JP2010014314A - Heating furnace and its control method - Google Patents

Heating furnace and its control method Download PDF

Info

Publication number
JP2010014314A
JP2010014314A JP2008173764A JP2008173764A JP2010014314A JP 2010014314 A JP2010014314 A JP 2010014314A JP 2008173764 A JP2008173764 A JP 2008173764A JP 2008173764 A JP2008173764 A JP 2008173764A JP 2010014314 A JP2010014314 A JP 2010014314A
Authority
JP
Japan
Prior art keywords
opening
hearth
hollow portion
heating furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008173764A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ishimori
康浩 石森
Shigeru Okita
滋 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008173764A priority Critical patent/JP2010014314A/en
Publication of JP2010014314A publication Critical patent/JP2010014314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace capable of reducing the amount of decarbonization of a workpiece, and its control method. <P>SOLUTION: The heating furnace has a hearth 3, a furnace body 2 in which an opening 2b closed by the hearth 3 is formed at a lower part, and a hollow part 2a is formed in communication with the opening 2b, and a lifting means for lifting the hearth. A control means is provided for heating the hollow part 2a to 900°C or higher and controlling the lifting means so that an aspect ratio x of the hollow part 2a satisfies 0.5≤x≤3.0, and the opening/closing speed v(mm/s) of the opening 2b with the hearth 3 satisfies 5≤v≤50. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被加工体を加熱する加熱炉、及び被加工体を炉体内部に出し入れする際の制御方法に関する。   The present invention relates to a heating furnace for heating a workpiece, and a control method when the workpiece is taken in and out of the furnace body.

従来より、鋼等の被加工体を加熱する大気開放型の加熱炉においては、1100℃以上の加熱温度で、被加工体に多くの脱炭が発生していた。被加工体の加熱時における脱炭を抑制する加熱炉としては、雰囲気炉や真空炉等が挙げられる。
しかし、雰囲気炉は、不活性ガス供給装置や、真空ポンプ等の付帯設備が必要なため、装置並びに維持管理に要するコストが高く、また、ガスを扱うために危険を伴うことがある。一方、真空炉においては、装置自体が高価であること、及び復圧にガスを用いることから、取り出し時に被加工体を冷却させてしまうことがある。また、大気は、脱炭を促すガスであるOやHOを多く含んでいるため、大気雰囲気中で被加工体を高温加熱する場合には、脱炭の発生が著しい。
Conventionally, in an open air heating furnace that heats a workpiece such as steel, a large amount of decarburization has occurred in the workpiece at a heating temperature of 1100 ° C. or higher. Examples of a heating furnace that suppresses decarburization when the workpiece is heated include an atmosphere furnace and a vacuum furnace.
However, since the atmosphere furnace requires an auxiliary equipment such as an inert gas supply device and a vacuum pump, the cost required for the device and maintenance is high, and there is a risk in handling the gas. On the other hand, in a vacuum furnace, since the apparatus itself is expensive and gas is used for return pressure, the workpiece may be cooled during removal. In addition, since the atmosphere contains a large amount of O 2 and H 2 O, which are gases that promote decarburization, the occurrence of decarburization is significant when the workpiece is heated at a high temperature in the atmospheric air.

図3及び図4は、従来の横型加熱炉の構成を示す側面図である。横型加熱炉とは、被加工体を炉体の内部に出し入れするための扉が横方向(炉体の側面方向)に設置された加熱炉である。図3及び図4に示すように、加熱炉1は、内部に中空部2aが形成され、この中空部2aに連通し、側方に開口した開口部2bが形成された炉体2と、開口部2bを塞ぐ扉20とを有する。扉20の内周端面は、開口部2bの外縁端部2cに当接する。中空部2a内には、ヒーター5が設置されている。ヒーター5は、中空部2a内及び収容された被加工体50を加熱する。中空部2aの上面には、被加工体50が載置される。   3 and 4 are side views showing the configuration of a conventional horizontal heating furnace. The horizontal heating furnace is a heating furnace in which doors for taking a workpiece into and out of the furnace body are installed in the lateral direction (side surface direction of the furnace body). As shown in FIGS. 3 and 4, the heating furnace 1 includes a furnace body 2 in which a hollow portion 2 a is formed and communicated with the hollow portion 2 a, and an opening 2 b that is open to the side is formed. And a door 20 that closes the portion 2b. The inner peripheral end surface of the door 20 contacts the outer edge end 2c of the opening 2b. A heater 5 is installed in the hollow portion 2a. The heater 5 heats the inside of the hollow portion 2a and the accommodated workpiece 50. A workpiece 50 is placed on the upper surface of the hollow portion 2a.

このような構成をなす横型加熱炉1においては、扉20の開閉時に開口部2bにおいて大気が攪拌されやすく、脱炭を促進するガスが炉体2の内部2aに多量に供給される問題が生じる。この問題を解決するために、図4に示すように、セラミック等の材料からなり、密封材としての機能を有する間材6を炉体2と扉20とが当接する外縁端部2cに設置した横型加熱炉も提案されている。しかし、この横型加熱炉にあっても、密閉性が悪く、扉20を閉めていても加熱中に外気を炉体2の内部に多く循環させてしまっていた。   In the horizontal heating furnace 1 having such a configuration, the atmosphere is easily stirred in the opening 2b when the door 20 is opened and closed, and there is a problem that a large amount of gas that promotes decarburization is supplied to the interior 2a of the furnace body 2. . In order to solve this problem, as shown in FIG. 4, a spacer 6 made of a material such as ceramic and having a function as a sealing material is installed at the outer edge 2 c where the furnace body 2 and the door 20 abut. A horizontal heating furnace has also been proposed. However, even in this horizontal heating furnace, the hermeticity is poor, and even when the door 20 is closed, a large amount of outside air is circulated inside the furnace body 2 during heating.

そこで、高い密封性を実現する加熱炉として、炉床が昇降する縦型加熱炉が開示されている(特許文献1参照)。
特許文献1に記載された加熱炉においては、被加工体を出し入れするために開閉する扉が下方に開口した開口部であるため、熱せられた大気が上昇する性質を利用して、密封性を高めることができる。
特開平3−17492号公報
Therefore, a vertical heating furnace in which the hearth moves up and down is disclosed as a heating furnace that realizes high sealing performance (see Patent Document 1).
In the heating furnace described in Patent Document 1, since the door that opens and closes in order to put in and out the workpiece is an opening that opens downward, the property that the heated air rises is used to improve the sealing performance. Can be increased.
Japanese Patent Laid-Open No. 3-17492

しかしながら、特許文献1に示された加熱炉は、炉内部における密閉性を維持しつつ、昇降装置に機械的な負担を与えない構成をなしているが、密閉性を高めるだけでは、被加工体の脱炭量を低減することは困難であった。
そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、脱炭量が低減された加熱炉及びその制御方法を提供することにある。
However, the heating furnace shown in Patent Document 1 has a configuration that does not impose a mechanical burden on the lifting device while maintaining the hermeticity inside the furnace. It was difficult to reduce the amount of decarburization.
Therefore, the present invention has been made paying attention to the above problems, and an object thereof is to provide a heating furnace with a reduced decarburization amount and a control method thereof.

前記課題を解決するため、本発明者らが鋭意検討を重ねた結果、炉体の内部における加熱温度と、開口部の開閉速度と、炉体の縦横比との間に密接な関係があることを知見した。
本発明は、本発明者らによる前記知見に基づくものであり、上記課題を解決するための請求項1記載の発明に係る加熱炉は、下面に開口部を有し、該開口部に連通する中空部が形成された炉体と、前記中空部内に設置されたヒーターと、前記中空部内に収容されるように上面に被加工体が設置され、前記開口部を開閉する炉床と、前記炉床を昇降させる昇降手段とを備えた加熱炉であって、前記ヒーターによって、中空部が900℃以上に加熱され、前記中空部の縦横比xが、0.5≦x≦3.0を満たし、前記炉床によって前記開口部を開閉する開閉速度v(mm/s)が、5≦v≦50を満たすように前記昇降手段を制御する制御手段が設けられたことを特徴としている。ただし、縦横比xは、(中空部における高さ)/(開口部の面積)1/2である。
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies, and as a result, there is a close relationship between the heating temperature inside the furnace body, the opening / closing speed of the opening, and the aspect ratio of the furnace body. I found out.
This invention is based on the said knowledge by the present inventors, The heating furnace which concerns on invention of Claim 1 for solving the said subject has an opening part in a lower surface, and is connected to this opening part A furnace body in which a hollow portion is formed, a heater installed in the hollow portion, a work piece installed on an upper surface so as to be accommodated in the hollow portion, and a hearth for opening and closing the opening, and the furnace A heating furnace having a raising and lowering means for raising and lowering the floor, wherein the hollow portion is heated to 900 ° C. or more by the heater, and the aspect ratio x of the hollow portion satisfies 0.5 ≦ x ≦ 3.0 The control means is provided for controlling the elevating means so that an opening / closing speed v (mm / s) for opening and closing the opening by the hearth satisfies 5 ≦ v ≦ 50. However, the aspect ratio x is (height in the hollow portion) / (area of the opening) 1/2 .

また、請求項2記載の発明に係る加熱炉は、請求項1記載の加熱炉において、炉体と炉床との間に弾性を有する間材が設置されることを特徴としている。
また、請求項3記載の発明に係る加熱炉の制御方法は、下面に開口部を有し、該開口部に連通する中空部が形成された炉体と、前記中空部内に設置されたヒーターと、前記中空部内に収容されるように上面に被加工体が設置され、前記開口部を開閉する炉床と、前記炉床を昇降させる昇降手段とを備え、前記中空部の縦横比xが、0.5≦x≦3.0を満たし、前記ヒーターによって、中空部が1100℃以上に加熱される前後に前記被加工体を前記炉体内に収容又は取り出す際に、前記炉床によって前記開口部を開閉する開閉速度v(mm/s)が、5≦v≦50を満たすことを特徴としている。ただし、縦横比xは、(中空部における高さ)/(開口部の面積)1/2である。
また、請求項4記載の発明に係る加熱炉の制御方法は、請求項3記載の加熱炉の制御方法において、炉体と炉床との間に弾性を有する間材が設置されることを特徴としている。
A heating furnace according to the invention described in claim 2 is characterized in that, in the heating furnace described in claim 1, an elastic spacer is installed between the furnace body and the hearth.
According to a third aspect of the present invention, there is provided a method for controlling a heating furnace, comprising: a furnace body having an opening on a lower surface and having a hollow portion communicating with the opening; a heater installed in the hollow portion; The workpiece is installed on the upper surface so as to be accommodated in the hollow portion, and includes a hearth that opens and closes the opening, and lifting means that lifts and lowers the hearth, and the aspect ratio x of the hollow portion is When the workpiece is accommodated or removed from the furnace body before and after the hollow portion is heated to 1100 ° C. or higher by the heater, the opening is formed by the hearth. The opening / closing speed v (mm / s) for opening and closing the lens satisfies 5 ≦ v ≦ 50. However, the aspect ratio x is (height in the hollow portion) / (area of the opening) 1/2 .
According to a fourth aspect of the present invention, there is provided a method for controlling a heating furnace according to the third aspect, wherein an elastic material is installed between the furnace body and the hearth. It is said.

本発明のうち請求項1に係る加熱炉によれば、大気の循環が生じにくいように炉体の下面に開口する開口部において被加工体の出し入れを行い、その条件を規定したので、脱炭量が低減された加熱炉を提供することができる。
また、本発明のうち請求項2に係る加熱炉によれば、炉体と炉床支持手段との間に弾性を有する間材が設置されるため、加熱中における中空部の密閉性が更に高くなるので、大気が遮断され、脱炭量が低減される。
According to the heating furnace according to claim 1 of the present invention, since the workpiece is taken in and out at the opening portion opened in the lower surface of the furnace body so that the circulation of the atmosphere is difficult to occur, the conditions are defined. A heating furnace with a reduced amount can be provided.
Moreover, according to the heating furnace according to claim 2 of the present invention, since the elastic intermediate material is installed between the furnace body and the hearth support means, the hermeticity of the hollow part during heating is further increased. Therefore, the atmosphere is shut off and the amount of decarburization is reduced.

また、本発明のうち請求項3に係る加熱炉の制御方法によれば、脱炭量が低減された加熱炉の制御方法を提供することができる。
また、本発明のうち請求項4に係る加熱炉の制御方法によれば、炉体と炉床支持手段との間に弾性を有する間材が設置されるため、加熱中における中空部の密閉性が更に高くなるので、大気が遮断され、脱炭量が低減される。
Moreover, according to the control method of the heating furnace which concerns on Claim 3 among this invention, the control method of the heating furnace with which the decarburization amount was reduced can be provided.
Further, according to the control method for a heating furnace according to claim 4 of the present invention, since an elastic material is installed between the furnace body and the hearth support means, the sealing property of the hollow part during heating is set. Becomes higher, the atmosphere is shut off and the amount of decarburization is reduced.

以下、本発明に係る加熱炉の一実施形態について、図面に基づいて説明する。図1は本発明に係る加熱炉の一実施形態における側面図である。図1に示すように、本発明の加熱炉1は、内部に中空部2aが形成され、この中空部2aに連通し、下側に開口した開口部2bが形成された炉体2と、開口部2bを塞ぐ炉床3とを有する。炉床3は、中空部2aに収容され、被加工体50を上面に載置する被加工体支持部3aと、開口部2bの外縁端部2cに当接するフランジ部3bとを有する。フランジ部3bの下部には、該炉床3を上下方向に昇降させる昇降手段4が設置されている。中空部2a内には、ヒーター5及び温度センサ7が設置されている。ヒーター5は、中空部2a内及び収容された被加工体50を加熱する。温度センサ7は、中空部2a内の温度Tを検出する。昇降手段4は、昇降方向及び昇降速度を制御する制御手段8と通信可能に接続されている。また、制御手段8は、温度センサ7によって検出された温度情報を受信可能に温度センサ7に接続されている。   Hereinafter, an embodiment of a heating furnace according to the present invention will be described with reference to the drawings. FIG. 1 is a side view of an embodiment of a heating furnace according to the present invention. As shown in FIG. 1, the heating furnace 1 of the present invention includes a furnace body 2 in which a hollow portion 2a is formed, communicated with the hollow portion 2a, and has an opening 2b opened on the lower side. And a hearth 3 that closes the portion 2b. The hearth 3 is accommodated in the hollow portion 2a, and includes a workpiece support portion 3a that places the workpiece 50 on the upper surface, and a flange portion 3b that abuts on the outer edge 2c of the opening 2b. Elevating means 4 for elevating the hearth 3 in the vertical direction is installed below the flange portion 3b. A heater 5 and a temperature sensor 7 are installed in the hollow portion 2a. The heater 5 heats the inside of the hollow portion 2a and the accommodated workpiece 50. The temperature sensor 7 detects the temperature T in the hollow portion 2a. The lifting / lowering means 4 is communicably connected to a control means 8 that controls the lifting / lowering direction and the lifting / lowering speed. Moreover, the control means 8 is connected to the temperature sensor 7 so that the temperature information detected by the temperature sensor 7 can be received.

炉床3の上面には、被加工体50が載置される。被加工体50の形状としては、例えば、円筒形状が挙げられる。被加工体50の材料としては、例えば、
軸受用鋼が挙げられる。
被加工体50の加熱工程において、中空部2a内の温度Tは、外気との攪拌量が多くなる900℃以上の処理に適用されることが好ましく、1100℃以上の処理に適用されることがより好ましい。
A workpiece 50 is placed on the upper surface of the hearth 3. Examples of the shape of the workpiece 50 include a cylindrical shape. As a material of the workpiece 50, for example,
Examples include bearing steel.
In the heating process of the workpiece 50, the temperature T in the hollow portion 2a is preferably applied to a process at 900 ° C. or higher, which increases the amount of stirring with the outside air, and is applied to a process at 1100 ° C. or higher. More preferred.

中空部2aの縦横比xは、0.5≦x≦3.0を満たすことが好ましく、0.8≦x≦3.0を満たすことがより好ましい。ここで、縦横比xは、(中空部2aにおける高さ)/(開口部2bの面積)1/2から算出される。縦横比xが0.5未満であると、脱炭しやすいという問題を生じることがある。縦横比xが3.0を超えると、被加工物の搬入、搬出をするときに、時間が長くかかったり、スペースが広く必要になるという問題を生じることがある。
ここで、縦横比xは、(中空部2aにおける高さ)/(開口部2bの開口面積)1/2によって求められる。図1に示すように、「中空部2aにおける高さh」は、炉体2の開口面から、開口部2bに対向する内壁面2dまでの寸法である。
The aspect ratio x of the hollow portion 2a preferably satisfies 0.5 ≦ x ≦ 3.0, and more preferably satisfies 0.8 ≦ x ≦ 3.0. Here, the aspect ratio x is calculated from (height in the hollow portion 2a) / (area of the opening 2b) 1/2 . If the aspect ratio x is less than 0.5, there may be a problem that decarburization is easy. If the aspect ratio x exceeds 3.0, there may be a problem that it takes a long time or a large space is required when a workpiece is carried in or out.
Here, the aspect ratio x is obtained by (height in the hollow portion 2a) / (opening area of the opening 2b) 1/2 . As shown in FIG. 1, the “height h in the hollow portion 2a” is a dimension from the opening surface of the furnace body 2 to the inner wall surface 2d facing the opening portion 2b.

炉床3による開口部2bの開閉速度v(mm/s)が5mm/s未満であると、中空部2a内の加熱空気と大気との接触時間が増え、脱炭量が増加するという問題を生じることがあるので、5mm/s以上が好ましく、10mm/s以上がより好ましい。開口部2bの開閉速度v(mm/s)が50mm/sを超えると、開口部2bに対する炉床3の開閉動作が、中空部2a内の加熱空気と外気との攪拌量を増大させ、脱炭量が増加するという問題を生じることがあるので、50mm/s以下が好ましく、30mm/s以下がより好ましい。   When the opening / closing speed v (mm / s) of the opening 2b by the hearth 3 is less than 5 mm / s, the contact time between the heated air in the hollow part 2a and the atmosphere increases, and the amount of decarburization increases. Since it may arise, 5 mm / s or more is preferable and 10 mm / s or more is more preferable. When the opening / closing speed v (mm / s) of the opening 2b exceeds 50 mm / s, the opening / closing operation of the hearth 3 with respect to the opening 2b increases the agitation amount of the heated air and the outside air in the hollow portion 2a, and is removed. Since the problem that the amount of charcoal increases may occur, it is preferably 50 mm / s or less, and more preferably 30 mm / s or less.

ここで、開閉速度v(mm/s)は、開閉時の炉床の(移動距離(mm)/時間(s))により定義される。
本発明では、中空部2a内に設けられた温度センサ7から取得した温度Tが上記条件を満たし、予め入力された炉体2の縦横比xが上記条件を満たすときには、上記範囲の開閉速度vで炉床3を昇降するように制御手段8が昇降手段4を制御する。
Here, the opening / closing speed v (mm / s) is defined by (moving distance (mm) / time (s)) of the hearth during opening and closing.
In the present invention, when the temperature T acquired from the temperature sensor 7 provided in the hollow portion 2a satisfies the above condition, and the aspect ratio x of the furnace body 2 input in advance satisfies the above condition, the switching speed v in the above range. Then, the control means 8 controls the raising / lowering means 4 so as to raise and lower the hearth 3.

昇降手段4によって炉床3が開口部2bを塞ぐときにおける炉体2と炉床3との当接部分には、弾性を有する間材6が設けられてもよい。間材6は、炉体2における開口部2bの外縁端部2cに設けられてもよいし、炉床3におけるフランジ部3aに設けられてもよい。
間材6の材料としては、弾性を有し、炉体2と炉床3との間に介在する密閉材としての気密性を有し、加熱炉の熱によって変性しにくい材料であれば、特に制限はなく、目的に応じて選択することができるが、例えば、セラミックが好ましい。間材6の形態としては、繊維形態が好ましく、ロープ状や、ブランケット状に加工することが好ましい。
An elastic spacer 6 may be provided at a contact portion between the furnace body 2 and the hearth 3 when the hearth 3 closes the opening 2 b by the elevating means 4. The interstitial material 6 may be provided at the outer edge 2 c of the opening 2 b in the furnace body 2 or may be provided at the flange 3 a in the hearth 3.
As the material of the interstitial material 6, in particular, as long as it is elastic, has airtightness as a sealing material interposed between the furnace body 2 and the hearth 3, and is not easily denatured by the heat of the heating furnace. There is no restriction, and it can be selected according to the purpose. For example, ceramic is preferable. The form of the interstitial 6 is preferably a fiber form and is preferably processed into a rope shape or a blanket shape.

(実施例)
以下、本発明に係る加熱炉及びその制御方法の実施例について説明する。
まず、被加工体50として、円筒形状に加工した鋼材を、表1に示す加熱条件(試験No.1〜21)で加熱し、冷却した。加熱時間は全て30分である。
なお、表1における各実験炉の態様及び縦横比は、以下の通りである。下記実験炉No.1〜3においては、炉体2と炉床3との間にセラミックファイバーからなる間材6を設置した。
実験炉No.1:縦型加熱炉、縦横比x=0.5
実験炉No.2:縦型加熱炉、縦横比x=0.8
実験炉No.3:縦型加熱炉、縦横比x=3.0
実験炉No.4:横型加熱炉、縦横比x=0.6
実験炉No.5:横型加熱炉、縦横比x=0.9
また、被加工体50の加熱の前後において、被加工体50を炉体2の内部に出し入れする際には、表1に示す中空部2a内の温度T、及び縦横比xに基づいて、制御手段8によって炉床4を、表1に示す開閉速度vで昇降させた。
(Example)
Hereinafter, examples of the heating furnace and the control method thereof according to the present invention will be described.
First, as the workpiece 50, a steel material processed into a cylindrical shape was heated and cooled under the heating conditions (test Nos. 1 to 21) shown in Table 1. All heating times are 30 minutes.
In addition, the aspect and aspect ratio of each experimental furnace in Table 1 are as follows. In the following experimental furnaces Nos. 1 to 3, an interstitial material 6 made of ceramic fibers was installed between the furnace body 2 and the hearth 3.
Experimental furnace No. 1: Vertical heating furnace, aspect ratio x = 0.5
Experimental furnace No. 2: Vertical heating furnace, aspect ratio x = 0.8
Experimental furnace No. 3: vertical heating furnace, aspect ratio x = 3.0
Experimental furnace No. 4: Horizontal heating furnace, aspect ratio x = 0.6
Experimental furnace No. 5: Horizontal heating furnace, aspect ratio x = 0.9
In addition, when the workpiece 50 is taken in and out of the furnace body 2 before and after the heating of the workpiece 50, control is performed based on the temperature T and the aspect ratio x in the hollow portion 2a shown in Table 1. The hearth 4 was moved up and down by means 8 at the opening / closing speed v shown in Table 1.

次に、冷却した被加工体50の断面の組織観察を行い、脱炭層の深さを測定し、脱炭量を判定した。測定結果を表1及び図2に示す。
脱炭層の深さの測定は、JIS G 0558の4.1(顕微鏡による測定方法)に従う全脱炭層深さ(DM−T)の測定方法を用いた。ただし、被加工体50が熱間金型用以外の合金工具鋼鋼材であり、顕微鏡による測定が困難な場合は、JIS G 0558の4.2(硬さ試験による測定方法)に従う実用脱炭層深さ(DH−P)の測定方法を用いることが好ましい。
Next, the structure of the cross section of the cooled workpiece 50 was observed, the depth of the decarburized layer was measured, and the decarburization amount was determined. The measurement results are shown in Table 1 and FIG.
For the measurement of the depth of the decarburized layer, a method for measuring the total decarburized layer depth (DM-T) according to 4.1 (measurement method using a microscope) of JIS G 0558 was used. However, if the workpiece 50 is an alloy tool steel other than for hot molds and it is difficult to measure with a microscope, the practical decarburized layer depth according to 4.2 (measurement method by hardness test) of JIS G 0558 It is preferable to use the measurement method of (DH-P).

Figure 2010014314
Figure 2010014314

表1に示すように、加熱温度Tと、開閉速度vと、縦横比xとがそれぞれ上述した条件を満たす試験No.1〜13の実施例は、被加工体50の脱炭層の深さが0.38mm以下であり、大気開放型炉において脱炭の低減が実現された。一方、加熱温度Tと、開閉速度vと、縦横比xとがそれぞれ上述した条件のいずれかを満たさない試験No.14〜16,19,20の比較例は、被加工体50の脱炭層の深さが0.49mm以上となり、大気開放型炉に特有の多量の脱炭が確認された。また、試験No.17,18の比較例は、炉の種類が異なり、他の条件が近似の試験No.10,11の実施例に比べて脱炭深さが大幅に深くなった。
このように、炉床4によって塞がれる開口部2bが炉体2の下方に形成された縦型の加熱炉1において、加熱温度Tと、開閉速度vと、縦横比xとを適正に組み合わせることにより、被加工体50の脱炭量を軽減することができる。
As shown in Table 1, in the examples of Test Nos. 1 to 13 in which the heating temperature T, the opening / closing speed v, and the aspect ratio x satisfy the above-described conditions, the depth of the decarburized layer of the workpiece 50 is It was 0.38 mm or less, and reduction of decarburization was realized in an open air furnace. On the other hand, the comparative examples of Test Nos. 14 to 16, 19, and 20 in which the heating temperature T, the opening and closing speed v, and the aspect ratio x do not satisfy any of the above-described conditions are the decarburized layers of the workpiece 50. The depth was 0.49 mm or more, and a large amount of decarburization peculiar to the open air furnace was confirmed. Moreover, the comparative example of test No. 17 and 18 differed in the kind of furnace, and the decarburization depth became deep deeply compared with the Example of test No. 10 and 11 with other conditions approximate.
Thus, in the vertical heating furnace 1 in which the opening 2b closed by the hearth 4 is formed below the furnace body 2, the heating temperature T, the opening / closing speed v, and the aspect ratio x are appropriately combined. Thereby, the amount of decarburization of the workpiece 50 can be reduced.

本発明に係る加熱炉の一実施形態における構成を示す正面図である。It is a front view which shows the structure in one Embodiment of the heating furnace which concerns on this invention. 本発明に係る加熱炉の加熱温度又は開閉速度と、脱炭層の深さとの関係を示すグラフである。It is a graph which shows the relationship between the heating temperature or switching speed of the heating furnace which concerns on this invention, and the depth of a decarburization layer. 従来の加熱炉の構成を示す正面図である。It is a front view which shows the structure of the conventional heating furnace. 従来の加熱炉の構成を示す正面図である。It is a front view which shows the structure of the conventional heating furnace.

符号の説明Explanation of symbols

1 加熱炉
2 炉体
2a 中空部(炉体内部)
2b 開口部
2c 縁部
3 炉床
4 昇降装置
5 ヒーター
6 間材
8 制御手段
20 扉
50 被加工体
1 Heating furnace 2 Furnace body 2a Hollow part (inside the furnace body)
2b Opening 2c Edge 3 Hearth 4 Elevating device 5 Heater 6 Interim material 8 Control means 20 Door 50 Workpiece

Claims (4)

下面に開口部を有し、該開口部に連通する中空部が形成された炉体と、
前記中空部内に設置されたヒーターと、
前記中空部内に収容されるように上面に被加工体が設置され、前記開口部を開閉する炉床と、
前記炉床を昇降させる昇降手段とを備えた加熱炉であって、
前記ヒーターによって、中空部が900℃以上に加熱され、
前記中空部の縦横比xが、0.5≦x≦3.0を満たし、
前記炉床によって前記開口部を開閉する開閉速度v(mm/s)が、5≦v≦50を満たすように前記昇降手段を制御する制御手段が設けられたことを特徴とする加熱炉。
ただし、縦横比xは、(中空部における高さ)/(開口部の面積)1/2である。
A furnace body having an opening on the lower surface and having a hollow portion communicating with the opening;
A heater installed in the hollow portion;
A work piece is installed on the upper surface so as to be accommodated in the hollow portion, and a hearth that opens and closes the opening,
A heating furnace comprising elevating means for elevating and lowering the hearth,
With the heater, the hollow part is heated to 900 ° C. or higher,
The aspect ratio x of the hollow portion satisfies 0.5 ≦ x ≦ 3.0,
A heating furnace characterized in that a control means for controlling the elevating means is provided so that an opening / closing speed v (mm / s) for opening and closing the opening by the hearth satisfies 5 ≦ v ≦ 50.
However, the aspect ratio x is 1/2 (height at the hollow portion) / (area of the opening).
炉体と炉床との間に弾性を有する間材が設置されることを特徴とする請求項1に記載の加熱炉。   The heating furnace according to claim 1, wherein an interstitial material having elasticity is installed between the furnace body and the hearth. 下面に開口部を有し、該開口部に連通する中空部が形成された炉体と、
前記中空部内に設置されたヒーターと、
前記中空部内に収容されるように上面に被加工体が設置され、前記開口部を開閉する炉床と、
前記炉床を昇降させる昇降手段とを備え、
前記中空部の縦横比xが、0.5≦x≦3.0を満たし、
前記ヒーターによって、中空部が900℃以上に加熱される前後に前記被加工体を前記炉体内に収容又は取り出す際に、
前記炉床によって前記開口部を開閉する開閉速度v(mm/s)が、5≦v≦50を満たすことを特徴とする加熱炉の制御方法。
ただし、縦横比xは、(中空部における高さ)/(開口部の面積)1/2である。
A furnace body having an opening on the lower surface and having a hollow portion communicating with the opening;
A heater installed in the hollow portion;
A work piece is installed on the upper surface so as to be accommodated in the hollow portion, and a hearth that opens and closes the opening,
Elevating means for elevating and lowering the hearth,
The aspect ratio x of the hollow portion satisfies 0.5 ≦ x ≦ 3.0,
When the workpiece is accommodated in or taken out of the furnace body before and after the hollow portion is heated to 900 ° C. or more by the heater,
An opening / closing speed v (mm / s) for opening and closing the opening by the hearth satisfies 5 ≦ v ≦ 50.
However, the aspect ratio x is 1/2 (height at the hollow portion) / (area of the opening).
炉体と炉床との間に弾性を有する間材が設置されることを特徴とする請求項3に記載の加熱炉の制御方法。   The method for controlling a heating furnace according to claim 3, wherein an interstitial material having elasticity is installed between the furnace body and the hearth.
JP2008173764A 2008-07-02 2008-07-02 Heating furnace and its control method Pending JP2010014314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173764A JP2010014314A (en) 2008-07-02 2008-07-02 Heating furnace and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173764A JP2010014314A (en) 2008-07-02 2008-07-02 Heating furnace and its control method

Publications (1)

Publication Number Publication Date
JP2010014314A true JP2010014314A (en) 2010-01-21

Family

ID=41700583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173764A Pending JP2010014314A (en) 2008-07-02 2008-07-02 Heating furnace and its control method

Country Status (1)

Country Link
JP (1) JP2010014314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878800A (en) * 2012-10-19 2013-01-16 三一重工股份有限公司 Lifting raceway system and tempering furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878800A (en) * 2012-10-19 2013-01-16 三一重工股份有限公司 Lifting raceway system and tempering furnace
CN102878800B (en) * 2012-10-19 2014-12-10 三一汽车制造有限公司 Lifting raceway system and tempering furnace

Similar Documents

Publication Publication Date Title
KR100749133B1 (en) Apparatus for measuring carbon concentration in atmoshere having reduced pressure
JP4458079B2 (en) Vacuum carburizing equipment
CN202246831U (en) Complete set of sealed box type gas carbonitriding furnace equipment
CN206089744U (en) Car -type tempering furnace
JP2008511749A (en) Enclosure for self-annealing
CN218860803U (en) Vacuum double-chamber heat treatment furnace
JPWO2007010607A1 (en) Carburizing method and carburizing furnace
TW200623262A (en) Vertical heat treatment apparatus and method of rapid heat reduction of its treatment container
CN116103479A (en) Vacuum double-chamber heat treatment furnace and working method thereof
JP5571291B2 (en) Heat treatment equipment
JP2010014314A (en) Heating furnace and its control method
KR100364101B1 (en) Heat treatment method
CN210826265U (en) Controlled atmosphere multipurpose furnace for heat treatment
JP2014196854A (en) Heat treatment furnace
JP4876279B2 (en) Heat treatment furnace
JP2011127830A (en) Heat treatment furnace
KR20090112407A (en) Vertical type vacuum furnace with elevation apparatus
JP2010203767A (en) Heat treat furnace
JP2013038128A (en) Heat treatment apparatus
JP2005325371A (en) Vacuum carburizing furnace
JP2016204688A (en) Heat treatment method and truck type heat treatment furnace
KR100586388B1 (en) Electric resistance heating furnace using matrix heat treatment and that of control method
JP4605781B2 (en) Oil quenching method and apparatus for steel
CN211497702U (en) Energy-saving annealing furnace
JP2500741Y2 (en) Induction heating furnace seal device