JP2010017699A - Desulfurization method and device of exhaust gas - Google Patents

Desulfurization method and device of exhaust gas Download PDF

Info

Publication number
JP2010017699A
JP2010017699A JP2008206338A JP2008206338A JP2010017699A JP 2010017699 A JP2010017699 A JP 2010017699A JP 2008206338 A JP2008206338 A JP 2008206338A JP 2008206338 A JP2008206338 A JP 2008206338A JP 2010017699 A JP2010017699 A JP 2010017699A
Authority
JP
Japan
Prior art keywords
liquid
exhaust gas
absorption
absorbed
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206338A
Other languages
Japanese (ja)
Inventor
Shotei Cho
書廷 張
Keijo O
慧茹 王
Toshiki Yoshimura
敏機 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOA GIJUTSU KK
Able Corp
Original Assignee
KOA GIJUTSU KK
Able Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOA GIJUTSU KK, Able Corp filed Critical KOA GIJUTSU KK
Priority to JP2008206338A priority Critical patent/JP2010017699A/en
Priority to CN200910159763A priority patent/CN101721895A/en
Publication of JP2010017699A publication Critical patent/JP2010017699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurization method and a device of exhaust gas by which sulfur dioxide can inexpensively and highly efficiently be recovered. <P>SOLUTION: The exhaust gas is brought into two-stage contact with an absorption liquid to perform an absorption. The absorption of the exhaust gas at the downstream side assures high desulfurization effect since the saturation degree of the absorbing liquid is low. On the other hand, in the absorption of the exhaust gas at the upperstream side, since the absorption liquid used at the downstream side is used and is made in contact with the exhaust gas of a high concentration of sulfur oxides, the saturation degree of the absorbing liquid becomes high, and the absorbing liquid is evaporated and concentrated by the contact with the high-temperature and low-humidity exhaust gas to drastically increase the saturation degree of the sulfur oxides of the concentrate, thereby drastically reducing the amount of energy to be used for evaporation and concentration in regeneration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種ガス中に含まれる二酸化硫黄などの硫黄酸化物を除去するガスの脱硫方法及びこの方法を用いた脱硫装置などに関するものである。  The present invention relates to a gas desulfurization method for removing sulfur oxides such as sulfur dioxide contained in various gases, a desulfurization apparatus using this method, and the like.

各種産業や生活から排出された排ガスには二酸化硫黄などの硫黄酸化物が含まれることが多い。特に石炭、重油などを燃料として燃焼させた燃焼ガスや焼結工場、硫酸工場、精錬工場、ゴミ焼却場などの排ガスに大量の二酸化硫黄などの硫黄酸化物が含まれ、除去しなければならない。今までに石灰石−石膏法に代表されるカルシウム化合物を吸収剤とする排煙脱硫方法は既に多数が実用に供されているが、石膏が多量に発生し、品質や需要量などの原因で充分に利用できないのでそのまま廃棄物として捨てられているケースも少なくない。  The exhaust gas discharged from various industries and daily life often contains sulfur oxides such as sulfur dioxide. In particular, a large amount of sulfur oxides such as sulfur dioxide are contained in the combustion gas obtained by burning coal, heavy oil, etc. as fuel, and exhaust gas from a sintering plant, sulfuric acid plant, refining plant, garbage incinerator, etc., and must be removed. Until now, many flue gas desulfurization methods using calcium compounds represented by the limestone-gypsum method as an absorbent have already been put to practical use. However, a large amount of gypsum has been generated, which is sufficient due to quality and demand. In many cases, it is thrown away as waste.

脱硫工程に生じた硫黄発生物を資源として利用できる方法として、排ガス中の硫黄酸化物を硫酸に変換する亜硫酸ナトリウム循環方法が開発されたが、大量の吸収液を低い濃度から分解まで加熱により蒸発濃縮して再生する方法を取っているから、エネルギーの消費が多い他に、酸化により生成した硫酸ナトリウムを部分的に取り除く必要もあるため、ランニングコストが高い。二酸化硫黄を硫酸に変換させ、回収して資源化できる吸収再生方法として、イオン交換膜を用いた電気分解方法も検討されたが、排ガス中の雑物が運転の支障になる他に、コストも高い。従って、操作が簡単で、コストも安く、二酸化硫黄を回収できる排ガスの脱硫方法が望まれている。  A sodium sulfite circulation method that converts sulfur oxides in exhaust gas into sulfuric acid was developed as a method that can use the sulfur generated in the desulfurization process as a resource. However, a large amount of absorption liquid is evaporated by heating from low concentration to decomposition. Since the method of concentrating and regenerating is used, the energy consumption is high, and it is also necessary to partially remove sodium sulfate produced by oxidation, so the running cost is high. An electrolysis method using an ion exchange membrane has also been studied as an absorption and regeneration method that can convert sulfur dioxide into sulfuric acid and recover it for recycling. high. Therefore, there is a demand for an exhaust gas desulfurization method that is easy to operate, inexpensive, and capable of recovering sulfur dioxide.

本発明は上記事情に鑑みてなされたもので、二酸化硫黄を低コスト且つ高効率的に回収できる排ガスの脱硫方法及びその装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust gas desulfurization method and apparatus capable of recovering sulfur dioxide at low cost and high efficiency.

問題を解決するための手段Means to solve the problem

請求項1に記載の発明は、硫黄酸化物を含んだ排ガス流れの下流において、可溶性金属イオンを含有した吸収液を当該排ガスと接触させた後に、当該接触吸収済み液の一部を当該排ガスの流れの上流に送り、再び当該水分未飽和の排ガスと接触させ、当該再接触済み液は吸収装置から排出して吸収済み液の再生に供することを特徴とする排ガスの脱硫方法である。可溶性金属イオンはナトリウムやカリウムなどが挙げられる。通常、これらのイオンを含んだ吸収液は吸収効率を考慮するために、大量に吸収塔に送り込み、吸収飽和度を低く設定して稼動しなければならない。しがし、このような吸収液を再生する時に溶液の飽和度が低いほど、投入した熱に対して放出できる二酸化硫黄の量が少ないため、再生効率が低くてコストが高くつく。本発明は排煙の下流において吸収した液の一部を上流側の水分未飽和排ガスとの接触により、硫黄酸化物を更に吸収する他に、液体が蒸発により濃縮され、液体中の硫黄酸化物の飽和度が大幅に高まり、再生工程の効率を大幅に高め、再生コストを大幅に下げることが可能になる。本発明の技術ポイントは吸収過程を排ガスの上流側と下流側の二段階に分けてそれぞれ異なる吸収液を用いて行い、吸収液は下流側の吸収済みの一部を上流側に送り、水分未飽和の排ガスとの接触で再度硫黄酸化物の吸収と液体の蒸発濃縮も行い、濃縮された吸収済み液を再生工程に送ることにある。実際の操作には、排ガスの上流において吸収液の一部を循環させ、即ち、水分未飽和排ガスとの再接触吸収済みの液の一部をまた前記排ガス上流吸収液の入口に送り、循環しても構わない。  According to the first aspect of the present invention, after bringing the absorbing liquid containing soluble metal ions into contact with the exhaust gas downstream of the exhaust gas stream containing sulfur oxide, a part of the contact absorbed liquid is removed from the exhaust gas. The exhaust gas desulfurization method is characterized in that it is sent to the upstream of the flow and again brought into contact with the moisture-unsaturated exhaust gas, and the re-contacted liquid is discharged from the absorber and used for regeneration of the absorbed liquid. Examples of the soluble metal ion include sodium and potassium. Usually, in order to consider the absorption efficiency, the absorbing solution containing these ions must be sent in large quantities to the absorption tower and operated with a low absorption saturation. However, the lower the saturation of the solution when regenerating such an absorbing solution, the lower the amount of sulfur dioxide that can be released with respect to the input heat, resulting in lower regeneration efficiency and higher cost. The present invention further absorbs sulfur oxide by contacting a part of the liquid absorbed downstream of the flue gas with the moisture-unsaturated exhaust gas on the upstream side, and the liquid is concentrated by evaporation, so that the sulfur oxide in the liquid As a result, it is possible to significantly increase the saturation of the battery, greatly increase the efficiency of the regeneration process, and significantly reduce the regeneration cost. The technical point of the present invention is that the absorption process is divided into two stages, upstream and downstream of the exhaust gas, and different absorption liquids are used. In contact with the saturated exhaust gas, the sulfur oxide is absorbed again and the liquid is evaporated and concentrated, and the concentrated absorbed liquid is sent to the regeneration process. In actual operation, a part of the absorption liquid is circulated upstream of the exhaust gas, that is, a part of the liquid that has been absorbed by re-contact with the moisture unsaturated exhaust gas is also sent to the inlet of the exhaust gas upstream absorption liquid and circulated. It doesn't matter.

請求項2に記載の発明は、請求項1に記述した排ガス上流における再接触済み液を熱源により加熱し、硫黄酸化物を気体の二酸化硫黄として液から放出させ、吸収済み液の吸収能力を回復させることを特徴とする請求項1に記載の吸収済み液の再生方法である。ナトリウムやカリウムなどの可溶性金属イオンの吸収液は100℃前後の温度で蒸発分解できるから、固形物の高温熱分解に比べて、流体を取り扱うので操作しやすい他に、設備投資もランニングコストも安価である。熱エネルギーを用いて蒸発再生する再生工程においては、再生時のエネルギー消費は主に蒸発用の熱源にあるから、蒸発用のスチームを少なくすることは重要である。本発明の二段吸収は排ガスの下流における吸収は吸収液の飽和度が低くて、脱硫効果を確保することができるのに対して、排ガスの上流における吸収は下流において吸収済みの吸収液を使用し、更に硫黄酸化物濃度の高い排ガスと接触するため、吸収液の飽和度も高くなると同時に、高温且つ湿度の低い排ガスとの接触により吸収液が蒸発を受け濃縮され、吸収済み液の硫黄酸化物濃度と吸収の飽和度が大幅に高められることより、再生時の蒸発濃縮に使うエネルギー量を大幅に減らすことが可能となる。蒸発装置は多重効用方式又は排蒸気圧縮再利用方式を用いて省エネルギーを図ることができる。  The invention according to claim 2 recovers the absorption capacity of the absorbed liquid by heating the re-contacted liquid upstream of the exhaust gas described in claim 1 with a heat source and releasing the sulfur oxide as gaseous sulfur dioxide from the liquid. The method for regenerating an absorbed liquid according to claim 1, wherein: Absorbing solutions of soluble metal ions such as sodium and potassium can be evaporated and decomposed at temperatures around 100 ° C, so they are easier to operate because they handle fluids compared to high-temperature pyrolysis of solids, and have lower capital investment and running costs. It is. In a regeneration process in which evaporation is regenerated using thermal energy, energy consumption during regeneration is mainly in the heat source for evaporation, so it is important to reduce the steam for evaporation. In the two-stage absorption of the present invention, the absorption downstream of the exhaust gas has a low degree of saturation of the absorption liquid, and the desulfurization effect can be secured, whereas the absorption upstream of the exhaust gas uses the absorption liquid already absorbed downstream. In addition, since it is in contact with exhaust gas with a high sulfur oxide concentration, the saturation of the absorbing solution is also increased, and at the same time, the absorbing solution is evaporated and concentrated by contact with the exhaust gas with high temperature and low humidity, and the oxidized solution is oxidized with sulfur. Since the concentration of substances and the saturation of absorption are greatly increased, the amount of energy used for evaporation and concentration during regeneration can be greatly reduced. The evaporator can save energy by using a multi-effect system or an exhaust vapor compression reuse system.

請求項3に記載の発明は、請求項1及び請求項2に記述した排ガス上流における吸収済み液の再生工程において、再生に供される液は蒸発装置に入る前に、沈澱又はろ過又は遠心分離、又はこれらの組み合わせを用いて固形物を除去してから蒸発装置に送ることを特徴とする脱硫吸収液の再生方法である。排ガス,特に石炭を燃料とした排煙の中には灰などの粉塵が多く含まれ、吸収過程において吸収液に移るため、沈澱やろ過工程を用いて吸収液に混入した灰の固形物を取り除くことにより、蒸発再生工程に装置の磨耗などを避けることができる。  According to the third aspect of the present invention, in the regeneration process of the absorbed liquid upstream of the exhaust gas described in the first and second aspects, the liquid to be regenerated is precipitated, filtered or centrifuged before entering the evaporator. Or a desulfurization absorbing liquid regeneration method, wherein solids are removed using a combination thereof, and then sent to an evaporator. Exhaust gas, especially coal-fired smoke, contains a lot of dust such as ash and is transferred to the absorption liquid in the absorption process, so the solid matter of ash mixed in the absorption liquid is removed using a precipitation or filtration process. As a result, it is possible to avoid wear of the apparatus during the evaporation regeneration process.

請求項4に記載の発明は、請求項2に記述した吸収済み液の蒸発再生工程において、蒸発で得られた濃縮スラリーの全部又はその一部を引き出し固液分離機に送り、固液分離して得られた液は蒸発工程に返送し、再度蒸発させると共に、当該固液分離機により得られた濃縮固形物は水又は吸収液の循環液で溶解させた後に再生吸収液として吸収工程に返送して循環使用することを特徴とする排ガスの脱硫方法である。蒸発濃縮工程において、吸収液が濃縮されると同時に、亜硫酸水素イオンが二酸化硫黄に分解され、気体として排出され、液体のpHが上昇して、亜硫酸ナトリウム濃度が高くなり、析出される。この析出された亜硫酸ナトリウム結晶を液内から除去して、液体を更に蒸発すれば液体の再生を絶えずに進めることができる。固液分離方法として遠心分離やろ過、沈澱などが利用できるが、遠心分離は効率がよく、連続操作も適しているから望ましい。  The invention described in claim 4 is a process of evaporating and regenerating the absorbed liquid described in claim 2, wherein all or a part of the concentrated slurry obtained by evaporation is drawn out and sent to a solid-liquid separator for solid-liquid separation. The liquid obtained in this way is returned to the evaporation process and evaporated again, and the concentrated solid obtained by the solid-liquid separator is dissolved in water or a circulating liquid of the absorption liquid and then returned to the absorption process as a regenerated absorption liquid. The exhaust gas desulfurization method is characterized by being recycled. In the evaporation and concentration step, the absorption liquid is concentrated, and at the same time, bisulfite ions are decomposed into sulfur dioxide and discharged as a gas, the pH of the liquid rises, and the sodium sulfite concentration increases and precipitates. If the precipitated sodium sulfite crystal is removed from the liquid and the liquid is further evaporated, the liquid can be continuously regenerated. Centrifugation, filtration, precipitation, etc. can be used as a solid-liquid separation method, but centrifugation is desirable because it is efficient and suitable for continuous operation.

請求項5に記載の発明は、請求項4に記述した吸収済み液の再生工程において、濃縮スラリーを固液分離する固液分離機で得られた液体の一部を引き出し、廃棄又は、イオン交換膜を用いた電気分解により可溶性金属イオンを回収して循環使用すると同時に残った残存液は廃棄することを特徴とする吸収済み液の再生方法である。石炭などの燃料に塩素が含まれると同時に脱硫過程に亜硫酸イオンは酸化され硫酸イオンになり、蓄積され、設備の腐食になるから除去しなければならない。二酸化硫黄と亜硫酸ナトリウムを回収してから排出して廃棄する操作は、ナトリウムと亜硫酸イオンの損失量を低減できる。更にイオン交換膜を用いた電気分解によるナトリウムを回収する方法を採用すれば、ナトリウムの損失量を更に低減することができる。  According to the fifth aspect of the present invention, in the regeneration process of the absorbed liquid described in the fourth aspect, a part of the liquid obtained by the solid-liquid separator for solid-liquid separation of the concentrated slurry is drawn out and discarded or ion exchanged. This is a method for regenerating an absorbed liquid, characterized in that soluble metal ions are recovered by electrolysis using a membrane and recycled, and at the same time the remaining liquid is discarded. At the same time that chlorine is contained in coal and other fuels, sulfite ions are oxidized and become sulfate ions during the desulfurization process, which accumulates and corrodes the equipment and must be removed. The operation of recovering sulfur dioxide and sodium sulfite and then discharging and discarding it can reduce the loss of sodium and sulfite ions. Furthermore, if a method of recovering sodium by electrolysis using an ion exchange membrane is employed, the amount of sodium loss can be further reduced.

請求項6に記載の発明は、フェノールフタレイン又は当該物質を基本構造とした化合物を、酸化防止剤として吸収液に添加することを特徴とする吸収液中の亜硫酸イオンの酸化防止方法である。排ガス中に酸素が含まれ、吸収液中の亜硫酸イオンを酸化して硫酸になる。硫酸は低温において熱分解できないから、二酸化硫黄として回収できないほかに、液体に蓄積され,吸収性能に悪影響が生じるため、除去する必要がある。従って、亜硫酸の酸化を抑制できれば、これらの問題を低減することができる。フェノールフタレイン及びこれを基本構造とした化合物は酸化抑制する作用があるから、吸収液への添加により酸化を抑制することができる。フェノールフタレインは単独添加してもよいし,他の酸化抑制剤と混合使用することもよい。  The invention described in claim 6 is a method for preventing oxidation of sulfite ions in an absorbing solution, comprising adding phenolphthalein or a compound having the substance as a basic structure to the absorbing solution as an antioxidant. Oxygen is contained in the exhaust gas, and sulfite ions in the absorbing solution are oxidized to sulfuric acid. Since sulfuric acid cannot be pyrolyzed at low temperatures, it cannot be recovered as sulfur dioxide, and it accumulates in the liquid and adversely affects the absorption performance, so it must be removed. Therefore, if the oxidation of sulfurous acid can be suppressed, these problems can be reduced. Phenolphthalein and a compound having this as a basic structure have the effect of inhibiting oxidation, and therefore, addition to the absorbing solution can inhibit oxidation. Phenolphthalein may be added alone or in combination with other oxidation inhibitors.

請求項7に記載の発明は、少なくとも排ガスの入口と排出口と、排ガスの入口に近い吸収液入口と当該吸収液の吸収済み液の排出口と、排ガスの排出口に近い吸収液入口と当該吸収液の吸収済み液の排出口とを備え、排ガスの入口に近い吸収液の入口側は排ガスの排出口に近い吸収済み液の排出口側に接続され、当該排ガス入口に近い吸収液の吸収済み液の排出口は再生工程にある吸収済み液の固液分離装置の入口側又は蒸発装置の入口側に接続されることを特徴とする排ガスの脱硫吸収装置である。この装置により、ボイラからの排ガスを排ガスの入口から吸収装置に送入し、吸収液と接触して硫黄酸化物を除去してから吸収装置の排出口から排出して煙突に送り、放散することを実現することができる。既に排ガスの下流に排ガスと接触して脱硫吸収過程を経過した下流吸収済み液を排ガスの入口に近い吸収液の入口から、吸収装置の上流側に導入し、更に排ガスの上流における硫黄酸化物の吸収と吸収液の濃縮を行ってから、排ガスの入口に近い吸収液の吸収済み液排出口から排出し、再生工程に送ることができる。この装置の構成で排ガスの下流における高脱硫率の吸収と、排ガス上流における吸収液の高飽和度の吸収と吸収済み液の濃縮を同時に実現することが可能となる。吸収装置の吸収液入口と排出口は排ガスの流れと吸収液の性質により分類されているが、同じ機能を実現するための入口又は排出口として、同じ機能の複数の機械的な口を配置してもよい。  The invention according to claim 7 includes at least an exhaust gas inlet and an exhaust port, an absorption liquid inlet near the exhaust gas inlet, an absorbed liquid outlet of the absorption liquid, an absorption liquid inlet near the exhaust gas outlet, and the An absorption liquid absorption port near the exhaust gas, and the absorption liquid inlet side close to the exhaust gas inlet is connected to the absorbed liquid discharge side close to the exhaust gas discharge and absorbs the absorption liquid close to the exhaust gas inlet. The exhaust port of the spent liquid is an exhaust gas desulfurization absorption device characterized by being connected to the inlet side of the solid-liquid separator of the absorbed liquid in the regeneration step or the inlet side of the evaporator. With this device, exhaust gas from the boiler is sent into the absorber from the inlet of the exhaust gas, contacted with the absorbing liquid to remove sulfur oxides, discharged from the outlet of the absorber, sent to the chimney, and diffused Can be realized. The downstream absorbed liquid that has already been in contact with the exhaust gas downstream of the exhaust gas and passed through the desulfurization absorption process is introduced from the absorption liquid inlet near the exhaust gas inlet to the upstream side of the absorber, and further the sulfur oxide upstream of the exhaust gas After absorption and concentration of the absorption liquid, it can be discharged from the absorbed liquid discharge port of the absorption liquid close to the exhaust gas inlet and sent to the regeneration process. With the configuration of this apparatus, it is possible to simultaneously realize absorption of a high desulfurization rate downstream of exhaust gas, absorption of a high saturation of absorption liquid upstream of exhaust gas, and concentration of absorbed liquid. The absorption liquid inlet and outlet of the absorber are classified according to the flow of exhaust gas and the nature of the absorption liquid, but multiple mechanical ports with the same function are arranged as inlets or outlets to achieve the same function. May be.

吸収装置は図1に示したように一つの吸収塔と排ガス入口通路に吸収液を撒布できる濃縮段を付けた構造を用いてもよいし、独立した二つの吸収塔をつなげた装置でもよいし、二重円筒で構成され、排ガスを内円と内外円間通路にそれぞれ排ガス上流吸収と排ガス下流吸収に分ける吸収装置でも構わない。また、上流側の吸収済み液と排ガスの分離を促進するために、排ガスが下流側吸収部分に入る前に気液分離機構を通過するように吸収装置に気液分離機構を設置してもよい。  As shown in FIG. 1, the absorption device may use a structure in which one absorption tower and an exhaust gas inlet passage are provided with a concentration stage capable of distributing the absorption liquid, or may be a device in which two independent absorption towers are connected. Further, it may be an absorption device that is configured by a double cylinder and separates exhaust gas into exhaust gas upstream absorption and exhaust gas downstream absorption in the inner circle and the inner / outer circle passage, respectively. Further, in order to promote the separation of the absorbed liquid and the exhaust gas on the upstream side, a gas-liquid separation mechanism may be installed in the absorption device so that the exhaust gas passes through the gas-liquid separation mechanism before entering the downstream absorption portion. .

再生工程に送る再生用の吸収済み液は排ガス上流における吸収済み液だけが望まれるが、当該吸収済み液以外の液体を混合して、再生工程に供給すれば再生効率が低下するが、本発明の実行には支障がない。また、排ガス入口に近い吸収液の入口に送入する吸収液として、排ガス下流における吸収済み液のみを供給することが望まれるが、当該吸収済み液以外の液体を混合して供給すれば効率が低下するが、本発明の実行には支障がない。  Although only the absorbed liquid upstream of the exhaust gas is desired as the absorbed liquid for regeneration to be sent to the regeneration process, if the liquid other than the absorbed liquid is mixed and supplied to the regeneration process, the regeneration efficiency decreases. There is no hindrance to the execution. In addition, it is desirable to supply only the absorbed liquid downstream of the exhaust gas as the absorbing liquid to be fed to the inlet of the absorbing liquid close to the exhaust gas inlet. However, if the liquid other than the absorbed liquid is mixed and supplied, the efficiency is improved. Although it is reduced, there is no problem in the execution of the present invention.

発明の効果The invention's effect

本発明によれば排ガス中に含まれた硫黄酸化物を効率的に吸収除去すると同時に、水分未飽和排ガスとの再接触による吸収済み液の吸収飽和度の向上とその蒸発能力から寄与された吸収液の濃縮により、再生工程におけるエネルギー消費を大幅に低減することが可能になる。更に効率よく安定した操作も実現することが可能となる。  According to the present invention, the sulfur oxide contained in the exhaust gas is efficiently absorbed and removed, and at the same time, the absorption contribution contributed from the improvement of the absorption saturation of the absorbed liquid by the re-contact with the moisture unsaturated exhaust gas and the evaporation capability thereof. By concentrating the liquid, it becomes possible to greatly reduce the energy consumption in the regeneration process. Furthermore, it is possible to realize an efficient and stable operation.

以下、本発明を実施例により説明するが、かかる実施例によって本発明が制限されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited by this Example.

図1に、本発明の実施例にかかる処理方法のプロセスフロー工程図の一例を示す。水分未飽和の排ガス1は吸収装置入口2から入り、上流吸収液3aと接触し、硫黄酸化物の吸収と吸収液の濃縮を実現する。この吸収と濃縮を経過した排ガスは吸収液と分離し、吸収塔5の充填層に入り、下流吸収液6と接触して更に脱硫を行った後に、吸収装置の排出口7から脱硫済み排ガス8として排出され、煙突へ導いていく。排ガス下流において吸収を経過した吸収済み液は吸収装置の下流吸収済み液出口34b1からプンプ32により引き出し、下流吸収の循環液3bとして、再生工程で得られた再生吸収液25と混合し、下流吸収液6として排ガス下流吸収液入口34aから吸収装置中に送り、脱硫を行う。下流吸収済み液の一部を上流吸収液3aとして、下流吸収済み液出口34b2からプンプ33により引き出し、排ガスの入口に近い吸収液入口35aから送入し、更に排ガスの上流で水分未飽和排ガスと接触し、硫黄酸化物を吸収すると同時に、濃縮された後に上流吸収済み液4として脱硫装置の上流側にある上流吸収済み液排出口35bから排出され、旋回流固液分離器9に入り、排ガス中の灰などの固形物を分離する。この固液分離工程で得られた上澄み脱硫液10は蒸発装置11に送り、スチーム(図に表示せず)で加熱され蒸発して、二酸化硫黄ガスと水分の蒸発気体12は冷却器13に送り、水蒸気が凝縮し分離され、二酸化硫黄ガス14は硫酸製造工程に送り、二酸化硫黄が含まれる凝縮液15は加熱装置16に送り、溶解された二酸化硫黄を気化させ、二酸化硫黄ガスの脱離ガス17として、冷却器に返送する。蒸発装置11において液体が濃縮され、蒸発スラリー18として遠心分離機19に送り、結晶した固形物を分離して、得られた遠心分離液20は蒸発装置11に返送し、再度液体中の二酸化硫黄を気体として放出させる。遠心分離機で得られた固形物21は亜硫酸ナトリウム溶解装置22に送り、水23により溶解され、更に炭酸ナトリウム24を添加し、溶解され、再生吸収液25として吸収に供する。上流吸収済み液4の旋回流固液分離器9に得られた分離固形物26は溶解分離器27に送り、凝縮水28で溶解し、灰29を分離して排出し、溶解上澄み液30は溶解装置22に送る。塩素と硫酸イオンなどが含まれ、システムから除去するために、遠心分離機19より排出された液体の一部を塩素除去排出液31として排出し、廃棄又は電気分解(図に示せず)でナトリウムを回収して、塩素と硫酸イオンを含めた液体を廃水処理工程に送る。  FIG. 1 shows an example of a process flow process diagram of a processing method according to an embodiment of the present invention. The moisture-unsaturated exhaust gas 1 enters from the absorber inlet 2 and comes into contact with the upstream absorbent 3a to realize the absorption of sulfur oxides and the concentration of the absorbent. The exhaust gas that has passed through the absorption and concentration is separated from the absorption liquid, enters the packed bed of the absorption tower 5, contacts with the downstream absorption liquid 6, further desulfurizes, and then desulfurized exhaust gas 8 from the discharge port 7 of the absorber. Are discharged to the chimney. The absorbed liquid that has absorbed in the downstream of the exhaust gas is drawn out from the downstream absorbed liquid outlet 34b1 of the absorption device by the pump 32, and is mixed with the regenerated absorbent 25 obtained in the regeneration process as the downstream absorbed circulation liquid 3b, and absorbed downstream. The liquid 6 is sent from the exhaust gas downstream absorption liquid inlet 34a into the absorption device to perform desulfurization. A part of the downstream absorbed liquid is used as the upstream absorbent 3a, drawn from the downstream absorbed liquid outlet 34b2 by the pump 33, sent from the absorbent inlet 35a close to the exhaust gas inlet, and further, the water-unsaturated exhaust gas upstream of the exhaust gas. At the same time, it absorbs sulfur oxides, and after being concentrated, is discharged as an upstream absorbed liquid 4 from the upstream absorbed liquid discharge port 35b on the upstream side of the desulfurization apparatus, enters the swirling solid-liquid separator 9, and is exhausted. Separate solids such as ash inside. The supernatant desulfurization liquid 10 obtained in this solid-liquid separation step is sent to an evaporator 11 and heated and evaporated by steam (not shown in the figure), and the sulfur dioxide gas and water vapor 12 are sent to a cooler 13. The water vapor is condensed and separated, the sulfur dioxide gas 14 is sent to the sulfuric acid production process, the condensate 15 containing sulfur dioxide is sent to the heating device 16, the dissolved sulfur dioxide is vaporized, and the desorbed gas of the sulfur dioxide gas. Return to the cooler as 17. The liquid is concentrated in the evaporator 11 and sent to the centrifuge 19 as an evaporation slurry 18 to separate the crystallized solids. The resulting centrifuge 20 is returned to the evaporator 11 and again sulfur dioxide in the liquid. Is released as a gas. The solid material 21 obtained by the centrifuge is sent to the sodium sulfite dissolving device 22 and dissolved by the water 23. Further, the sodium carbonate 24 is added and dissolved, and the regenerated absorbent 25 is used for absorption. The separated solid matter 26 obtained in the swirling solid-liquid separator 9 of the upstream absorbed liquid 4 is sent to the dissolution separator 27, dissolved in the condensed water 28, separated and discharged from the ash 29, and the dissolved supernatant 30 is Send to dissolution device 22. In order to remove chlorine and sulfate ions from the system, a part of the liquid discharged from the centrifuge 19 is discharged as a chlorine removing discharge liquid 31 and is discarded or electrolyzed (not shown in the figure). The liquid containing chlorine and sulfate ions is sent to the wastewater treatment process.

脱硫のプロセスフローは基本的に実施例1と同じで、異なるところは図1に示した上流吸収済み液4の一部を上流吸収液ポンプ33の入口に接続して、循環する。別のポンプを用いて循環させてもよい。  The process flow of desulfurization is basically the same as that of the first embodiment, except that a part of the upstream absorbed liquid 4 shown in FIG. 1 is connected to the inlet of the upstream absorbent liquid pump 33 and circulated. You may circulate using another pump.

脱硫のプロセスフローは基本的に実施例1と同じで、異なるところは図1に示した上流吸収済み液4の旋回流固液分離器9と蒸発装置11の間にろ過装置を設置して上流吸収済み液4を旋回流分離器で比重の重い固形物を分離してからろ過器(図1に表示せず)に入れ、更に比重の軽い固形物を分離してから、蒸発装置11に送る。    The process flow of the desulfurization is basically the same as that of the first embodiment, and the difference is that an upstream is obtained by installing a filtration device between the swirling solid-liquid separator 9 of the upstream absorbed liquid 4 shown in FIG. The absorbed liquid 4 is separated by a swirl flow separator into a solid substance with a high specific gravity and then put into a filter (not shown in FIG. 1), and further, a solid substance with a low specific gravity is separated and sent to the evaporator 11. .

本発明の実施の形態に係る処理方法のプロセスフローの例を示す図である。It is a figure which shows the example of the process flow of the processing method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 水分未飽和の排ガス
2 吸収装置の排ガス入口
3a 上流吸収液
3b 下流吸収の循環液
4 上流吸収済み液
5 吸収塔
6 下流吸収液
7 吸収装置の排ガス排出口
8 脱硫済み排ガス
9 旋回流固液分離装置
10 上流吸収済み液の上澄み液
11 蒸発装置
12 蒸発気体
13 冷却器
14 二酸化硫黄ガス
15 凝縮液体
16 加熱装置
17 脱離ガス
18 蒸発スラリー
19 遠心分離機
20 遠心分離液
21 亜硫酸ナトリウム結晶
22 溶解装置
23 水
24 炭酸ナトリウム
25 再生吸収液
26 上流吸収済み液分離固形物
27 溶解分離器
28 凝縮水
29 灰固形物
30 溶解上澄み液
31 塩素除去排出液
32 下流循環液ポンプ
33 上流吸収液ポンプ
34a 下流吸収液入口
34b1、34b2 下流吸収済み液排出口
35a 上流吸収液入口
35b 上流吸収済み液排出口
DESCRIPTION OF SYMBOLS 1 Unsaturated exhaust gas 2 Exhaust gas inlet 3a Upstream absorption liquid 3b Downstream absorption circulating liquid 4 Upstream absorbed liquid 5 Absorption tower 6 Downstream absorption liquid 7 Absorption apparatus exhaust gas outlet 8 Desulfurized exhaust gas 9 Swirling solid liquid Separation apparatus 10 Supernatant liquid 11 of upstream absorbed liquid 11 Evaporating apparatus 12 Evaporating gas 13 Cooler 14 Sulfur dioxide gas 15 Condensed liquid 16 Heating apparatus 17 Desorbed gas 18 Evaporating slurry 19 Centrifuge 20 Centrifugal liquid 21 Sodium sulfite crystal 22 Dissolution Apparatus 23 Water 24 Sodium carbonate 25 Regenerated absorbent 26 Upstream absorbed liquid separation solid 27 Dissolving separator 28 Condensed water 29 Ash solid 30 Dissolved supernatant 31 Chlorine removal discharge 32 Downstream circulation pump 33 Upstream absorption pump 34a Downstream Absorbing liquid inlet 34b1, 34b2 Absorbed liquid outlet 35a Absorbed liquid inlet 35b Absorbed upstream 35b Outlet

Claims (7)

硫黄酸化物を含んだ排ガス流れの下流において、可溶性金属イオンを含有した吸収液を当該排ガスと接触させた後に、当該接触吸収済み液の一部を当該排ガスの流れの上流に送り、再び当該水分未飽和の排ガスと接触させ、当該再接触済み液は吸収装置から排出して吸収済み液の再生に供することを特徴とする排ガスの脱硫方法。After contacting an absorption liquid containing soluble metal ions with the exhaust gas downstream of the exhaust gas stream containing sulfur oxide, a part of the contact-absorbed liquid is sent upstream of the exhaust gas stream, and the moisture again. A method for desulfurizing exhaust gas, wherein the exhaust gas is brought into contact with unsaturated exhaust gas, and the re-contacted liquid is discharged from the absorption device and used for regeneration of the absorbed liquid. 前記排ガス上流における再接触済み液を熱源により加熱し、硫黄酸化物を気体の二酸化硫黄として液から放出させ、吸収済み液の吸収能力を回復させることを特徴とする請求項1に記載の吸収済み液の再生方法。The absorbed liquid according to claim 1, wherein the re-contacted liquid upstream of the exhaust gas is heated by a heat source, and sulfur oxide is released from the liquid as gaseous sulfur dioxide to recover the absorption capacity of the absorbed liquid. Liquid regeneration method. 請求項1及び請求項2に記述した排ガス上流における吸収済み液の再生工程において、再生に供される液は蒸発装置に入る前に、沈澱又はろ過又は遠心分離、又はこれらの組み合わせを用いて固形物を除去しから蒸発装置に送ることを特徴とする脱硫吸収液の再生方法。In the process of regenerating the absorbed liquid upstream of the exhaust gas described in claim 1 and claim 2, the liquid to be regenerated is solidified using precipitation, filtration, centrifugation, or a combination thereof before entering the evaporator. A method for regenerating a desulfurized absorbent, which comprises removing an object and then sending it to an evaporator. 請求項2に記述した吸収済み液の蒸発再生工程において、蒸発で得られた濃縮スラリーの全部又はその一部を引き出し固液分離機に送り、固液分離して得られた液は蒸発工程に返送し、再度蒸発させると共に、当該固液分離機により得られた濃縮固形物は水又は吸収液の循環液で溶解させた後に再生吸収液として吸収工程に返送して循環使用することを特徴とする排ガスの脱硫方法。In the process of evaporating and regenerating the absorbed liquid described in claim 2, all or part of the concentrated slurry obtained by evaporation is drawn out and sent to a solid-liquid separator, and the liquid obtained by solid-liquid separation is subjected to the evaporation process. It is returned and evaporated again, and the concentrated solid obtained by the solid-liquid separator is dissolved in water or a circulating solution of absorption liquid, and then returned to the absorption process as a regenerated absorption liquid for recycling. To desulfurize exhaust gas. 請求項4に記述した吸収済み液の再生工程において、濃縮スラリーを固液分離する固液分離機で得られた液体の一部を引き出し、廃棄又は、イオン交換膜を用いた電気分解により可溶性金属イオンを回収して循環使用すると同時に残った残存液は廃棄することを特徴とする吸収済み液の再生方法。In the regeneration process of absorbed liquid described in claim 4, a part of the liquid obtained by a solid-liquid separator for solid-liquid separation of the concentrated slurry is drawn out and discarded, or soluble metal is obtained by electrolysis using an ion exchange membrane. A method for regenerating an absorbed liquid, wherein the remaining liquid is discarded at the same time as ions are collected and recycled. フェノールフタレイン又は当該物質を基本構造とした化合物を、酸化防止剤として吸収液に添加することを特徴とする吸収液中の亜硫酸イオンの酸化防止方法。A method for preventing oxidation of sulfite ions in an absorbing solution, comprising adding phenolphthalein or a compound having the substance as a basic structure to the absorbing solution as an antioxidant. 少なくとも排ガスの入口と排出口と、排ガスの入口に近い吸収液入口と当該吸収液の吸収済み液の排出口と、排ガスの排出口に近い吸収液入口と当該吸収液の吸収済み液の排出口とを備え、排ガスの入口に近い吸収液の入口側は排ガスの排出口に近い吸収済み液の排出口側に接続され、当該排ガス入口に近い吸収液の吸収済み液の排出口は再生工程にある吸収済み液の固液分離装置の入口側又は蒸発装置の入口側に接続されることを特徴とする排ガスの脱硫吸収装置。At least an exhaust gas inlet and outlet, an absorption liquid inlet near the exhaust gas inlet, an absorption liquid outlet of the absorption liquid, an absorption liquid inlet near the exhaust gas outlet and an absorption liquid outlet of the absorption liquid The absorption liquid inlet side near the exhaust gas inlet is connected to the absorbed liquid discharge side near the exhaust gas outlet, and the absorbed liquid outlet near the exhaust gas inlet is used for the regeneration process. A desulfurization absorption apparatus for exhaust gas, which is connected to an inlet side of a solid-liquid separation apparatus for an absorbed liquid or an inlet side of an evaporation apparatus.
JP2008206338A 2008-07-14 2008-07-14 Desulfurization method and device of exhaust gas Pending JP2010017699A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008206338A JP2010017699A (en) 2008-07-14 2008-07-14 Desulfurization method and device of exhaust gas
CN200910159763A CN101721895A (en) 2008-07-14 2009-07-13 Exhaust gas desulphurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206338A JP2010017699A (en) 2008-07-14 2008-07-14 Desulfurization method and device of exhaust gas

Publications (1)

Publication Number Publication Date
JP2010017699A true JP2010017699A (en) 2010-01-28

Family

ID=41703098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206338A Pending JP2010017699A (en) 2008-07-14 2008-07-14 Desulfurization method and device of exhaust gas

Country Status (2)

Country Link
JP (1) JP2010017699A (en)
CN (1) CN101721895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489136A (en) * 2011-12-16 2012-06-13 国电环境保护研究院 Flue gas desulfurizing waste water recovering process and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106039969A (en) * 2016-07-21 2016-10-26 黄立维 Sulfur dioxide absorption method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489136A (en) * 2011-12-16 2012-06-13 国电环境保护研究院 Flue gas desulfurizing waste water recovering process and device
CN102489136B (en) * 2011-12-16 2013-12-25 国电环境保护研究院 Flue gas desulfurizing waste water recovering process and device

Also Published As

Publication number Publication date
CN101721895A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5656649B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP6087959B2 (en) Exhaust gas treatment system and exhaust gas treatment method
EP2540379B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
WO2014115408A1 (en) Exhaust gas processing system and exhaust gas processing method
JP3872677B2 (en) Mercury removal method and system
JP2012196638A (en) Exhaust gas processing system and method
JP5804461B2 (en) Wastewater treatment equipment and method
JP2008246406A (en) Waste gas treatment device and waste gas treatment method
KR20060029135A (en) Device and method for processing combustion exhaust gas
JP2015144986A (en) Exhaust gas treatment system
CA2849714C (en) Water-saving liquid-gas processing system based on equilibrium moisture operation
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
JP5371172B2 (en) Exhaust gas treatment apparatus and method
JP2010017699A (en) Desulfurization method and device of exhaust gas
JP2006263676A (en) Combustion waste gas-purification system
JP2003236334A (en) Purifying system for flue gas treating liquid
JPH11123313A (en) Exhaust gas desulfurizing plant
JP2013184112A (en) Exhaust gas treatment apparatus
JP2000070666A (en) Method for flue gas desulfurization
JP2000053980A (en) Purification of gas
JPH1135957A (en) Gas refining and gas refining facility
JP3519555B2 (en) Exhaust gas treatment method for heavy oil fuel fired boiler
KR820000687B1 (en) Production of h,s from so2 obtained from flue gas
JPH07108134A (en) Biological regeneration-type method for desulfurization of flue gas
JPH0483586A (en) Treatment of waste water of wet exhaust gas desulfurization apparatus