JP2010017700A - Method for using waste material of lightweight structural material - Google Patents

Method for using waste material of lightweight structural material Download PDF

Info

Publication number
JP2010017700A
JP2010017700A JP2008207467A JP2008207467A JP2010017700A JP 2010017700 A JP2010017700 A JP 2010017700A JP 2008207467 A JP2008207467 A JP 2008207467A JP 2008207467 A JP2008207467 A JP 2008207467A JP 2010017700 A JP2010017700 A JP 2010017700A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydride particles
reaction
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008207467A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Tsuji
信義 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Bank Co Ltd
Original Assignee
Techno Bank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Bank Co Ltd filed Critical Techno Bank Co Ltd
Priority to JP2008207467A priority Critical patent/JP2010017700A/en
Publication of JP2010017700A publication Critical patent/JP2010017700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for using a waste material of a lightweight structural material without costing much. <P>SOLUTION: The method for using the waste material of a lightweight alloy includes: using ingots or fragments of a lightweight alloy waste which is primarily used as a lightweight structure material; putting the ingots or fragments in a high pressure container 2; breaking the oxide film on the surface by laser under hydrogen pressure to bring the alloy surface into contact with hydrogen; performing hydrogen occlusion by hydrogenation reaction to produce pulverized hydride particles; and thereafter, either packing a filter-type bag with the hydride particles or pressure-bonding the hydride particles or solidifying the hydride particles with a binder to use the particles as a functional material for metal reaction (hydrolysis) or ionization reaction (electrode active material) for secondary use in a siphon type or battery type hydrogen generation apparatus. After that, the remaining hydroxides are recovered for the third use. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄並みの強度とプラスチック並みの軽量な特徴を持つ、おもにマグネシウム(Mg)を主とする複数金属から合金された軽量構造材の廃材有効利用に関し、コストを掛けないで複数回の廃材利用から利用価値を高めることで軽量構造材の製造の低コスト化ができるもの。The present invention relates to the effective use of waste materials of lightweight structural materials alloyed from a plurality of metals mainly composed of magnesium (Mg), which has the same strength as iron and the light weight of plastics. The cost of manufacturing lightweight structural materials can be reduced by increasing the utility value from the use of waste materials.

ジュラルミンなど高機能な軽量合金が産業に役立ってきたが、廃材の再生利用という二次利用では、環境負荷などリサイクルにおいての課題がある。
一方、マグネシウムを主に用いる軽量合金は、近年、新たな機能性も見出され、構造材として広く提供されている。マグネシウムの廃材の二次利用は、再生にも環境に優しいと言う優位性からも注目されている。
High-performance lightweight alloys such as duralumin have been useful in the industry, but secondary use, such as recycling of waste materials, has problems in recycling such as environmental impact.
On the other hand, lightweight alloys mainly using magnesium have recently found new functionality and are widely provided as structural materials. The secondary use of magnesium waste is also attracting attention because of its superiority that it is environmentally friendly as well as recycled.

マグネシウムを主とする軽量合金の廃材は、一般的に、アルミ合金に比べてはるかに少ない電力で再生できるため都合がよい。しかし、少ないながら電力を投入することから、再生費用もかさむ。Lightweight alloy wastes composed primarily of magnesium are generally convenient because they can be regenerated with much less power than aluminum alloys. However, since the power is input with a small amount, the regeneration cost is also increased.

他方、水素化する装置のほか、水素化したマグネシウムの金属反応やイオン化反応を利用した、水素発生やマグネシウム電池の分野では、次世代エネルギーの材料として提供されている。On the other hand, in addition to hydrogenation devices, in the fields of hydrogen generation and magnesium batteries using metal reactions and ionization reactions of hydrogenated magnesium, they are provided as materials for next-generation energy.

このような文献資料としては、以下が知られている。
特許公開2003−229134 特許公開2006−97061 国際特許公開WO/2008/015844 国際特許公開WO/2006/011620
As such literature materials, the following are known.
Patent Publication 2003-229134 Patent Publication 2006-97061 International Patent Publication WO / 2008/015844 International Patent Publication WO / 2006/011620

これら水素吸蔵材料を導電性基体に固着してなる負極と空気極からなる正極と電解質を有し、金属水素化物を燃料源とする燃料電池でも、また、金属を反応物質として有する反応電極と、金属よりも貴な標準電極電位を有する金属で構成された対極間の電位差での酸化反応を利用した水素発生の、どちらにおいても、構造材としての軽量合金の金属配分から水素吸蔵合金種からは除外され廃材の水素化利用はない。A fuel cell having a negative electrode formed by fixing these hydrogen storage materials to a conductive substrate, a positive electrode composed of an air electrode and an electrolyte, and using a metal hydride as a fuel source, or a reaction electrode having a metal as a reactant, In both cases of hydrogen generation using the oxidation reaction at the potential difference between the counter electrodes composed of a metal having a standard electrode potential nobler than that of the metal, from the metal distribution of the lightweight alloy as a structural material, from the hydrogen storage alloy species It is excluded and there is no use of hydrogen for waste materials.

また、マグネシウムや水素化したマグネシウムをサイホン式または電池式の水素発生においても、軽量構造材としての金属配分から水素吸蔵合金種からは除外され、廃材の水素化利用もされていない。In addition, in the siphon type or battery type hydrogen generation of magnesium or hydrogenated magnesium, the metal storage as a lightweight structural material is excluded from the hydrogen storage alloy species, and the waste material is not hydrogenated.

軽量構造材として用いられる金属のほとんどが、サイホン式または電池式の水素発生において、酸化反応によって水酸化物に変わるので三次利用の際は、廃材をそのまま使うことができるので都合がよい。例えば、二次利用後のマグネシウム合金であれば他に含まれる金属も水酸化物となるものが多く、各種の工業原料/触媒、土壌/海水の改良材料、蓄熱の材料などに三次利用もでき、悪影響はない。Since most of the metals used as lightweight structural materials are converted into hydroxides by the oxidation reaction in siphon-type or battery-type hydrogen generation, it is convenient because the waste materials can be used as they are for tertiary use. For example, in the case of a magnesium alloy after secondary use, the other metals included are often hydroxides and can be used tertiary for various industrial raw materials / catalysts, soil / seawater improvement materials, heat storage materials, etc. There is no adverse effect.

また、水素化物の製造装置においても、温調部のレーザーによる超高温な水素化方法は、水素吸蔵合金の製造が目的から予め粉砕した粒子を用いている。このため新しい合金種の軽量構造材の塊や破片を用いる水素化は、検証例もなく記載されていない。これを従来方法の脱気と水素化圧を繰り返す方法では、高コストで手間もかかる課題もある。Also in the hydride production apparatus, the ultra-high temperature hydrogenation method using the laser of the temperature control unit uses particles pulverized in advance for the purpose of producing a hydrogen storage alloy. For this reason, hydrogenation using a lump or debris of a lightweight structural material of a new alloy type is not described without a verification example. In the method of repeating the degassing and hydrogenation pressure of the conventional method, there are also problems that are expensive and troublesome.

従って本発明は、従来技術の課題である、軽量構造材としての金属が含まれた合金でも、一次利用後に、コストや手間を掛けずに従来装置のサイホン式または電池式の水素発生において、高効率な二次利用ができ、且つ、利用後においても低コストで手間もかけず三次利用ができることにある。他の目的は、地球環境保全の観点からも、自然または再生可能なエネルギーからの電気エネルギーを、一旦、金属製造に用いることで、安全でクリーンなエネルギーの貯蔵・輸送を提供する。Therefore, the present invention is an object of the prior art, even in an alloy containing a metal as a lightweight structural material, in the siphon-type or battery-type hydrogen generation of the conventional apparatus without cost and labor after the primary use. The secondary use is efficient, and the tertiary use is possible at low cost and without any effort even after use. Another object of the present invention is to provide safe and clean storage and transportation of energy by using electric energy from natural or renewable energy once for metal production from the viewpoint of global environmental conservation.

従って本発明は、従来技術の課題である軽量構造材としての金属が含まれ配分された合金でも、二次および三次の利用にコストを掛けずに用いることで、軽量合金の製造コストを低コスト化することである。他の目的は、安全でクリーンなエネルギーの貯蔵・輸送を提供することで地球環境の負荷削減をすることにある。Therefore, the present invention can reduce the manufacturing cost of the lightweight alloy by using the secondary and tertiary usages at a low cost even in the case of the alloy including and allocated the metal as the lightweight structural material, which is a problem of the prior art. It is to become. Another objective is to reduce the burden on the global environment by providing safe and clean energy storage and transport.

本発明では、軽量構造材として一次利用された軽量合金廃材の塊または破片を用い、高圧容器内に入れて水素加圧下でレーザーによって表面の酸化膜を破壊し合金表面を水素に接触させ、水素化反応によって水素を吸蔵させることで金属結晶の膨張により粉砕した水素化物の粒子を生成した後、水素化物の粒子はフィルター性の袋に詰めパックにして、または、圧着あるいは結合剤で固めて、金属反応(加水分解)またはイオン化反応(電極活物質)の機能材料として、サイホン式または電池式の水素発生装置で二次利用した後、残った水酸化物を三次利用をする軽量合金の廃材利用を特徴とする。In the present invention, a lump or fragment of a lightweight alloy waste material primarily used as a lightweight structural material is placed in a high-pressure vessel, and the surface oxide film is destroyed by a laser under hydrogen pressure to bring the alloy surface into contact with hydrogen. After hydride particles are pulverized by the expansion of metal crystals by occlusion of hydrogen by the hydrogenation reaction, the hydride particles are packed in a filter bag, or packed with a pressure bonding or binder, Use as a functional material for metal reaction (hydrolysis) or ionization reaction (electrode active material) as a lightweight alloy waste material that is secondarily used in a siphon-type or battery-type hydrogen generator and then thirdarily used the remaining hydroxide. It is characterized by.

手間を掛けずに一環利用することで軽量構造材の合金製造の低コスト化を可能とする。且つ、自然界に存在する人体に無害な材料で安全な水素エネルギーの利用ができる利点がある。次世代の社会においては、完全なゼロエミッションサイクルが可能となり、資源の枯渇もなく、地球温暖化防止にも功を奏する。It is possible to reduce the cost of manufacturing lightweight structural materials by using a single part without any effort. In addition, there is an advantage that hydrogen energy can be safely used with a material that is harmless to the human body existing in nature. In the next generation society, a complete zero emission cycle will be possible, there will be no resource depletion, and it will be effective in preventing global warming.

既存の軽量合金材のマグネシウム合金組成は、マグネシウム(Mg)が大部分で、アルミニウム(Al)、亜鉛(Zu)、鉄(Fe)、銅(Cu)、ケイ素(Si)、ニッケル(Ni)、ベリリウム(Be)、など、少量の複数金属が混入した合金であり、水素加圧をした圧力容器内に廃材の塊または破片を入れて、水素加圧下で合金の表面の酸化膜を取り除けば、直接合金と水素を接触させることで、水素化反応が自走して水素化(水素吸蔵)を容易に行うことができる。The magnesium alloy composition of the existing lightweight alloy material is mostly magnesium (Mg), aluminum (Al), zinc (Zu), iron (Fe), copper (Cu), silicon (Si), nickel (Ni), It is an alloy mixed with a small amount of multiple metals such as beryllium (Be), put a lump or debris of waste material in a pressure vessel pressurized with hydrogen, and remove the oxide film on the surface of the alloy under hydrogen pressure, By directly contacting the alloy with hydrogen, the hydrogenation reaction is self-propelled and hydrogenation (hydrogen storage) can be easily performed.

この水素化は、高圧容器にフランジおよびジャケット並びに温調部を設けた単数または複数の処理容器手段と、前記高圧容器に脱気装置および水素吸蔵放出装置を配した水素充填手段と、前記高圧容器および水素吸蔵放出装置にそれぞれ加熱装置および冷却装置を配した加熱冷却手段と、前記処理容器手段および水素充填手段並びに加熱冷却手段を自動制御する電子制御手段とで構成した処理装置で行う。The hydrogenation includes one or a plurality of processing vessel means provided with a flange and a jacket and a temperature control unit in a high-pressure vessel, hydrogen filling means in which a degassing device and a hydrogen storage / release device are arranged in the high-pressure vessel, and the high-pressure vessel And a heating / cooling means in which a heating device and a cooling device are arranged in the hydrogen storage / release device, respectively, and a processing apparatus comprising an electronic control means for automatically controlling the processing container means, the hydrogen filling means, and the heating / cooling means.

また、この装置の温調部には、レーザー放射プラグ以外にも電熱線、電熱プラグ、などを選択して設けることによって、材料によって一端を高温加熱して着火をすることで、水素化反応による自己発熱を利用した反応でナノメートル域の金属結晶を含む金属の水素化微粉体が低コストで容易に得られる。In addition to the laser radiation plug, a heating wire, a heating plug, etc. are selected and provided in the temperature control section of this device, and one end is heated at a high temperature by the material and ignited, thereby causing a hydrogenation reaction. A metal hydride fine powder containing metal crystals in the nanometer range can be easily obtained at low cost by a reaction utilizing self-heating.

軽量構造材の合金塊でも、レーザー特有な超高温の4000℃以上の照射加熱により表面の酸化膜を取り除き、合金と直接水素を接触させて水素化(水素吸蔵)反応を行うことができるので、合金結晶が膨張する水素脆性効果にもより水素化合金の粒子が容易に得られる。この水素化したマグネシウム合金は、マグネシウムの混入率が多いため自体重の7wt%以上の水素を吸蔵することができる。Even in an alloy lump of lightweight structural material, it is possible to remove the oxide film on the surface by irradiation heating of ultra high temperature of 4000 ° C or more peculiar to laser, and perform hydrogenation (hydrogen occlusion) reaction by bringing hydrogen into contact with the alloy directly. Due to the hydrogen embrittlement effect that the alloy crystal expands, hydrogenated alloy particles can be easily obtained. Since this hydrogenated magnesium alloy has a high magnesium mixing rate, it can occlude 7 wt% or more of its own weight.

この水素化したマグネシウム合金は、水素発生装置において、水素発生容器内部に水または水溶液を注入することで、マグネシウムの加水分解で発生させる水素ガスと、そのマグネシウムが反応して水酸化マグネシウムに変質することで金属の結晶間に定着している水素原子が開放され、原子2つ同士が結合して水素分子を生成することで発生する水素ガスの双方からの大量の水素ガスを得ることができる。This hydrogenated magnesium alloy is transformed into magnesium hydroxide by injecting water or an aqueous solution into the hydrogen generation container in the hydrogen generator, so that the magnesium gas reacts with the hydrogen gas generated by the hydrolysis of magnesium and the magnesium reacts. As a result, hydrogen atoms fixed between the metal crystals are released, and a large amount of hydrogen gas can be obtained from both of the hydrogen gas generated by bonding two atoms together to generate hydrogen molecules.

また、水素化物の粒子が、フィルター性の袋に詰めパックにしたことで、サイホン式の水素発生の装置に用いられる場合、パイプを介し落差を持たせた2つの液体容器を設け、下の液体容器内に入れて、容器内で発生する水素ガスの圧力によるサイホン現象を利用して、上の液体容器内に水または水溶液(または電解液)を押し上げて水素発生が自動的に制御される。In addition, when the hydride particles are packed in a filter bag and used as a siphon-type hydrogen generation device, two liquid containers are provided with a drop through a pipe, and the liquid below Hydrogen generation is automatically controlled by pushing up water or an aqueous solution (or electrolytic solution) into the upper liquid container using the siphon phenomenon caused by the pressure of hydrogen gas generated in the container.

この場合、フィルターでは水または水溶液(または電解液)および水素気体は通過し、水酸化マグネシウムはろ過されるように内部に留められるため、装置内に流出分散することもなく、パックを入れた籠ごと引き上げれば回収の手間が容易となる。In this case, water or an aqueous solution (or electrolyte) and hydrogen gas pass through the filter, and magnesium hydroxide is kept inside so that it can be filtered. If they are pulled up together, the labor of collection becomes easy.

また、このフィルター性の袋でパックにしたことで、水素化物を風呂水、洗浄水、養殖水などに直接投入することで、加水分解による発生水素ガスを直接水に溶解させ還元電位と弱アルカリ性Ph値を与えた機能水の製造材として用いることができる。In addition, this filter bag is used to pack the hydride directly into bath water, washing water, aquaculture water, etc., so that the hydrogen gas generated by hydrolysis is dissolved directly in water, reducing the potential and weak alkalinity. It can be used as a material for producing functional water given a Ph value.

また、製造されたマグネシウム合金の水素化物の粒子は、電池式の水素発生装置の場合、電池要素の負極の活物質として用い、電池要素によって起電する電流を負荷装置で制御することにより負極の活物質のイオン化および金属反応を制御し、金属の結晶間に定着している水素化物および加水分解からの水素ガスを発生することができる。In addition, in the case of a battery-type hydrogen generator, the produced magnesium alloy hydride particles are used as an active material for the negative electrode of the battery element, and the current generated by the battery element is controlled by the load device. The ionization and metal reaction of the active material can be controlled, and hydride fixed between crystal of metal and hydrogen gas from hydrolysis can be generated.

また、この水素化される金属種は、多くの金属が含まれるため、述べている金属種に限定せず、多くの金属も水素化物の粒子として、フィルター性の袋に詰めパックにして、他にも圧着あるいは結合剤で固めて、金属反応(加水分解)またはイオン化反応(電極活物質)の機能材料として、サイホン式または電池式の水素発生装置で二次利用した後、残った水酸化物を回収して三次利用ができる。In addition, since the metal species to be hydrogenated include a lot of metals, the metal species are not limited to the metal species described, and many metals are also packed as hydride particles in a filter bag. In addition, the remaining hydroxide after being secondarily used in a siphon-type or battery-type hydrogen generator as a functional material for metal reaction (hydrolysis) or ionization reaction (electrode active material) after being pressed or bonded with a binder Can be recovered for tertiary use.

ほかにも水素精製の目的で、水素精製膜の場合、マグネシウム合金の水素化粒子は、パイプ状またはシート状に成形して、予め活性化してから装置へ装着することができる。あるいはメタンガスなどを選択吸着させるほか精製や貯蔵をする装置にも応用できる。In addition, for the purpose of hydrogen purification, in the case of a hydrogen purification membrane, the hydrogenated particles of magnesium alloy can be molded into a pipe shape or a sheet shape, activated in advance, and then attached to the apparatus. Alternatively, it can be applied to a device for selectively adsorbing methane gas or the like for purification and storage.

また、ヒートポンプの目的で、水素化発熱および水素放出吸熱を回収する装置の場合、マグネシウム合金の水素化粒子は、結合材とを混合して固形化し、予め活性化してから装置内または装置内のパイプの内側または外側に詰め込んで装着することができ、あるいは装置内または装置内のパイプの内側または外側、波形プレートの溝内に固形接着することも容易で、大型装置へ装着後に活性化を要しないことから、圧力に対し頑丈な容器である必要がない。Further, in the case of an apparatus that recovers hydrogenation exotherm and hydrogen release endotherm for the purpose of heat pump, the magnesium alloy hydrogenated particles are mixed with a binder and solidified, activated in advance, and then in the apparatus or in the apparatus. It can be installed inside or outside the pipe, or it can easily be solid-bonded inside or outside the pipe inside the device or inside the groove of the corrugated plate, requiring activation after installation on a large device. It does not need to be a container that is robust to pressure.

また、マグネシウム合金の水素化粒子は、水溶解性や有機溶剤溶解性の高分子の樹脂は、水や有機溶剤によって容易に薄い成膜工程が可能である。比較的低温域で作動する装置では、例えば、化学合成法によって乳酸を重合した水溶解性有機高分子の樹脂である脂肪族ポリエステル系樹脂またはポリオレフィン系の樹脂などを水に分散したエマルジョンタイプを用いることができ、他にも一般の有機高分子の樹脂も使用できる。The magnesium alloy hydrogenated particles can be easily formed into a thin film by using water or an organic solvent for water-soluble or organic solvent-soluble polymer resins. In an apparatus that operates in a relatively low temperature range, for example, an emulsion type in which an aliphatic polyester resin or polyolefin resin, which is a water-soluble organic polymer resin obtained by polymerizing lactic acid by a chemical synthesis method, is dispersed in water is used. In addition, general organic polymer resins can also be used.

これらの機能性として、具体的には、装置に装着され運転時間の経過と共に被膜の表面にクラックが生じた場合、高分子機能が低温熱可塑性から運転時の発熱等により被膜の亀裂を自己修復できる。Specifically, when cracks occur on the surface of the film as it is installed in the device and the operation time elapses, the polymer function is self-healing due to low temperature thermoplasticity due to heat generation during operation, etc. it can.

これらの機能性の応用において、マグネシウム合金の水素化粒子の場合、水素貯蔵の目的で水素コンテナや水素貯蔵施設などの大型な水素貯蔵容器の場合でも同様に、被膜化した粒状の様々な金属の水素化粒子と、結合材とを混合して固形化したものを装置内のパイプの内側または外側に詰め込んで装着する場合、被膜化したマグネシウム合金の水素化粒子を、予め活性化してから結合材とを混合して有機溶剤によるペースト化したものを固形化して、装置内のパイプの内側または外側に詰め込んで装着するか、ペースト化したものを波形プレートの溝内に固形接着すると、後から活性化を要しないために大型装置が圧力に対して頑丈な容器である必要がない。In the application of these functionalities, in the case of magnesium alloy hydrogenated particles, even in the case of large hydrogen storage containers such as hydrogen containers and hydrogen storage facilities for the purpose of hydrogen storage, the same applies to various kinds of coated granular metals. When the hydrogenated particles and the solidified mixture of the binder are packed into the inside or outside of the pipe in the apparatus and installed, the coated magnesium alloy hydrogenated particles are activated in advance and then the binder. And then paste it into an organic solvent and solidify it and pack it inside or outside the pipe in the device, or if you paste it into the groove of the corrugated plate, Therefore, it is not necessary for the large device to be a container strong against pressure.

また、被膜材に可塑性高分子の樹脂を用いてニッケル水素電池やリチウム金属電池などの電池の電極箔に装着すると、活物質が水素やリチウムの吸蔵および放出による膨縮から微紛化して脱落することが防止でき、負極と正極と分離膜からなる電池要素を接合して絶縁膜で覆って一体化すると、より機能性が高まり電池の長寿命化も実現できる。In addition, when a plastic polymer resin is used as the coating material and it is attached to the electrode foil of a battery such as a nickel metal hydride battery or a lithium metal battery, the active material is pulverized from the expansion and contraction due to insertion and extraction of hydrogen and lithium, and drops off. If a battery element composed of a negative electrode, a positive electrode, and a separation membrane is joined and covered and integrated with an insulating film, the functionality is enhanced and the battery life can be extended.

マグネシウム合金の水素化粒子は、常温水での酸化反応が持続できないことは知られているが、高圧環境で140℃以上の加熱をすれば水との自走酸化反応は可能であって、自然界に存在し人体にも有用な、一般にはにがり(塩化マグネシウム/MgCl)を水溶液(電解液)として用い、排熱などを加熱源とすると常温常圧域で加水分解を行うことができる。Magnesium alloy hydrogenated particles are known to be unable to sustain an oxidation reaction in normal temperature water, but if they are heated to 140 ° C or higher in a high-pressure environment, they can undergo a free-running oxidation reaction with water. In general, nigra (magnesium chloride / MgCl), which is useful for the human body, is used as an aqueous solution (electrolytic solution), and when exhaust heat or the like is used as a heating source, hydrolysis can be performed in a normal temperature and normal pressure range.

この反応は、粒子の局部電池の短絡による自己放電現象から、これを利用して容器内に電池要素を形成すれば起電することができる。電池要素の構成は、例えば、負極の活物質にマグネシウム合金の水素化粒子を装着して、電解質に塩化マグネシウム(MgCl)水溶液(電解液)、高分子固体電解質と、陽極の拡散層には、Ni、Ti系などの金属、合金、金属化合物の粉末、粉末活性炭やグラファイトおよび触媒などをフッ素樹脂に混ぜ合わせたマグネシウム合金の水素化微粉体を電極に装着して酸素、水酸化ニッケル等の複数の活物質を有する電池を構成すると、多価のイオンを含む複数イオンでも単位面積が拡大され界面反応を促進できる拡散層で受け止めることができ、分極抵抗を低減した加水分解を兼ねるマグネシウム電池として機能できる。This reaction can be generated from a self-discharge phenomenon caused by a short circuit of a local battery of particles if a battery element is formed in the container using this phenomenon. The structure of the battery element is, for example, by mounting magnesium alloy hydride particles on the negative electrode active material, magnesium chloride (MgCl) aqueous solution (electrolyte) as the electrolyte, polymer solid electrolyte, and anode diffusion layer as Ni, Ti-based metals, alloys, powders of metal compounds, powdered activated carbon, graphite, and magnesium alloy hydrogenated fine powder mixed with fluororesin are attached to the electrode, and oxygen, nickel hydroxide, etc. If a battery having an active material is constructed, a plurality of ions including polyvalent ions can be received by a diffusion layer that can increase the unit area and promote the interfacial reaction, and function as a magnesium battery that also serves as a hydrolysis with reduced polarization resistance. it can.

また、この密閉な電池ではない場合では、電解質に水素ガス流出を遮蔽する機能を持たせる必要から高分子固体電解質のほか毛管現象機能を持つ不織布などとゲル体を併用して電解液を含ませると、水素発生容器内で発生する水素ガスを陽極面の開放部から外部に流出させず水素需要体へ送ることができ、容器の破裂も防止できる。これは、板状電池やボタン電池のように携帯機器の小型化な電池分野へも応用することができる。If the battery is not a sealed battery, the electrolyte must be included in combination with a solid polymer electrolyte and non-woven fabric with a capillary action function in addition to the polymer solid electrolyte. Then, the hydrogen gas generated in the hydrogen generation container can be sent to the hydrogen consumer without flowing out from the open portion of the anode surface, and the container can be prevented from bursting. This can also be applied to the field of small batteries for portable devices such as plate batteries and button batteries.

また、これを密閉型の電池とする場合でも、陽極には水素およびマグネシウム合金の各イオンが受け止められるNi、Ti系などの金属、合金、金属化合物の粉末および触媒など活物質材料を混在させ電池要素を構成すると、単位面積を拡大して界面反応を促進し、多価のイオンを含む複数イオンを受け止めることで分極抵抗を低減した電池として機能できる。Further, even when this is a sealed battery, the anode is mixed with active materials such as Ni, Ti-based metals, alloys, metal compound powders, and catalysts that can accept hydrogen and magnesium alloy ions. When the element is configured, the battery can function as a battery having a reduced polarization resistance by enlarging a unit area to promote an interface reaction and receiving a plurality of ions including polyvalent ions.

また、容器の電池要素で起電した電力を負荷装置へ通電して負荷を流れる電流量を変動させることによって、例えば、負極のマグネシウム合金の水素化粒子のイオン化を増減させると、それに応じて水素化物の表面側から金属結晶が水酸化物に変性する量も比例的となる。このとき、金属の結晶間に定着場所を失った水素原子は、原子の2個が結合して水素分子となるため水素ガスを生成する。この生成量は負荷電流量による反応から水素ガスの発生も電流で制御ができる。In addition, for example, when ionization of the hydrogenated particles of the magnesium alloy of the negative electrode is increased or decreased by energizing the load device with the electric power generated by the battery element of the container and changing the amount of current flowing through the load, The amount by which the metal crystals are modified into hydroxide from the surface side of the compound is also proportional. At this time, hydrogen atoms that have lost their fixing sites between the metal crystals generate hydrogen gas because two of the atoms combine to form hydrogen molecules. The amount of the generated hydrogen can be controlled by the electric current from the reaction of the load current amount.

また、容器や電池要素のセルを積層して構成すると燃料電池自動車など高電圧で水素消費量の変動も大きい水素需要装置を用いる分野でも水素発生の制御が容易にできる。In addition, when the cells of the container and the battery element are laminated, the hydrogen generation can be easily controlled even in a field using a hydrogen demanding apparatus having a high voltage and a large fluctuation in hydrogen consumption, such as a fuel cell vehicle.

また、容器を活物質に酸素(O)を用いる二次電池(充放電)として構成する場合は、マグネシウム合金の粉体に可塑性高分子あるいは金属でコーティングし負極に固形装着して、電解液にアルカリ性水溶液または非水溶液等と、陽極の拡散層には水素およびマグネシウム合金の各イオンが受け止められ分極抵抗を回避するために、Ni、Ti系などの金属、合金、金属化合物の粉末、粉末活性炭やグラファイトおよび触媒などをフッ素樹脂に混ぜ合わせた機能物質を装着させると、充放電させることができる。When the container is configured as a secondary battery (charge / discharge) using oxygen (O) as an active material, the magnesium alloy powder is coated with a plastic polymer or metal and solidly mounted on the negative electrode, Alkaline aqueous solution or non-aqueous solution and the like, and the anode diffusion layer accepts each ion of hydrogen and magnesium alloy, to avoid polarization resistance, Ni, Ti-based metals, alloys, powders of metal compounds, powdered activated carbon and When a functional substance obtained by mixing graphite and a catalyst with a fluororesin is attached, charging / discharging can be performed.

この電池構成の場合、陽極が大気中の酸素を活物質として用いるため正極側では放電できる電気量が制限されず、電気容量を飛躍的に増大させることができるほか、充電に電気または水素の両方を用い供給して充電を行うことができる。In the case of this battery configuration, since the anode uses oxygen in the atmosphere as an active material, the amount of electricity that can be discharged is not limited on the positive electrode side, the electric capacity can be dramatically increased, and both electricity and hydrogen can be used for charging. Can be supplied and charged.

また、陽極の活物質が酸素、塩化チオニル、水酸化ニッケル以外にも金属酸化物またはコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等の遷移金属酸化物を用い、電解質と、負極の機能物質に様々な物質が用いられて電池要素を容器内に構成すると、複数イオン(水素イオン、金属イオン、リチウムイオン等)による分極抵抗を回避した複合電池ができる。In addition to oxygen, thionyl chloride, and nickel hydroxide, the anode active material is a metal oxide or a transition metal oxide such as lithium cobaltate (LiCoO2), lithium nickelate (LiNiO2), or lithium manganate (LiMn2O4). When various materials are used for the electrolyte and the negative electrode functional material and the battery element is configured in the container, a composite battery avoiding polarization resistance due to a plurality of ions (hydrogen ions, metal ions, lithium ions, etc.) can be obtained.

図1の実施例によって説明すると、マグネシウム合金の水素化の処理装置1の全体系統線図であって、高圧容器2、脱気装置5、水素吸蔵放出装置6、水素または不活性ガス補給装置9、加熱装置7、冷却装置8のほか、電磁弁12、13、13b、14、14b、減圧調整弁11、熱媒体ポンプ18、19、各センサーを含む制御機器で構成され、金属還元、または金属の水素化粉砕、または機能体の活性化、あるいは水素貯蔵容器の水素充填等が行われている。Referring to the embodiment of FIG. 1, it is an overall system diagram of a magnesium alloy hydrogenation treatment apparatus 1, which includes a high-pressure vessel 2, a deaeration device 5, a hydrogen storage / release device 6, and a hydrogen or inert gas supply device 9. In addition to the heating device 7 and the cooling device 8, the solenoid valve 12, 13, 13 b, 14, 14 b, the pressure reducing control valve 11, the heat medium pump 18, 19, and a control device including each sensor, metal reduction, or metal Hydrogenation pulverization, activation of functional bodies, hydrogen filling of hydrogen storage containers, and the like are performed.

高圧容器2は、30kg/cm以上の高圧に対応する容器で、側面周囲に熱媒体のジャケット4と、フランジと、電熱線、電熱プラグ、レーザー放射プラグ等必要に応じた器具が取り付けられた温調部が設けられ、金属、水素貯蔵容器などの出し入れをするフランジには、フランジ蓋3を油圧式または電動式で開閉できるように備えられている。The high-pressure vessel 2 is a vessel corresponding to a high pressure of 30 kg / cm 2 or more, and a heat medium jacket 4, a flange, a heating wire, an electric heating plug, a laser radiation plug and the like as needed are attached around the side surface. A temperature control unit is provided, and a flange lid 3 for opening and closing a metal, a hydrogen storage container or the like is provided so that the flange lid 3 can be opened and closed hydraulically or electrically.

また、ジャケット4は、配管して接続される加熱装置7および冷却装置8からの加熱媒体および冷却媒体を配管に接続される電磁弁14、14bが電子制御されることによって、高圧容器2の内容物を、たとえば、脱気行程であれば80℃程度に加熱し、水素加圧行程であれば5℃程度に冷却される。In addition, the jacket 4 has the contents of the high-pressure vessel 2 by electronic control of the heating valves 7 and 14b connected to the heating medium and the cooling medium 8 connected by piping and the heating medium and the cooling medium to the piping. For example, the object is heated to about 80 ° C. in the deaeration process, and cooled to about 5 ° C. in the hydrogen pressurization process.

また、ガスソケットは、配管して接続される脱気装置5および水素吸蔵放出装置6からの脱気系統16および水素または不活性ガス系統17の配管に接続される電磁弁13、13bが電子制御されることによって、高圧容器2の内容物を脱気行程であれば脱気装置5の真空ポンプで3Toor程度に真空引きし、水素加圧行程であれば水素吸蔵放出装置6によって30kg/cm以上の水素加圧が行われ、金属還元であれば不要ガスを外気放散する。このように構成した高圧容器2は、単体または複数を設けて運転される。The gas socket is electronically controlled by solenoid valves 13 and 13b connected to the deaeration system 16 connected through piping and the degassing system 16 from the hydrogen storage / release device 6 and the piping of the hydrogen or inert gas system 17. As a result, the contents of the high-pressure vessel 2 are evacuated to about 3 Toor by the vacuum pump of the deaeration device 5 in the degassing process, and 30 kg / cm 2 by the hydrogen storage / release device 6 in the hydrogen pressurization process. The above hydrogen pressurization is performed, and if it is metal reduction, unnecessary gas is diffused to the outside. The high-pressure vessel 2 configured as described above is operated with a single unit or a plurality of units.

水素吸蔵放出装置6は、積層体の両端の熱媒体ノズルに配管される加熱装置7および冷却装置8からの加熱媒体および冷却媒体を配管に接続される電磁弁14、14bが電子制御されることによって、高圧容器2の内容物が水素加圧を必要とすれば装置内に装着される水素吸蔵材を80℃程度に加熱して水素放出圧30kg/cm以上で水素加圧を行い、逆に高圧容器2の内容物が水素放出をする場合であれば、水素吸蔵材を5℃程度に冷却して水素を吸蔵させる。In the hydrogen storage / release device 6, the heating valves 7 and 14b connected to the heating medium and the cooling medium 8 connected to the heating medium nozzles at both ends of the laminate are electronically controlled. Thus, if the contents of the high-pressure vessel 2 require hydrogen pressurization, the hydrogen storage material mounted in the apparatus is heated to about 80 ° C. and hydrogen pressurization is performed at a hydrogen release pressure of 30 kg / cm 2 or more. If the contents of the high-pressure vessel 2 release hydrogen, the hydrogen storage material is cooled to about 5 ° C. to store hydrogen.

水素または不活性ガス補給装置9は、水素吸蔵放出装置6へ水素を、あるいは高圧容器2へ水素または不活性ガスを補給するものであり、圧力調整弁11が介されて高圧な水素または不活性ガスのボンベが配されている。The hydrogen or inert gas replenishing device 9 replenishes hydrogen to the hydrogen storage / release device 6 or hydrogen or inert gas to the high-pressure vessel 2, and the high-pressure hydrogen or inert gas is supplied via the pressure regulating valve 11. Gas cylinders are arranged.

電子制御は、温度、圧力などの各センサー値と予め設定された値によって適宜熱媒体のポンプ、電磁弁、油圧機器のポンプなどの電源が電子制御されている。In the electronic control, power sources such as a heat medium pump, a solenoid valve, and a hydraulic equipment pump are electronically controlled as appropriate according to sensor values such as temperature and pressure and preset values.

このように装置が構成されたことで、マグネシウム合金の廃材を高圧容器内に入れ高圧水素を導入しておき、マグネシウム合金の廃材表面の酸化膜をレーザー照射によって破壊することで、合金と水素を接触させ水素化(水素吸蔵)反応を利用してマグネシウム合金廃材の金属結晶の膨張から粉砕ができ、特に金属単結晶の微紛体が容易に得られる。あるいは、この処理装置のレーザー放射プラグによって、ガス化分離させて冷却する方法で金属の還元をすることができる。金属還元は、たとえば、高圧容器内に電極を設けておき、酸化マグネシウムなどの粗粒子を入れてレーザー放射プラグによってレーザー照射して酸化マグネシウムを高温加熱してガス化させ、酸素は外気放散させマグネシウムのガスは、内部に設けられる電極によって金属を還元して金属の製錬ができる。By configuring the device in this way, magnesium alloy waste material is placed in a high-pressure vessel, high-pressure hydrogen is introduced, and the oxide film on the magnesium alloy waste material surface is destroyed by laser irradiation, so that the alloy and hydrogen are removed. It can be pulverized from the expansion of the metal crystal of the magnesium alloy waste material by utilizing the hydrogenation (hydrogen storage) reaction, and particularly a fine metal single crystal powder can be easily obtained. Alternatively, the metal can be reduced by a method of gasifying and cooling with a laser radiation plug of the processing apparatus. For metal reduction, for example, an electrode is provided in a high-pressure vessel, coarse particles such as magnesium oxide are put, laser irradiation is performed by a laser radiation plug, and magnesium oxide is heated to high temperature to gasify, and oxygen is diffused to the outside air to form magnesium. This gas can be smelted by reducing the metal with an electrode provided inside.

この場合、レーザー放射プラグのレーザー源は、太陽光をレンズや反射鏡で直接集光したもの、または太陽電池での光変換、風力変換、バイオマス燃料等を利用して発電した電力によって、必要な波長の電磁波を発生したものを増幅励起して利用されることで再生可能なエネルギーの有効利用も実現する。In this case, the laser source of the laser radiating plug is necessary depending on the light collected directly by the lens or the reflector, or by the electric power generated using light conversion, wind power conversion, biomass fuel, etc. Effective use of renewable energy is also realized by amplifying and using those that generate electromagnetic waves of wavelengths.

既存の流通している軽量合金の主な種類を以下に示す。
この平均配合のマグネシウム合金「AM50A」の廃材を用いて、水素化マグネシウム合金の金属反応(加水分解)およびイオン化反応(電極活物質)の検証を説明する。
The main types of existing lightweight alloys are shown below.
The verification of the metal reaction (hydrolysis) and ionization reaction (electrode active material) of the magnesium hydride alloy will be described using the waste material of the magnesium alloy “AM50A” of this average composition.

自然に存在する溶質の水溶液による加水分解の最短自走反応実験を試みた。試料は、試料1:水素化マグネシウム合金の粒子の粒径200μm以上1g、試料2:水素化マグネシウム合金の粒子の粒径50μm以下1g、の2種類を用いた。The shortest free-running reaction experiment of hydrolysis of naturally occurring solutes with aqueous solution was tried. Two types of samples were used: Sample 1: Magnesium hydride alloy particles having a particle size of 200 μm or more and 1 g, Sample 2: Magnesium hydride alloy particles having a particle size of 50 μm or less, 1 g.

水溶液には、水溶液1:水(H2O)、水溶液2:クエン酸(C6H8O7)8%水溶液、水溶液3:にがり(6水和塩化マグネシウムMgCl2・6H2O)5%水溶液の3種類を用いた。Three kinds of aqueous solutions were used: aqueous solution 1: water (H 2 O), aqueous solution 2: citric acid (C 6 H 8 O 7) 8% aqueous solution, aqueous solution 3: bittern (hexahydrate magnesium chloride MgCl 2 · 6H 2 O) 5% aqueous solution.

実験方法は、3種類の常温(20℃)水溶液各5ccを、試験管内の試料に注ぎ入れてスタートし、自走反応が遅い場合は、徐々に水溶液を加熱しながら観察および計測をした。The experimental method was started by pouring 5 cc of each of three types of normal temperature (20 ° C.) aqueous solutions into a sample in a test tube. When the free-running reaction was slow, observation and measurement were performed while gradually heating the aqueous solution.

試料1の場合、水溶液1:水(H2O)では、まったく反応せず、加熱90℃で粒子表面に少し気泡を確認した。水溶液2:クエン酸(C6H8O7)8%水溶液では、激しく反応し温度上昇とともに2分足らずで反応が終了した。水溶液3:にがり(6水和塩化マグネシウムMgCl2・6H2O)では反応が遅く、加熱とともに反応が早まり90℃で気泡の上昇が確認できた。In the case of Sample 1, the aqueous solution 1: water (H 2 O) did not react at all, and a slight bubble was confirmed on the particle surface at 90 ° C. under heating. Aqueous solution 2: Citric acid (C6H8O7) 8% aqueous solution reacted vigorously and the reaction was completed in less than 2 minutes as the temperature rose. In aqueous solution 3: bittern (hexahydrate magnesium chloride MgCl 2 · 6H 2 O), the reaction was slow, and the reaction was accelerated with heating, and an increase in bubbles was confirmed at 90 ° C.

試料2の場合、水溶液1:水(H2O)では、気泡が確認でき、加熱90℃で気泡の上昇を確認した。水溶液2:クエン酸(C6H8O7)8%水溶液では、激しく反応し温度上昇とともに1.5分足らずで反応が終了した。水溶液3:反応が早く、時間とともに自己発熱で温度が上昇しながら90℃で激しく気泡の上昇が確認できた。In the case of Sample 2, bubbles were confirmed in the aqueous solution 1: water (H 2 O), and the rise of bubbles was confirmed at 90 ° C. under heating. Aqueous solution 2: Citric acid (C6H8O7) 8% aqueous solution reacted vigorously and the reaction was completed in less than 1.5 minutes as the temperature rose. Aqueous solution 3: The reaction was fast, and it was confirmed that the bubbles increased sharply at 90 ° C. while the temperature rose due to self-heating with time.

水素ガスの最終の収集量は、各水溶液とも同様で、試料1:800cc(マグネシウム重量比8wt%)、試料2:1400cc(マグネシウム重量比14wt%)であった。The final collection amount of hydrogen gas was the same for each aqueous solution, and was Sample 1: 800 cc (magnesium weight ratio 8 wt%) and Sample 2: 1400 cc (magnesium weight ratio 14 wt%).

次いで、陽極の活物質に空気(酸素)を、負極に水素化マグネシウム合金の粒子を用いる電池要素による起電実験を試みた。市販のマグネシウムバッテリーを分解し、負極に装着されているマグネシウムを取り外して、水素化マグネシウム合金の粉末と水溶性の可塑性高分子剤を有機溶剤で解き混ぜ、電極サイズの枠を接続して圧縮しながら加熱して電極箔に固形接着した。Next, an electromotive force experiment was attempted using a battery element in which air (oxygen) was used as the anode active material and magnesium hydride alloy particles were used as the anode. Disassemble the commercially available magnesium battery, remove the magnesium attached to the negative electrode, dissolve the magnesium hydride alloy powder and the water-soluble plastic polymer with an organic solvent, connect the electrode size frame and compress it. It was heated and solid bonded to the electrode foil.

その他セパレーター、正極集電体等は製品部材の単セルを用い組み立て、電解液ににがり(6水和塩化マグネシウムMgCl2・6H2O)5%水溶液を用いた。製品の正極集電体では、粉末活性炭やグラファイト、触媒などをフッ素樹脂に混ぜ合わせたものを銅箔に塗って焼成して網状に形成されている。Other separators, positive electrode current collectors and the like were assembled using single cells of product members, and a 5% aqueous solution of bittern (hexahydrate magnesium chloride MgCl 2 · 6H 2 O) was used as the electrolyte. In the positive electrode current collector of the product, a powdered activated carbon, graphite, a catalyst, etc. mixed with a fluororesin is applied to a copper foil and fired to form a net.

実験の反応式と起電圧の計測値は、正極反応式:2Mg→2Mg2++4e、負極反応式:O+2HO+4e→4OH、全反応式:2Mg+O+2HO→2Mg(OH)↓で、初期の起電圧は、2.7Vである。The reaction formula of the experiment and the measured value of the electromotive voltage are as follows: positive reaction formula: 2Mg → 2Mg 2+ + 4e , negative reaction formula: O 2 + 2H 2 O + 4e → 4OH , total reaction formula: 2Mg + O 2 + 2H 2 O → 2Mg (OH ) 2 ↓, the initial electromotive voltage is 2.7V.

負極に水素化マグネシウム合金の粒子を用いると、リチウム電池に匹敵する電池が得られる事がわかった。空気とマグネシウムの理論上の起電力は、2.7Vであるが、同時に加水分解の反応(反応式:MgH2+2HO→Mg2++2OH+2H↑)による複数のイオンによる分極抵抗によって次第に低下する。It has been found that when magnesium hydride alloy particles are used for the negative electrode, a battery comparable to a lithium battery can be obtained. The theoretical electromotive force of air and magnesium is 2.7 V, but at the same time, it gradually decreases due to the polarization resistance caused by a plurality of ions due to the hydrolysis reaction (reaction formula: MgH2 + 2H 2 O → Mg 2+ + 2OH + 2H 2 ↑). .

この検証には、一次電池として電解液に塩素系化合物の水溶液を用いて加水分解反応を優先させたが、水素化マグネシウム合金の粒子を用い二次電池として採用する場合は、電解液に水酸化カリウム(KOH)などアルカリ性電解液や有機溶剤を用いるとよい。For this verification, priority was given to the hydrolysis reaction using an aqueous solution of a chlorinated compound as the electrolyte for the primary battery. However, when adopting a secondary battery using magnesium hydride alloy particles, the electrolyte was hydroxylated. An alkaline electrolyte such as potassium (KOH) or an organic solvent may be used.

水素ガス発生量の計測値は、約650cc/g(マグネシウム重量比6wt%)であった。電気量とマグネシウムの減少量は、比例関係にあるので、表2に電気量とマグネシウム合金の廃材の減少量、および負極面積と電流の関係を計測結果からファラデーの法則を用いて割り出した数値のグラフを示す。
ファラデーの法則は、理論上の電気量Q(単位はCまたはAs)Q=Fmn/Mで求められる。Fはファラデー定数、mは活物質の質量、Mは活物質の式量、nは反応に関与する電子の数で、電気量は活物質の質量に比例する。
The measured value of the hydrogen gas generation amount was about 650 cc / g (magnesium weight ratio 6 wt%). Since the amount of electricity and the reduction amount of magnesium are in a proportional relationship, Table 2 shows the numerical values obtained by using Faraday's law to calculate the relationship between the amount of electricity and the amount of waste magnesium alloy, and the relationship between the negative electrode area and current. A graph is shown.
Faraday's law is obtained by the theoretical quantity of electricity Q (unit is C or As) Q = Fmn / M. F is the Faraday constant, m is the mass of the active material, M is the formula weight of the active material, n is the number of electrons involved in the reaction, and the amount of electricity is proportional to the mass of the active material.

図2、図3を用いて説明する。図2は、マグネシウム合金または水素化マグネシウム合金の粒子をフィルター性のチューブを用いて内部に詰め、両端を加熱ローラーで圧着した圧着部52によって、ソーセージのように袋状にパック50にして、封じ込められている。図3は、サイホン式の水素発生装置100である。This will be described with reference to FIGS. Fig. 2 shows that a magnesium alloy or magnesium hydride alloy particles are packed into a bag 50 like a sausage by a crimping part 52 packed inside using a filter tube and crimped at both ends with a heating roller. It has been. FIG. 3 shows a siphon type hydrogen generator 100.

サイホン101は、下部に反応容器129を設け容器内部の籠の中に、マグネシウム合金または水素化マグネシウム合金の粒子を入れたパック50が、さらに連通パイプを介して上部に液体容器128を設けて、中に水溶液(電解液)121を入れて構成している。このサイホンの複数が並列にして設けられてサイホン式の水素発生装置100が構成されている。The siphon 101 has a reaction vessel 129 in the lower portion, a pack 50 in which particles of magnesium alloy or magnesium hydride alloy are placed in a container inside the vessel, and a liquid vessel 128 in the upper portion through a communication pipe. An aqueous solution (electrolytic solution) 121 is placed inside. A plurality of siphons are provided in parallel to form a siphon-type hydrogen generator 100.

また、それぞれのサイホン内部の液体容器128と反応容器129の間に連通パイプには逆止弁137が設けられ、反応容器129の底部と液体容器128の上部との連通パイプには逆止弁138が設けられ、反応容器129の上部には水素需要体130と連結連通する水素パイプ112が設けられて、サイホン101と同様な101a,101b、101cの複数が並列に接合されて構成されている。水素需要体130とは、水素精製装置、機能水製造装置、水素ポンプ、水素バーナー、水素機関、燃料電池など水素ガスを必要とする機材一切を示す。In addition, a check valve 137 is provided in the communication pipe between the liquid container 128 and the reaction container 129 inside each siphon, and a check valve 138 is provided in the communication pipe between the bottom of the reaction container 129 and the top of the liquid container 128. In the upper part of the reaction vessel 129, a hydrogen pipe 112 connected to the hydrogen demand body 130 is provided, and a plurality of 101a, 101b, 101c similar to the siphon 101 are joined in parallel. The hydrogen demand body 130 indicates any equipment that requires hydrogen gas, such as a hydrogen purification device, a functional water production device, a hydrogen pump, a hydrogen burner, a hydrogen engine, and a fuel cell.

また、マグネシウム合金または水素化マグネシウム合金の場合、水溶液(電解液)121は、塩化マグネシウム(MgCl)を用いると反応で有害物の発生がなく水酸化物も泥状でなく粗粒子として残るので都合もよく、その他公知の水溶液(電解液)を選択し用い、水素需要体の排熱で加熱して反応を促進することもできる。In the case of a magnesium alloy or a magnesium hydride alloy, when the aqueous solution (electrolyte) 121 is magnesium chloride (MgCl), no harmful substances are generated by the reaction, and the hydroxide is not mud but remains as coarse particles. Alternatively, other known aqueous solutions (electrolytic solutions) can be selected and used, and the reaction can be accelerated by heating with the exhaust heat of the hydrogen consumer.

また、水素化マグネシウム合金は、加水分解と水素化物の双方から大量な水素ガスを発生させるため、水素需要体で生成して回収される水量は、大気放散して減少することを考慮しても、加水分解に必要以上の水量が確保できることから、生成水を再度液体容器内へ循環させると外部から水を補給する必要がない。つまり、飛行機や自動車などの移動体が用いる場合、出発の時に大量な水を搭載する必要がなく、軽量な装置となり都合がよい。In addition, magnesium hydride alloy generates a large amount of hydrogen gas from both hydrolysis and hydride, so the amount of water produced and recovered by the hydrogen consumer is also considered to be reduced to the atmosphere. Since an amount of water more than necessary for hydrolysis can be secured, it is not necessary to replenish water from the outside when the produced water is circulated again into the liquid container. In other words, when a moving body such as an airplane or an automobile is used, it is not necessary to mount a large amount of water at the time of departure, which is convenient as a lightweight device.

このようにサイホン式の水素発生装置が構成された運転の一連動作は、サイホン現象を利用して発生した水素ガスの圧力で水溶液(電解液)121を押し上げ(流出)させて反応を停止しておき、水素ガス利用時には、発生水素ガスを水素需要体130が消費することで圧力が降下し水溶液(電解液)121を落水(流入)させて水溶液(電解液)121とマグネシウム合金または水素化マグネシウム合金との加水分解の反応を開始させ、電子制御装置を必要とせずに水素の発生制御が自動的に行われる。A series of operations in which the siphon type hydrogen generator is configured in this way is to stop the reaction by pushing up (outflowing) the aqueous solution (electrolyte) 121 with the pressure of hydrogen gas generated using the siphon phenomenon. When the hydrogen gas is used, the hydrogen consumer 130 consumes the generated hydrogen gas, and the pressure drops, causing the aqueous solution (electrolyte) 121 to fall (inflow), and the aqueous solution (electrolyte) 121 and the magnesium alloy or magnesium hydride. The hydrolysis reaction with the alloy is started, and hydrogen generation is controlled automatically without the need for an electronic control device.

また、反応が終了した場合、残った水酸化物は、そのまま籠ごと引き出し、パックの内部に閉じ込められている水酸化物が回収でき、三次利用の際の手間がかからない。In addition, when the reaction is completed, the remaining hydroxide can be drawn out together with the soot, and the hydroxide trapped inside the pack can be recovered, so that it does not take time for tertiary use.

本発明について説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。Although the present invention has been described, the present invention is not limited to the above embodiment, and can be improved or modified within the scope of the purpose of the improvement or the idea of the present invention.

以上説明したように、二次および三次の利用にコストを掛けずに用いることで、軽量構造材の製造の低コスト化を可能とする。且つ、自然界に存在する人体に無害な無尽蔵な材料で安全な自然エネルギーをモノに変えて次世代のエネルギー源として、貯蔵・輸送ができる利点がある。また、クリーンなゼロエミッションサイクルが可能となり、資源の枯渇もなく、地球温暖化防止にも功を奏する。As described above, by using the secondary and tertiary uses without cost, it is possible to reduce the cost of manufacturing the lightweight structural material. In addition, there is an advantage that it can be stored and transported as a next-generation energy source by converting safe natural energy into a thing with an inexhaustible material harmless to the human body existing in nature. In addition, a clean zero emission cycle is possible, there is no depletion of resources, and it is effective in preventing global warming.

本発明の一実施例の全体概念図を示している。(実施例1)1 shows an overall conceptual diagram of one embodiment of the present invention. (Example 1) 本発明の一実施例を示している。(実施例3)1 illustrates one embodiment of the present invention. (Example 3)

符号の説明Explanation of symbols

1 処理装置
2 高圧容器
5 脱気装置
6 水素吸蔵放出装置
7 加熱装置
50 パック
52 圧着部
100 水素発生装置
128 液体容器
129 反応容器
DESCRIPTION OF SYMBOLS 1 Processing apparatus 2 High pressure vessel 5 Deaeration apparatus 6 Hydrogen storage-release apparatus 7 Heating apparatus 50 Pack 52 Crimp part 100 Hydrogen generator 128 Liquid container 129 Reaction container

Claims (7)

軽量構造材として一次利用された軽量合金廃材の塊または破片を用い、高圧容器内に入れて水素加圧下でレーザーによって表面の酸化膜を破壊し合金表面を水素に接触させ、水素化反応によって水素を吸蔵させることで粉砕した水素化物の粒子を生成した後、水素化物の粒子はフィルター性の袋に詰めパックにして、または、圧着あるいは結合剤で固めて、金属反応(加水分解)またはイオン化反応(電極活物質)の機能材料として、サイホン式または電池式の水素発生装置で二次利用した後、残った水酸化物を回収し、三次利用をする軽量合金の廃材利用方法。Using a lump or debris of lightweight alloy waste primarily used as a lightweight structural material, put it in a high-pressure vessel, destroy the oxide film on the surface with a laser under hydrogen pressure, contact the alloy surface with hydrogen, and hydrogen by a hydrogenation reaction After pulverized hydride particles are produced by occlusion, the hydride particles are packed in a filter bag or packed with a pressure bonding or binding agent to form a metal reaction (hydrolysis) or ionization reaction. As a functional material of (electrode active material), after secondary use with a siphon-type or battery-type hydrogen generator, the remaining hydroxide is recovered and used as a third-use lightweight alloy waste material. 前記軽量合金材は、マグネシウム(Mg)を主に、アルミニウム(Al)、亜鉛(Zu)、鉄(Fe)、銅(Cu)、ケイ素(Si)、ニッケル(Ni)、ベリリウム(Be)、など、いずれか一種類以上の複数種類で合金された材料であり、塊または破片あるいは粉体または粉体を固形化したものであることを特徴とする請求項1記載の軽量合金の廃材。The lightweight alloy material is mainly magnesium (Mg), aluminum (Al), zinc (Zu), iron (Fe), copper (Cu), silicon (Si), nickel (Ni), beryllium (Be), etc. The lightweight alloy waste material according to claim 1, wherein the light alloy waste material is a material alloyed with one or more of a plurality of types, and is a lump or shard or powder or powder solidified. 前記サイホン式の水素発生は、パイプを介し落差を持たせた2つの液体容器を設け、下の液体容器内に軽量合金またはその水素化物の粒子を入れて、容器内で発生する水素ガスの圧力によるサイホン現象を利用して、上の液体容器内に水または水溶液(または電解液)を押し上げて用いることを特徴とする請求項1、2記載の二次利用する軽量合金の廃材。In the siphon type hydrogen generation, two liquid containers having a drop through a pipe are provided, and light alloy or hydride particles are placed in the lower liquid container, and the pressure of the hydrogen gas generated in the container The waste material of the secondary alloy for secondary use according to claim 1, wherein water or an aqueous solution (or electrolytic solution) is pushed up into the upper liquid container by utilizing a siphon phenomenon caused by the above. 前記電池式の水素発生は、電池要素の負極の活物質として軽量合金またはその水素化物の粒子を用い、電池要素によって起電する電流を負荷装置で制御することにより負極の機能物質のイオン化および金属反応を制御し、金属の結晶間に定着している水素化物および加水分解からの水素ガスの発生量を制御することを特徴とする請求項1、2、3記載の二次利用する軽量合金の廃材。In the battery-type hydrogen generation, light-weight alloy or hydride particles are used as an active material for the negative electrode of the battery element, and the current generated by the battery element is controlled by a load device to ionize the functional substance of the negative electrode and the metal The light-weight alloy for secondary use according to claim 1, 2 or 3, wherein the reaction is controlled to control the amount of hydrogen gas generated from hydrolysis and hydride fixed between metal crystals. Waste material. 前記水素化反応は、耐圧容器にフランジおよびジャケット並びに温調部を設けた単数または複数の処理容器手段と、前記耐圧容器に脱気装置および水素吸蔵放出装置を配した水素充填手段と、前記耐圧容器および水素吸蔵放出装置にそれぞれ加熱装置および冷却装置を配した加熱冷却手段と、前記処理容器手段および水素充填手段並びに加熱冷却手段を自動制御する電子制御手段とで構成した処理装置で水素化されたことを特徴とする請求の範囲1、2、3、4記載の水素化物。The hydrogenation reaction includes one or a plurality of processing vessel means provided with a flange and a jacket and a temperature control unit in a pressure vessel, hydrogen filling means in which a deaeration device and a hydrogen storage / release device are arranged in the pressure vessel, and the pressure resistance It is hydrogenated by a processing device comprising a heating / cooling means in which a heating device and a cooling device are arranged in a container and a hydrogen storage / release device, respectively, and an electronic control means for automatically controlling the processing container means, the hydrogen filling means, and the heating / cooling means. The hydride according to claim 1, 2, 3, 4 characterized by the above-mentioned. 水素化物の粒子は、次の(1)〜(6)のいずれかの目的に用いられることを特徴とする請求の範囲1、2、3、4、5いずれか記載の水素化物の粒子。
(1)成形品または塗装材あるいは被覆材あるいは注入剤で消臭、環境改善等の触媒の目的であり、水素化物の粒子を分散させたもの。
(2)機能水製造目的であり、水素化物の粒子を洗浄、医療、美容、養殖等の目的で、利用装置に充填したもの。
(3)自然エネルギーの貯蔵・運搬目的であり、水素化物の粒子を防水された容器または袋に不活性で密封にして保存されたもの。
(4)物質の精製または貯蔵(吸着・吸蔵)あるいはヒートポンプまたは水素加圧の目的であり、各々装置内等に用いられるもの。
(5)二次電池の電極の目的であり、機能物質を用いた電極による電池要素を接合して一体化で形成されるもの。
(6)燃料電池または水電解装置の目的であり、MEA(膜−電極接合体)の膜層または電極等の電池要素に用いるもの。
The hydride particles according to any one of claims 1, 2, 3, 4, and 5, wherein the hydride particles are used for any of the following purposes (1) to (6).
(1) A molded product, a coating material, a coating material, or an injecting agent, which is used as a catalyst for deodorization, environmental improvement, etc., and in which hydride particles are dispersed.
(2) For the purpose of producing functional water, the hydride particles are filled in a utilization device for the purposes of cleaning, medical treatment, beauty, aquaculture, and the like.
(3) For the purpose of storing and transporting natural energy, hydride particles are stored in a sealed container or bag in an inert and sealed manner.
(4) Substances used for purification or storage (adsorption / storage) or heat pump or hydrogen pressurization, etc.
(5) The purpose of the electrode of the secondary battery, which is formed integrally by joining battery elements with electrodes using functional substances.
(6) An object of a fuel cell or a water electrolysis apparatus, which is used for a battery element such as a membrane layer or an electrode of an MEA (membrane-electrode assembly).
二次利用後の水素化物の粒子は、水酸化物として、各種の工業原料/触媒、土壌/海水の改良材料、蓄熱の材料、胃腸薬として三次利用されることを特徴とする請求の範囲1、2、3、4,5,6記載の水素化物の粒子。The hydride particles after secondary use are tertiaryly used as hydroxides as various industrial raw materials / catalysts, soil / seawater improvement materials, heat storage materials, and gastrointestinal drugs. 2. Hydride particles according to 2, 3, 4, 5, 6.
JP2008207467A 2008-07-14 2008-07-14 Method for using waste material of lightweight structural material Pending JP2010017700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207467A JP2010017700A (en) 2008-07-14 2008-07-14 Method for using waste material of lightweight structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207467A JP2010017700A (en) 2008-07-14 2008-07-14 Method for using waste material of lightweight structural material

Publications (1)

Publication Number Publication Date
JP2010017700A true JP2010017700A (en) 2010-01-28

Family

ID=41703099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207467A Pending JP2010017700A (en) 2008-07-14 2008-07-14 Method for using waste material of lightweight structural material

Country Status (1)

Country Link
JP (1) JP2010017700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210351A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release and storage system, hydrogen release and storage method, ammonia production apparatus, gas turbine, fuel cell, and ironworks factory
CN115519119A (en) * 2022-09-23 2022-12-27 江苏智仁景行新材料研究院有限公司 Aluminum alloy powder containing endogenous hydride and preparation method thereof
JP2023030977A (en) * 2021-08-24 2023-03-08 三菱重工業株式会社 Hydrogen production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210351A1 (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release and storage system, hydrogen release and storage method, ammonia production apparatus, gas turbine, fuel cell, and ironworks factory
JP2021167262A (en) * 2020-04-13 2021-10-21 三菱重工業株式会社 Hydrogen release/storage system, hydrogen release/storage method, ammonia production device, gas turbine, fuel cell, and steelworks
CN115443249A (en) * 2020-04-13 2022-12-06 三菱重工业株式会社 Hydrogen release/storage system, hydrogen release/storage method, ammonia production device, gas turbine, fuel cell, and iron works
JP7354050B2 (en) 2020-04-13 2023-10-02 三菱重工業株式会社 Hydrogen release/storage system, hydrogen release/storage method, hydrogen release/storage device, ammonia production device, gas turbine, fuel cell, and steelworks
JP2023030977A (en) * 2021-08-24 2023-03-08 三菱重工業株式会社 Hydrogen production system
JP7386211B2 (en) 2021-08-24 2023-11-24 三菱重工業株式会社 Hydrogen production system
CN115519119A (en) * 2022-09-23 2022-12-27 江苏智仁景行新材料研究院有限公司 Aluminum alloy powder containing endogenous hydride and preparation method thereof

Similar Documents

Publication Publication Date Title
JPWO2008015844A1 (en) Power generator
Wang et al. A review on hydrogen production using aluminum and aluminum alloys
CN110048136B (en) Electrochemical reactor equipped with lyophobic porous membrane
US20090035623A1 (en) Functional product, treatment device of functional substance, applied device of functional product and mounting method of functional product
JP2004534928A (en) Metal hydride single-stage compressor and alloy used for it
EA011752B1 (en) Electrode, method of its production, metal-air fuel cell and metal hydride cell
CN107017450A (en) Aluminium-air cell
JP6089188B2 (en) Hydrogen production apparatus and hydrogen production method provided with third electrode
WO2007078787A1 (en) Porous metal hydride electrode
JP2006298670A (en) Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
CN112501640A (en) Battery system for converting nitrate wastewater into ammonia
JP4838952B2 (en) Hydrogen gas generator and generator
JP2010017700A (en) Method for using waste material of lightweight structural material
CN207664150U (en) Electric generating station system based on magnesium-base hydrogen storage material
JP6856293B1 (en) Reversible fuel cell
Ding et al. Physical upcycling of spent artificial diamond accelerant into bifunctional oxygen electrocatalyst with dual-metal active sites for durable rechargeable Zn–air batteries
JP2006097061A (en) Gaseous hydrogen generator, method for producing gaseous hydrogen and fuel cell
JP2017103198A (en) Autonomous hydrogen power generation and drinking water supply system
JP2012248529A (en) Hybrid hydrogen fuel cell
JP2019050120A (en) Semiconductor secondary battery
JP2010174324A (en) Hydrogen storage device and battery using hydrogen storage electrode
CN101600647A (en) Power generation assembly
JP2010042933A (en) Hydrogen generating container for hydrogen demanding device
US20230178779A1 (en) Proton flow reactor system
CN110067702A (en) Wind-powered electricity generation energy-storage system based on solid hydrogen technology