JP2010016210A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010016210A
JP2010016210A JP2008175339A JP2008175339A JP2010016210A JP 2010016210 A JP2010016210 A JP 2010016210A JP 2008175339 A JP2008175339 A JP 2008175339A JP 2008175339 A JP2008175339 A JP 2008175339A JP 2010016210 A JP2010016210 A JP 2010016210A
Authority
JP
Japan
Prior art keywords
insulating film
capacitor
electrode
gate
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175339A
Other languages
Japanese (ja)
Inventor
Yoshihiko Miyawaki
好彦 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008175339A priority Critical patent/JP2010016210A/en
Publication of JP2010016210A publication Critical patent/JP2010016210A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a MOSFET from shifting in threshold voltage Vt owing to charge-up of a gate electrode. <P>SOLUTION: A capacitor lower electrode 3 is connected to the gate electrode 6a, and a capacitor upper electrode 6b is connected to a P-type ground layer 12 to form a capacitor in parallel to a gate comprising the gate electrode 6a and a gate insulating film 4. In this case, a capacitor insulating film 5 is formed thinner than the gate insulating film 4 and then electric charges charged up on the gate electrode 6a are discharged to the P-type ground layer 12 through the capacitor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ウエハプロセス途中におけるチャージアップによる閾値電圧Vtのシフト防止を図ることが可能な、半導体装置及びその製造方法を提供するものである。   The present invention provides a semiconductor device and a method for manufacturing the same that can prevent a shift of the threshold voltage Vt due to charge-up during the wafer process.

MOSFETの製造工程においては、ドライエッチングプロセス等プラズマ雰囲気で加工処理が為される場合が多い。このためMOSFETのゲート電極がチャージアップして極端な場合はゲート絶縁膜が破壊されてしまうことがある。また、そこまで行かなくてもゲート絶縁膜がストレスを受けて界面準位が発生したり、ゲート絶縁膜中に電子がトラップされたりして、MOSFETの閾値電圧Vtがシフトしてしまうという弊害を生ずる場合がある。このため、ゲート配線に並列にダイオードを接続し、過大な電圧がゲート絶縁膜に印加されるのを防止し、ゲート酸化膜が受けるストレスの緩和を図っている。   In the MOSFET manufacturing process, processing is often performed in a plasma atmosphere such as a dry etching process. For this reason, when the gate electrode of the MOSFET is charged up and extreme, the gate insulating film may be destroyed. In addition, even if it does not go so far, the gate insulating film is stressed to generate an interface state, or electrons are trapped in the gate insulating film, causing the threshold voltage Vt of the MOSFET to shift. May occur. For this reason, a diode is connected in parallel to the gate wiring to prevent an excessive voltage from being applied to the gate insulating film and to reduce the stress applied to the gate oxide film.

なお、このようなゲート絶縁膜保護用のダイオードを有するMOSFETについては以下の特許文献1,2等に記載されている。
特開2005−294581 特開平7−202181
A MOSFET having such a diode for protecting the gate insulating film is described in the following Patent Documents 1 and 2 and the like.
JP 2005-294581 JP-A-7-202181

従来のゲート酸化膜保護用ダイオードは、ゲート酸化膜が厚い時代はゲート絶縁膜が破壊する絶縁耐量である約1×10v/mに比し低い電界強度で絶縁破壊し、その保護機能を充分に発揮していた。しかし、微細化の進展とともにゲート絶縁膜も薄膜化し、より低い電圧で絶縁膜中の電界が絶縁破壊耐量に達するため、保護ダイオードもより低い電界で絶縁破壊するように半導体基板の不純物濃度を設定することが必要となる。しかしソース・ドレイン間の耐圧を確保するためや閾値電圧Vt調整などの点から半導体基板の不純物濃度の調整も充分に行うことが出来ず、結果的に保護ダイオードの絶縁耐圧を低くすることが出来ない場合も生ずる。これに対して、半導体装置の製造プロセスを工夫することによりプラズマダメージを抑制する技術等が提供(特開2000−323582)されている。 Conventional gate oxide protection diodes have a breakdown function with a lower electric field strength than the dielectric strength of about 1 × 10 7 v / m, when the gate oxide film is thick. It was fully demonstrated. However, as the miniaturization progresses, the gate insulating film also becomes thinner, and the electric field in the insulating film reaches the dielectric breakdown resistance at a lower voltage, so the impurity concentration of the semiconductor substrate is set so that the protective diode also breaks down at a lower electric field. It is necessary to do. However, the impurity concentration of the semiconductor substrate cannot be adjusted sufficiently from the viewpoints of securing the withstand voltage between the source and drain and adjusting the threshold voltage Vt. As a result, the withstand voltage of the protective diode can be lowered. There may be no cases. On the other hand, a technique for suppressing plasma damage by devising a semiconductor device manufacturing process has been provided (Japanese Patent Laid-Open No. 2000-323582).

しかし、そのような工夫がなされていない場合には、結果的に保護ダイオードの絶縁耐圧がゲート酸化膜の絶縁破壊耐量より高くなる場合が生じ、保護ダイオードが作動する前にゲート酸化膜はストレスにさらされることになる。また、ゲート絶縁膜はその絶縁破壊耐量より小さな電界が印加された場合でも、エッチング時間中を含め比較的長い時間、ストレスを受けることになり、破壊に至らなくとも界面準位の発生や電子の絶縁膜中への注入により閾値電圧Vtがシフトするという問題に直面する。   However, if such a contrivance is not made, as a result, the breakdown voltage of the protection diode may be higher than the dielectric breakdown resistance of the gate oxide film, and the gate oxide film is subjected to stress before the protection diode is activated. Will be exposed. In addition, even when an electric field smaller than the dielectric breakdown resistance is applied to the gate insulating film, the gate insulating film is subjected to stress for a relatively long time including during the etching time. The problem is that the threshold voltage Vt shifts due to the implantation into the insulating film.

この結果、特に図6に示すカレントミラー回路のような差動回路を構成する一方のMOSFET、例えばM3の閾値電圧Vtが他方のMOSFETであるM4の閾値電圧Vtから多少でもシフトした場合、M3とM4に同じ電流を流すことが出来ず、マッチングがとれないことから正常な動作が行われないことになる。そこで、このような問題の発生を防ぐため、本発明は、閾値電圧Vtシフトを防止することが可能なMOSFETを提供することを課題とする。   As a result, when the threshold voltage Vt of one MOSFET, for example, M3, which constitutes a differential circuit such as the current mirror circuit shown in FIG. 6, is slightly shifted from the threshold voltage Vt of M4, which is the other MOSFET, M3 and Since the same current cannot be supplied to M4 and matching cannot be performed, normal operation is not performed. Therefore, in order to prevent the occurrence of such a problem, an object of the present invention is to provide a MOSFET capable of preventing a threshold voltage Vt shift.

本発明の半導体装置の製造方法は、第1導電型の半導体基板の表面に素子分離絶縁膜を形成する工程と、前記素子分離絶縁膜の1の表面にキャパシタの下部電極を形成する工程と、前記素子分離絶縁膜で素子分離された1の素子形成領域及び前記下部電極の表面に絶縁膜を形成する工程と、前記絶縁膜の表面にゲート電極及びキャパシタの上部電極を形成する工程と、前記素子分離絶縁膜で素子分離された他の素子形成領域に第1導電型の接地層を形成する工程と、を備え、前記ゲート電極と前記下部電極及び前記上部電極と前記接地層がそれぞれ電気的に接続されていることを特徴とする。   The method of manufacturing a semiconductor device of the present invention includes a step of forming an element isolation insulating film on the surface of a first conductivity type semiconductor substrate, a step of forming a lower electrode of a capacitor on one surface of the element isolation insulating film, A step of forming an insulating film on the surface of one element forming region and the lower electrode separated by the element isolation insulating film; a step of forming a gate electrode and an upper electrode of a capacitor on the surface of the insulating film; Forming a first conductive type ground layer in another element formation region separated by an element isolation insulating film, wherein the gate electrode, the lower electrode, the upper electrode, and the ground layer are electrically connected to each other. It is characterized by being connected to.

また、本発明の半導体装置は、第1導電型の半導体基板の表面に形成された素子分離絶縁膜と、前記素子分離絶縁膜の1の表面に形成されたキャパシタの下部電極と、前記素子分離絶縁膜で素子分離された1の素子形成領域及び前記下部電極の表面に形成された絶縁膜と、前記絶縁膜の表面に形成されたゲート電極及びキャパシタの上部電極と、前記素子分離絶縁膜で素子分離された他の素子形成領域に形成された第1導電型の接地層と、を備え、前記ゲート電極と前記下部電極及び前記上部電極と前記接地層がそれぞれ電気的に接続されていることを特徴とする。   The semiconductor device of the present invention includes an element isolation insulating film formed on the surface of a first conductivity type semiconductor substrate, a capacitor lower electrode formed on one surface of the element isolation insulating film, and the element isolation. An element forming region separated by an insulating film and an insulating film formed on a surface of the lower electrode; a gate electrode formed on the surface of the insulating film; an upper electrode of a capacitor; and the element separating insulating film. A first conductivity type ground layer formed in another element formation region where the elements are separated, and the gate electrode, the lower electrode, the upper electrode, and the ground layer are electrically connected to each other. It is characterized by.

本発明によれば、ウエハプロセス途中において、MOSFETのゲート絶縁膜がチャージアップによるストレスを受けることが無いので、閾値電圧Vtシフトを防止することができる。   According to the present invention, the threshold voltage Vt shift can be prevented because the gate insulating film of the MOSFET is not subjected to stress due to charge-up during the wafer process.

本発明の実施形態について以下に図面に従って説明する。なお、本発明の実施形態については代表的な例としてNチャネル型MOSFETであるNMOSFETを採用し説明を進める。はじめに、図1に示すように、P型半導体基板1の表面に所定の方法により素子分離絶縁膜2を形成する。次にLPCVD法によりポリシリコン膜を素子分離絶縁膜2上を含む全面に生成し、所定のフォトリソグラフィ工程等を経て1の素子分離絶縁膜2上にキャパシタ下部電極3を形成する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, about embodiment of this invention, NMOSFET which is N channel type MOSFET is employ | adopted as a typical example, and description is advanced. First, as shown in FIG. 1, an element isolation insulating film 2 is formed on the surface of a P-type semiconductor substrate 1 by a predetermined method. Next, a polysilicon film is formed on the entire surface including the element isolation insulating film 2 by LPCVD, and a capacitor lower electrode 3 is formed on one element isolation insulating film 2 through a predetermined photolithography process or the like.

キャパシタ下部電極3は図7に示すように、沢山の角張った端面を有する形状にするのが望ましい。また高温で生成することにより結晶粒界を明確にしたり、ポリシリコン膜の表面をエッチングやサンドブラストで荒らすことも考慮する。また、キャパシタ下部電極3の上面から下面にかけて逆テーパー形状にすることも望ましい。それらの効果については後述する。次に犠牲酸化処理等を行い、清浄なP型ウエル層1の表面にゲート絶縁膜4を、キャパシタ下部電極3の表面にキャパシタ絶縁膜5を形成する。キャパシタ絶縁膜5はゲート絶縁膜4とは別に、ゲート絶縁膜4より薄く形成しても良い。この場合、熱酸化に限定することなくCVD法により薄い絶縁膜を形成してもよい。   As shown in FIG. 7, the capacitor lower electrode 3 preferably has a shape having many angular end faces. In addition, it is also considered that the grain boundaries are clarified by forming at a high temperature, or that the surface of the polysilicon film is roughened by etching or sandblasting. It is also desirable that the capacitor lower electrode 3 has a reverse taper shape from the upper surface to the lower surface. These effects will be described later. Next, sacrificial oxidation treatment or the like is performed to form a gate insulating film 4 on the surface of the clean P-type well layer 1 and a capacitor insulating film 5 on the surface of the capacitor lower electrode 3. The capacitor insulating film 5 may be formed thinner than the gate insulating film 4 separately from the gate insulating film 4. In this case, a thin insulating film may be formed by a CVD method without being limited to thermal oxidation.

次に図2に示すように、ゲート絶縁膜4,キャパシタ絶縁膜5を含む半導体基板全面にポリシリコン等の導電膜6をLPCVD法等により堆積する。その後、抵抗層を形成する予定の部分をシリコン窒化膜パターン等からなるバリア層7で被覆してから所定の方法で導電膜6の表面からリン拡散を行い導電膜6の低抵抗化を図る。次に図3に示すように、所定のフォトリソグラフィ工程を経ることにより、ゲート電極6a及びキャパシタ上部電極6bを形成する。バリア層7の下にはリンが拡散されない抵抗層6cが形成される。この抵抗層6cは必ずしも形成する必要がなく、この工程は省略することも可能である。   Next, as shown in FIG. 2, a conductive film 6 such as polysilicon is deposited on the entire surface of the semiconductor substrate including the gate insulating film 4 and the capacitor insulating film 5 by LPCVD or the like. Thereafter, a portion where the resistance layer is to be formed is covered with a barrier layer 7 made of a silicon nitride film pattern or the like, and then phosphorus diffusion is performed from the surface of the conductive film 6 by a predetermined method to reduce the resistance of the conductive film 6. Next, as shown in FIG. 3, a gate electrode 6a and a capacitor upper electrode 6b are formed through a predetermined photolithography process. Under the barrier layer 7, a resistance layer 6c in which phosphorus is not diffused is formed. The resistance layer 6c is not necessarily formed, and this step can be omitted.

次に図4に示すように、ゲート電極6aをマスクに低濃度ドレイン層等となるLDD層8を形成し、更にLPCVD法により酸化膜を半導体基板の表面全体に堆積後、所定の異方性ドライエッチングによりゲート電極6aの側面にサイドウォール9を形成する。その後砒素等の不純物をイオン注入することによりN型ソース層10、N型ドレイン層11を形成し、更にボロン等のイオン注入によりP型接地層12を形成する。また、必要に応じて、抵抗層6cの抵抗値調整のため抵抗層6cに不純物をイオン注入する。   Next, as shown in FIG. 4, an LDD layer 8 to be a low-concentration drain layer or the like is formed using the gate electrode 6a as a mask, and an oxide film is further deposited on the entire surface of the semiconductor substrate by the LPCVD method. Sidewalls 9 are formed on the side surfaces of the gate electrode 6a by dry etching. Thereafter, an N-type source layer 10 and an N-type drain layer 11 are formed by ion implantation of impurities such as arsenic, and a P-type ground layer 12 is further formed by ion implantation of boron or the like. Further, if necessary, impurities are ion-implanted into the resistance layer 6c in order to adjust the resistance value of the resistance layer 6c.

次に図5に示すように、半導体基板の表面全体をLPCVD法により層間絶縁膜13で被覆した後、所定のフォトリソグラフィ工程等を経ることによりコンタクトホール14を形成する。その後、スパッタ等によりコンタクトホール14内を含め層間絶縁膜13の表面全体にアルミ膜等を堆積し、所定の異方性ドライエッチングにより配線電極を形成する。図5においては、本発明の理解に必要なゲート電極6aとキャパシタ下部電極3をつなぐ配線電極15とキャパシタ上部電極6bとP型接地層12とをつなぐ配線電極16のみを表示し、N型ソース層10、N型ドレイン層11に関する配線層は記載を省略している。   Next, as shown in FIG. 5, after the entire surface of the semiconductor substrate is covered with the interlayer insulating film 13 by the LPCVD method, a contact hole 14 is formed through a predetermined photolithography process or the like. Thereafter, an aluminum film or the like is deposited on the entire surface of the interlayer insulating film 13 including the inside of the contact hole 14 by sputtering or the like, and a wiring electrode is formed by predetermined anisotropic dry etching. In FIG. 5, only the wiring electrode 15 connecting the gate electrode 6a and the capacitor lower electrode 3, the capacitor upper electrode 6b and the P-type ground layer 12 necessary for understanding the present invention are displayed, and the N-type source is shown. The wiring layers related to the layer 10 and the N-type drain layer 11 are not shown.

配線電極形成のための、アルミ膜等のドライエッチングにおいてはエッチングが他の膜に比して困難なため塩素系ガスを使用したり、また高密度プラズマ雰囲気で高電圧印加状態で行われる。またエッチング最中には活性なアルミ膜表面に種々のイオンが付着しやすい。その結果ゲート電極6a上が係るプラズマ中の種々のイオンによりチャージアップすることになる。ゲート絶縁膜4の絶縁破壊強度はEmax=1×10v/m強であり、ゲート電極6aのチャージアップによりゲート絶縁膜4内に生ずる電界強度EがEmax以上になれば、ゲート絶縁膜4が絶縁破壊を起こすことになる。 In dry etching of an aluminum film or the like for forming a wiring electrode, etching is difficult as compared with other films, so that a chlorine-based gas is used or a high voltage is applied in a high-density plasma atmosphere. During etching, various ions tend to adhere to the active aluminum film surface. As a result, the gate electrode 6a is charged up by various ions in the plasma. The dielectric breakdown strength of the gate insulating film 4 is slightly higher than Emax = 1 × 10 9 v / m. If the electric field strength E generated in the gate insulating film 4 due to the charge-up of the gate electrode 6a becomes equal to or higher than Emax, the gate insulating film 4 Will cause dielectric breakdown.

ちなみに、ゲート絶縁膜4内に生ずる電界強度Eはチャージアップしたときのゲート電極6aの単位面積あたりの電荷量をq、酸化膜の誘電率をεとしたとき、E=q/εとなる。従って、電界強度Eがゲート絶縁膜4の絶縁破壊時の電界強度Emaxになるときの電荷量をqmaxとすると、qmax=εEmaxとなる。チャージアップによる帯電量がqmaxになった場合、ゲート絶縁膜4は絶縁破壊を起こすことになる。 Incidentally, the electric field intensity E generated in the gate insulating film 4 is E = q / ε, where q is the charge amount per unit area of the gate electrode 6a when charged up and ε is the dielectric constant of the oxide film. Therefore, when the charge amount when the electric field strength E is the electric field strength Emax when dielectric breakdown of the gate insulating film 4 and q max, the q max = εEmax. When the charge amount due to charge-up becomes q max , the gate insulating film 4 causes dielectric breakdown.

しかしチャージアップ量がqmaxに達する前の段階であっても、ゲート絶縁膜4内にはチャージアップにより電界が発生し、エッチング時間が長いほど、その電界強度は徐々に強くなっていく。この段階ではゲート絶縁膜4は絶縁破壊を起こすことは無い。しかし、ゲート絶縁膜4内に生じた徐々に強くなる電界によるストレスがゲート絶縁膜4とP型ウエル層1との界面に新たな界面準位を形成したり、また強い電界によりゲート絶縁膜4中に電子等が注入されたりしてゲート閾値電圧Vtが変動する。 However, even before the charge-up amount reaches q max , an electric field is generated in the gate insulating film 4 due to the charge-up, and the electric field strength gradually increases as the etching time increases. At this stage, the gate insulating film 4 does not cause dielectric breakdown. However, the stress due to the gradually increasing electric field generated in the gate insulating film 4 forms a new interface state at the interface between the gate insulating film 4 and the P-type well layer 1, or the gate insulating film 4 is caused by the strong electric field. The gate threshold voltage Vt fluctuates due to electrons or the like being injected therein.

本発明においては、ゲート絶縁膜4上のゲート電極6aの面積に比して大きな面積を有するキャパシタがゲート電極6aと並列にアルミ層等の導電性膜で連結されている。従って、配線電極を形成するときに、ドライエッチング雰囲気に含まれる各種イオンによるチャージアップが有ったとしても、ゲート電極6a部分とキャパシタ部分でチャージアップしたチャージを分担することになり、ゲート電極6a部分のチャージアップ量が少なくなる。一般にキャパシタ部分の面積はゲート部分の面積に比して大きいためその効果は大きい。この結果、ゲート絶縁膜4内の電界強度が弱まり、ゲート絶縁膜の受けるストレスが小さくなりチャージアップによる閾値電圧Vtのシフトを防止することが出来る。   In the present invention, a capacitor having a larger area than that of the gate electrode 6a on the gate insulating film 4 is connected in parallel with the gate electrode 6a by a conductive film such as an aluminum layer. Therefore, even when there is a charge-up due to various ions contained in the dry etching atmosphere when the wiring electrode is formed, the charge charged up by the gate electrode 6a portion and the capacitor portion is shared, and the gate electrode 6a The charge-up amount of the part is reduced. Since the area of the capacitor portion is generally larger than the area of the gate portion, the effect is great. As a result, the electric field strength in the gate insulating film 4 is weakened, the stress received by the gate insulating film is reduced, and the shift of the threshold voltage Vt due to charge-up can be prevented.

しかし、チャージアップ量が更に増加し、キャパシタで分担しきれない場合が生ずる。本発明はこのような場合も想定して、キャパシタ絶縁膜5に局所的に膜厚の薄い部分を形成している。図8(a)乃至図8(c)に示すように、キャパシタ下部電極3の形状を沢山の角張った形状としたり、キャパシタ下部電極3となるポリシリコン表面を荒らしたり、その上面から下面にかけて逆テーパーの形状にしたり等して、その表面に局所的にゲート絶縁膜に比べ、膜厚の薄い部分を形成することができる。   However, the charge-up amount further increases, and there are cases where it cannot be shared by the capacitor. In the present invention, assuming such a case, the capacitor insulating film 5 is locally formed with a thin portion. As shown in FIGS. 8A to 8C, the shape of the capacitor lower electrode 3 is made to be a lot of square shapes, the surface of the polysilicon to be the capacitor lower electrode 3 is roughened, and the upper surface is reversed from the lower surface to the lower surface. A portion having a smaller film thickness than the gate insulating film can be locally formed on the surface thereof, for example, in a tapered shape.

キャパシタがチャージアップしキャパシタ絶縁膜5内の電界強度が大きくなってきた場合、ドライエッチング時間の経過とともに増大するチャージアップ量をキャパシタ絶縁膜5の薄い部分を通してトンネリング現象により徐々にP+型接地層に放電し減少させることが出来る。これにより、上記同様ゲート絶縁膜4内の電界強度を弱めて、閾値電圧Vtシフト等を防止することが出来る。ただし、キャパシタ絶縁膜5の絶縁破壊を考慮する場合には、キャパシタ上部電極6bとP型接地層12の間に図3に示すような抵抗層6cを設けてゲートリーク電流の防止を図る必要がある。   When the capacitor is charged up and the electric field strength in the capacitor insulating film 5 is increased, the charge-up amount that increases with the lapse of the dry etching time gradually becomes a P + type ground layer through a thin portion of the capacitor insulating film 5 due to a tunneling phenomenon. It can be discharged and reduced. As a result, the electric field strength in the gate insulating film 4 can be weakened to prevent the threshold voltage Vt shift and the like. However, when considering the dielectric breakdown of the capacitor insulating film 5, it is necessary to provide a resistance layer 6c as shown in FIG. 3 between the capacitor upper electrode 6b and the P-type ground layer 12 to prevent gate leakage current. is there.

本発明の他の実施形態として、ゲート電極6aとキャパシタ下部電極3を一体として、また、合わせてキャパシタ上部電極6bとP型接地層12とのコンタクト用電極も一体として形成する方法がある。この場合、ゲート電極6aとキャパシタ下部電極3は一体として形成されていることから、配線電極はゲート電極6aと接続する部分のみ形成すれば良いので第1の実施形態での配線電極15に比して小さな面積になる。従って、全体としてのチャージアップ量は減少し、キャパシタ部分と分担するゲート絶縁膜4上の電荷量が少なくなり、ゲート絶縁膜4の受けるストレスを低減することが出来る。   As another embodiment of the present invention, there is a method in which the gate electrode 6a and the capacitor lower electrode 3 are integrally formed, and a contact electrode for the capacitor upper electrode 6b and the P-type ground layer 12 is also integrally formed. In this case, since the gate electrode 6a and the capacitor lower electrode 3 are integrally formed, it is only necessary to form the wiring electrode only at a portion connected to the gate electrode 6a. Therefore, compared to the wiring electrode 15 in the first embodiment. It becomes a small area. Accordingly, the amount of charge-up as a whole decreases, the amount of charge on the gate insulating film 4 shared with the capacitor portion decreases, and the stress received by the gate insulating film 4 can be reduced.

また、配線電極が形成される前のコンタクトホール14形成時における、異方性ドライエッチング中のプラズマ雰囲気からゲート電極6aの受けるチャージアップについても、キャパシタと分担することが出来るので、ゲート絶縁膜4の受けるストレスを併せて低減することが出来る。なお、本発明の実施形態においては横型NMOSFETを例として説明をしたが、横型PMOSFET,横型CMOSFETの場合ものみならず、トレンチ型MOSFETの場合にも発明思想が同じである限り、本発明を適用できることは言うまでもない。   Further, the charge up received by the gate electrode 6a from the plasma atmosphere during the anisotropic dry etching when the contact hole 14 is formed before the wiring electrode is formed can also be shared with the capacitor, so that the gate insulating film 4 It is possible to reduce the stress that is received. In the embodiment of the present invention, the lateral NMOSFET has been described as an example. However, the present invention is applied not only to the lateral PMOSFET and lateral CMOSFET but also to the trench MOSFET as long as the inventive concept is the same. Needless to say, you can.

本発明の半導体装置及びその製造方法を示す断面図である。It is sectional drawing which shows the semiconductor device of this invention, and its manufacturing method. 本発明の半導体装置及びその製造方法を示す断面図である。It is sectional drawing which shows the semiconductor device of this invention, and its manufacturing method. 本発明の半導体装置及びその製造方法を示す断面図である。It is sectional drawing which shows the semiconductor device of this invention, and its manufacturing method. 本発明の半導体装置及びその製造方法を示す断面図である。It is sectional drawing which shows the semiconductor device of this invention, and its manufacturing method. 本発明の半導体装置及びその製造方法を示す断面図である。It is sectional drawing which shows the semiconductor device of this invention, and its manufacturing method. カレントミラー回路を含む基本的なオペアンプ回路である。This is a basic operational amplifier circuit including a current mirror circuit. 本発明のキャパシタ下部電極の形状の一例を示す平面図である。It is a top view which shows an example of the shape of the capacitor lower electrode of this invention. 本発明のキャパシタ下部電極とキャパシタ絶縁膜を示す断面図である。It is sectional drawing which shows the capacitor lower electrode and capacitor insulating film of this invention.

符号の説明Explanation of symbols

1 P型ウエル層またはP型半導体基板 2 素子分離絶縁膜
3 キャパシタ下部電極 4 ゲート絶縁膜 5 キャパシタ絶縁膜
6 導電膜 6a ゲート電極 6b キャパシタ上部電極 6c 抵抗層
7 バリア層 8 LDD層 9 サイドウォール 10 N型ソース層
11 N型ドレイン層 12 P型接地層 13 層間絶縁膜
14 コンタクトホール 15 配線電極 16 配線電極 17 薄い酸化膜部分
DESCRIPTION OF SYMBOLS 1 P type well layer or P type semiconductor substrate 2 Element isolation insulating film 3 Capacitor lower electrode 4 Gate insulating film 5 Capacitor insulating film 6 Conductive film 6a Gate electrode 6b Capacitor upper electrode 6c Resistance layer 7 Barrier layer 8 LDD layer 9 Side wall 10 N-type source layer 11 N-type drain layer 12 P-type ground layer 13 Interlayer insulating film 14 Contact hole 15 Wiring electrode 16 Wiring electrode 17 Thin oxide film portion

Claims (4)

第1導電型の半導体基板の表面に素子分離絶縁膜を形成する工程と、
前記素子分離絶縁膜の1の表面にキャパシタの下部電極を形成する工程と、
前記素子分離絶縁膜で素子分離された1の素子形成領域及び前記下部電極の表面に絶縁膜を形成する工程と、
前記絶縁膜の表面にゲート電極及びキャパシタの上部電極を形成する工程と、
前記素子分離絶縁膜で素子分離された他の素子形成領域に第1導電型の接地層を形成する工程と、を備え、
前記ゲート電極と前記下部電極及び前記上部電極と前記接地層がそれぞれ電気的に接続されていることを特徴とする半導体装置の製造方法。
Forming an element isolation insulating film on the surface of the first conductivity type semiconductor substrate;
Forming a lower electrode of a capacitor on the surface of one of the element isolation insulating films;
Forming an insulating film on the surface of one element formation region and the lower electrode separated by the element isolation insulating film; and
Forming a gate electrode and an upper electrode of a capacitor on the surface of the insulating film;
Forming a ground layer of a first conductivity type in another element formation region separated by the element isolation insulating film,
A method of manufacturing a semiconductor device, wherein the gate electrode, the lower electrode, the upper electrode, and the ground layer are electrically connected to each other.
前記下部電極表面に形成した前記絶縁膜の膜厚が局所的に薄いことを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the insulating film formed on the surface of the lower electrode is locally thin. 前記上部電極と前記接地層との間に抵抗層を形成したことを特徴とする請求項1または2のいずれかに記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein a resistance layer is formed between the upper electrode and the ground layer. 第1導電型の半導体基板の表面に形成された素子分離絶縁膜と、
前記素子分離絶縁膜の1の表面に形成されたキャパシタの下部電極と、
前記素子分離絶縁膜で素子分離された1の素子形成領域及び前記下部電極の表面に形成された絶縁膜と、
前記絶縁膜の表面に形成されたゲート電極及びキャパシタの上部電極と、
前記素子分離絶縁膜で素子分離された他の素子形成領域に形成された第1導電型の接地層と、を備え、
前記ゲート電極と前記下部電極及び前記上部電極と前記接地層がそれぞれ電気的に接続されていることを特徴とする半導体装置。
An element isolation insulating film formed on the surface of the first conductivity type semiconductor substrate;
A lower electrode of a capacitor formed on the surface of one of the element isolation insulating films;
An element forming region separated by the element isolation insulating film and an insulating film formed on a surface of the lower electrode;
A gate electrode formed on the surface of the insulating film and an upper electrode of the capacitor;
A ground layer of a first conductivity type formed in another element formation region separated by the element isolation insulating film,
The semiconductor device, wherein the gate electrode, the lower electrode, the upper electrode, and the ground layer are electrically connected to each other.
JP2008175339A 2008-07-04 2008-07-04 Semiconductor device and method of manufacturing the same Pending JP2010016210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175339A JP2010016210A (en) 2008-07-04 2008-07-04 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175339A JP2010016210A (en) 2008-07-04 2008-07-04 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010016210A true JP2010016210A (en) 2010-01-21

Family

ID=41702035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175339A Pending JP2010016210A (en) 2008-07-04 2008-07-04 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010016210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163417A1 (en) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit device, current control device using semiconductor integrated circuit device, and automatic transmission control device using current control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163417A1 (en) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit device, current control device using semiconductor integrated circuit device, and automatic transmission control device using current control device
US11043508B2 (en) 2018-02-26 2021-06-22 Hitachi Automotive Systems, Ltd. Semiconductor integrated circuit device, current control device using semiconductor integrated circuit device, and automatic transmission control device using current control device

Similar Documents

Publication Publication Date Title
US6509615B2 (en) Semiconductor device having dynamic threshold transistors and element isolation region and fabrication method thereof
US7709324B2 (en) Method for forming a gate within a trench including the use of a protective film
US7067881B2 (en) Semiconductor device
US9412755B2 (en) Manufacturing method for semiconductor device
US20010031536A1 (en) Method of making a MOSFET structure having improved source/drain junction performance
JP2012253241A (en) Semiconductor integrated circuit and manufacturing method of the same
US9214354B2 (en) Manufacturing method for semiconductor device
US20070272958A1 (en) Solid-state image sensing device and manufacturing method thereof
US20090001472A1 (en) Electrostatic discharge protection devices and methods for fabricating semiconductor devices including the same
JP2010050202A (en) Semiconductor device and its manufacturing method
JP5627165B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5203905B2 (en) Semiconductor device and manufacturing method thereof
US20150171168A1 (en) Manufacturing method for semiconductor device and semiconductor device
JP2009302450A (en) Semiconductor device and its manufacturing method
JP4533873B2 (en) Semiconductor device and manufacturing method thereof
US20170005093A1 (en) Semiconductor Device with Split Work Functions
JP6956600B2 (en) Semiconductor device
US11114486B2 (en) Implant isolated devices and method for forming the same
US8878294B2 (en) Semiconductor device having a drain-gate isolation portion
JP2010016210A (en) Semiconductor device and method of manufacturing the same
JP4168995B2 (en) Semiconductor device and manufacturing method thereof
JP2008021935A (en) Electronic device and manufacturing method thereof
US7820537B1 (en) Method for fabricating semiconductor device
JP4601919B2 (en) Manufacturing method of semiconductor device
JP5163212B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110602