitrile.

前記非水電解液の溶質であるリチウム塩としては、例えば、LiAsF、LiBF、LiPF、LiAlCl、LiClO、LiCFSO、LiSbF、LiSCN、LiCl、LiCSO、LiN(CFSO、LiC(CFSO、LiCSO等が挙げられる。 Examples of the lithium salt that is a solute of the non-aqueous electrolyte include LiAsF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H 5 SO 3 , Examples thereof include LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 P 9 SO 3 .

本実施形態におけるセパレータは、セパレータ基材と、セパレータ基材表面に形成された耐熱層と、からなる。なお、前記耐熱層は少なくともセパレータ基材の正極側の表面に形成されていることが必要であるが、負極側及び正極側の双方の表面に形成されていてもよい。   The separator in this embodiment consists of a separator base material and a heat-resistant layer formed on the separator base material surface. The heat-resistant layer needs to be formed at least on the surface of the separator base on the positive electrode side, but may be formed on both the negative electrode side and the positive electrode side surface.

前記セパレータ基材としては、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜、オレフィン系不織布、アラミド系不織布、オレフィン系フィルム、アラミド系フィルム等が用いられる。なお、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜は、シャットダウン特性に加えて、取り扱い性や価格面においても優れており、好適に用いられる。   As the separator substrate, a porous film made of a polyolefin such as polypropylene or polyethylene, an olefin nonwoven fabric, an aramid nonwoven fabric, an olefin film, an aramid film, or the like is used. A porous film made of a polyolefin such as polypropylene or polyethylene is excellent in terms of handling property and price in addition to shutdown characteristics, and is preferably used.

前記セパレータ基材の空隙率は、40〜90体積%であることが好ましく、より好ましくは50〜80体積%である。前記空隙率が40体積%未満であると、セパレータのイオン伝導性が低くなり、非水系二次電池の高率放電特性が低下することがある。一方、前記空隙率が90体積%を超えると、セパレータの機械的強度が不足し破れやすくなる。   The porosity of the separator substrate is preferably 40 to 90% by volume, more preferably 50 to 80% by volume. When the porosity is less than 40% by volume, the ionic conductivity of the separator is lowered, and the high rate discharge characteristics of the nonaqueous secondary battery may be deteriorated. On the other hand, when the porosity exceeds 90% by volume, the mechanical strength of the separator is insufficient and the separator is easily broken.

また、前記セパレータ基材の厚みは、好ましくは60μm以下であり、より好ましくは10〜30μmである。前記厚みが60μmを超えると、極板群の体積が増すため、非水系二次電池のエネルギー密度が低下する。   The thickness of the separator substrate is preferably 60 μm or less, more preferably 10 to 30 μm. When the thickness exceeds 60 μm, the volume of the electrode plate group increases, so that the energy density of the nonaqueous secondary battery decreases.

前記セパレータ基材は、その表面がCOOH基やOH基等の親水基により修飾されていて、濡れ性が40mN/m以上であるものである。濡れ性が40mN/m未満であると、セパレータ基材表面に極性の高い耐熱層用塗工液を均一に塗布することが困難であり、セパレータ基材表面全体に均一な耐熱層を形成することができず、また、セパレータ基材表面と耐熱層との密着性や結着性も不充分であるので、充放電を繰り返す間に耐熱層が剥離してしまう。このため、セパレータの耐熱性が不充分となり、また、高電流を流した際に抵抗増大要因となりIRドロップが大きくなって、出力特性が低下する。   The separator substrate has a surface modified with a hydrophilic group such as a COOH group or an OH group, and has a wettability of 40 mN / m or more. When the wettability is less than 40 mN / m, it is difficult to uniformly apply a highly polar coating solution for the heat-resistant layer to the surface of the separator substrate, and a uniform heat-resistant layer is formed on the entire surface of the separator substrate. In addition, since the adhesion and binding properties between the separator base material surface and the heat-resistant layer are insufficient, the heat-resistant layer peels off during repeated charge and discharge. For this reason, the heat resistance of the separator becomes insufficient, and when a high current is passed, the resistance increases and the IR drop increases, resulting in a decrease in output characteristics.

前記耐熱層は、前記セパレータ基材より融点が高いことが好ましく、例えば、無機化合物及び芳香族ポリアミドを含有しているものが好ましい。   The heat-resistant layer preferably has a melting point higher than that of the separator substrate. For example, the heat-resistant layer preferably contains an inorganic compound and an aromatic polyamide.

前記無機化合物としては、例えば、LiAlO、LiAl、LiAlO、MgO、MgAl、BaTiO、CoAl、LiSiO、Li、LiMoO等の酸化物、LiPO、AlPO、LiPO、YPO、(ZrO)、ZrP等のリン酸化合物、Al(OH)、Al(OH)・nHO、Mg(OH)等の水酸化物、MgCO、BaCO、LiCO等の炭酸化合物が挙げられる。これらの無機化合物は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the inorganic compound include LiAlO 2 , LiAl 5 O 8 , Li 5 AlO 4 , MgO, MgAl 2 O 4 , BaTiO 3 , CoAl 2 O 4 , Li 2 SiO 4 , Li 2 B 4 O 7 , Li 2. Oxides such as MoO 3 , Li 3 PO 4 , AlPO 4 , Li 3 PO 4 , YPO 4 , (ZrO) 2 P 2 O 7 , ZrP 2 O 7 and other phosphoric acid compounds, Al (OH) 3 , Al ( OH) .nH 2 O, hydroxides such as Mg (OH) 2 , and carbonate compounds such as MgCO 3 , BaCO 3 , and Li 2 CO 3 . These inorganic compounds may be used independently and 2 or more types may be used together.

前記芳香族ポリアミドとしては、例えば、ポリ(フェニレンテレフタルアミド)、ポリ(ベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(フェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(フェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−フェニレンテレフタルアミド)、フェニレンテレフタルアミド/2,6−ジクロロフェニレンテレフタルアミド共重合体が挙げられる。これらの芳香族ポリアミドの光学特性はメタであってもよく、パラであってもよい。   Examples of the aromatic polyamide include poly (phenylene terephthalamide), poly (benzamide), poly (4,4′-benzanilide terephthalamide), poly (phenylene-4,4′-biphenylenedicarboxylic acid amide), poly (Phenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-phenylene terephthalamide), phenylene terephthalamide / 2,6-dichlorophenylene terephthalamide copolymer. The optical properties of these aromatic polyamides may be meta or para.

これらの芳香族ポリアミドは融点が180℃以上であり、電池温度が上昇して、融点が120〜130℃であるポリエチレンや融点が140〜150℃であるポリプロピレンからなるセパレータ基材が溶融しても、セパレータの骨格を維持してショートを防ぐことができる。なかでも、融点が250℃以上である芳香族ポリアミドが好ましい。   These aromatic polyamides have a melting point of 180 ° C. or higher, the battery temperature rises, and a separator base material made of polyethylene having a melting point of 120 to 130 ° C. or polypropylene having a melting point of 140 to 150 ° C. melts. The separator skeleton can be maintained to prevent short circuit. Among these, an aromatic polyamide having a melting point of 250 ° C. or higher is preferable.

このような無機化合物と芳香族ポリアミドからなる耐熱層は、多数の空隙を有する多孔質である。   Such a heat-resistant layer made of an inorganic compound and an aromatic polyamide is porous having a large number of voids.

前記耐熱層の空隙率は、50〜90体積%であることが好ましく、より好ましくは60〜90体積%である。前記空隙率が50体積%未満であると、前記耐熱層のクッション性が低下して、電極の充放電時の膨張・収縮に伴う体積変化を充分に吸収できないことがある。一方、前記空隙率が90体積%を超えると、機械的強度が不足し破れやすくなる。   The porosity of the heat-resistant layer is preferably 50 to 90% by volume, more preferably 60 to 90% by volume. When the porosity is less than 50% by volume, the cushioning property of the heat-resistant layer is lowered, and the volume change accompanying expansion / contraction during charging / discharging of the electrode may not be sufficiently absorbed. On the other hand, when the porosity exceeds 90% by volume, the mechanical strength is insufficient and it is easily broken.

前記耐熱層の厚み(片面分)は2μm以上であることが好ましく、より好ましくは2〜20μmであり、更に好ましくは2〜10μmである。前記耐熱層の厚みが2μm未満であると、充放電に伴う電極の膨張・収縮による体積変化を充分に吸収することができず、また、セパレータ基材に対する補強効果も充分でなく、電池温度が上昇してセパレータ基材が溶融した後でセパレータの骨格を維持してショートを防ぐことが困難になることがある。また一方で、耐熱層の厚みが過大であると、抵抗が大きくなり電池特性が低下する。しかしながら、二次電池の安全性を最優先する場合は前記耐熱層の厚みが厚いほど好適な場合もある。   The heat-resistant layer preferably has a thickness (one side) of 2 μm or more, more preferably 2 to 20 μm, and still more preferably 2 to 10 μm. When the thickness of the heat-resistant layer is less than 2 μm, the volume change due to the expansion / contraction of the electrode accompanying charge / discharge cannot be sufficiently absorbed, the reinforcing effect on the separator substrate is not sufficient, and the battery temperature is too high. It may be difficult to prevent the short circuit by maintaining the separator skeleton after the separator substrate is melted. On the other hand, if the thickness of the heat-resistant layer is excessive, the resistance increases and the battery characteristics deteriorate. However, when the safety of the secondary battery is given top priority, the thicker the heat-resistant layer may be, the better.

前記耐熱層における芳香族ポリアミドと無機化合物との含有量比は、芳香族ポリアミド5〜50重量部に対して無機化合物95〜50重量部であることが好ましく、より好ましくは芳香族ポリアミド10〜30重量部に対して無機化合物90〜70重量部であり、更に好ましくは芳香族ポリアミド15〜25重量部に対して無機化合物85〜75重量部である。前記無機化合物が50重量部未満であると配合量が少なく、芳香族ポリアミドにより形成される多孔質に対する耐熱性増強効果が不充分であったり、電極に含まれる遷移金属の安定化効果が不充分であったりする。一方、95重量部を超えると、芳香族ポリアミドによる多孔質の形成が無機化合物によって阻害され強度が低下し脆くなる。また、無機化合物の含有量が95〜50重量部の範囲外であると、このようなセパレータを二次電池に組み込んだ場合、電池抵抗が上昇し劣化しやすくなることがある。   The content ratio of the aromatic polyamide to the inorganic compound in the heat-resistant layer is preferably 95 to 50 parts by weight, more preferably 10 to 30 parts by weight with respect to 5 to 50 parts by weight of the aromatic polyamide. It is 90-70 weight part of inorganic compounds with respect to weight part, More preferably, it is 85-75 weight parts of inorganic compounds with respect to 15-25 weight parts of aromatic polyamide. When the inorganic compound is less than 50 parts by weight, the blending amount is small, the heat resistance enhancing effect on the porous formed by the aromatic polyamide is insufficient, and the effect of stabilizing the transition metal contained in the electrode is insufficient. Or On the other hand, if it exceeds 95 parts by weight, the formation of the porous material by the aromatic polyamide is inhibited by the inorganic compound, the strength is lowered, and the material becomes brittle. Moreover, when the content of the inorganic compound is out of the range of 95 to 50 parts by weight, when such a separator is incorporated in a secondary battery, the battery resistance may be increased and deteriorate easily.

このようなセパレータを製造するには以下のような方法を用いることができる。まず、ポリエチレンやポリプロピレン等からなるセパレータ基材の表面を親水基により修飾し、前記セパレータ基材表面の濡れ性を40mN/m以上にする。前記セパレータ基材の表面を親水基により修飾する方法としては特に限定されず、例えば、コロナ放電、プラズマ処理、イオン注入、イオンビームミキシング等を用いた方法が挙げられ、これらの方法からセパレータ基材の材料に併せて適宜選択することができる。これらの方法を用いて親水基により修飾することにより、ポリプロピレン等の元来塗れ性が低く極性の高い耐熱層用塗工液を均一に塗布することが困難な材料からなる基材に対しても、セパレータ基材表面全体に均一に耐熱層を形成することができる。   In order to manufacture such a separator, the following method can be used. First, the surface of a separator substrate made of polyethylene, polypropylene, or the like is modified with a hydrophilic group so that the wettability of the separator substrate surface is 40 mN / m or more. The method of modifying the surface of the separator substrate with a hydrophilic group is not particularly limited, and examples thereof include methods using corona discharge, plasma treatment, ion implantation, ion beam mixing, and the like. The material can be selected as appropriate according to the material. By modifying with hydrophilic groups using these methods, even for base materials made of materials that are difficult to uniformly apply a coating solution for heat-resistant layers with low inherent polarity and high polarity such as polypropylene. A heat-resistant layer can be uniformly formed on the entire separator substrate surface.

次いで、親水基により修飾された前記セパレータ基材の表面に耐熱層用塗工液を塗布して前記耐熱層を形成する。具体的には、まず、前記芳香族ポリアミドを、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラメチルウレア等の極性有機溶媒に溶解する。次いで、得られた芳香族ポリアミド溶液中に、前記無機化合物を分散させてスラリー溶液を調製する。そして、得られたスラリー溶液を前記耐熱層用塗工液として前記セパレータ基材表面に塗布する。   Next, a heat-resistant layer coating solution is applied to the surface of the separator base material modified with a hydrophilic group to form the heat-resistant layer. Specifically, first, the aromatic polyamide is dissolved in a polar organic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone or tetramethylurea. Next, the inorganic compound is dispersed in the obtained aromatic polyamide solution to prepare a slurry solution. And the obtained slurry solution is apply | coated to the said separator base-material surface as said heat-resistant layer coating liquid.

続いて、基材表面に前記スラリー溶液が塗布されてなるセパレータを、20℃以上で一定湿度に制御した雰囲気中に載置する。これによりセパレータ基材表面に無機化合物が分散した芳香族アラミドが析出する。その後、当該セパレータを水系溶液又はアルコール系溶液等からなる凝固液中に浸漬させる。   Subsequently, the separator formed by applying the slurry solution to the substrate surface is placed in an atmosphere controlled at a constant humidity at 20 ° C. or higher. Thereby, the aromatic aramid in which the inorganic compound is dispersed is deposited on the separator substrate surface. Thereafter, the separator is immersed in a coagulating liquid made of an aqueous solution or an alcohol solution.

次に、セパレータ表面から、蒸発させる等して極性有機溶媒を除去する。   Next, the polar organic solvent is removed from the separator surface by evaporation or the like.

そして、極性有機溶媒が除去されたセパレータをセパレータ基材の融点以下で乾燥すると、基材表面に耐熱層が形成されたセパレータが得られる。   And if the separator from which the polar organic solvent was removed is dried below the melting point of the separator substrate, a separator having a heat resistant layer formed on the substrate surface is obtained.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<実施例1>
結着材であるポリフッ化ビニリデン(呉羽化学工業株式会社製#1100)が溶解されたN−メチル−2−ピロリドン溶液を調製し、この溶液に、LiNi0.80Co0.15Al0.05(以下NCAと省略)85質量部と、導電カーボン10質量部とを加えてスラリー化した。調製済みの正極スラリーを厚み15μmのAl箔上に均一に塗布、乾燥して正極とした。正極における、NCA:導電カーボン:ポリフッ化ビニリデンの重量比は85:10:5であった。圧延により正極合材密度が2.4g/cmになるように調整した。最終の厚みは60μmであった。極板サイズが長さ210mm、幅54mmになるように切断し、長さ方向の10mm部分は正極合材を剥離し、そこにアルミリードを溶接した。更に100℃で10時間真空乾燥することにより正極板を作製した
<Example 1>
An N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder (# 1100 manufactured by Kureha Chemical Industry Co., Ltd.) was dissolved was prepared, and LiNi 0.80 Co 0.15 Al 0.05 was added to this solution. 85 parts by mass of O 2 (hereinafter abbreviated as NCA) and 10 parts by mass of conductive carbon were added to form a slurry. The prepared positive electrode slurry was uniformly applied onto an Al foil having a thickness of 15 μm and dried to obtain a positive electrode. The weight ratio of NCA: conductive carbon: polyvinylidene fluoride in the positive electrode was 85: 10: 5. The density of the positive electrode mixture was adjusted to 2.4 g / cm 3 by rolling. The final thickness was 60 μm. The electrode plate was cut to have a length of 210 mm and a width of 54 mm, the positive electrode mixture was peeled off at the 10 mm portion in the length direction, and an aluminum lead was welded thereto. Further, a positive electrode plate was produced by vacuum drying at 100 ° C. for 10 hours.

次に、黒鉛粉末を負極活物質とし、この黒鉛粉末96重量部と、結着剤となるポリフッ化ビニリデン4重量部とを混合し、N−メチル−2−ピロリドンに分散させて負極スラリーとした。そして、この負極スラリーを厚み10μmの銅箔上に均一に塗布、乾燥して負極とした。圧延により負極合材密度が1.2g/cmになるように調整した。最終の厚みは70μmであった。極板サイズが長さ250mm、幅58mmになるように切断し、長さ方向の10mm部分は負極合材を剥離し、そこにニッケルリードを溶接した。更に100℃で10時間真空乾燥することにより負極板を作製した。 Next, graphite powder is used as a negative electrode active material, 96 parts by weight of this graphite powder and 4 parts by weight of polyvinylidene fluoride as a binder are mixed and dispersed in N-methyl-2-pyrrolidone to form a negative electrode slurry. . And this negative electrode slurry was uniformly apply | coated on the 10-micrometer-thick copper foil, it dried, and it was set as the negative electrode. The negative electrode mixture density was adjusted to 1.2 g / cm 3 by rolling. The final thickness was 70 μm. The electrode plate was cut to have a length of 250 mm and a width of 58 mm, the negative electrode mixture was peeled off at the 10 mm portion in the length direction, and a nickel lead was welded thereto. Furthermore, the negative electrode plate was produced by vacuum-drying at 100 degreeC for 10 hours.

続いて、ポリプロピレン(PP)の微多孔質膜からなるセパレータ基材に、信光電気計装株式会社社製 ASA−4を用いて下記表1に記載の電圧及び処理速度でコロナ放電を行い、セパレータ基材表面を親水基で修飾した。   Subsequently, a separator base material made of a polypropylene (PP) microporous film was subjected to corona discharge at the voltage and processing speed shown in Table 1 below using ASA-4 manufactured by Shinko Electric Instrument Co., Ltd. The substrate surface was modified with hydrophilic groups.

コロナ放電後のセパレータ基材の表面の濡れ性は以下のようにして評価した。結果は下記表1に記載した。   The wettability of the separator substrate surface after corona discharge was evaluated as follows. The results are shown in Table 1 below.

<濡れ性の評価>
濡れ性の評価は、濡れ張力試験法(JIS K 6768)に準拠して行い、市販されている濡れ張力試験用混合液22.6〜73mN/mを綿棒に浸し、それを被検体であるコロナ放電後のセパレータ基材の表面に塗布した。この時、撥水することなくべったり濡れる試験用混合液番号(mN/m)の最小値を濡れ指数として評価した。実施例1の濡れ性は、47mN/mであった。
<Evaluation of wettability>
The wettability is evaluated in accordance with the wet tension test method (JIS K 6768), and a commercially available wet tension test mixture 22.6 to 73 mN / m is immersed in a cotton swab and the sample is corona. It apply | coated to the surface of the separator base material after discharge. At this time, the minimum value of the test liquid mixture number (mN / m) that was wet without water repellency was evaluated as the wetting index. The wettability of Example 1 was 47 mN / m.

コロナ放電後のセパレータ基材に対して、芳香族ポリアミド(ポリ(フェニレンテレフタルアミド))とAl(OH)とを重量比15:85で含有する耐熱層用塗工液を、片面4μmの厚みで塗布して、耐熱層が形成されたセパレータを作製した。 With respect to the separator substrate after corona discharge, a coating solution for a heat-resistant layer containing aromatic polyamide (poly (phenylene terephthalamide)) and Al (OH) 3 at a weight ratio of 15:85 has a thickness of 4 μm on one side. Was applied to prepare a separator having a heat-resistant layer formed thereon.

更に、耐熱層が形成されたセパレータに対して、耐熱層の密着性・結着性を評価するために、以下のような試験を行なった。結果は下記表1に記載した。   Furthermore, the following tests were performed on the separator on which the heat-resistant layer was formed in order to evaluate the adhesion and binding properties of the heat-resistant layer. The results are shown in Table 1 below.

<ピール試験後耐熱層残存状態の評価>
耐熱層の評価は、1cm角のマス目をつけたセパレータにビニールテープ(JIS C 2336)を貼り、剥がした後のマス目の状態を確認し、耐熱層の残存率を測定することにより行なった。実施例1の残存率は、80%であった。
<Evaluation of heat-resistant layer remaining state after peel test>
The evaluation of the heat-resistant layer was performed by attaching a vinyl tape (JIS C 2336) to a separator with a 1 cm square grid, checking the state of the grid after peeling, and measuring the residual rate of the heat-resistant layer. . The residual rate of Example 1 was 80%.

上記のようにして作製した正極板、負極板及びセパレータを、負極板、セパレータ、正極板の順になるように、また正極のアルミリードが内周側、負極のニッケルリードが最外周になるように積層し、一端より巻き取って電極群とした。この際、最外周となる負極板は、負極合材塗布部が完全に巻き取られ、更に負極リードがセパレータに巻き取られるまで張力をかけた後、セパレータとともにカットした。その後、最外周部分に緩みがない様に巻き取った後、最外周の負極リードをテープで固定して、電極素子を作製した。   The positive electrode plate, the negative electrode plate, and the separator manufactured as described above are arranged in the order of the negative electrode plate, the separator, and the positive electrode plate, the positive electrode aluminum lead is on the inner peripheral side, and the negative electrode nickel lead is on the outermost outer periphery. Laminated and wound from one end to form an electrode group. At this time, the negative electrode plate serving as the outermost periphery was cut with the separator after applying tension until the negative electrode mixture coating portion was completely wound and the negative electrode lead was wound around the separator. Then, after winding up so that there was no looseness in the outermost periphery part, the negative electrode lead of the outermost periphery was fixed with tape, and the electrode element was produced.

得られた電極素子を電池缶に挿入し、非水電解質溶液としてエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの体積比30:40:30混合液にLiPFを1mol/Lとなるように溶解したものを含浸し、正極端子を兼ねる電池蓋をガスケットを介してかしめて、18650サイズの円筒型電池を得た。 The obtained electrode element was inserted into a battery can, and LiPF 6 was dissolved in a mixed solution of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in a volume ratio of 30:40:30 as a non-aqueous electrolyte solution so as to be 1 mol / L. And a battery lid that also serves as a positive electrode terminal was caulked through a gasket to obtain a 18650 size cylindrical battery.

得られた二次電池の電池特性を評価するために、以下のような試験を行なった。結果は下記表1に記載した。   In order to evaluate the battery characteristics of the obtained secondary battery, the following tests were performed. The results are shown in Table 1 below.

<容量維持特性の評価>
二次電池を、定電流(0.5C)−定電圧(4.3V)で充電した後、放電終始電圧2.75Vまで0.5C放電を300サイクル実施して、300サイクル終了後の容量維持率を測定した。実施例1の容量維持率は、92%を示した。
<Evaluation of capacity maintenance characteristics>
After charging the secondary battery at a constant current (0.5 C) -constant voltage (4.3 V), a 0.5 C discharge is performed for 300 cycles to a discharge starting voltage of 2.75 V, and the capacity is maintained after the end of the 300 cycles The rate was measured. The capacity retention rate of Example 1 was 92%.

<出力特性の評価>
二次電池を、SOC(充電状態)60%に調整し、3Cで10秒放電し、10秒休止後、3Cで10秒充電し、10秒休止した。同様に、5C、10Cで連続して測定し、試験前のOCV(開放電位)と3C、5C、10Cの10秒放電後の電圧をY軸に、電流値をX軸にプロットし、この直線を延長し、2V時の電流値を求め、出力(W)=電流値(A)×2(V)として、出力特性を求めた。実施例1の出力特性は、11Wを示した。
<Evaluation of output characteristics>
The secondary battery was adjusted to SOC (charged state) 60%, discharged at 3C for 10 seconds, paused for 10 seconds, charged at 3C for 10 seconds, and paused for 10 seconds. Similarly, the measurement was continuously performed at 5C and 10C, and the OCV (open potential) before the test and the voltage after 10 seconds discharge of 3C, 5C and 10C were plotted on the Y axis, and the current value was plotted on the X axis. , The current value at 2 V was obtained, and the output characteristic was obtained by setting output (W) = current value (A) × 2 (V). The output characteristic of Example 1 was 11 W.

<実施例2、3、4>
実施例2、3、4は、コロナ放電処理の速度を変更した以外は、実施例1と同様である。
<Examples 2, 3, and 4>
Examples 2, 3, and 4 are the same as Example 1 except that the speed of the corona discharge treatment is changed.

<実施例5>
実施例5は、セパレータ基材にポリエチレン(PE)を使用し、コロナ放電処理の条件を変更した以外は、実施例1と同様である。
<Example 5>
Example 5 is the same as Example 1 except that polyethylene (PE) is used for the separator substrate and the conditions of the corona discharge treatment are changed.

<比較例1>
比較例1は、コロナ放電処理を実施せずに耐熱層を塗布した以外は、実施例1と同様である。
<Comparative Example 1>
Comparative Example 1 is the same as Example 1 except that the heat-resistant layer was applied without performing the corona discharge treatment.

<比較例2、3>
比較例2、3は、コロナ放電処理の条件を変更した以外は、実施例1と同様である。
<Comparative Examples 2 and 3>
Comparative Examples 2 and 3 are the same as Example 1 except that the conditions of the corona discharge treatment are changed.

<比較例4>
比較例4は、セパレータ基材にポリエチレンを使用し、コロナ放電処理の条件を変更した以外は、実施例1と同様である。
<Comparative example 4>
Comparative Example 4 is the same as Example 1 except that polyethylene is used for the separator base material and the corona discharge treatment conditions are changed.

<比較例5>
比較例5は、セパレータ基材にポリエチレンを使用し、耐熱層を塗布する際に、コロナ放電処理を実施しなかった以外は、実施例1と同様である。
<Comparative Example 5>
Comparative Example 5 is the same as Example 1 except that polyethylene was used for the separator substrate and the corona discharge treatment was not performed when the heat-resistant layer was applied.

表1に示す結果より、コロナ放電処理により表面の濡れ性が40mN/m以上に改良されたセパレータ基材を用いた実施例1〜5では、基材表面に形成された耐熱層はピール試験によっても殆ど剥離せずに残存し、これらのセパレータを使用した電池はサイクル特性及び出力特性に優れていた。一方、セパレータ基材表面の濡れ性が40mN/m未満であった比較例1〜5では、セパレータ基材表面に均一に耐熱層用塗工液を塗布することが困難であり、また、形成された耐熱層もピール試験によって殆ど剥離してしまい、これらのセパレータを使用した電池はサイクル特性及び出力特性に劣っていた。   From the results shown in Table 1, in Examples 1 to 5 using the separator base material whose surface wettability was improved to 40 mN / m or more by corona discharge treatment, the heat-resistant layer formed on the base material surface was subjected to a peel test. However, the battery using these separators was excellent in cycle characteristics and output characteristics. On the other hand, in Comparative Examples 1 to 5 where the wettability of the separator base material surface was less than 40 mN / m, it was difficult to uniformly apply the heat-resistant layer coating liquid to the separator base material surface. The heat-resistant layer was almost peeled off by the peel test, and batteries using these separators were inferior in cycle characteristics and output characteristics.

このような結果から、本発明によれば、セパレータ基材と耐熱層との密着性及び結着性が改善されるので、充放電を繰り返しても、セパレータ基材表面に耐熱層が維持され、このためセパレータと電池との反応及びそれによる劣化が抑制されて、電池特性に優れた非水系二次電池が得られることが明らかとなった。   From such a result, according to the present invention, since the adhesion and binding properties between the separator substrate and the heat-resistant layer are improved, even if charging and discharging are repeated, the heat-resistant layer is maintained on the separator substrate surface, For this reason, it became clear that reaction with a separator and a battery and degradation by it were suppressed, and the nonaqueous secondary battery excellent in the battery characteristic was obtained.

Claims (7)

セパレータ基材表面が耐熱層により被覆されてなるセパレータであって、
前記セパレータ基材表面は、濡れ性が40mN/m以上である非水系二次電池用セパレータ。
A separator substrate surface is coated with a heat-resistant layer,
The separator substrate surface is a non-aqueous secondary battery separator having a wettability of 40 mN / m or more.
前記耐熱層の融点は、前記セパレータ基材の融点より高い請求項1記載の非水系二次電池用セパレータ。   The non-aqueous secondary battery separator according to claim 1, wherein a melting point of the heat-resistant layer is higher than a melting point of the separator base material. 前記耐熱層は、酸化物、炭酸化合物、水酸化物、及び、リン酸化合物からなる群より選ばれる少なくとも1種の無機化合物を含有している請求項1又は2記載の非水系二次電池用セパレータ。   The non-aqueous secondary battery according to claim 1, wherein the heat-resistant layer contains at least one inorganic compound selected from the group consisting of oxides, carbonate compounds, hydroxides, and phosphate compounds. Separator. 前記耐熱層は、芳香族ポリアミドを含有している請求項1、2又は3記載の非水系二次電池用セパレータ。   The non-aqueous secondary battery separator according to claim 1, wherein the heat-resistant layer contains an aromatic polyamide. 請求項1、2、3又は4記載のセパレータを備えている非水系二次電池。   A nonaqueous secondary battery comprising the separator according to claim 1, 2, 3 or 4. セパレータ基材表面が耐熱層により被覆されてなる非水系二次電池用セパレータを製造する方法であって、
前記セパレータ基材の表面を親水基により修飾し、前記セパレータ基材表面の濡れ性を40mN/m以上にする工程、及び、
親水基により修飾された前記セパレータ基材の表面に耐熱層用塗工液を塗布する工程を有している非水系二次電池用セパレータの製造方法。
A method for producing a separator for a non-aqueous secondary battery in which a separator substrate surface is coated with a heat-resistant layer,
Modifying the surface of the separator substrate with a hydrophilic group, and making the wettability of the separator substrate surface 40 mN / m or more; and
The manufacturing method of the separator for non-aqueous secondary batteries which has the process of apply | coating the coating liquid for heat-resistant layers to the surface of the said separator base material modified by the hydrophilic group.
前記セパレータ基材の表面を親水基により修飾する方法は、コロナ放電、プラズマ処理、イオン注入、又は、イオンビームミキシングを用いるものである請求項6記載の非水系二次電池用セパレータの製造方法。   The method for producing a separator for a non-aqueous secondary battery according to claim 6, wherein the method of modifying the surface of the separator substrate with a hydrophilic group uses corona discharge, plasma treatment, ion implantation, or ion beam mixing.
JP2008180942A 2008-07-11 2008-07-11 Separator for nonaqueous secondary battery Pending JP2010021033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180942A JP2010021033A (en) 2008-07-11 2008-07-11 Separator for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180942A JP2010021033A (en) 2008-07-11 2008-07-11 Separator for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2010021033A true JP2010021033A (en) 2010-01-28

Family

ID=41705715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180942A Pending JP2010021033A (en) 2008-07-11 2008-07-11 Separator for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2010021033A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204587A (en) * 2010-03-26 2011-10-13 Teijin Ltd Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
WO2012029699A1 (en) 2010-09-02 2012-03-08 東レ株式会社 Composite porous film and method for producing same
JP2014075351A (en) * 2010-11-23 2014-04-24 Qinghua Univ Separator for lithium ion battery, method for manufacturing the same, and lithium ion battery using the same
JP2016119175A (en) * 2014-12-19 2016-06-30 日立マクセル株式会社 Nonaqueous electrolyte battery
CN112106225A (en) * 2018-08-30 2020-12-18 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
US11221586B2 (en) 2019-09-26 2022-01-11 Canon Kabushiki Kaisha Image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204587A (en) * 2010-03-26 2011-10-13 Teijin Ltd Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
WO2012029699A1 (en) 2010-09-02 2012-03-08 東レ株式会社 Composite porous film and method for producing same
US9337461B2 (en) 2010-09-02 2016-05-10 Toray Battery Separator Film Co., Ltd. Composite porous membrane and method of producing the same
JP2014075351A (en) * 2010-11-23 2014-04-24 Qinghua Univ Separator for lithium ion battery, method for manufacturing the same, and lithium ion battery using the same
JP2016119175A (en) * 2014-12-19 2016-06-30 日立マクセル株式会社 Nonaqueous electrolyte battery
CN112106225A (en) * 2018-08-30 2020-12-18 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN112106225B (en) * 2018-08-30 2023-01-06 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
US11221586B2 (en) 2019-09-26 2022-01-11 Canon Kabushiki Kaisha Image forming apparatus

Similar Documents

Publication Publication Date Title
JP5087383B2 (en) Separator for non-aqueous lithium secondary battery
US8017262B2 (en) Lithium secondary battery with porous heat-resistant layer
EP3104440B1 (en) Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4831075B2 (en) Nonaqueous electrolyte secondary battery
JP6957257B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
KR20070042551A (en) Positive electrode for a lithium battery and lithium battery employing the same
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
CN106716683A (en) Positive electrode plate for non-aqueous electrolyte electricity-storage element, and non-aqueous electrolyte electricity-storage element
JP5325227B2 (en) Non-aqueous electrolyte secondary battery electrode plate, method for producing the same, and non-aqueous electrolyte secondary battery
CN110710031A (en) Method of pre-lithiating negative electrode of lithium secondary battery and lithium metal laminate for use in the method
KR101155914B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same
US10790512B2 (en) Nonaqueous electrolyte secondary battery
JP2010021033A (en) Separator for nonaqueous secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
CN108780882B (en) Positive electrode having improved safety and lithium secondary battery comprising the same
KR101700056B1 (en) Lithium secondary cell
KR20200142176A (en) Manufacturing Method of Lithium Secondary Battery Comprising Additional Heat-treatment Process and Lithium Secondary Battery Manufactured by the Same
JP5209943B2 (en) Separator for non-aqueous lithium secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP2016115656A (en) Lithium ion secondary battery
US11616228B2 (en) Non-aqueous electrolyte secondary cell
JP2017162693A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same