JP2010017085A - Method for determining commodity - Google Patents

Method for determining commodity Download PDF

Info

Publication number
JP2010017085A
JP2010017085A JP2008177502A JP2008177502A JP2010017085A JP 2010017085 A JP2010017085 A JP 2010017085A JP 2008177502 A JP2008177502 A JP 2008177502A JP 2008177502 A JP2008177502 A JP 2008177502A JP 2010017085 A JP2010017085 A JP 2010017085A
Authority
JP
Japan
Prior art keywords
product
discrimination
group
probability
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177502A
Other languages
Japanese (ja)
Other versions
JP5344859B2 (en
Inventor
Naganori Nasu
永典 奈須
Atsumi Tsujimoto
敦美 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SOFTWARE MAN KK
Japan Software Management Co Ltd
Original Assignee
NIPPON SOFTWARE MAN KK
Japan Software Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SOFTWARE MAN KK, Japan Software Management Co Ltd filed Critical NIPPON SOFTWARE MAN KK
Priority to JP2008177502A priority Critical patent/JP5344859B2/en
Publication of JP2010017085A publication Critical patent/JP2010017085A/en
Application granted granted Critical
Publication of JP5344859B2 publication Critical patent/JP5344859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of determination with objective accuracy by improving a determination method in which a determination standard is liable to get fuzzy in commodity determination or production area determination of farm and marine products and raw materials such as processed foods, foodstuffs, feed, etc., using farm and marine products as raw materials. <P>SOLUTION: The method for determining to which group of a plurality of groups a target commodity to be determined belongs includes calculating probabilities in which target commodities to be determined belong to each group and deciding that a group exhibiting the highest probability is the group to which the target commodity belongs to. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生物や生物を原料とした加工品などの商品が、どの集団(品種、産地など)に属するかを判別する方法に関する。   The present invention relates to a method for discriminating to which group (variety, production area, etc.) a product such as a living organism or a processed product made from a living organism belongs.

近年、野菜や果樹、肉や魚などの農水産物、および、それらを原材料とした製品について、品種や産地の偽装表示が多々発覚してきている。製品としては同じ由来や組成であっても産地が異なれば商品としては異なるものとして扱われるため、このような偽装表示の横行により、育成者権の侵害や食の安心・安全に対する不信が増大して来ている。このような偽装表示を取り締まるために、生物またはそれに由来する製品の商品判別を行う手法が必要となる。商品判別の手法の一つである品種の判別のために独立行政法人種苗管理センターが行う品種類似性試験では、特性比較、比較栽培、DNA分析の3種の試験を判別手法としているが(非特許文献1)、DNA分析の手法が確立された品種は限られており、新たな品種のDNA分析手法の確立には手間と時間がかかるため、全ての農水産物およびそれらを原料とした加工食品・食材や飼料等の原材料について、DNA分析のみにより品種や産地の判別を行うことは、現時点ではできない。このため、現在は、品種や産地の判別は、特性比較や比較栽培を中心に行われている。   In recent years, many camouflaged displays of varieties and production areas have been discovered for agricultural and marine products such as vegetables and fruit trees, meat and fish, and products made from these. As products, even if they have the same origin and composition, they are treated as different products if they are produced in different places.Through such disguise display, the infringement of breeder rights and distrust of food safety and security increase. Is coming. In order to control such camouflage display, a method for discriminating goods of a living thing or a product derived therefrom is required. In the variety similarity test conducted by the National Center for Seedling and Seedling Management to identify varieties, which is one of the methods for product discrimination, three types of tests, characteristic comparison, comparative cultivation, and DNA analysis, are used as discrimination methods (non- Patent Literature 1), varieties for which DNA analysis techniques have been established are limited, and it takes time and labor to establish new varieties of DNA analysis techniques, so all agricultural and marine products and processed foods using them as raw materials -At present, it is not possible to discriminate varieties and production areas of raw materials such as food and feed by DNA analysis alone. For this reason, at present, varieties and production areas are discriminated mainly by characteristic comparison and comparative cultivation.

独立行政法人種苗管理センター、「品種類似性試験の概要」、[online]、インターネット<URL: http://www.nCss.go.jp/main/gyomu/hinsyuhogo/hinsyuruijiseishiken.html>Independent Administrative Institution Seedling Management Center, “Summary of Variety Similarity Test”, [online], Internet <URL: http://www.nCss.go.jp/main/gyomu/hinsyuhogo/hinsyuruijiseishiken.html>

上述したような品種や原産地の判別を行う場合、判別の基準となる特性は、たとえば農林水産省の品種登録ホームページの登録品種データベースの記載に見られるように、形態に関する描写が多い(http://www.hinsyu.mAff.go.jp/)。例えば葉の長さは長、短、やや短など、葉の厚さは厚、薄など、また成長の速さは速、遅などの抽象的な表現にとどまるため、判別の厳密な基準とするのは難しいという問題がある。   When discriminating varieties and places of origin as described above, the characteristics that serve as the criteria for discrimination are many descriptions regarding the form as seen in the description of the registered varieties database on the variety registration homepage of the Ministry of Agriculture, Forestry and Fisheries (http: / /www.hinsyu.mAff.go.jp/). For example, the length of leaves is long, short, slightly short, the thickness of leaves is thick, thin, etc., and the speed of growth is only an abstract expression such as fast, slow, etc. There is a problem that it is difficult.

本発明は、このような問題に鑑みなされたものであり、客観的な正確さをもつ明確な判別手法を提供することを目的とするものである。   The present invention has been made in view of such problems, and an object thereof is to provide a clear discrimination method having objective accuracy.

上記課題を達成するため、本発明は以下の〔1〕〜〔10〕を提供する。
〔1〕判別対象とする商品が、複数の集団のいずれに属するかを判別する方法であって、判別対象とする商品が各集団に属する確率を算出し、最も高い確率を示した集団が、判別対象商品の属する集団であると判断することを特徴とする判別方法。この方法のように、判別結果の確からしさを確率で表示することにより、判別方法の信頼性を比較評価することができる。
〔2〕複数の判別方法の結果を合わせて総合的に判別を行うことを特徴とする〔1〕に記載の判別方法。この方法のように、複数の判別方法の結果を合わせて総合的に判別を行うことにより、判別の精度を高めることができる。
〔3〕判別方法の結果ごとに重み付けをして判別を行うことを特徴とする〔2〕に記載の判別方法。この方法のように、判別方法ごとに重み付けを行った複数の判別方法の結果を合わせて総合的に判別を行うことにより、判別方法ごとの判別精度を判別結果に反映することができ、より判別の精度を高めることができる。
〔4〕判別対象とする商品が各集団に属する確率を以下の方法によって求めることを特徴とする〔1〕乃至〔3〕のいずれかに記載の判別方法、
(1)判別対象商品の一つの特性を選択し、その特性について複数の区分を設定する、(2)各集団に属することが確定している複数の商品の特性を調べ、各商品を区分に分類し、集団ごとに各区分における出現確率を求める、(3)判別対象商品が、特性についての区分のいずれに属するか調べる、(4)各集団に属する確率Aを式:A=(B/C)により算出する。
B:判別対象商品が属する区分における確率を算出しようとする集団の出現確率
C:判別対象商品が属する区分における各々の集団の出現確率の総和
〔5〕特性が数値で表される特性であり、各集団に属することが確定している商品の特性を調べ、異常に高い値を示した商品及び異常に低い値を示した商品を除外して、商品の区分を行うことを特徴とする〔4〕に記載の判別方法。この方法のように、高い値と低い値の両方のはずれ値を除外した有効な計測値のみを用いて商品の区分を行うことにより、判別の精度を高めることができる。
〔6〕判別対象とする商品が各集団に属する確率を以下の方法によって求めることを特徴とする〔1〕乃至〔3〕のいずれかに記載の判別方法、
(1)判別対象商品についてn個の判定項目を設定する、(2)各集団に属することが確定している複数の商品について、判定項目に該当するかどうかを調べ、集団ごとに各項目の該当率と非該当率を求める、(3)判別対象商品について、各判定項目に該当するかどうかを調べ、項目に該当する場合は、算出しようとする集団の該当率を選択し、項目に該当しない場合は、算出しようとする集団の非該当率を選択し、各項目の該当率又は非該当率の総和を求め、それをnで割った値を集団に属する確率とする。
〔7〕判定項目が、マーカーとなるDNAの検出であることを特徴とする〔6〕に記載の判別方法。
〔8〕商品が、生物又は生物を原料とした加工品であることを特徴とする〔1〕乃至〔7〕のいずれかに記載の判別方法。
〔9〕商品が生物であり、集団が品種であることを特徴とする〔1〕乃至〔7〕のいずれか記載の判別方法。
〔10〕〔4〕又は〔5〕に記載の判別方法の結果と〔6〕又は〔7〕に記載の判別方法の結果を合わせて総合的に判別を行うことを特徴とする判別方法。
In order to achieve the above object, the present invention provides the following [1] to [10].
[1] A method for determining which of a plurality of groups a product to be identified belongs to, wherein the probability that the product to be identified belongs to each group is calculated, and the group having the highest probability is A determination method characterized by determining that a group to which a determination target product belongs. Like this method, the reliability of the discrimination method can be compared and evaluated by displaying the certainty of the discrimination result as a probability.
[2] The discrimination method according to [1], wherein the discrimination is performed comprehensively by combining the results of a plurality of discrimination methods. Like this method, the accuracy of discrimination can be improved by comprehensively discriminating the results of a plurality of discrimination methods.
[3] The discrimination method according to [2], wherein discrimination is performed by weighting each result of the discrimination method. Like this method, it is possible to reflect the discrimination accuracy for each discrimination method in the discrimination result by comprehensively combining the results of multiple discrimination methods weighted for each discrimination method. Can improve the accuracy.
[4] The discrimination method according to any one of [1] to [3], wherein the probability that a product to be discriminated belongs to each group is obtained by the following method:
(1) Select one characteristic of the product to be discriminated and set multiple categories for that characteristic. (2) Examine the characteristics of multiple products that are confirmed to belong to each group, and classify each product as a category. Classifying and determining the appearance probability in each category for each group (3) Examining which category the product to be identified belongs to belongs to the characteristics (4) Probability A belonging to each group: A = (B / C).
B: Appearance probability of a group trying to calculate the probability in the category to which the discrimination target product belongs C: Total sum of appearance probabilities of each group in the category to which the discrimination target product belongs [5] Characteristic represented by a numerical value, The characteristics of the products determined to belong to each group are examined, and the products are classified by excluding the products that showed abnormally high values and the products that showed abnormally low values [4 ] The discriminating method described in the above. As in this method, the accuracy of discrimination can be improved by classifying products using only effective measurement values excluding outliers of both high and low values.
[6] The discrimination method according to any one of [1] to [3], wherein the probability that a product to be discriminated belongs to each group is obtained by the following method:
(1) Set n judgment items for the product to be discriminated. (2) For a plurality of products that have been confirmed to belong to each group, check whether they are applicable to the judgment item. Find the applicable rate and the non-applicable rate. (3) Check whether the product to be judged falls under each judgment item, and if it falls under the item, select the relevant rate of the group to be calculated and fall under the item If not, the non-corresponding rate of the group to be calculated is selected, the sum of the corresponding rates or non-corresponding rates of each item is obtained, and the value divided by n is set as the probability of belonging to the group.
[7] The determination method according to [6], wherein the determination item is detection of DNA serving as a marker.
[8] The discrimination method according to any one of [1] to [7], wherein the product is a living thing or a processed product using a living thing as a raw material.
[9] The discrimination method according to any one of [1] to [7], wherein the product is a living thing and the group is a variety.
[10] A discrimination method characterized by comprehensively discriminating the result of the discrimination method according to [4] or [5] and the result of the discrimination method according to [6] or [7].

本発明は、商品の新規な判別方法を提供する。この方法により、農作物、畜産物、水産物及びこれらの加工品などの品種、産地などを正確に判別できるようになる。   The present invention provides a novel method for discriminating products. By this method, it is possible to accurately discriminate varieties, production areas, etc., such as agricultural products, livestock products, marine products and processed products thereof.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、判別対象とする商品が、複数の集団のいずれに属するかを判別する方法であって、判別対象とする商品が各集団に属する確率を算出し、最も高い確率を示した集団が、判別対象商品の属する集団であると判断することを特徴とするものである。   The present invention is a method for discriminating which of a plurality of groups a product to be discriminated belongs to, and calculating the probability that the product to be discriminated belongs to each group, and the group showing the highest probability is , It is determined that the product belongs to the group to which the discrimination target product belongs.

以下に、本発明の商品判別方法の好ましい態様を、ある植物がA、B、Cの三種の品種のうちどれに属するかを判別するにあたって、判別の基準となる形質が、草丈とゲノムDNAのSSRマーカーの2つである場合を例にとり、図を用いて説明する。草丈は連続的な数値データであり、SSRマーカーはマーカーの有無を判定する二者択一のデータである。   Hereinafter, in a preferred embodiment of the product discrimination method of the present invention, when determining which of the three varieties A, B, and C a plant belongs to, the traits that are the criteria for discrimination are plant height and genomic DNA. The case where there are two SSR markers will be described as an example with reference to the drawings. The plant height is continuous numerical data, and the SSR marker is alternative data for determining the presence or absence of a marker.

まず、第1の判別の基準となる形質である草丈による判別手法について、図1を用いて説明する。形態に基づく通常の品種登録の場合、品種Aは草丈が低い、品種Bの草丈はやや低、品種Cは草丈が高い、の3通りに区別されるものとする。 First, a discrimination method based on plant height, which is a trait that serves as a first discrimination criterion, will be described with reference to FIG. In the case of normal cultivar registration based on form, cultivar A is distinguished in three ways: plant height is low, plant B is slightly low, and variety C is high.

一般に、商品判別は、判別に必要な基礎データ作成の作業と、このデータに基づいて判別対象の品種を判別する作業の二段階からなる。草丈による商品判別の場合も、草丈による商品判別のための基礎データ作成過程16と、草丈による判別対象の商品判別の過程17の二段階があり、まず、草丈による商品判別のための基礎データ作成のため、各々の品種の標準品について、草丈の計測値の幅と分布を求める。   In general, the product discrimination is composed of two steps, that is, basic data creation work necessary for discrimination and work for discriminating the type of discrimination target based on this data. In the case of product discrimination based on plant height, there are two stages: basic data creation process 16 for product discrimination based on plant height and product discrimination process 17 for discrimination based on plant height. First, creation of basic data for product discrimination based on plant height Therefore, the width and distribution of the measured values of the plant height are obtained for the standard products of each variety.

このために、品種Aの標準品個体の集団1、品種Bの標準品個体の集団2、品種Cの標準品個体の集団3をそれぞれ用意する。集団中の個体数が多いほど計測値の幅と分布は信頼性が高くなり、これにもとづく判別の信頼性も上がる。 For this purpose, a group 1 of standard product individuals of a variety A, a group 2 of standard product individuals of a product B, and a group 3 of standard product individuals of a product C are prepared. As the number of individuals in the group increases, the width and distribution of measurement values become more reliable, and the reliability of discrimination based on this increases.

用意した標準品個体の各々について標準品の草丈の計測4を行う。計測手法はどんなものでもよいが、常に最初に決めた条件で行う。 Measurement 4 of the height of the standard product is performed for each of the prepared standard products. Any measurement method can be used, but always use the conditions determined first.

次に、この計測で得られた数値を、段階的に複数の数値領域に区分する。数値領域の区分の仕方に特に制限はないが、分布する数値領域のパターンに品種ごとの相違が出やすいような区分の仕方が好ましい。ここでは、センチメートル表示の草丈を、20cm以下、21cm〜40cm、41cm〜60cm、61cm〜80cm、80cmより上の5つの領域に区分することとする。 Next, the numerical values obtained by this measurement are divided into a plurality of numerical regions step by step. There is no particular limitation on the way of dividing the numerical area, but a way of dividing such that the distribution of the numerical area pattern is likely to be different for each product type is preferable. Here, the plant height displayed in centimeters is divided into five regions above 20 cm, 21 cm to 40 cm, 41 cm to 60 cm, 61 cm to 80 cm, and 80 cm.

標準品の草丈の計測4で得られた草丈の計測値を、上記の5つの数値領域の区分に当てはめて分類し、品種ごとに数値の分布をグラフに表すと、品種Aの標準品の個体ごとの草丈分布グラフ5、品種Bの標準品の個体ごとの草丈分布グラフ6、品種Cの標準品の個体ごとの草丈分布グラフ7のようになる。この分布グラフを比較すると、品種Aは草丈が低い、品種Bの草丈はやや低、品種Cは草丈が高いという品種ごとの特徴を、数値分布で表せていることがわかる。これらのグラフは、品種ごとに数値領域の分布パターンが異なっているかどうか、その結果、草丈という形質が、A,BおよびCの3つの品種を判別する基準として望ましいかどうかを判断するのに有用であるが、必ずしもグラフとして作成する必要はなく、次の品種ごとの個体別草丈の集積データ及び出現確率の表8の作成に進んでもよい。 Measurement of plant height measured in standard product 4 The plant height measurement values obtained by classification are applied to the above five numerical areas, and the distribution of numerical values for each product type is shown in a graph. Plant height distribution graph 5 for each plant, plant height distribution graph 6 for each individual of the standard product of variety B, and plant height distribution graph 7 for each individual of the standard product of variety C. Comparing the distribution graphs, it can be seen that the characteristics of each cultivar such as cultivar A having a low plant height, cultivar B having a slightly low plant height, and cultivar C having a high plant height can be represented by a numerical distribution. These graphs are useful for determining whether the distribution pattern of the numerical range differs for each variety and, as a result, whether the trait of plant height is desirable as a criterion for distinguishing the three varieties A, B, and C. However, it is not always necessary to create a graph, and the process may proceed to creation of table 8 of accumulated data of individual plant heights and appearance probabilities for the following varieties.

次に、品種ごとに、各々の数値領域に属する個体数を計測した全個体数で割って、各々の数値領域の計測値の出現確率を求め、品種ごとの個体別草丈の集積データ及び出現確率の表を作成する。この表の例では、例えば、品種Bの標準品の個体200個の草丈を計測してこの5段階の数値区分で分類すると、41cm〜60cmの数値領域に含まれる草丈の個体は82個見られ、品種Bにおいて、この数値領域に含まれる草丈の個体の出現確率は、82/200すなわち0.41である。 Next, for each variety, divide the number of individuals belonging to each numerical area by the total number of individuals, and obtain the appearance probability of the measured value in each numerical area. Create a table. In the example of this table, for example, when measuring the plant height of 200 individuals of the standard product of cultivar B and classifying them in the numerical classification of these 5 stages, 82 individuals of plant height included in the numerical range of 41 cm to 60 cm are seen. In the cultivar B, the appearance probability of an individual with a plant height included in this numerical range is 82/200, that is, 0.41.

これで基礎データが作成できたため、以後、この手法によりこれらの品種の判別を行う場合はいつでも、次の、草丈による判別対象の商品判別の過程17から作業を行うことが可能となる。 Now that basic data has been created, any time when these types are discriminated by this method, it is possible to work from the next step 17 for discriminating a product to be discriminated by plant height.

次に、草丈による判別対象の商品判別の過程17について、判別対象の個体(イ)10と判別対象の個体(ロ)11の2個体の商品判別を行う場合に例をとって説明する。 Next, the process 17 for discriminating the product to be discriminated by the plant height will be described by taking as an example the case of discriminating the product of the individual to be discriminated (b) 10 and the individual to be discriminated (b) 11.

まず、判別対象の個体(イ)10と判別対象の個体(ロ)11の2個体について、判別対象の草丈の計測12を行い、判別対象の個体(イ)の草丈計測結果13と、判別対象の個体(ロ)の草丈計測結果14を得る。草丈の測定手法は、草丈による商品判別のための基礎データ作成過程16で使用した同じ手法を用いる。 First, the measurement target plant height measurement 12 is performed on the discrimination target individual (b) 10 and the discrimination target individual (b) 11, and the plant height measurement result 13 of the discrimination target individual (b) is determined. The plant height measurement result 14 of the individual (b) is obtained. The measuring method of the plant height is the same as that used in the basic data creation process 16 for product discrimination by plant height.

次にこれらの計測結果の数値と品種ごとの個体別草丈の集積データ及び出現率の表8とを比較して、判別対象の個体(イ)の草丈計測結果13と、判別対象の個体(ロ)の草丈計測結果14の含まれる数値領域を同定する。判別対象の個体(イ)の草丈計測結果13は32cmであるため、草丈21cm〜40cmの数値領域に含まれ、判別対象の個体(ロ)の草丈計測結果14は、85cmであるため、草丈81cmより上の数値領域に含まれる。 Next, by comparing the numerical values of these measurement results with the accumulated data of individual plant heights for each variety and Table 8 of the appearance rate, the plant height measurement result 13 of the discrimination target individual (a) and the discrimination target individual (b) ) To identify the numerical region included in the plant height measurement result 14. Since the plant height measurement result 13 of the discrimination target individual (I) is 32 cm, it is included in the numerical region of the plant height 21 cm to 40 cm, and the plant height measurement result 14 of the discrimination target individual (B) is 85 cm, so the plant height is 81 cm. Included in the upper numerical range.

判別対象の個体ごとに、計測値が含まれる数値領域の品種ごとの出現確率を同定し、品種ごとのその数値領域の出現確率を全ての品種のその数値領域の出現確率で割って、その数値領域における各々の品種の出現確率を求め、判別対象の草丈による商品判別の確率表15を作成する。すなわち、品種ごとの個体別草丈の集積データ及び出現率の表8から、判別対象の個体(イ)の草丈計測結果13である32cmが含まれる21cm〜40cmの数値領域が品種Aにおいて現れる出現確率は0.31、品種Bにおいて現れる出現確率は0.29、品種Cにおいて現れる出現確率は0.00である。同様に、判別対象の個体(ロ)の草丈計測結果14である85cmが含まれる80cmより上の数値領域が品種Aにおいて現れる出現確率は0.00、品種Bにおいて現れる出現確率は0.04、品種Cにおいて現れる出現確率は0.50である。 For each individual to be identified, identify the appearance probability for each variety in the numerical area containing the measured value, divide the appearance probability of that numerical area for each breed by the appearance probability of that numerical area for all varieties, Appearance probabilities of the respective varieties in the region are obtained, and a product discrimination probability table 15 based on the plant height to be discriminated is created. That is, the probability of appearance of a numerical region of 21 cm to 40 cm including 32 cm, which is the plant height measurement result 13 of the individual (i) to be discriminated, from the accumulated data of the plant height and the appearance rate of each plant for each variety and appearing in the variety A Is 0.31, the appearance probability that appears in the breed B is 0.29, and the appearance probability that appears in the breed C is 0.00. Similarly, the appearance probability of the numerical region above 80 cm including 85 cm which is the plant height measurement result 14 of the individual (b) to be discriminated appears in the variety A is 0.00, the appearance probability that appears in the variety B is 0.04, and appears in the variety C The appearance probability is 0.50.

これらの出現確率の数値から、商品判別の判別対象ごとの判別の確率を表にしたものが、判別対象の草丈による商品判別の確率表15である。すなわち、草丈計測結果が32cmである判別対象の個体(イ)10が品種Aである確率は、21cm〜40cmの数値領域が品種Aにおいて現れる出現確率0.31を、品種Aにおいて現れる出現確率0.31、品種Bにおいて現れる出現確率0.29、品種Cにおいて現れる出現確率0.00の3つの数値の合計値で割った0.52、つまり52%となる。同様に、判別対象の個体(イ)10が品種Bである確率は、21cm〜40cmの数値領域が品種Bにおいて現れる出現確率0.29を、品種Aにおいて現れる出現確率0.31、品種Bにおいて現れる出現確率0.29、品種Cにおいて現れる出現確率0.00の3つの数値の合計値で割った0.48、つまり48%、判別対象の個体(イ)10が品種Cである確率は、21cm〜40cmの数値領域が品種Cにおいて現れる出現確率0.00を、品種Aにおいて現れる出現確率0.31、品種Bにおいて現れる出現確率0.29、品種Cにおいて現れる出現確率0.00の3つの数値の合計値で割った0.00、つまり0%となる。一方、草丈計測結果が85cmである判別対象の個体(ロ)11が品種Aである確率は、81cmより上の数値領域が品種Aにおいて現れる出現確率0を、品種Aにおいて現れる出現確率0.00、品種Bにおいて現れる出現確率0.04、品種Cにおいて現れる出現確率0.50の3つの数値の合計値で割った0.00、つまり0%、判別対象の個体(ロ)11が品種Bである確率は、81cmより上の数値領域が品種Bにおいて現れる出現確率0.04を、品種Aにおいて現れる出現確率0.00、品種Bにおいて現れる出現確率0.04、品種Cにおいて現れる出現確率0.50の3つの数値の合計値で割った0.07、つまり7%、そして、判別対象の個体(ロ)11が品種Cである確率は、81cmより上の数値領域が品種Cにおいて現れる出現確率0.50を、品種Aにおいて現れる出現確率0.00、品種Bにおいて現れる出現確率0.04、品種Cにおいて現れる出現確率0.50の3つの数値の合計値で割った0.93、つまり93%となる。 A product discrimination probability table 15 based on the plant height of the discrimination target is a table showing the discrimination probabilities for each discrimination target of the product discrimination from the numerical values of the appearance probabilities. That is, the probability that the individual to be identified (a) 10 whose plant height measurement result is 32 cm is the variety A is the appearance probability 0.31 in which the numerical region of 21 cm to 40 cm appears in the variety A, the appearance probability 0.31 in the variety A, and the variety Appearance probability 0.29 appearing in B and appearance probability 0.00 appearing in variety C is 0.52 divided by the total value of the three numerical values, or 52%. Similarly, the probability that the individual (a) 10 to be discriminated is the breed B is the appearance probability 0.29 in which the numerical region of 21 cm to 40 cm appears in the breed B, the appearance probability 0.31 in the breed A, and the appearance probability 0.29 in the breed B. The probability of 0.48 divided by the total value of the three occurrences of the appearance probability 0.00 in cultivar C, that is 48%, the probability that the individual to be discriminated (b) 10 is cultivar C, Appearance probability 0.00 is 0.00 divided by the total value of three numerical values of appearance probability 0.31 that appears in variety A, appearance probability 0.29 that appears in variety B, and appearance probability 0.00 that appears in variety C, that is, 0%. On the other hand, the probability that the individual (b) 11 to be discriminated whose plant height measurement result is 85 cm is the variety A, the occurrence probability 0 that the numerical area above 81 cm appears in the variety A, the appearance probability 0.00 that appears in the variety A, the variety 0.00 divided by the sum of three numerical values of appearance probability 0.04 appearing in B and appearance probability 0.50 appearing in variety C, that is, 0%, the probability that the individual (b) 11 to be discriminated is variety B is above 81 cm Appearance probability 0.04, which appears in variety B in variety B, is 0.07, or 7%, divided by the sum of the three numerical values of appearance probability 0.00, occurrence probability 0.04, occurrence probability 0.04 in variety B, and appearance rate 0.50 in variety C The probability that the individual (b) 11 to be discriminated is the variety C is the appearance probability 0.50 in which the numerical area above 81 cm appears in the variety C, the appearance probability 0.00 in the variety A, and the appearance probability 0.04 in the variety B. , To breed C 0.93 divided by the sum of the three numbers of the probability of occurrence 0.50 that appears you are, that is, 93%.

次に、第2の判別の基準となる形質であるSSRマーカーによる判別手法について、図2を用いて説明する。 Next, a discrimination method using an SSR marker, which is a trait serving as a second discrimination criterion, will be described with reference to FIG.

SSRはSimple Sequence Repeat(単純反復配列)の略称で、例えばCACACA・・・やGATGAT・・・のように、生物のDNA中に数塩基程度の塩基配列が反復単位として存在する領域であり、STR(Short Tandem Repeatの略称)やマイクロサテライトとも呼ばれる。SSRはゲノムに多数存在するが、個体や品種などによって塩基配列の反復回数が異なっている部位があり、その領域での反復回数により、個体や品種を判別することが可能な塩基配列をSSRマーカーと呼ぶ。SSRマーカーによる商品判別は、マーカー部位のSSRを含む部位だけを、そのSSRの両側に近接する特異的な塩基配列に相補的なプライマーセットを用いてPCRを行ってその部分のDNAを増幅した後電気泳動し、特定の品種に特有な鎖長のSSRマーカーのフラグメントを検出できるか否かで判別を行う手法である。判別したい個体や品種全てを相互に判別するためには、複数のSSRマーカーを用いてそれらの組み合わせパターンで判別することが必要な場合もある。 The SSR stands for S imple S equence R epeat (simple sequence repeats), for example, as CACACA · · · and GATGAT · · ·, in the region where the number base of approximately nucleotide sequence is present as repeat units in an organism of DNA There is also referred to as STR (abbreviation of S hort T andem R epeat) and microsatellite. There are many SSRs in the genome, but there are sites where the number of repeats of the base sequence differs depending on the individual or variety, and the base sequence that can distinguish the individual or variety by the number of repeats in that region is an SSR marker. Call it. For product discrimination by SSR marker, PCR is performed only on the site containing the SSR of the marker site using a primer set complementary to a specific base sequence adjacent to both sides of the SSR, and the DNA of that portion is amplified. This is a technique for determining whether or not an SSR marker fragment having a chain length peculiar to a specific variety can be detected by electrophoresis. In order to discriminate all individuals and varieties to be discriminated from each other, it may be necessary to discriminate them using a combination pattern using a plurality of SSR markers.

草丈による商品判別の部分で説明したように、一般に、商品判別は、判別に必要な基礎データ作成の作業と、このデータに基づいて判別対象の品種を判別する作業の二段階からなる。SSRマーカーによる商品判別の場合も、図2に示すように、SSRマーカーによる商品判別のための基礎データ作成過程18と、SSRマーカーによる判別対象の商品判別の過程19の二段階がある。 As described in the section of product discrimination based on plant height, in general, product discrimination is composed of two steps, that is, basic data creation work necessary for discrimination and work for discriminating the type of discrimination target based on this data. In the case of product discrimination using an SSR marker, as shown in FIG. 2, there are two stages: a basic data creation process 18 for product discrimination using an SSR marker, and a product discrimination process 19 for discrimination using an SSR marker.

まず、SSRマーカーによる商品判別のための基礎データ作成のため、判別したい全ての品種を判別できるSSRマーカーまたはSSRマーカーのセットを見つけ、品種ごとに特有なSSRマーカーの鎖長の表を作成する、SSRマーカーによる商品判別のための基礎データ作成過程18について説明する。 First, in order to create basic data for product discrimination by SSR marker, find an SSR marker or set of SSR markers that can discriminate all the varieties you want to discriminate, and create a table of SSR marker chain length specific to each varieties. The basic data creation process 18 for product discrimination using the SSR marker will be described.

図1の草丈による商品判別の場合と同様に、品種Aの標準品個体の集団1、品種Bの標準品個体の集団2、品種Cの標準品個体の集団3を用意する。これらの標準品個体は、各品種の標準品であることが確実であれば、草丈による商品判別のための基礎データ作成に用いたものと同じ標準品でなくてもよい。用意した3種の品種の標準品個体を用いて、それぞれ、品種Aの標準品の個体ごとのDNA抽出20、品種Bの標準品の個体ごとのDNA抽出21、品種Cの標準品の個体ごとのDNA抽出22を行う。DNA抽出の手法は、抽出後に行うPCRや電気泳動の過程を阻害せず再現性よく行える手法であれば、どんな手法でも構わないが、いったん手法を決定したら、以後はすべての個体に対して、常に、試薬濃度や処理時間・温度その他あらゆる条件を最初と同一にして行う。 As in the case of product discrimination based on the plant height in FIG. 1, a group 1 of standard product individuals of cultivar A, a group 2 of standard product individuals of cultivar B, and a group 3 of standard product individuals of product C are prepared. As long as it is certain that each standard product is a standard product of each type, the standard product may not be the same standard product used for creating basic data for product discrimination by plant height. Using the prepared standard product individuals of the three varieties, the DNA extraction 20 for each individual of the standard product of the product A, the DNA extraction 21 for each individual of the standard product of the product B, and the individual of the standard product of the product C DNA extraction 22 is performed. The DNA extraction method can be any method as long as it can be performed with high reproducibility without inhibiting the PCR and electrophoresis processes performed after the extraction, but once the method has been determined, Always use the same reagent concentration, processing time, temperature and other conditions as the first.

次に、抽出した個体ごとのDNAとSSRマーカー増幅用のプライマーセットを用いてSSRマーカーのPCR増幅23を行う。使用するDNA量やプライマーセットの塩基配列、PCRの条件等は、再現性や感度をよくするため、呼び実験を行って最適化しておき、常にその条件を使用する。 Next, PCR amplification 23 of the SSR marker is performed using the extracted DNA for each individual and a primer set for SSR marker amplification. In order to improve reproducibility and sensitivity, the amount of DNA to be used, the primer set base sequence, PCR conditions, etc. are optimized through a call experiment, and these conditions are always used.

PCR増幅後、増幅産物を個体ごとにゲル電気泳動して、品種Aの標準品の個体ごとのSSRマーカー電気泳動像24、品種Bの標準品の個体ごとのSSRマーカー電気泳動像25、品種Cの標準品の個体ごとのSSRマーカー電気泳動像26を得る。電気泳動に用いるゲルや試薬、泳動条件等も、SSRマーカーの鎖長の違いを区別できて十分な感度や再現性を確保できる条件を予め設定しておき、以後常にその条件で電気泳動を行う。 After PCR amplification, the amplified product is subjected to gel electrophoresis for each individual, SSR marker electrophoretic image 24 for each individual of the standard product of cultivar A, SSR marker electrophoretic image 25 for each individual of the standard product of cultivar B, and cultivar C An SSR marker electrophoresis image 26 of each standard product is obtained. For gels, reagents, and electrophoresis conditions used for electrophoresis, conditions that can distinguish differences in SSR marker chain length and ensure sufficient sensitivity and reproducibility are set in advance, and electrophoresis is always performed under those conditions thereafter. .

次に、各個体の電気泳動像で検出されるバンドの位置をサイズマーカーや他の個体と比較し、SSRマーカーとなるサイズのバンドが検出されるか否かを判定し、バンド有りを1、バンドなしを0として判定を行う。例えば、品種Aの標準品の個体ごとのSSRマーカー電気泳動像24において、左端のレーンで電気泳動を行った品種Aの個体では、この商品判別で用いる三種のSSRマーカー、a、b、cの3箇所での検出は、aおよびcで1(バンドあり)、bで0(バンドなし)であり、また、品種Bの標準品の個体ごとのSSRマーカー電気泳動像25において、左端から三番目のレーンで電気泳動を行った品種Bの個体では、aおよびcで0(バンドなし)、bで1(バンドあり)となる。ここで品種Aの標準品の個体ごとのSSRマーカー電気泳動像24、品種Bの標準品の個体ごとのSSRマーカー電気泳動像25、品種Cの標準品の個体ごとのSSRマーカー電気泳動像26を比較してみると、品種AではSSRマーカーaとc、品種BではSSRマーカーbとc、品種CではSSRマーカーaとbが、それぞれ検出される確率がかなり高いことがわかる。すなわち、SSRマーカーが未知の個体でこの検査を行った場合、aとcが検出されれば品種A,bとcが検出されれば品種B,aとbが検出されれば品種Cである確率が、それぞれ高そうであると予想される。 Next, the position of the band detected in the electrophoretic image of each individual is compared with a size marker or another individual, and it is determined whether or not a band of a size serving as an SSR marker is detected. The determination is made with no band as 0. For example, in the SSR marker electrophoretic image 24 for each individual of the standard product of breed A, in the individual of breed A that has been electrophoresed in the leftmost lane, the three types of SSR markers a, b, and c used in this product discrimination are Detection at 3 locations is 1 (with band) for a and c, 0 (no band) for b, and in the SSR marker electrophoretic image 25 for each individual of the standard product of breed B, it is the third from the left end. In the individual of breed B that was electrophoresed in the lane, the a and c were 0 (no band), and the b was 1 (with band). Here, an SSR marker electrophoretic image 24 for each individual of the standard product of cultivar A, an SSR marker electrophoretic image 25 for each individual of the standard product of cultivar B, and an SSR marker electrophoretic image 26 for each individual of the standard product of cultivar C are shown. Comparing, it can be seen that the SSR markers a and c in the breed A, the SSR markers b and c in the breed B, and the SSR markers a and b in the breed C are detected with a high probability. That is, when this test is performed on an individual whose SSR marker is unknown, breed A is detected if a and c are detected, breed B is detected if b and c are detected, and breed C is detected if a and b are detected. Each probability is expected to be high.

このような個体ごとのSSRマーカーの検出結果を品種ごとにまとめて各SSRマーカーの検出頻度と検出率を求め、品種ごとの個体別SSRマーカーの集積データ及び出現確率の表27を作成する。この表で、例えば品種Aの場合、標準品6個体のうち、aのSSRマーカーを検出したのは6個体中5個体、bのSSRマーカーを検出したのは6個体中1個体、cのSSRマーカーを検出したのは6個体中4個体であり、品種Aにおける各マーカーの検出率は、それぞれ、Aで0.83、Bで0.17、Cで0.67となることがわかる。さらに、各々の品種のSSRマーカーごとの検出率のデータに基づいて、すべてのSSRマーカーの判定結果を合わせた商品判別の確率を、各マーカーの検出結果の確率の平均値として計算することができる。例えば、品種Aにおいて、SSRマーカーaが1(バンドあり)、SSRマーカーbが0(バンドなし)、SSRマーカーcが1(バンドあり)となる確率は、品種ごとの個体別SSRマーカーの集積データ及び出現確率の表27の品種Aの欄を参照すると、{0.83+(1-0.17)+0.67}/3=0.78で、この値を、このような検出結果が出た場合の商品判別の確率と考えることができる。一方、品種Bにおいて、SSRマーカーaが1(バンドあり)、SSRマーカーbも1(バンドあり)、SSRマーカーcが0(バンドなし)となる確率は、品種Bの場合、Aでは検出率が0.00であるから+となる確率は0.00、Bでは検出率が1.00であるから+となる確率は1.00、Cでは検出率が0.67であるから−となる確率は1-0.67=0.33であり、このような検出結果が出た場合の商品判別の確率は、{0.00+1.00+(1-0.67)}/3=0.78と考えることができる。品種ごとの個体別SSRマーカーの集積データ及び出現確率の表27の右端のカラムには、これら3種のSSRマーカーでそれぞれの品種を判別できる確率の最大値を示してある。 The detection results and detection rates of each SSR marker are obtained by collecting the detection results of such SSR markers for each individual for each type, and a table 27 of the accumulated data and appearance probability of the individual SSR markers for each type is created. In this table, for example, in the case of cultivar A, among 6 standard products, 5 of 6 individuals detected the SSR marker of a, 1 SSR marker of b was detected, 1 of 6 individuals, and SSR of c Markers were detected in 4 out of 6 individuals, and the detection rate of each marker in variety A was 0.83 for A, 0.17 for B, and 0.67 for C, respectively. Furthermore, based on the detection rate data for each SSR marker of each product type, the probability of product discrimination combining the determination results of all SSR markers can be calculated as the average value of the detection results of each marker. . For example, in breed A, the probability that SSR marker a is 1 (with band), SSR marker b is 0 (without band), and SSR marker c is 1 (with band) is the accumulated data of individual SSR markers for each breed. Referring to the column of product type A in Table 27 of the appearance probability, {0.83+ (1-0.17) +0.67} /3=0.78, and this value is the probability of product discrimination when such a detection result is obtained. Can be considered. On the other hand, in the breed B, the probability that the SSR marker a is 1 (with band), the SSR marker b is 1 (with band), and the SSR marker c is 0 (no band). Since it is 0.00, the probability of + is 0.00, in B, the detection rate is 1.00, so the probability of + is 1.00, and in C, the detection rate is 0.67, so the probability of-is 1-0.67 = 0.33. The probability of product discrimination when such a detection result appears can be considered as {0.00 + 1.00 + (1-0.67)} / 3 = 0.78. In the rightmost column of Table 27, the accumulated data of individual SSR markers and appearance probabilities for each type, the maximum probability that each type can be discriminated by these three types of SSR markers is shown.

これで基礎データが作成できたため、以後、この手法によりこれらの品種の判別を行う場合はいつでも、次の、SSRマーカーによる判別対象の商品判別の過程19から作業を行うことが可能となる。 Since the basic data can now be created, any time when these types are discriminated by this method, it is possible to perform the operation from the next step 19 for discriminating the product to be discriminated by the SSR marker.

次に、SSRマーカーによる判別対象の商品判別の過程19について、草丈による商品判別の場合と同じ判別対象の個体(イ)10と判別対象の個体(ロ)11の2個体の商品判別を行う場合に例をとって説明する。 Next, in the product discrimination process 19 based on the SSR marker, the product discrimination between two individuals, i.e., the discrimination target individual (A) 10 and the discrimination target individual (B) 11 as in the case of the product discrimination based on the plant height, is performed. An example will be described.

まず、判別対象の個体(イ)10と判別対象の個体(ロ)11の2個体について、それぞれ、判別対象の個体(イ)のDNA抽出28、および判別対象の個体(ロ)のDNA抽出29を行い、抽出した判別対象の個体ごとのDNAとSSRマーカー増幅用のプライマーセットを用いて判別対象のSSRマーカーのPCR増幅30を行う。使用するDNA量やプライマーセットの塩基配列、PCRの条件等は、SSRマーカーによる商品判別のための基礎データ作成過程18で使用した条件をそのまま使用する。 First, with regard to two individuals, that is, the individual to be discriminated (a) 10 and the individual to be discriminated (b) 11, the DNA extraction 28 of the individual to be discriminated (a) and the DNA extraction 29 of the individual to be discriminated (b) 29. And performing PCR amplification 30 of the SSR marker to be discriminated using the extracted DNA for each individual to be discriminated and the primer set for SSR marker amplification. For the amount of DNA to be used, the base sequence of the primer set, the PCR conditions, etc., the conditions used in the basic data creation process 18 for product discrimination using the SSR marker are used as they are.

PCR増幅後、増幅産物を判別対象の個体ごとにゲル電気泳動して、判別対象のSSRマーカー電気泳動像31を得る。電気泳動に用いるゲルや試薬、泳動条件等も、SSRマーカーによる商品判別のための基礎データ作成過程18で使用した条件をそのまま使用する。 After PCR amplification, the amplified product is subjected to gel electrophoresis for each individual to be discriminated, and an SSR marker electrophoretic image 31 to be discriminated is obtained. The conditions used in the basic data creation process 18 for product discrimination using the SSR marker are used as they are for gels, reagents, and electrophoresis conditions used for electrophoresis.

次に、各判別対象の個体の電気泳動像において、SSRマーカーとなるサイズのバンドが検出されるか否かを判定し、判別対象のSSRマーカーのデータの表32を作成する。 Next, it is determined whether or not a band having a size serving as an SSR marker is detected in the electrophoretic image of each individual to be determined, and a table 32 of data on the target SSR marker is created.

作成した判別対象のSSRマーカーのデータの表32と品種ごとの個体別SSRマーカーの集積データ及び出現確率の表27とを比較し、SSRマーカーごとの検出結果の確率を計算して、判別対象のSSRマーカーによる商品判別の確率表33を作成する。例えば、判別対象の個体(イ)10のSSRマーカーの検出結果は、Aが−、Bが+、Cが+である。この検出結果から、判別対象の個体(イ)10が品種Aであると判別できる確率は、Aについては1-0.83=0.17、Bについては0.17、Cについては0.67であり、全体として、判別対象の個体(イ)10が品種Aであるとする判別確率は、(0.17+0.17+0.67)/3=0.34、つまり34%となる。同様に、判別対象の個体(ロ)11のSSRマーカーの検出結果は、Aが+、Bが+、Cが−である。この検出結果から、判別対象の個体(ロ)11が品種Bであると判別できる確率は、Aについては0.00、Bについては1.00、Cについては1-0.67=0.33であり、全体として、判別対象の個体(ロ)11が品種Bであるとする判別確率は、(0.00+1.00+0.33)/3=0.44、つまり44%となる。 The prepared SSR marker data table 32 is compared with the individual SSR marker accumulation data and appearance probability table 27 for each breed, and the probability of detection results for each SSR marker is calculated. A product discrimination probability table 33 using SSR markers is created. For example, as for the detection result of the SSR marker of the individual (a) 10 to be discriminated, A is −, B is +, and C is +. From this detection result, the probability that the individual (a) 10 to be discriminated can be discriminated as the breed A is 1-0.83 = 0.17 for A, 0.17 for B, and 0.67 for C. The discrimination probability that the individual (b) 10 is the breed A is (0.17 + 0.17 + 0.67) /3=0.34, that is, 34%. Similarly, the detection result of the SSR marker of the individual (b) 11 to be discriminated is A for +, B for +, and C for −. From this detection result, the probability that the individual to be discriminated (b) 11 can be discriminated as the breed B is 0.00 for A, 1.00 for B, and 1-0.67 = 0.33 for C. The discrimination probability that the individual (b) 11 is the breed B is (0.00 + 1.00 + 0.33) /3=0.44, that is, 44%.

以上で、判別対象の個体(イ)10および判別対象の個体(ロ)11の、草丈とSSRマーカーの2種の判別手法のそれぞれによる商品判別の確率データが出る。次に、草丈による商品判別とSSRマーカーによる商品判別の2種の判別手法に重み付けを行い、両方を合わせて商品判別を行う手法を、図3により説明する。 As described above, the product discrimination probability data of the discrimination target individual (b) 10 and the discrimination target individual (b) 11 by the two discrimination methods of the plant height and the SSR marker are obtained. Next, referring to FIG. 3, a method of weighting two types of discrimination methods, product discrimination by plant height and product discrimination by SSR marker, and performing product discrimination by combining both will be described.

草丈とSSRマーカーという2種の判別手法の相対的な確からしさを考慮して、それぞれの判別手法に重み付けを行う。ここでは、草丈は実際に栽培する際の環境条件による影響が出る可能性があるがSSRマーカーにはその可能性はないことから、草丈による判別結果とSSRマーカーによる判別結果に、3:7の重み付けを行う例を示す。 Considering the relative certainty of the two distinct methods of plant height and SSR marker, weight each distinction method. Here, plant height may be affected by environmental conditions when actually cultivated, but SSR markers do not have that possibility, so the discrimination result by plant height and the discrimination result by SSR marker are 3: 7 An example of weighting will be shown.

図1の草丈による判別対象の商品判別の過程17で得られた判別対象の草丈による商品判別の確率表15と、図2のSSRマーカーによる判別対象の商品判別の過程19で得られた判別対象のSSRマーカーによる商品判別の確率表33をもとに、判別対象の個体(イ)10および(ロ)11の各々が、品種A、B,Cのそれぞれである確率を、草丈による商品判別の確率に3割、SSRマーカーによる商品判別の確率に7割の重み配分を乗じた上で合計し、総合的な商品判別の確率表34を作成する。例えば、判別対象の個体(イ)10が品種Aである商品判別の確率は、草丈による商品判別の確率では52%、SSRマーカーによる商品判別の確率では34%であるため、総合的な商品判別の確率は、
0.52×0.3/(0.3+0.7)+0.34×0.7/(0.3+0.7)=0.39、すなわち39%となる。
The product discrimination probability table 15 based on the plant height of the discrimination target obtained in the product discrimination process 17 based on the plant height in FIG. 1 and the discrimination target obtained in the product discrimination process 19 based on the SSR marker in FIG. Based on the product discrimination probability table 33 of SSR markers, the probability that each of the individuals (b) 10 and (b) 11 to be discriminated is each of the varieties A, B, and C, The overall product discrimination probability table 34 is created by multiplying the probability by 30% and multiplying the product discrimination probability by the SSR marker by 70% weight distribution. For example, the product discrimination probability that the individual (a) 10 to be discriminated is cultivar A is 52% in the product discrimination probability based on the plant height and 34% in the product discrimination probability based on the SSR marker. The probability of
0.52 × 0.3 / (0.3 + 0.7) + 0.34 × 0.7 / (0.3 + 0.7) = 0.39, that is, 39%.

同様に、判別対象の個体(ロ)11が品種Cである確率は、
0.93×0.3/(0.3+0.7)+1.00×0.7/(0.3+0.7)=0.98、すなわち98%となる。
Similarly, the probability that the individual (b) 11 to be discriminated is the breed C is
0.93 × 0.3 / (0.3 + 0.7) + 1.00 × 0.7 / (0.3 + 0.7) = 0.98, that is, 98%.

このようにしてすべての判別対象の個体に対して、各々の品種と判別される確率を算出し、総合的な商品判別の確率表34を作成する。 In this way, the probabilities of discriminating each product type are calculated for all discrimination target individuals, and a comprehensive product discrimination probability table 34 is created.

得られた商品判別の確率の数値から、判別対象の個体(イ)10はBである確率が高く、判別対象の個体(ロ)11はかなり高い確率でCである、という判別結果を出すことができる。 From the obtained numerical value of the product discrimination probability, the discrimination target individual (b) 10 has a high probability of being B, and the discrimination target individual (b) 11 has a fairly high probability of being C. Can do.

ここで示した商品判別の例では、第1の判別手法である草丈は形態に基づく判別手法、第2の判別手法であるSSRマーカーはDNAに基づく判別手法であり、異なる基準に基づく判別手法を組み合わせて総合的な判別を行っているが、用いる判別手法は、形態に基づく単一または複数の判別手法だけでもよいし、DNAに基づく単一または複数の判別手法だけでもよく、また、形態に基づく判別手法とDNAに基づく判別手法を組み合わせた手法を用いてもよいし、それら以外の判別手法を用いてもよい。形態に基づく判別手法やDNAに基づく判別手法以外の判別手法としては、生物の構成成分や生物に付着または付随する生物や化学的成分に基づく判定手法などが考えられる。   In the example of product discrimination shown here, the first discrimination method, plant height, is a discrimination method based on morphology, and the second discrimination method, SSR marker, is a discrimination method based on DNA. Comprehensive discrimination is performed in combination, but the discrimination method used may be only a single or multiple discrimination method based on form, or may be only a single or multiple discrimination method based on DNA. A method combining a discrimination method based on DNA and a discrimination method based on DNA may be used, or other discrimination methods may be used. As a discrimination method other than a discrimination method based on morphology or a discrimination method based on DNA, a determination method based on a constituent component of a living organism, a living organism attached to or attached to a living organism, or a chemical component can be considered.

さらに、ここで示した商品判別の例では、第1の判別手法である草丈は連続的な数値で、また、第2の判別手法であるSSRマーカーはバンドの有無という0or1の二者択一で評価する、異なる性質の判別手法をひとつずつ組み合わせて重み付けし、総合的な判別の確率を算出しているが、用いる判別手法は単一のものだけでも、また3種類以上を組み合わせてもよく、複数の判別手法をあわせて用いる場合、連続的な数値による判別法を複数組み合わせてもよいし、0or1の二者択一の判別手法だけを複数組み合わせてもよい。また、二者択一ではなく、三者択一、四者択一など、選択肢はいくつでも構わない。 Furthermore, in the example of product discrimination shown here, the first discrimination method, plant height, is a continuous numerical value, and the second discrimination method, SSR marker, is an alternative of 0 or 1 indicating the presence or absence of a band. Evaluate and classify different classification methods with different weights one by one and calculate the overall classification probability, but the classification method used can be a single one or more than three types, When a plurality of discrimination methods are used in combination, a plurality of discrimination methods using continuous numerical values may be combined, or only a plurality of discrimination methods of 0 or 1 may be combined. In addition, the choice is not limited to two choices.

さらに、重み付けにおいて、図示した例では3:7を用いているが、各々の判別手法の相対的な比重は0から1までのいずれでもよい。 Further, in the illustrated example, 3: 7 is used for weighting, but the relative specific gravity of each discrimination method may be any of 0 to 1.

また、通常は数値表現を行わない花色や葉色のような色彩や樹形などの判別の基準となる形質についても、数値で表現することが可能であり、そのような判別の基準となる形質も、草丈やSSRマーカーのように、数値化してJIS慣用色名やマンセル体系に従った色見本を提示し、比較対象に最も近い見本色を目視で決定して、JHSカラーチャートのように見本色に付した色番号や、その見本色の赤緑青の階調値で表示することにより数値化することが可能であり、品種や産地によりこれらの数値が異なる分布を示す場合には、それを用いて品種や産地の判別確率を表示した判別を行うことが可能である。 In addition, traits that are standard for discrimination such as color and tree shape such as flower color and leaf color that are not normally expressed numerically can also be expressed numerically. Numerals such as plant height and SSR marker, and presents a color sample according to the JIS conventional color name and Munsell system, visually determines the sample color closest to the comparison target, and the sample color as in the JHS color chart Can be quantified by displaying with the color number attached to it and the red, green, and blue tone values of the sample color. If these values show different distributions depending on the variety and production area, use them. Thus, it is possible to perform discrimination that displays the discrimination probabilities of varieties and production areas.

また、図示した例では、草丈とSSRマーカーの2種の判別手法について、品種ごとに同数の標準品個体の集団を用意し、2種の判別手法の基礎データの両方を作成するために用いているが、各品種の標準品であることが確実な個体であれば、判別手法ごとに標準品個体は異なっていても構わない。さらに、確率計算に十分な確からしさを与えられる個数が用意できれば、品種ごとに用意する標準品個体の個数が異なっていてもよい。 In the example shown in the figure, two types of discrimination methods, plant height and SSR marker, are used to prepare a group of the same number of standard items for each type and to create both basic data for the two types of discrimination methods. However, as long as it is an individual that is surely a standard product of each product type, the standard product individual may be different for each discrimination method. Further, the number of standard product individuals prepared for each product type may be different as long as the number that can provide sufficient probability for probability calculation can be prepared.

また、重み付けの方法は、本実施の形態で説明したものに限定されるわけではない。このほか、本発明の要旨を逸脱することなくその他の種々の構成を採り得ることはもちろんである。 Further, the weighting method is not limited to that described in the present embodiment. In addition, it is needless to say that various other configurations can be adopted without departing from the gist of the present invention.

草丈による商品判別の流れを示した図である。It is the figure which showed the flow of the goods discrimination by plant height. SSRマーカーによる商品判別の流れを示した図である。It is the figure which showed the flow of the product discrimination | determination by an SSR marker. 草丈とSSRマーカーの2種の判別手法に重み付けを行い、両者の結果を合わせて総合的に商品判別を行う流れを示した図である。It is the figure which showed the flow which weights the 2 types of discrimination methods, plant height and SSR marker, and performs product discrimination comprehensively combining the results of both.

符号の説明Explanation of symbols

1・・・品種Aの標準品個体の集団、2・・・品種Bの標準品個体の集団、3・・・品種Cの標準品個体の集団、4・・・標準品の草丈の計測、5・・・品種Aの標準品の個体ごとの草丈分布グラフ、6・・・品種Bの標準品の個体ごとの草丈分布グラフ、7・・・品種Cの標準品の個体ごとの草丈分布グラフ、8・・・品種ごとの個体別草丈の集積データ及び出現確率の表、9・・・判別対象の計測、10・・・判別対象の個体(イ)、11・・・判別対象の個体(ロ)、12・・・判別対象の草丈の計測、13・・・判別対象の個体(イ)の草丈計測結果、14・・・判別対象の個体(ロ)の草丈計測結果、15・・・判別対象の草丈による商品判別の確率表、16・・・草丈による商品判別のための基礎データ作成過程、17・・・草丈による判別対象の商品判別の過程、18・・・SSRマーカーによる商品判別のための基礎データ作成過程、19・・・SSRマーカーによる判別対象の商品判別の過程、20・・・品種Aの標準品の個体ごとのDNA抽出、21・・・品種Bの標準品の個体ごとのDNA抽出、22・・・品種Cの標準品の個体ごとのDNA抽出、23・・・SSRマーカーのPCR増幅、24・・・品種Aの標準品の個体ごとのSSRマーカー電気泳動像、25・・・品種Bの標準品の個体ごとのSSRマーカー電気泳動像、26・・・品種Cの標準品の個体ごとのSSRマーカー電気泳動像、27・・・品種ごとの個体別SSRマーカーの集積データ及び出現確率の表、28・・・判別対象の個体(イ)のDNA抽出、29・・・判別対象の個体(ロ)のDNA抽出、30・・・判別対象のSSRマーカーのPCR増幅、31・・・判別対象のSSRマーカー電気泳動像、32・・・判別対象のSSRマーカーのデータの表、33・・・判別対象のSSRマーカーによる商品判別の確率表 1 ... A population of standard product individuals of variety A, 2 ... A population of standard product individuals of product type B, 3 ... A population of standard product individuals of product type C, 4 ... Measurement of plant height of standard products, 5 ... Plant height distribution graph for each individual of the standard product of variety A, 6 ... Plant height distribution graph for each individual of the standard product of variety B, 7 ... Plant height distribution graph of each of the standard product of variety C 8 ... Accumulated data of plant height and appearance probability table for each varieties, 9 ... Measurement of discrimination target, 10 ... Discrimination target individual (I), 11 ... Discrimination target individual ( B), 12 ... measurement of the plant height of the discrimination target, 13 ... measurement result of the plant height of the discrimination target individual (b), 14 ... measurement result of the plant height of the discrimination target individual (b), 15 ... Product discrimination probability table based on plant height to be discriminated, 16 ... Basic data creation process for product discrimination by plant height, 17 ... According to plant height The process of discriminating the target product, 18 ... The basic data creation process for discriminating the product by the SSR marker, 19 ... The process of discriminating the target product by the SSR marker, 20 ... The standard product of the product A DNA extraction for each individual, 21 ... DNA extraction for each individual of the standard product of variety B, 22 ... DNA extraction for each individual of the standard product of variety C, 23 ... PCR amplification of the SSR marker, 24 ..SSR marker electrophoretic image for each individual of standard product of cultivar A, 25 ... SSR marker electrophoretic image of individual for standard product of cultivar B, 26 ... SSR for each individual of standard product of cultivar C Marker electrophoresis image, 27... SSR marker accumulation data and appearance probability table by individual, 28... DNA extraction of individual to be discriminated (a), 29. ) DNA extraction, 30 ... PCR amplification of SSR markers to be discriminated, 31 ... SSR markers electrophoresis image of the subject, the table data 32 ... discrimination object of SSR markers, the probability table of items determined by the SSR markers 33 ... determination target

Claims (10)

判別対象とする商品が、複数の集団のいずれに属するかを判別する方法であって、判別対象とする商品が各集団に属する確率を算出し、最も高い確率を示した集団が、判別対象商品の属する集団であると判断することを特徴とする判別方法。   This is a method for determining which product to be classified belongs to which of a plurality of groups, the probability that the product to be identified belongs to each group is calculated, and the group showing the highest probability is the product to be identified A determination method characterized by determining that the group belongs to. 複数の判別方法の結果を合わせて総合的に判別を行うことを特徴とする請求項1に記載の判別方法。   The discrimination method according to claim 1, wherein the discrimination is comprehensively performed by combining the results of a plurality of discrimination methods. 判別方法の結果ごとに重み付けをして判別を行うことを特徴とする請求項2に記載の判別方法。   The discrimination method according to claim 2, wherein discrimination is performed by weighting each result of the discrimination method. 判別対象とする商品が各集団に属する確率を以下の方法によって求めることを特徴とする請求項1乃至3のいずれか一項に記載の判別方法、
(1)判別対象商品の一つの特性を選択し、その特性について複数の区分を設定する、(2)各集団に属することが確定している複数の商品の特性を調べ、各商品を区分に分類し、集団ごとに各区分における出現確率を求める、(3)判別対象商品が、特性についての区分のいずれに属するか調べる、(4)各集団に属する確率Aを式:A=(B/C)により算出する。
B:判別対象商品が属する区分における確率を算出しようとする集団の出現確率
C:判別対象商品が属する区分における各々の集団の出現確率の総和
The determination method according to any one of claims 1 to 3, wherein the probability that a product to be determined belongs to each group is obtained by the following method.
(1) Select one characteristic of the product to be discriminated and set multiple categories for that characteristic. (2) Examine the characteristics of multiple products that are confirmed to belong to each group, and classify each product as a category. Classifying and determining the appearance probability in each category for each group (3) Examining which category the product to be identified belongs to belongs to the characteristics (4) Probability A belonging to each group: A = (B / C).
B: Appearance probability of a group to calculate the probability in the category to which the discrimination target product belongs C: Total appearance probability of each group in the category to which the discrimination target product belongs
特性が数値で表される特性であり、各集団に属することが確定している商品の特性を調べ、異常に高い値を示した商品及び異常に低い値を示した商品を除外して、商品の区分を行うことを特徴とする請求項4に記載の判別方法。   Check the characteristics of the products that are determined to belong to each group, and exclude the products that showed abnormally high values and the products that showed abnormally low values. The determination method according to claim 4, wherein the classification is performed. 判別対象とする商品が各集団に属する確率を以下の方法によって求めることを特徴とする請求項1乃至3のいずれか一項に記載の判別方法、
(1)判別対象商品についてn個の判定項目を設定する、(2)各集団に属することが確定している複数の商品について、判定項目に該当するかどうかを調べ、集団ごとに各項目の該当率と非該当率を求める、(3)判別対象商品について、各判定項目に該当するかどうかを調べ、項目に該当する場合は、算出しようとする集団の該当率を選択し、項目に該当しない場合は、算出しようとする集団の非該当率を選択し、各項目の該当率又は非該当率の総和を求め、それをnで割った値を集団に属する確率とする。
The determination method according to any one of claims 1 to 3, wherein the probability that a product to be determined belongs to each group is obtained by the following method.
(1) Set n judgment items for the product to be discriminated. (2) For a plurality of products that have been confirmed to belong to each group, check whether they are applicable to the judgment item. Find the applicable rate and the non-applicable rate. (3) For the product to be discriminated, check whether it corresponds to each judgment item, and if it falls under the item, select the corresponding rate of the group to be calculated and apply to the item If not, the non-corresponding rate of the group to be calculated is selected, the sum of the corresponding rates or non-corresponding rates of each item is obtained, and the value divided by n is set as the probability of belonging to the group.
判定項目が、マーカーとなるDNAの検出であることを特徴とする請求項6に記載の判別方法。   The determination method according to claim 6, wherein the determination item is detection of DNA serving as a marker. 商品が、生物又は生物を原料とした加工品であることを特徴とする請求項1乃至7のいずれか一項に記載の判別方法。   The discrimination method according to any one of claims 1 to 7, wherein the product is a living thing or a processed product using the living thing as a raw material. 商品が生物であり、集団が品種であることを特徴とする請求項1乃至7のいずれか一項に記載の判別方法。   The discrimination method according to any one of claims 1 to 7, wherein the commodity is a living thing and the group is a variety. 請求項4又は5に記載の判別方法の結果と請求項6又は7に記載の判別方法の結果を合わせて総合的に判別を行うことを特徴とする判別方法。   A discrimination method characterized by comprehensively discriminating the result of the discrimination method according to claim 4 or 5 and the result of the discrimination method according to claim 6 or 7.
JP2008177502A 2008-07-08 2008-07-08 Product identification method Expired - Fee Related JP5344859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177502A JP5344859B2 (en) 2008-07-08 2008-07-08 Product identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177502A JP5344859B2 (en) 2008-07-08 2008-07-08 Product identification method

Publications (2)

Publication Number Publication Date
JP2010017085A true JP2010017085A (en) 2010-01-28
JP5344859B2 JP5344859B2 (en) 2013-11-20

Family

ID=41702609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177502A Expired - Fee Related JP5344859B2 (en) 2008-07-08 2008-07-08 Product identification method

Country Status (1)

Country Link
JP (1) JP5344859B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319782A (en) * 2002-05-02 2003-11-11 Hokuren Federation Of Agricult Coop:The Method for identifying cultivar of rice plant
JP2006042808A (en) * 2004-07-01 2006-02-16 Okayama Univ Method for determining kind of material plant of processed food
JP2007174973A (en) * 2005-12-28 2007-07-12 Visionbio Corp Method for variety identification by multiplex pcr using ssr primer
JP2008125421A (en) * 2006-11-20 2008-06-05 Chikusan Gijutsu Kyokai Determination of japanese black cattle stock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319782A (en) * 2002-05-02 2003-11-11 Hokuren Federation Of Agricult Coop:The Method for identifying cultivar of rice plant
JP2006042808A (en) * 2004-07-01 2006-02-16 Okayama Univ Method for determining kind of material plant of processed food
JP2007174973A (en) * 2005-12-28 2007-07-12 Visionbio Corp Method for variety identification by multiplex pcr using ssr primer
JP2008125421A (en) * 2006-11-20 2008-06-05 Chikusan Gijutsu Kyokai Determination of japanese black cattle stock

Also Published As

Publication number Publication date
JP5344859B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Baraket et al. Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia
Xhaard et al. The genetic structure of the plant pathogenic fungus Melampsora larici‐populina on its wild host is extensively impacted by host domestication
Assogbadjo et al. Conservation genetics of baobab (Adansonia digitata L.) in the parklands agroforestry systems of Benin (West Africa)
Singh et al. Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss.
Shaban et al. SCoT, ISSR, and SDS‐PAGE Investigation of Genetic Diversity in Several Egyptian Wheat Genotypes under Normal and Drought Conditions
Wang et al. Assessment of wheat variety distinctness using SSR markers
CN107151709A (en) The SNP marker related to capsicum pungent and its application
Reim et al. Diversity of the European indigenous wild apple (Malus sylvestris (L.) Mill.) in the East Ore Mountains (Osterzgebirge), Germany: II. Genetic characterization
Underhill et al. Image-based phenotyping identifies quantitative trait loci for cluster compactness in grape
Bari et al. A greenhouse‐based high‐throughput phenotyping platform for identification and genetic dissection of resistance to Aphanomyces root rot in field pea
Sadeghpoor et al. Assessing genetic diversity and population structure of Iranian melons (Cucumis melo) collection using primer pair markers in association with resistance to Fusarium wilt
Simionca Mărcășan et al. Comparative analysis of phenotypic and molecular data on response to main pear diseases and pest attack in a germplasm collection
Eid RAPD fingerprinting and genetic relationships of some wheat genotypes
Cantini et al. Assessment of the Tuscan olive germplasm by microsatellite markers reveals genetic identities and different discrimination capacity among and within cultivars
JP5344859B2 (en) Product identification method
Levi et al. High-frequency oligonucleotides in watermelon expressed sequenced tag-unigenes are useful in producing polymorphic polymerase chain reaction markers among watermelon genotypes
Spanoghe et al. Genetic patterns recognition in crop species using self-organizing map: The example of the highly heterozygous autotetraploid potato (Solanum tuberosum L.)
Nartvaranant et al. Analysis based on AFLP markers of the genetic variations and their relationships for pummelo cultivars grown in the central region of Thailand.
Kwon Use of EST-SSR markers for genetic characterisation of commercial watermelon varieties and hybrid seed purity testing
Zhao et al. Genetic diversity, population structure, and taxonomic confirmation in annual medic (Medicago spp.) collections from Crimea, Ukraine
Nazemi et al. Assessment of Iranian apricot cultivars resistant, susceptible and mutant to late spring frost
Sakhravi et al. Genetic relationships among common bean (Phaseolus vulgaris L) genotypes using ISSR markers
Ameen et al. Identification of sex linked molecular markers in spine gourd (Momordica dioica Roxb.)
Lamine et al. Genetic diversity analysis in Tunisian Maltaise orange (Citrus sinensis L.)
Masood et al. CHARACTERIZATION AND GENOTYPIC ANALYSIS OF CITRUS CULTIVARS IN PAKISTAN

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5344859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees