JP2010016921A - Parallel power supply system - Google Patents

Parallel power supply system Download PDF

Info

Publication number
JP2010016921A
JP2010016921A JP2008172346A JP2008172346A JP2010016921A JP 2010016921 A JP2010016921 A JP 2010016921A JP 2008172346 A JP2008172346 A JP 2008172346A JP 2008172346 A JP2008172346 A JP 2008172346A JP 2010016921 A JP2010016921 A JP 2010016921A
Authority
JP
Japan
Prior art keywords
power
parallel
parallel redundant
power supply
supplies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008172346A
Other languages
Japanese (ja)
Inventor
Shinya Yamashina
真也 山科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008172346A priority Critical patent/JP2010016921A/en
Publication of JP2010016921A publication Critical patent/JP2010016921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel power supply system which uniformly deteriorates parallel redundancy power supplies, and saves energy consumption by simple control and a simple constitution. <P>SOLUTION: The parallel power supply system is provided with a parallel drive control part 1 which comprises: a plurality of parallel redundancy power supplies 3-1 to 3-3 having part temperature detection parts 5 for detecting temperatures of internal parts; an AC power supply switch 2 having an energization time storage part 6 which stores an energization time when power is supplied to each of the plurality of parallel redundancy power supplies 3-1 to 3-3; a part deterioration calculation part 7 which calculates the deterioration of the parts with respect to each of the plurality of parallel redundancy power supplies 3-1 to 3-3 on the basis of the information of the part temperatures from the part temperature detection parts 5, and the information of the energization time stored in the energization time storage part 6; and an AC power supply switch control part 9 which cuts off the supply of power to the parallel redundancy power supply which is most deteriorated in the part when there is a variation in the deterioration of the parts among the parallel redundancy power supplies 3-1 to 3-3 on the basis of the operation result of the part deterioration operation part 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の並列冗長電源を備えた並列電源システムに関し、特に、複数の並列冗長電源の劣化の均一化の制御と複数の並列冗長電源全体での電力変換効率の向上の制御に関するものである。   The present invention relates to a parallel power supply system including a plurality of parallel redundant power supplies, and more particularly, to control of uniform deterioration of a plurality of parallel redundant power supplies and control of improvement in power conversion efficiency over the plurality of parallel redundant power supplies. is there.

従来、電子装置の負荷に安定した電力を供給する電源として、電源1台が故障した場合においても電力の供給を継続するために複数の電源を並列に接続し電源に冗長性を持たせた並列冗長電源があった。   Conventionally, as a power source for supplying stable power to a load of an electronic device, a parallel connection in which a plurality of power sources are connected in parallel and redundancy is provided in order to continue power supply even when one power source fails There was a redundant power supply.

この並列冗長電源間において冷却条件が均一でない等の原因から部品温度にばらつきが発生することにより、この部品温度のばらつきが起因となり並列冗長電源間の劣化に進行差が生じる。この為、劣化が最も進んだ並列冗長電源の寿命が相対的に短くなり、並列冗長電源全体としての寿命を早めてしまい信頼性を低下させる要因となっていた。   Variations in component temperature due to non-uniform cooling conditions between the parallel redundant power supplies cause a difference in progress in degradation between the parallel redundant power supplies due to the variations in component temperatures. For this reason, the life of the parallel redundant power supply that has been most deteriorated is relatively shortened, and the life of the parallel redundant power supply as a whole is shortened, resulting in a decrease in reliability.

この対策として、例えば、国際公開第99/25052号パンフレット(特許文献1)に記載のものは、部品温度のばらつきを補正するために温度が高くなった並列冗長電源の出力電流を減少させ、一方で温度が低くなった並列冗長電源の電流を増加させるといった電流制御により温度の均一化を図ろうとするものである。   As a countermeasure for this, for example, the one described in the pamphlet of International Publication No. 99/25052 (Patent Document 1) reduces the output current of the parallel redundant power supply whose temperature has been increased in order to correct the variation in the component temperature. The temperature is made uniform by current control such as increasing the current of the parallel redundant power supply whose temperature is low.

また、並列冗長電源から安定した電力の供給が必要な電子装置は、動作状態により負荷電力が大きく変動するのが一般的である。並列冗長電源等の現在主流であるスイッチング方式電源の電力変換効率は出力電力によって変化する特性を持っているため、前述した負荷電力の変動は並列冗長電源の電力変換効率に影響し並列冗長電源全体の電力損失の増減に繋がる。
国際公開第99/25052号パンフレット
In general, an electronic device that requires a stable supply of power from a parallel redundant power supply generally varies in load power depending on the operating state. Since the power conversion efficiency of switching power supplies that are currently mainstream, such as parallel redundant power supplies, has a characteristic that changes depending on the output power, the aforementioned fluctuations in load power affect the power conversion efficiency of the parallel redundant power supplies, and the entire parallel redundant power supplies Leads to increase and decrease of power loss.
WO99 / 25052 pamphlet

しかしながら、特許文献1に記載のように、並列冗長電源間の劣化ばらつきを防止する手段である電流制御の方法は、各並列冗長電源に電流検出回路、電流制御回路を設ける必要があり複雑な制御が要求されるという問題があった。また、並列冗長電源内の部品点数増加により、小型化の妨げとなったり信頼性が低下する問題があった。   However, as described in Patent Document 1, the current control method, which is a means for preventing deterioration variation between parallel redundant power supplies, requires that each parallel redundant power supply be provided with a current detection circuit and a current control circuit. There was a problem that required. In addition, the increase in the number of parts in the parallel redundant power supply has a problem of hindering downsizing and reducing reliability.

さらに、負荷の電力変動により並列冗長電源の電力変換効率が低下する負荷電力となった場合に、並列冗長電源全体の電力損失が大きくなるといった問題があった。   Furthermore, there is a problem in that the power loss of the entire parallel redundant power supply becomes large when the load power that reduces the power conversion efficiency of the parallel redundant power supply due to the power fluctuation of the load.

そこで、本発明の目的は、並列冗長電源間の劣化均一化と、省エネルギー化を簡単な構成と制御で可能とする並列電源システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a parallel power supply system that enables uniform degradation and energy saving between parallel redundant power supplies with a simple configuration and control.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、代表的なものの概要は、内部部品の温度を検出する部品温度検出部を有する並列冗長電源と、複数の並列冗長電源へ電力を供給した際のそれぞれの通電時間を記憶する通電時間記憶部を有するAC電源スイッチと、複数の並列冗長電源の部品温度検出部からの部品温度の情報、およびAC電源スイッチの通電時間記憶部に記憶された通電時間の情報に基づいて、複数の並列冗長電源のそれぞれについて、部品劣化を演算する部品劣化演算部と、部品劣化演算部の演算結果に基づいて、複数の並列冗長電源の間で部品劣化のばらつきがあった場合、最も部品劣化が進んでいる並列冗長電源への電力の供給を遮断させるAC電源スイッチ制御部とを有する並列運転制御部とを備えたものである。   That is, the outline of typical ones is a parallel redundant power supply having a component temperature detection unit for detecting the temperature of the internal component, and an energization time storage unit for storing each energization time when power is supplied to a plurality of parallel redundant power supplies A plurality of parallel redundant power supplies based on information on the component temperatures from the component temperature detection units of the plurality of parallel redundant power supplies and on the energization time information stored in the energization time storage unit of the AC power switch For each of the above, if there is a variation in component deterioration between a plurality of parallel redundant power supplies based on the calculation result of the component deterioration calculation unit that calculates the component deterioration and the component deterioration calculation unit, the component deterioration is most advanced. And a parallel operation control unit having an AC power switch control unit for cutting off the supply of power to the parallel redundant power source.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、代表的なものによって得られる効果は、簡単な制御と比較的少ない部品点数で並列冗長電源間の劣化の均一化および省エネルギー化を実現することができる。   In other words, the effects obtained by the typical one can realize uniform degradation and energy saving between parallel redundant power supplies with simple control and a relatively small number of parts.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

(実施の形態1)
図1により、本発明の実施の形態1に係る並列電源システムの構成について説明する。図1は本発明の実施の形態1に係る並列電源システムの構成を示す構成図である。
(Embodiment 1)
The configuration of the parallel power supply system according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram showing the configuration of the parallel power supply system according to Embodiment 1 of the present invention.

図1において、並列電源システムは、負荷4に共通の負荷として電力を供給する複数の並列冗長電源3(3−1〜3−3)、並列冗長電源3−1〜3−3への電力供給および遮断を個別に実施可能とするAC電源スイッチ2、AC電源スイッチ2を制御する並列運転制御部1から構成されている。   In FIG. 1, the parallel power supply system supplies power to a plurality of parallel redundant power supplies 3 (3-1 to 3-3) and parallel redundant power supplies 3-1 to 3-3 that supply power as a load common to a load 4. And an AC power switch 2 that can be individually cut off, and a parallel operation control unit 1 that controls the AC power switch 2.

並列冗長電源3−1〜3−3は、部品温度を検出する部品温度検出部5を備えている。   The parallel redundant power supplies 3-1 to 3-3 include a component temperature detection unit 5 that detects a component temperature.

AC電源スイッチ2は、外部電源10が接続され、並列冗長電源3−1〜3−3へ電力を供給した通電時間を記憶する通電時間記憶部6を備えている。   The AC power switch 2 includes an energization time storage unit 6 that stores an energization time when the external power supply 10 is connected and power is supplied to the parallel redundant power supplies 3-1 to 3-3.

並列運転制御部1は、部品温度検出部5からの温度情報と通電時間記憶部6からの通電時間情報を元に並列冗長電源3−1〜3−3の部品の劣化を演算する部品劣化演算部7、部品劣化演算部7の演算結果を記憶する部品劣化情報記憶部8、AC電源スイッチ2を制御するAC電源スイッチ制御部9を備えている。   The parallel operation control unit 1 calculates the component deterioration calculation for calculating the deterioration of the components of the parallel redundant power supplies 3-1 to 3-3 based on the temperature information from the component temperature detection unit 5 and the energization time information from the energization time storage unit 6. 7, a component deterioration information storage unit 8 that stores calculation results of the component deterioration calculation unit 7, and an AC power switch control unit 9 that controls the AC power switch 2.

次に、図2により、本発明の実施の形態1に係る並列電源システムの制御フローについて説明する。図2は本発明の実施の形態1に係る並列電源システムの制御フローを示すフローチャートである。   Next, the control flow of the parallel power supply system according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 2 is a flowchart showing a control flow of the parallel power supply system according to Embodiment 1 of the present invention.

まず、並列運転制御部1が運転開始し(ステップ31)、AC電源スイッチ2は全並列冗長電源3−1〜3−3に電力を供給し、並列冗長電源3−1〜3−3が運転開始する(ステップ32)。   First, the parallel operation control unit 1 starts operation (step 31), the AC power switch 2 supplies power to all the parallel redundant power supplies 3-1 to 3-3, and the parallel redundant power supplies 3-1 to 3-3 operate. Start (step 32).

そして、部品劣化演算部7は、並列冗長電源3−1〜3−3の部品温度検出部5より部品温度情報および通電時間記憶部6から通電時間情報を呼び込み(ステップ33)、部品温度と通電時間の情報から予め準備された計算方法により部品劣化を演算し、結果を部品劣化情報記憶部8に記憶する(ステップ34)。   Then, the component deterioration calculation unit 7 calls the component temperature information from the component temperature detection unit 5 of the parallel redundant power supplies 3-1 to 3-3 and the energization time information from the energization time storage unit 6 (step 33). The component deterioration is calculated from the time information by a calculation method prepared in advance, and the result is stored in the component deterioration information storage unit 8 (step 34).

この予め準備された計算方法は、例えば温度測定した部品が電解アルミコンデンサの場合、アレニウスの法則による。温度測定する部品は電解アルミコンデンサでなくてもよい。また、複数部品の測定でもよいが、並列冗長電源3内の最短寿命部品を代表し測定することが望ましい。   This calculation method prepared in advance is based on Arrhenius' law when, for example, the temperature-measured component is an electrolytic aluminum capacitor. The component for temperature measurement need not be an electrolytic aluminum capacitor. Further, although it is possible to measure a plurality of parts, it is desirable to represent the shortest life parts in the parallel redundant power supply 3 for measurement.

ステップ34の演算結果よりAC電源スイッチ制御部9は、並列冗長電源3−1〜3−3の劣化ばらつきを比較し(ステップ35)、ステップ35で劣化ばらつきがあれば、ステップ36に進み、劣化均一化のために電力が遮断されている並列冗長電源3があるか否かを判断する。   From the calculation result of step 34, the AC power switch control unit 9 compares the deterioration variation of the parallel redundant power supplies 3-1 to 3-3 (step 35). It is determined whether or not there is a parallel redundant power supply 3 whose power is cut off for equalization.

ステップ36で電力が遮断されている並列冗長電源3がなければ、並列冗長電源3−1〜3−3の中から劣化が最も進んでいる1台の電力供給をAC電源スイッチ2により遮断し、並列冗長電源3の冗長性よりも劣化の均一化を優先し部品温度を下げ(ステップ37)、ステップ33に戻る。   If there is no parallel redundant power supply 3 whose power is cut off in step 36, the AC power switch 2 cuts off one power supply whose deterioration is most advanced among the parallel redundant power supplies 3-1 to 3-3, Prioritizing the uniform degradation over the redundancy of the parallel redundant power supply 3 lowers the component temperature (step 37), and returns to step 33.

また、ステップ36で電力が遮断されている並列冗長電源3があれば、これ以上、並列冗長電源3の電力を遮断できないので、ステップ33に戻る。   If there is a parallel redundant power supply 3 whose power is cut off in step 36, the power of the parallel redundant power supply 3 cannot be cut off any more, and the process returns to step 33.

ステップ35で劣化にばらつきがなければ、電力が遮断している並列冗長電源3があるか否かを判断し(ステップ38)、ステップ38で電力が遮断している並列冗長電源3がなければ、ステップ33に戻り、ステップ38で電力が遮断している並列冗長電源3があれば、並列冗長電源3の劣化ばらつきがないため、電力が遮断している並列冗長電源3へ電力を供給する(ステップ39)。   If there is no variation in degradation in step 35, it is determined whether or not there is a parallel redundant power supply 3 whose power is cut off (step 38). If there is no parallel redundant power supply 3 whose power is cut off in step 38, Returning to step 33, if there is a parallel redundant power supply 3 whose power is cut off in step 38, there is no deterioration variation of the parallel redundant power supply 3, and therefore power is supplied to the parallel redundant power supply 3 whose power is cut off (step) 39).

また、劣化のばらつきが発生しない場合はステップ33、ステップ34、ステップ35、ステップ38、ステップ33の順にループし、劣化のばらつきの有無を監視する。   If there is no variation in deterioration, a loop is performed in the order of step 33, step 34, step 35, step 38, and step 33, and the presence or absence of variation in deterioration is monitored.

本実施の形態では、並列冗長電源3への電力遮断により部品温度を下げることで、複数の並列冗長電源3の間の劣化を均一化し、並列冗長電源3全体としての信頼性向上を簡単な制御方法と比較的少ない部品点数で実現することが可能である。   In the present embodiment, by reducing the component temperature by cutting off power to the parallel redundant power supply 3, the deterioration among the plurality of parallel redundant power supplies 3 is made uniform, and the reliability improvement of the parallel redundant power supply 3 as a whole is easily controlled. This method can be realized with a relatively small number of parts.

(実施の形態2)
実施の形態2は、実施の形態1において、並列電源システムを並列冗長電源3−1〜3−3の冗長性を保ちながら複数の並列冗長電源3の間の劣化を均一化させるものである。
(Embodiment 2)
The second embodiment equalizes the deterioration among the plurality of parallel redundant power supplies 3 while maintaining the redundancy of the parallel redundant power supplies 3-1 to 3-3 in the parallel power supply system in the first embodiment.

図3により、本発明の実施の形態2に係る並列電源システムの構成について説明する。図3は本発明の実施の形態2に係る並列電源システムの構成を示す構成図である。   The configuration of the parallel power supply system according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram showing the configuration of the parallel power supply system according to Embodiment 2 of the present invention.

図3において、並列電源システムは、図1に示す実施の形態1の並列電源システムに対して、並列冗長電源3−1〜3−3に出力電流と出力電圧を検出し電力を演算する電力検出部12を追加し、並列運転制御部1に各並列冗長電源3−1〜3−3からの電力情報を読み取り電力の総和から負荷4の負荷電力を求め、また、並列冗長電源3−1〜3−3の稼動数と予め準備された並列冗長電源定格との積により並列冗長電源3−1〜3−3が負荷4へ供給可能な電力を計算する機能を持った電力計算部11を追加した構成であり、他の構成は、実施の形態1と同様である。   In FIG. 3, the parallel power supply system detects the output current and the output voltage in the parallel redundant power supplies 3-1 to 3-3 and calculates the power with respect to the parallel power supply system of the first embodiment shown in FIG. The unit 12 is added, the power information from each of the parallel redundant power sources 3-1 to 3-3 is read into the parallel operation control unit 1, and the load power of the load 4 is obtained from the sum of the powers. A power calculator 11 having a function of calculating the power that the parallel redundant power supplies 3-1 to 3-3 can supply to the load 4 is added by the product of the number of operations of 3-3 and the previously prepared parallel redundant power supply rating. Other configurations are the same as those of the first embodiment.

次に、図4により、本発明の実施の形態2に係る並列電源システムの制御フローについて説明する。図4は本発明の実施の形態2に係る並列電源システムの制御フローを示すフローチャートである。   Next, the control flow of the parallel power supply system according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a flowchart showing a control flow of the parallel power supply system according to Embodiment 2 of the present invention.

まず、並列運転制御部1が運転開始し(ステップ51)、AC電源スイッチ2は全並列冗長電源3−1〜3−3に電力を供給し並列冗長電源3−1〜3−3が運転開始する(ステップ52)。   First, the parallel operation control unit 1 starts operation (step 51), the AC power switch 2 supplies power to all the parallel redundant power supplies 3-1 to 3-3, and the parallel redundant power supplies 3-1 to 3-3 start operating. (Step 52).

以下、ステップ53〜ステップ57までは、図2に示す実施の形態1の制御フロー(ステップ33〜ステップ35、ステップ38,ステップ39)と同一である。   Hereinafter, Step 53 to Step 57 are the same as the control flow (Step 33 to Step 35, Step 38, Step 39) of the first embodiment shown in FIG.

実施の形態1では、劣化の均一化を優先とし並列冗長電源3−1〜3−3のいずれかの電力を遮断している期間は並列冗長電源3−1〜3−3が冗長構成になっていないため、並列冗長電源3−1〜3−3の万一の故障に備え冗長性を確保するために、ステップ58以下の動作を行う。   In the first embodiment, the parallel redundant power supplies 3-1 to 3-3 have a redundant configuration during the period when priority is given to uniform degradation and the power of any of the parallel redundant power supplies 3-1 to 3-3 is cut off. Therefore, in order to ensure redundancy in the event of a failure of the parallel redundant power supplies 3-1 to 3-3, the operation after step 58 is performed.

電力計算部11は、電力検出部12からの電力情報に基づいて、電力値の呼び込みおよび電力値総和から負荷4の負荷電力を算出し(ステップ58)、電源の稼動台数と電源定格との積から、並列冗長電源3の供給可能な電力を算出する(ステップ59)。   Based on the power information from the power detection unit 12, the power calculation unit 11 calculates the load power of the load 4 from the power value call and the total power value (step 58), and the product of the number of operating power supplies and the power rating. Then, the power that can be supplied from the parallel redundant power supply 3 is calculated (step 59).

AC電源スイッチ制御部9は、電力計算部11からの電力情報を受け、並列冗長電源3の供給可能な電力と負荷4の負荷電力を比較し、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の2台分+余裕電力以上[判定式(供給可能電力―負荷電力≧電源定格2台分+余裕電力)]あるか否かを判断する(ステップ60)。   The AC power switch control unit 9 receives the power information from the power calculation unit 11, compares the power that can be supplied from the parallel redundant power supply 3 with the load power of the load 4, and can supply the full parallel redundant power supply 3 to the load power. It is determined whether or not the difference from the power is equal to or greater than the two redundant redundant power supply ratings + marginal power [judgment formula (suppliable power-load power ≧ two power supply ratings plus marginal power)] (step 60). .

ステップ60で、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の2台分+余裕電力以上ある場合に、劣化が最も進んでいる並列冗長電源3の中の1台の電力を遮断する(ステップ61)。   In step 60, when the difference between the load power and the power that can be supplied from the all-parallel redundant power supply 3 is equal to or more than two parallel redundant power supply ratings plus surplus power, Is cut off (step 61).

ステップ60において、判定式(供給可能電力―負荷電力≧電源定格2台分+余裕電力)の右辺に余裕電力を追加しているが、この余裕電力は負荷4の負荷電力の急速な増加による電力不足を防止するために設けてあり任意の電力値を設定可能とする。   In step 60, margin power is added to the right side of the judgment formula (suppliable power−load power ≧ two power supply ratings + margin power), and this margin power is a power due to a rapid increase in the load power of the load 4. It is provided to prevent shortage, and an arbitrary power value can be set.

また、ステップ60で、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の2台分+余裕電力以上ない場合は、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の1台分+余裕電力以上[判定式(供給可能電力―負荷電力≧電源定格1台分+余裕電力)]あるか否かを判断する(ステップ62)。   In step 60, if the difference between the load power and the power that can be supplied from the fully parallel redundant power supply 3 is not more than two parallel redundant power supply ratings plus the surplus power, the load power of the fully parallel redundant power supply 3 It is determined whether or not the difference from the power that can be supplied is equal to or greater than one redundant redundant power supply rating + surplus power [judgment formula (suppliable power-load power ≥ one power supply rating + surplus power)] (step) 62).

ステップ62で、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の1台分+余裕電力以上ある場合はステップ53に戻る。   If the difference between the load power and the power that can be supplied from the all-parallel redundant power supply 3 is equal to or greater than one parallel redundant power supply rating + the surplus power, the process returns to step 53.

また、ステップ62で、負荷電力に対し全並列冗長電源3の供給可能な電力との差分が並列冗長電源定格の1台分+余裕電力以上ない場合は、電力が遮断している電源1台に電力を供給し(ステップ63)、並列冗長電源3の冗長性が必ず確保されるように制御する。   In step 62, if the difference between the load power and the power that can be supplied from the all-parallel redundant power supply 3 is equal to one of the parallel redundant power supply rating plus the surplus power, the power is cut off to one power supply. Electric power is supplied (step 63), and control is performed so as to ensure the redundancy of the parallel redundant power supply 3 without fail.

本実施の形態では、夜間などで負荷電力が減少した時間を利用し、並列冗長電源3の冗長性を確保しながら並列冗長電源3の劣化均一化を簡単な制御と比較的少ない部品点数で実現することが可能である。   In this embodiment, by using the time when the load power is reduced at night, etc., the redundancy of the parallel redundant power supply 3 is ensured while the deterioration of the parallel redundant power supply 3 is uniformed with simple control and a relatively small number of parts. Is possible.

また、本実施の形態での並列運転制御部1およびAC電源スイッチ2が備える各機能は、並列運転制御部1およびAC電源スイッチ2のどちらに備えてもよい。さらに並列運転制御部1およびAC電源スイッチ2は1つの装置に纏めてもよい。   Further, each function provided in the parallel operation control unit 1 and the AC power switch 2 in the present embodiment may be provided in either the parallel operation control unit 1 or the AC power switch 2. Furthermore, the parallel operation control unit 1 and the AC power switch 2 may be combined into one device.

(実施の形態3)
実施の形態3は、実施の形態2において、並列運転制御部1が備えるAC電源スイッチ制御部9の制御方法を変更することで、並列冗長電源3が冗長性を保ちながら省エネルギー化を図るものである。
(Embodiment 3)
The third embodiment changes the control method of the AC power supply switch control unit 9 included in the parallel operation control unit 1 in the second embodiment, so that the parallel redundant power source 3 can save energy while maintaining redundancy. is there.

図5により、本発明の実施の形態3に係る並列電源システムの構成について説明する。図5は本発明の実施の形態3に係る並列電源システムの構成を示す構成図である。   The configuration of the parallel power supply system according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram showing the configuration of the parallel power supply system according to Embodiment 3 of the present invention.

図5において、並列電源システムは、図3に示す実施の形態2の並列電源システムに対して、部品温度検出部5、部品劣化演算部7、部品劣化情報記憶部8を削除した構成であり、他の構成は、実施の形態2と同様である。   In FIG. 5, the parallel power supply system has a configuration in which the component temperature detection unit 5, the component deterioration calculation unit 7, and the component deterioration information storage unit 8 are deleted from the parallel power supply system of the second embodiment shown in FIG. Other configurations are the same as those in the second embodiment.

次に、図6および図7により、本発明の実施の形態3に係る並列電源システムの制御フローについて説明する。図6は本発明の実施の形態3に係る並列電源システムの制御フローを示すフローチャート、図7は本発明の実施の形態3に係る並列電源システムの制御フローの1台の電力遮断時に電力変換効率が向上するかの判断処理の詳細を示すフローチャートである。   Next, the control flow of the parallel power supply system according to Embodiment 3 of the present invention will be described with reference to FIGS. 6 is a flowchart showing a control flow of the parallel power supply system according to Embodiment 3 of the present invention, and FIG. 7 is a power conversion efficiency at the time of power interruption of one unit of the control flow of the parallel power supply system according to Embodiment 3 of the present invention. It is a flowchart which shows the detail of the judgment processing whether it improves.

まず、図6に示すように、並列運転制御部1が運転開始し(ステップ71)、AC電源スイッチ2は全並列冗長電源3−1〜3−3に電力を供給し、並列冗長電源3−1〜3−3が運転開始する(ステップ72)。   First, as shown in FIG. 6, the parallel operation control unit 1 starts operation (step 71), and the AC power switch 2 supplies power to all the parallel redundant power supplies 3-1 to 3-3. 1 to 3-3 start operation (step 72).

以下、ステップ73〜ステップ75までは、図4に示す実施の形態2の制御フロー(ステップ58〜ステップ60)と同一である。   Hereinafter, Step 73 to Step 75 are the same as the control flow (Step 58 to Step 60) of the second embodiment shown in FIG.

そして、AC電源スイッチ制御部9は、電力計算部11から電力情報を受け取り、並列冗長電源3の中の1台の電力を遮断した場合の並列冗長電源3の電力変換効率と電力を遮断する前の電力変換効率を計算し、それらの結果を比較し、1台の電力遮断時に電力変換効率が向上するか否かを判断する(ステップ76)。   Then, the AC power switch control unit 9 receives the power information from the power calculation unit 11 and before cutting off the power conversion efficiency and power of the parallel redundant power source 3 when one of the power units in the parallel redundant power source 3 is cut off. The power conversion efficiency is calculated, the results are compared, and it is determined whether or not the power conversion efficiency is improved when one power is cut off (step 76).

ステップ76で、1台の電力遮断時に電力変換効率が向上する場合は、並列冗長電源3の中の1台の電力を遮断する(ステップ77)。これにより並列冗長電源3の電力変換効率を向上させることで電力損失を低減し、同時に電力を遮断した並列冗長電源3の待機電力を削減する。   If the power conversion efficiency is improved when the power is cut off at step 76, the power of one of the parallel redundant power supplies 3 is cut off (step 77). Thus, power loss is reduced by improving the power conversion efficiency of the parallel redundant power supply 3, and at the same time, standby power of the parallel redundant power supply 3 that is cut off is reduced.

また、ステップ76で、1台の電力遮断時に電力変換効率が向上しない場合は、並列冗長電源3の中の1台に電力を供給した場合に並列冗長電源3の電力変換効率が向上するか否かを判断する(ステップ80)。   If the power conversion efficiency is not improved when power is shut off at step 76, whether or not the power conversion efficiency of the parallel redundant power supply 3 is improved when power is supplied to one of the parallel redundant power supplies 3. Is determined (step 80).

ステップ80で、並列冗長電源3の中の1台に電力を供給した場合に並列冗長電源3の電力変換効率が向上する場合は、並列冗長電源3の中の1台に電力を供給し(ステップ81)、並列冗長電源3の中の1台に電力を供給した場合に並列冗長電源3の電力変換効率が向上しない場合は、ステップ73に戻る。   If power conversion efficiency of the parallel redundant power supply 3 is improved when power is supplied to one of the parallel redundant power supplies 3 in step 80, power is supplied to one of the parallel redundant power supplies 3 (step 81) If the power conversion efficiency of the parallel redundant power source 3 is not improved when power is supplied to one of the parallel redundant power sources 3, the process returns to step 73.

これにより、ステップ77と同様に、電力変換効率を向上させ電力損失を低減し省エネルギー化を実現する。   Thereby, like step 77, power conversion efficiency is improved, power loss is reduced, and energy saving is realized.

また、ステップ78、ステップ79は、実施の形態2のステップ56、ステップ57と同様に並列冗長電源3の冗長性が必ず保たれるように制御する。   Further, Steps 78 and 79 are controlled so that the redundancy of the parallel redundant power supply 3 is always maintained as in Steps 56 and 57 of the second embodiment.

また、ステップ76での1台の電力遮断時に電力変換効率が向上するか否かの詳細制御フローとしては、図7に示すように、図6のステップ76より前の処理で算出した負荷電力と電源稼動数の情報により、並列冗長電源1台当たりの出力電力を算出する(ステップ91)。   Further, as shown in FIG. 7, the detailed control flow for determining whether or not the power conversion efficiency is improved when one unit of power is cut off in step 76 includes the load power calculated in the process before step 76 in FIG. Based on the information on the number of operating power supplies, the output power per parallel redundant power supply is calculated (step 91).

そして、ステップ91で算出した出力電力を、予め準備された並列冗長電源3の出力電力と電力変換効率の関係を示すテーブルを参照し、電力変換効率Aを算出する(ステップ92)。   Then, the power conversion efficiency A is calculated by referring to the table showing the relationship between the output power calculated in step 91 and the power conversion efficiency of the output power of the parallel redundant power supply 3 prepared in advance (step 92).

そして、稼動電源数が1台減った場合の出力電力を算出し(ステップ93)、ステップ92同様に電力変換効率Bを算出する(ステップ94)。   Then, the output power when the number of operating power supplies is reduced by one is calculated (step 93), and the power conversion efficiency B is calculated in the same manner as in step 92 (step 94).

そして、電力変換効率Aと電力変換効率Bの大きさを比較し、電力変換効率Bが電力変換効率Aより大きい[判定式(電力変換効率B>電力変換効率A)]か否かを判断する(ステップ95)。   Then, the power conversion efficiency A and the power conversion efficiency B are compared, and it is determined whether or not the power conversion efficiency B is greater than the power conversion efficiency A [determination formula (power conversion efficiency B> power conversion efficiency A)]. (Step 95).

ステップ95で電力変換効率Bが電力変換効率Aより大きい場合は「YES」の結果、ステップ95で電力変換効率Bが電力変換効率A以下の場合は「NO」の結果となる。   If the power conversion efficiency B is greater than the power conversion efficiency A in step 95, the result is “YES”. If the power conversion efficiency B is less than or equal to the power conversion efficiency A in step 95, the result is “NO”.

また、図6のステップ80での詳細制御フローも、図7に示す制御フローと同様であるが、図7に示す制御フローのステップ93の処理を、稼動台数が1台増えた場合の電源変換効率Bを算出している。   The detailed control flow at step 80 in FIG. 6 is the same as the control flow shown in FIG. 7, but the processing at step 93 of the control flow shown in FIG. Efficiency B is calculated.

次に、図8により、本発明の実施の形態3に係る並列電源システムの省エネルギー化が有効な場合の構成について説明する。図8は本発明の実施の形態3に係る並列電源システムの省エネルギー化が有効な場合の構成を示す構成図である。   Next, referring to FIG. 8, a configuration in the case where energy saving of the parallel power supply system according to Embodiment 3 of the present invention is effective will be described. FIG. 8 is a configuration diagram showing a configuration when energy saving of the parallel power supply system according to Embodiment 3 of the present invention is effective.

図8において、並列冗長電源3と負荷4の構成は、並列冗長電源3はn台(3−1〜3−n)までの並列接続を可能とし、負荷4はm台(4−1〜4−m)まで並列接続を可能とする。   8, the configuration of the parallel redundant power supply 3 and the load 4 enables the parallel redundant power supply 3 to be connected in parallel up to n units (3-1 to 3-n), and the load 4 includes m units (4-1 to 4). -M) can be connected in parallel.

また、図8において、例えば負荷4は負荷4−1、4−2の2台が稼動し、並列冗長電源3は3−1、3−2、3−3の3台が稼動していたとする。   In FIG. 8, it is assumed that, for example, the load 4 is operated by two loads 4-1 and 4-2, and the parallel redundant power supply 3 is operated by three units 3-1, 3-2, and 3-3. .

負荷4−2がメンテナンス等の理由によりオフし、負荷4−1のみの稼動となった場合に、上述の図6に示す制御フローにより、並列運転制御部1は並列冗長電源3の1台の電力を遮断させた場合においても冗長性を保ちながら負荷4−1に電力が供給可能と判断され、かつ、並列冗長電源3台稼動時と2台稼動時の電力変換効率をそれぞれ計算し比較した結果、2台稼動時の電力変換効率が高いと判断されると、並列冗長電源3の中の1台の電力が遮断され電力変換効率の向上を図ることが可能である。   When the load 4-2 is turned off due to maintenance or the like and only the load 4-1 is operated, the parallel operation control unit 1 is connected to one of the parallel redundant power supplies 3 by the control flow shown in FIG. Even when the power is cut off, it is determined that power can be supplied to the load 4-1 while maintaining redundancy, and the power conversion efficiencies when three parallel redundant power supplies are operating and when two are operating are calculated and compared. As a result, if it is determined that the power conversion efficiency is high when two units are in operation, it is possible to cut off the power of one of the parallel redundant power supplies 3 and improve the power conversion efficiency.

また、前述の電力を遮断した並列冗長電源3の1台の待機電力を削減することにより省エネルギー化の手段を簡単な制御と比較的少ない部品点数で実現することが可能である。   Further, by reducing the standby power of one of the parallel redundant power supplies 3 with the power cut off, it is possible to realize an energy saving means with simple control and a relatively small number of parts.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

例えば、AC電源スイッチ2および並列運転制御部1により並列冗長電源3への電力供給を制御することにより、実施の形態1、2では、複数の並列冗長電源3の間の劣化均一化を行い、並列冗長電源3全体としての信頼性を向上させ、実施の形態3では、電力変換効率を向上させているが、並列運転制御部1に両者の機能を持たせ、ユーザなどからの操作指示などにより、並列冗長電源3の間の劣化均一化と、電力変換効率の向上を切り替えて制御するようにしてもよい。   For example, by controlling the power supply to the parallel redundant power supply 3 by the AC power switch 2 and the parallel operation control unit 1, in the first and second embodiments, the deterioration between the plurality of parallel redundant power supplies 3 is equalized, The reliability of the parallel redundant power supply 3 as a whole is improved. In the third embodiment, the power conversion efficiency is improved. However, the parallel operation control unit 1 is provided with both functions and is operated by an operation instruction from the user or the like. Further, it may be controlled by switching between uniform degradation between the parallel redundant power supplies 3 and improvement of power conversion efficiency.

これにより、並列電源システムハードウェアの構成を変えることなくユーザの用途によって容易に並列電源の制御を行うことが可能である。   As a result, it is possible to easily control the parallel power supply according to the user's application without changing the configuration of the parallel power supply system hardware.

本発明は、複数の並列冗長電源を備えた並列電源システムに関し、複数の並列冗長電源の劣化の均一化や、複数の並列冗長電源全体での電力変換効率の向上が必要な機器に広く適用可能である。   The present invention relates to a parallel power supply system including a plurality of parallel redundant power supplies, and can be widely applied to devices that require uniform deterioration of a plurality of parallel redundant power supplies and improvement of power conversion efficiency in the plurality of parallel redundant power supplies as a whole. It is.

本発明の実施の形態1に係る並列電源システムの構成を示す構成図である。It is a block diagram which shows the structure of the parallel power supply system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る並列電源システムの制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the parallel power supply system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る並列電源システムの構成を示す構成図である。It is a block diagram which shows the structure of the parallel power supply system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る並列電源システムの制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the parallel power supply system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る並列電源システムの構成を示す構成図である。It is a block diagram which shows the structure of the parallel power supply system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る並列電源システムの制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the parallel power supply system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る並列電源システムの制御フローの1台の電力遮断時に電力変換効率が向上するかの判断処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the judgment process whether power conversion efficiency improves at the time of the electric power interruption | blocking of one unit of the control flow of the parallel power supply system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る並列電源システムの省エネルギー化が有効な場合の構成を示す構成図である。It is a block diagram which shows a structure when the energy saving of the parallel power supply system which concerns on Embodiment 3 of this invention is effective.

符号の説明Explanation of symbols

1…並列運転制御部、2…AC電源スイッチ、3−1〜3−n…並列冗長電源、4−1〜4−m…負荷、5…部品温度検出部、6…通電時間記憶部、7…部品劣化演算部、8…部品劣化情報記憶部、9…AC電源スイッチ制御部、10…外部電源、11…電力計算部、12…電力検出部。   DESCRIPTION OF SYMBOLS 1 ... Parallel operation control part, 2 ... AC power switch, 3-1 to 3-n ... Parallel redundant power supply, 4-1 to 4-m ... Load, 5 ... Component temperature detection part, 6 ... Energization time memory | storage part, 7 DESCRIPTION OF SYMBOLS ... Component deterioration calculating part, 8 ... Component deterioration information storage part, 9 ... AC power switch control part, 10 ... External power supply, 11 ... Electric power calculation part, 12 ... Electric power detection part.

Claims (5)

負荷へ電力を供給する複数の並列冗長電源と、
外部電源に接続され、前記複数の並列冗長電源のそれぞれに個別に電力を供給するAC電源スイッチと、
前記AC電源スイッチを制御し、前記複数の並列冗長電源への電力の供給を個別に制御する並列運転制御部とを備え、
前記並列冗長電源は、内部部品の温度を検出する部品温度検出部を有し、
前記AC電源スイッチは、前記複数の並列冗長電源へ電力を供給した際のそれぞれの通電時間を記憶する通電時間記憶部を有し、
前記並列運転制御部は、前記複数の並列冗長電源の前記部品温度検出部からの部品温度の情報、および前記AC電源スイッチの通電時間記憶部に記憶された通電時間の情報に基づいて、前記複数の並列冗長電源のそれぞれについて、部品劣化を演算する部品劣化演算部と、前記部品劣化演算部の演算結果に基づいて、前記複数の並列冗長電源の間で前記部品劣化のばらつきがあった場合、最も前記部品劣化が進んでいる前記並列冗長電源への電力の供給を遮断させるAC電源スイッチ制御部とを有することを特徴とする並列電源システム。
A plurality of parallel redundant power supplies for supplying power to the load;
An AC power switch that is connected to an external power supply and individually supplies power to each of the plurality of parallel redundant power supplies;
A parallel operation control unit that controls the AC power switch and individually controls power supply to the plurality of parallel redundant power sources;
The parallel redundant power supply has a component temperature detection unit that detects the temperature of internal components,
The AC power switch includes an energization time storage unit that stores energization times when power is supplied to the plurality of parallel redundant power supplies,
The parallel operation control unit is configured to determine the plurality of the plurality of parallel redundant power supplies based on the component temperature information from the component temperature detection unit and the energization time information stored in the energization time storage unit of the AC power switch. For each of the parallel redundant power supplies, when there is a variation in the component deterioration between the plurality of parallel redundant power supplies based on the calculation result of the component deterioration calculation unit and the component deterioration calculation unit for calculating the component deterioration, An AC power switch control unit that cuts off the supply of power to the parallel redundant power supply that is most deteriorated in the components.
請求項1記載の並列電源システムにおいて、
前記並列冗長電源は、出力電力を検出する電力検出部を有し、
前記並列運転制御部は、前記複数の並列冗長電源の前記電力検出部からの出力電力の情報に基づいて、負荷電力を算出する電力計算部を有し、
前記並列運転制御部のAC電源スイッチ制御部は、前記部品劣化演算部の演算結果および前記電力計算部で算出された負荷電力の情報に基づいて、前記負荷電力に対して、現在電力が供給されている前記並列冗長電源全体での供給可能電力が、前記並列冗長電源の2台分以上大きく、前記複数の並列冗長電源の間で前記部品劣化のばらつきがあった場合、最も前記部品劣化が進んでいる前記並列冗長電源への電力の供給を遮断させることを特徴とする並列電源システム。
The parallel power supply system according to claim 1,
The parallel redundant power supply has a power detection unit that detects output power,
The parallel operation control unit has a power calculation unit that calculates load power based on information on output power from the power detection unit of the plurality of parallel redundant power supplies,
The AC power switch control unit of the parallel operation control unit is supplied with current power to the load power based on the calculation result of the component deterioration calculation unit and the load power information calculated by the power calculation unit. When the power that can be supplied in the entire parallel redundant power supply is larger than that of the two parallel redundant power supplies and there is variation in the component deterioration among the plurality of parallel redundant power supplies, the component deterioration is most advanced. A parallel power supply system characterized in that power supply to the parallel redundant power supply is cut off.
請求項2記載の並列電源システムにおいて、
前記並列運転制御部のAC電源スイッチ制御部は、前記部品劣化演算部の演算結果および前記電力計算部で算出された負荷電力の情報に基づいて、前記負荷電力に対して、現在電力が供給されている前記並列冗長電源全体での供給可能電力が、前記並列冗長電源の1台分より小さい場合、電力を遮断している前記並列冗長電源に電力を供給させることを特徴とする並列電源システム。
The parallel power supply system according to claim 2,
The AC power switch control unit of the parallel operation control unit is supplied with current power to the load power based on the calculation result of the component deterioration calculation unit and the load power information calculated by the power calculation unit. When the suppliable power in the entire parallel redundant power supply is smaller than one of the parallel redundant power supplies, power is supplied to the parallel redundant power supply that is shut off.
負荷へ電力を供給する複数の並列冗長電源と、
外部電源に接続され、スイッチ制御により前記複数の並列冗長電源のそれぞれに個別に電力を供給するAC電源スイッチと、
前記AC電源スイッチを制御し、前記複数の並列冗長電源への電力の供給を制御する並列運転制御部とを備え、
前記並列冗長電源は、出力電力を検出する電力検出部を有し、
前記並列運転制御部は、前記複数の並列冗長電源の前記電力検出部からの出力電力の情報に基づいて、負荷電力を算出する電力計算部と、前記電力計算部からの前記負荷電力の情報に基づいて、前記複数の並列冗長電源の内、1台当たりの電力変換効率が向上する台数分の前記並列冗長電源に電力を供給させるAC電源スイッチ制御部とを有することを特徴とする並列電源システム。
A plurality of parallel redundant power supplies for supplying power to the load;
An AC power switch connected to an external power supply and individually supplying power to each of the plurality of parallel redundant power supplies by switch control;
A parallel operation control unit that controls the AC power switch and controls the supply of power to the plurality of parallel redundant power supplies;
The parallel redundant power supply has a power detection unit that detects output power,
The parallel operation control unit includes a power calculation unit that calculates load power based on information on output power from the power detection unit of the plurality of parallel redundant power supplies, and information on the load power from the power calculation unit. And a power supply switch control unit for supplying power to the parallel redundant power supplies corresponding to the number of the plurality of parallel redundant power supplies whose power conversion efficiency is improved. .
負荷へ電力を供給する複数の並列冗長電源と、
外部電源に接続され、スイッチ制御により前記複数の並列冗長電源のそれぞれに個別に電力を供給するAC電源スイッチと、
前記AC電源スイッチを制御し、前記複数の並列冗長電源への電力の供給を制御する並列運転制御部とを備え、
前記並列冗長電源は、内部部品の温度を検出する部品温度検出部と、出力電力を検出する電力検出部とを有し、
前記AC電源スイッチは、前記複数の並列冗長電源へ電力を供給した際のそれぞれの通電時間を記憶する通電時間記憶部を有し、
前記並列運転制御部は、前記複数の並列冗長電源の前記部品温度検出部からの部品温度の情報、および前記AC電源スイッチの通電時間記憶部に記憶された通電時間の情報に基づいて、前記複数の並列冗長電源のそれぞれについて、部品劣化を演算する部品劣化演算部と、前記複数の並列冗長電源の前記電力検出部からの出力電力の情報に基づいて、負荷電力を算出する電力計算部と、前記部品劣化演算部の演算結果に基づいて、前記複数の並列冗長電源の間で前記部品劣化のばらつきがあった場合、最も前記部品劣化が進んでいる前記並列冗長電源への電力の供給を遮断させるか、または前記電力計算部からの前記負荷電力の情報に基づいて、前記複数の並列冗長電源の内、1台当たりの電力変換効率が向上する台数分の前記並列冗長電源に電力を供給させるAC電源スイッチ制御部を有することを特徴とする並列電源システム。
A plurality of parallel redundant power supplies for supplying power to the load;
An AC power switch connected to an external power supply and individually supplying power to each of the plurality of parallel redundant power supplies by switch control;
A parallel operation control unit that controls the AC power switch and controls the supply of power to the plurality of parallel redundant power supplies;
The parallel redundant power supply includes a component temperature detection unit that detects the temperature of internal components, and a power detection unit that detects output power,
The AC power switch includes an energization time storage unit that stores energization times when power is supplied to the plurality of parallel redundant power supplies,
The parallel operation control unit is configured to determine the plurality of the plurality of parallel redundant power supplies based on the component temperature information from the component temperature detection unit and the energization time information stored in the energization time storage unit of the AC power switch. For each of the parallel redundant power supplies, a component deterioration calculation unit that calculates component deterioration, a power calculation unit that calculates load power based on information on output power from the power detection unit of the plurality of parallel redundant power supplies, Based on the calculation result of the component deterioration calculation unit, when there is a variation in the component deterioration among the plurality of parallel redundant power supplies, the supply of power to the parallel redundant power supply with the most advanced component deterioration is cut off. Or, based on the load power information from the power calculation unit, among the plurality of parallel redundant power supplies, the number of the parallel redundant power supplies whose power conversion efficiency per unit is improved Parallel power supply system characterized by having an AC power switch control unit for supplying power.
JP2008172346A 2008-07-01 2008-07-01 Parallel power supply system Pending JP2010016921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172346A JP2010016921A (en) 2008-07-01 2008-07-01 Parallel power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172346A JP2010016921A (en) 2008-07-01 2008-07-01 Parallel power supply system

Publications (1)

Publication Number Publication Date
JP2010016921A true JP2010016921A (en) 2010-01-21

Family

ID=41702470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172346A Pending JP2010016921A (en) 2008-07-01 2008-07-01 Parallel power supply system

Country Status (1)

Country Link
JP (1) JP2010016921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184473A (en) * 2016-03-30 2017-10-05 国立研究開発法人海洋研究開発機構 Power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184473A (en) * 2016-03-30 2017-10-05 国立研究開発法人海洋研究開発機構 Power supply system
WO2017169053A1 (en) * 2016-03-30 2017-10-05 国立研究開発法人海洋研究開発機構 Power supply system

Similar Documents

Publication Publication Date Title
JP5450136B2 (en) Power supply system
JP4600489B2 (en) Power control device
US8683235B2 (en) Electrical apparatus
CN106100101B (en) UPS operation with high converter efficiency
US10305320B2 (en) Method of controlling an uninterruptible power supply system to optimize component life
US20110066871A1 (en) Multiple Power Supplies Providing Enhanced Power Efficiency
JP5997700B2 (en) Power supply device and control method thereof
JP6649239B2 (en) Uninterruptible power supply system
CN105103080A (en) Server rack fuel cell
US20130184891A1 (en) Uninterruptible power supply control
EP2830186B1 (en) Battery heater systems and methods
JP2007287567A (en) Fuel cell system
US20140354061A1 (en) Power supply device and switch method thereof
JP2010016921A (en) Parallel power supply system
JP2003153448A (en) Power generation system
JP2015050913A (en) Power control system
JP4586770B2 (en) Standby uninterruptible power supply system
EP3014739B1 (en) Interruption of output power and auxiliary power
CN115248628A (en) Backup power system for backup operation
US11258297B2 (en) Inverter control strategy for a transient heavy load
JP2015043642A (en) Power conditioner
US11165278B2 (en) Uninterruptible power supply system and uninterruptible power supply
US11256275B2 (en) Power supply adjusting system, method and apparatus, chip, and electronic device
WO2009007459A2 (en) Method for power supply control
JP2006223042A (en) Apparatus and method for parallel operation of inverter system