JP2010012411A - Water quality improving treatment agent and method of manufacturing the same - Google Patents

Water quality improving treatment agent and method of manufacturing the same Download PDF

Info

Publication number
JP2010012411A
JP2010012411A JP2008174572A JP2008174572A JP2010012411A JP 2010012411 A JP2010012411 A JP 2010012411A JP 2008174572 A JP2008174572 A JP 2008174572A JP 2008174572 A JP2008174572 A JP 2008174572A JP 2010012411 A JP2010012411 A JP 2010012411A
Authority
JP
Japan
Prior art keywords
ion
ore
water quality
substitution
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008174572A
Other languages
Japanese (ja)
Other versions
JP4822369B2 (en
Inventor
Ki Ho Park
埼鎬 朴
Kichan Park
埼▲ちゃん▼ 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008174572A priority Critical patent/JP4822369B2/en
Publication of JP2010012411A publication Critical patent/JP2010012411A/en
Application granted granted Critical
Publication of JP4822369B2 publication Critical patent/JP4822369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water quality improving technology which is environmentally friendly and does not require too much labor and time when improving the water quality in a lake, a river, a dam, or the like. <P>SOLUTION: A powder of a natural porous ore having a permanent charge, a natural ore serving as an ion substitution material, an ion substitution auxiliary material, a binding reinforcement for binding ore materials, a porous pore diameter-expanding material for expanding the pore diameter of natural porous ores, and a coagulation auxiliary material are mixed, and the mixture is subjected to ion substitution via two or more heating processes at different temperatures to generate a water quality improving treatment agent 13 whose surface is charged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水質の改善に関するものであり、特に河川、湖沼及びダム等の水質改善を目的とする水質改善処理剤及びその製造方法に関するものである。   The present invention relates to water quality improvement, and more particularly, to a water quality improvement treatment agent for the purpose of improving water quality of rivers, lakes, dams, and the like, and a method for producing the same.

近年、水質改善及び水質浄化の技術は非常に多くのものが開発されており、例えば各種の排水処理場では物理的、化学的技術と同時に微生物を利用した生物学的技術が広く活用されている。ところがこのような水質浄化処理技術は、重金属類が高濃度に含まれた廃水に適用され、所定の排水基準で処理されるため、一般的な用水として使用することは困難である。   In recent years, a great number of technologies for water quality improvement and water purification have been developed. For example, biological technologies using microorganisms are widely used simultaneously with physical and chemical technologies in various wastewater treatment plants. . However, such water purification technology is applied to wastewater containing heavy metals at a high concentration and is treated according to a predetermined drainage standard, so that it is difficult to use it as general water.

国内で開発された多くの水質浄化技術は試験室レベルやパイロットテストレベルの技術にとどまっている場合が多い。また、適用対象の規模が大きい屋外の現場で容易に活用するには多くの問題を抱えていて、経済性を論外にしても本格的な実用化には至らない状態にある。   Many water purification technologies developed in the country often remain at the laboratory level or pilot test level. In addition, there are many problems to easily use in the outdoor field where the scale of application is large, and even if the economic efficiency is out of the question, it is not in full use.

特に物理化学的変数が複雑な河川やダムの場合、長期に渡る湛水によって水質が悪化し、近年、急増する汚染物質によって、安全な飲用水と生活用水の確保が重要な問題となっている。ところが現在、開発されているほとんどの水処理技術は処理施設に流入した水について、いくつかの段階を経て一定処理を行うだけであり、ダムや湖沼現場での原水自体の水質を浄化処理するものではない。   Especially in rivers and dams with complex physicochemical variables, water quality deteriorates due to long-term flooding, and in recent years it has become an important issue to ensure safe drinking water and domestic water due to rapidly increasing pollutants. . However, most of the water treatment technologies that are currently being developed only perform a certain amount of treatment on the water that has flowed into the treatment facility, purifying the quality of the raw water itself at the dam or lake site. is not.

河川、湖沼及びダム等の水処理は、産業施設や各種排水とは異なり、その技術が自然生態系への安全性を保障することができなければ湖沼等への直接施工が非常に難しく、国内外でもこのような処理例がほとんどないのが実情である。   Water treatment of rivers, lakes and dams, unlike industrial facilities and various types of wastewater, is very difficult to implement directly on lakes etc. unless the technology can guarantee the safety of natural ecosystems. In fact, there are few examples of such processing even outside.

上記要望に対して、湖沼水、河川水、上水および用水等の水質処理技術が開示されている(例えば、特許文献1参照)。この水処理技術は、湖沼水、河川水などに発泡性ゼオライトを散布、軟質化した湖沼水、河川水などに、ゼオライトの有する超微細気孔を置換させて、微細気泡を発生させ、懸濁物質を付着同伴浮上させてなる発泡性ゼオライトを使用して懸濁物質を浮上させるものである。   In response to the above request, water quality treatment techniques such as lake water, river water, clean water and irrigation water have been disclosed (for example, see Patent Document 1). This water treatment technology sprays effervescent zeolite into lake water, river water, etc., and substitutes ultrafine pores of zeolite in softened lake water, river water, etc., generates fine bubbles, suspended matter Suspended substances are levitated by using an expandable zeolite obtained by adhering and floating.

ゼオライトは従来から知られている水中の陽イオンをナトリウムイオンと置換する機能を有することでアンモニアとその他の陽イオンの吸着性能を発揮し、水中のカルシウム、マグネシウムも吸着する。その結果、発泡性が向上し、多孔質部分で水 と微細気孔部分が置換する際にコロイダルガスが生成され、それとともに活性酸化物質からの発生ガスが重なってより多くのコロイダルエアーが発生する。そのコロイダルエアーが有機物質を含む懸濁物質に付着し、見掛け比重が水 よりも小さくなった時点で浮上し、懸濁物質の浮上分離効果が得られるものである。
特開2001−198568号公報
Zeolite has a function of substituting conventionally known cations in water with sodium ions, thereby exhibiting adsorption performance of ammonia and other cations, and also adsorbs calcium and magnesium in water. As a result, the foaming property is improved, and colloidal gas is generated when water and fine pores are replaced in the porous portion, and the generated gas from the active oxidant overlaps with it, and more colloidal air is generated. The colloidal air adheres to the suspended matter containing the organic substance and floats when the apparent specific gravity is smaller than that of water, and the suspended separation effect of the suspended substance is obtained.
JP 2001-198568 A

上記特許文献1に記載の水質処理技術によれば、従来のように水底に堆積させることがないのでヘドロ回収船のような大がかりな回収手段を必要としないものであるが、水面に浮上した懸濁物質を回収する必要がある。湖沼、河川及びダム等の広大な面積を有する場合には、浮遊した懸濁物質の回収に要する手間は甚大なものとなってしまう。   According to the water quality treatment technique described in Patent Document 1 described above, since it is not deposited on the bottom of the water as in the prior art, a large collection means such as a sludge recovery ship is not required. It is necessary to collect the suspended matter. In the case of large areas such as lakes, rivers, and dams, the time and effort required to collect suspended suspended matter is tremendous.

本発明は、湖沼、河川及びダム等の水質改善に際して、周囲の環境に優しくかつその使用に過大な手間のかからない水質改善処理剤の提供を目的とする。   An object of the present invention is to provide a water quality improving treatment agent that is friendly to the surrounding environment and does not require excessive labor for use in improving the water quality of lakes, rivers, dams and the like.

上記課題を解決するために本発明が提案するのは、永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合し、温度の異なる2以上の加熱工程を経て生成される、表面が荷電された水質改善処理剤である。   In order to solve the above problems, the present invention proposes a natural porous ore powder having a permanent charge, a natural ore of an ion-substituting material, an ion-substituting auxiliary material, and a bond reinforcing material that combines the ore materials. And a porous pore size expanding material that expands the pore size of the natural porous ore, and an agglomeration auxiliary material, and are produced through two or more heating steps at different temperatures, and the surface-charged water quality improving treatment It is an agent.

このように永久荷電を持つ天然多孔質鉱石の粉末を、温度差をつけて加熱し、イオン置換及び結合強化を行った、表面が荷電された水質改善処理剤であるから、水中で荷電されている濁質、金属等を吸着させることができ、さらに凝集して沈降させることができる。そして多孔質孔径拡大材料により孔径が大きくなるので、バクテリアが多孔質を利用することができる。すなわち凝集沈降後に多孔質は環境中のバクテリアの住居となり、分解処理されるので水底でヘドロ化することが防止され、湖沼等の底質改善につながることになる。   The natural porous ore powder with permanent charge is heated with a temperature difference, ion substitution and bond strengthening are performed, and the surface is a water quality improving treatment agent charged. Suspended turbidity, metals, etc. can be adsorbed, and can further be aggregated and settled. And since a pore diameter becomes large with a porous pore diameter expansion material, bacteria can utilize a porosity. In other words, after the coagulation sedimentation, the porous material becomes the residence of bacteria in the environment and is decomposed, so that it is prevented from becoming sludge at the bottom of the water, leading to improvement of the bottom quality of lakes and the like.

前記天然多孔質鉱石は、その結晶中に微細孔を持つもので、クリノプチロライト(clinoptilolite)、モルデナイト(mordenite)、輝沸石(heulandite)、ステラ沸石(stellerite)、エリオン沸石(erionite)、雲母(イライトillite)、バーミキュライト(vermiculite)、ベントナイト、モンモリロナイト(montmorillonite)、白雲母(モスコバイト、muscovite)、クロライト(緑泥石)、セピオライト(Sepiolite)の少なくとも1以上からなるものを用いる。なお上記のリノプチロライト、モルデナイト、輝沸石、ステラ沸石、エリオン沸石の総称として適宜「ゼオライト」と総称する。   The natural porous ore has fine pores in the crystal, and includes clinoptilolite, mordenite, heulandite, stellarite, erionite, mica. (Illite), vermiculite, bentonite, montmorillonite, muscovite (muscovite), chlorite (chlorite), and sepiolite (Sepiolite). The above linoptilolite, mordenite, pyroxenite, stellarite, and erionite are collectively referred to as “zeolite” as appropriate.

また前記イオン置換材料の天然鉱石は、アルミニウムの水酸化物であるギブサイトであり、前記イオン置換補助材料がオパール(opal)であり、前記結合強化材料がカオリンであり、前記多孔質孔径拡大材料が真珠岩(パーライト、perlite)であり、前記凝集補助材料が苦灰石(ドロマイト、dolomite)であることが好ましい。   The natural ore of the ion-substitution material is gibbsite which is a hydroxide of aluminum, the ion-substitution auxiliary material is opal, the bond strengthening material is kaolin, and the porous pore size-enlarging material is It is preferably pearlite (perlite), and the agglomeration auxiliary material is preferably dolomite (dolomite).

そして前記イオン置換材料によるイオン置換を、酸性領域で行うことにより前記表面を正電気に帯電させ、又はアルカリ領域で行うことにより前記表面を負電気に帯電させるようにすることができる。   The surface can be charged positively by performing ion substitution with the ion-substituting material in the acidic region, or charged negatively by performing in the alkaline region.

天然多孔質鉱石のうち、例えばゼオライトが永久荷電を持つのは、その正四面体構造の中心であるSi4+が圧力等によりAl3+に置き換わることで構造的にマイナス(−)荷電(永久荷電)を持つことによるものである。そしてイオン置換材としてのアルミニウム鉱石のギブサイトを混ぜ、さらにイオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合する。温度差を設けた加熱により、イオン置換と各鉱石材料の結合強化が図られ、ナノパウダー状に粉砕処理して生成され、表面が荷電された水質改善処理剤となる。 Among natural porous ores, zeolite, for example, has a permanent charge because the Si 4+, which is the center of its tetrahedral structure, is replaced with Al 3+ by pressure or the like, so that it is structurally negative (-) charge (permanent charge). Is by having Then, the aluminum ore gibbsite as an ion replacement material is mixed, and further, an ion replacement auxiliary material, a bond reinforcing material for bonding each ore material, a porous pore size expanding material for expanding the pore size of the natural porous ore, and an aggregation aid Mix the ingredients. By heating with a temperature difference, ion substitution and bond strengthening of each ore material are achieved, and a water quality improvement treatment agent that is generated by pulverizing into nanopowder and having a charged surface is obtained.

イオン置換を酸性領域で行うことにより、水素イオンが付加されAl(OH の状態になり表面が正の電荷を帯びた水質改善処理剤となり、逆にアルカリを添加したアルカリ領域ではAlOとなって負の電荷を帯びた水質改善処理剤となる。表面が正の電荷を帯びた水質改善処理剤は、湖沼等への散布によって負の電荷を帯びた濁質等を吸着し、凝集沈降させ、表面が負の電荷を帯びたときは正の金属イオン等を吸着、凝集沈降させることができる。 By performing ion substitution in the acidic region, hydrogen ions are added to form a state of Al (OH 2 + ) 3 and the surface has a positively charged water quality improving agent. Conversely, in the alkaline region to which alkali is added, AlO is added. - the quality improvement treatment agent bearing a negative charge becomes. A water quality improvement treatment agent with a positive charge on the surface adsorbs negative charge turbidity, etc. by spraying it on lakes, etc., agglomerates and settles, and when the surface has a negative charge, it is a positive metal. Ions and the like can be adsorbed and coagulated and settled.

また本発明が更に提案するのは、天然鉱石を原料とする、表面が荷電された水質改善処理剤の製造方法であって、永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合、加熱処理してイオン置換を行う第一の加熱工程と、第一の加熱工程よりも高温で更に加熱処理して各材料間の結合を強化する第二の加熱工程と、該第二の加熱工程の後に粉砕処理する粉砕処理工程と、を備えてなる水質改善処理剤の製造方法である。   Further, the present invention further proposes a method for producing a surface quality-improved water quality improving agent using natural ore as a raw material, and comprising a natural porous ore powder having a permanent charge and a natural ion-replacement material. An ore, an ion-substitution auxiliary material, a bond strengthening material that binds each ore material, a porous pore size expanding material that expands the pore size of the natural porous ore, and an agglomeration auxiliary material are mixed and heat-treated to produce ions. A first heating step for performing the substitution, a second heating step for further strengthening the bond between the materials by further heat treatment at a temperature higher than that of the first heating step, and a pulverization treatment after the second heating step. And a pulverization treatment step.

上記製造方法では、前記天然多孔質鉱石が、クリノプチロライト(clinoptilolite)、モルデナイト(mordenite)、輝沸石(heulandite)、ステラ沸石(stellerite)、エリオン沸石(erionite)、雲母(イライトillite)、バーミキュライト(vermiculite)、ベントナイト、モンモリロナイト(montmorillonite)、白雲母(モスコバイト、muscovite)、クロライト(緑泥石)、セピオライト(Sepiolite)の少なくとも1以上からなるものとする。   In the above production method, the natural porous ore is made of clinoptilolite, mordenite, helenite, stellarite, erionite, illite, vermiculite. (Vermiculite), bentonite, montmorillonite, muscovite (muscovite), chlorite (chlorite), and sepiolite (Sepiolite).

そしてさらに前記イオン置換材料の天然鉱石がアルミニウムの水酸化物であるギブサイトであり、前記イオン置換補助材料がオパール(opal)であり、前記結合強化材料がカオリンであり、前記多孔質孔径拡大材料が真珠岩(パーライト、perlite)であり、前記凝集補助材料が苦灰石(ドロマイト、dolomite)であることが好ましい。   Further, the natural ore of the ion substitution material is gibbsite which is an aluminum hydroxide, the ion substitution auxiliary material is opal, the bond strengthening material is kaolin, and the porous pore size expanding material is It is preferably pearlite (perlite), and the agglomeration auxiliary material is preferably dolomite (dolomite).

また前記イオン置換材料によるイオン置換を、酸性領域で行うことにより前記表面を正電気に帯電させ、又はアルカリ領域で行うことにより前記表面を負電気に帯電させることができる。   Moreover, the surface can be charged positively by performing ion substitution with the ion-substituting material in an acidic region, or negatively charged by performing in an alkaline region.

本発明によれば、湖沼、河川及びダム等の水質改善に際して、周囲の環境に優しくかつその使用に過大な手間のかからない水質改善処理剤とその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when improving water quality, such as a lake, a river, a dam, etc., it can provide the water quality improvement processing agent which is kind to the surrounding environment, and does not require an excessive effort for the use, and its manufacturing method.

天然多孔質鉱石の粉末をイオン置換及び結合強化を行い、表面を荷電させた水質改善処理剤であるから、水中で荷電されている濁質、金属等を吸着させることができ、さらに凝集して沈降させることができる。バクテリアが多孔質を利用することができるので、分解処理により水底でヘドロ化することが防止され、湖沼等の底質改善にもつながることになる。   Natural porous ore powder is ion-exchanged and bond strengthened, and the surface is charged with water quality improving treatment agent, so it can adsorb turbidity, metals, etc. charged in water, and further agglomerate. Can be allowed to settle. Since bacteria can use the porous structure, it is prevented from becoming sludge at the bottom of the water by the decomposition treatment, which leads to improvement of bottom sediments such as lakes.

以下添付図面を参照して本発明の好ましい実施形態について説明する。図1は本発明に係る水質改善処理剤の製造方法の一実施形態の工程図、図2は天然多孔質鉱石がイオン置換される手順を示す概念図であり、(a)は水酸化アルミニウムの水酸基がイオン化した概念図、(b)は天然多孔質鉱石の永久荷電を示す概念図、(c)はイオン置換された天然多孔質鉱石粒子の概念図、図3は濁水中の状態を示す概念図であり、(a)は負の荷電状態となっている濁質を示す概念図、(b)はイオン置換された天然多孔質鉱石粉粒子とその周囲に吸着された濁質の概念図、図4はイオン置換された天然多孔質鉱石粉粒子とその周囲に吸着された濁質が凝集した状態を示す概念図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a process diagram of an embodiment of a method for producing a water quality improving treatment agent according to the present invention, FIG. 2 is a conceptual diagram showing a procedure for ion-replacement of natural porous ore, and (a) is a diagram of aluminum hydroxide. (B) is a conceptual diagram showing permanent charge of natural porous ore, (c) is a conceptual diagram of ion-substituted natural porous ore particles, and FIG. 3 is a concept showing the state in muddy water. (A) is a conceptual diagram showing turbidity in a negatively charged state, (b) is a conceptual diagram of ion-substituted natural porous ore powder particles and turbidity adsorbed on the periphery thereof, FIG. 4 is a conceptual diagram showing a state where the ion-substituted natural porous ore powder particles and turbidity adsorbed on the surrounding particles are aggregated.

図1の製造工程図を参照して本発明に係る水質改善処理剤及びその製造方法の概要を説明する。   The outline of the water quality improving treatment agent and the method for producing the same according to the present invention will be described with reference to the production process diagram of FIG.

永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合する混合工程から開始される(S101)。   Natural porous ore powder having permanent charge, natural ore of ion-substitution material, ion-substitution auxiliary material, bond strengthening material that binds each ore material, and porous pore size that enlarges the pore size of the natural porous ore The process starts with a mixing step of mixing the expansion material and the coagulation auxiliary material (S101).

上記天然多孔質鉱石としては、クリノプチロライト(clinoptilolite)、モルデナイト(mordenite)、輝沸石(heulandite)、ステラ沸石(stellerite)、エリオン沸石(erionite)、雲母(イライトillite)、バーミキュライト(vermiculite)、ベントナイト、モンモリロナイト(montmorillonite)、白雲母(モスコバイト、muscovite)、クロライト(緑泥石)、セピオライト(Sepiolite)の少なくとも1以上からなるものであるが、鉱石それぞれの特性を有効に引き出すために全種を入れることが好ましい。   Examples of the natural porous ore include clinoptilolite, mordenite, heliteite, stellarite, erionite, illite, vermiculite, and vermiculite. It is composed of at least one of bentonite, montmorillonite, muscovite (muscovite), chlorite (chlorite), sepiolite (Sepilite). It is preferable to add.

またイオン置換材料の天然鉱石がアルミニウムの水酸化物であるギブサイト、イオン置換補助材料がオパール(opal)、結合強化材料がカオリン、多孔質孔径拡大材料が真珠岩(パーライト、perlite)であり、凝集補助材料が苦灰石(ドロマイト、dolomite)を、それぞれ使用する。   In addition, the natural ore of the ion replacement material is Gibbsite, which is an aluminum hydroxide, the ion replacement auxiliary material is opal, the bond reinforcement material is kaolin, and the porous pore size expansion material is pearlite (perlite). Auxiliary material is dolomite (dolomite), respectively.

次に上記の混合工程(S101)を経て、1次温度(375℃〜600℃)で加熱される第一の加熱工程におかれる(S102)。この第一の加熱工程において、ギブサイトに含まれる水酸化アルミニウムが天然多孔質鉱石に溶解してイオン置換することになる。イオン置換補助材料のオパール(opal)は、マイナスイオンを発生し、イオン置換の補助をする役割を有する。   Next, after the above-described mixing step (S101), the first heating step of heating at the primary temperature (375 ° C. to 600 ° C.) is performed (S102). In this first heating step, the aluminum hydroxide contained in the gibbsite is dissolved in the natural porous ore and ion-substituted. The ion substitution auxiliary material opal has a role of generating negative ions and assisting ion substitution.

イオン置換を酸性領域で行うと、水素イオンが付加されAl(OH の状態になり表面が正の電荷を帯びた水質改善処理剤となり、逆にアルカリを添加したアルカリ領域ではAlOとなって負の電荷を帯びた水質改善処理剤となる。なお詳細は後述する。 When ion substitution is carried out in the acidic region, hydrogen ions are added to form an Al (OH 2 + ) 3 state, and the surface becomes a positively charged water quality improving treatment agent. Conversely, in the alkaline region where alkali is added, AlO It becomes a water quality improving treatment agent having a negative charge. Details will be described later.

次に加熱温度を2次温度(1000℃〜1470℃)とする第二の加熱工程におかれる(S103)。この2次温度での加熱により粘土鉱物がガラス化し結合強化や構造を強化する。結合強化材料のカオリン(粘土鉱物、同質のカオリナイト「カオリン石」の使用も可)は、粘土鉱物である6種のバーミキュライト、ベントナイト、モンモリロナイト、白雲母、クロライト、セピオライトと同様に、2次温度で塑性したときにガラス化して上記イオン置換の結合を強化する役割を有するものである。   Next, the heating temperature is set to a secondary temperature (1000 ° C. to 1470 ° C.) (S103). By heating at the secondary temperature, the clay mineral is vitrified and strengthens the bond and the structure. The kaolin (clay mineral, homogeneous kaolinite "kaolinite" can be used) is a secondary material similar to the six types of clay minerals vermiculite, bentonite, montmorillonite, muscovite, chlorite and sepiolite. When it plasticizes at temperature, it vitrifies and strengthens the bond of the ion substitution.

また2次温度で加熱したときに、多孔質孔径拡大材料の真珠岩(パーライト、perlite)が発泡し、多孔質構造の孔の径を広げる役割を果すことになる。なお凝集補助材料の苦灰石(ドロマイト、dolomite)は、水質改善処理剤として水中に散布されたときに濁質等との凝集効果を上げる材料である。   Further, when heated at the secondary temperature, the porous pore size-enlarging material pearlite (perlite) foams and plays the role of expanding the pore size of the porous structure. The coagulation auxiliary material dolomite (dolomite) is a material that increases the coagulation effect with turbidity and the like when sprayed in water as a water quality improvement treatment agent.

次に2次温度での加熱処理を経てた後に、ナノパウダー状態に粉砕する(S104)。これは2次温度で塑性することからその一部多孔質が結合する現象が見られるため、粉砕処理によりイオン置換を効果高めるものである。   Next, after the heat treatment at the secondary temperature, it is pulverized into a nanopowder state (S104). This is because plasticity occurs at the secondary temperature, so that a phenomenon in which some of the pores are bonded is observed, so that ion substitution is enhanced by pulverization.

なお水質改善処理剤の適用対象等や目的に応じて、陽イオン又は陰イオンで置換してもよい(S105、S106)。例えば水質改善処理剤が正に荷電しているときに、吸着、凝集させる対象も「正」に荷電しているときは、再度イオン置換して水質改善処理剤を負に荷電させる。   In addition, you may substitute by a cation or an anion according to the application object etc. of a water quality improvement processing agent, or the objective (S105, S106). For example, when the water quality improvement treatment agent is positively charged and the target to be adsorbed and aggregated is also positively charged, ion replacement is performed again to negatively charge the water quality improvement treatment agent.

製造された水質改善処理剤(S107)は、湖沼等に散布されると、荷電されている濁質等を吸着、凝集して沈降する。そして拡径された多孔質はバクテリアが利用することができるので、凝集沈降後に多孔質が環境中のバクテリアの住居となり、濁質等は分解処理され、水底のヘドロ化防止される。   When the produced water quality improving treatment agent (S107) is sprayed on a lake or the like, it adsorbs, aggregates and settles charged turbidity. Since the expanded porous material can be used by bacteria, the porous material becomes a residence of bacteria in the environment after aggregation and sedimentation, and the suspended matter is decomposed to prevent the bottom of the water from becoming sludge.

次に天然多孔質鉱石がイオン置換されてから、濁質等を吸着、凝集する経過を概念図により説明する。   Next, a process of adsorbing and agglomerating turbidity after the natural porous ore is ion-substituted will be described with reference to a conceptual diagram.

図2(a)に示すように、イオン置換材料のギブサイトに含まれる水酸化アルミニウム11「Al(OH)」は、酸性領域に置かれることで、水素イオンH+が付加されてAl(OH の状態になり易い。図2(a)ではAlの周囲にOH が3個配置された状態となっている。
なお本実施形態では酸性領域でのイオン置換としてあるが、逆にアルカリを添加したアルカリ領域ではH+が水酸基OH−と結合してしまうので、AlOとなって負の電荷を帯びた状態となる。
As shown in FIG. 2A, the aluminum hydroxide 11 “Al (OH) 3 ” contained in the gibbsite of the ion-substituting material is placed in an acidic region so that hydrogen ions H + are added and Al (OH 2 + ) Easily in the state of 3 . In FIG. 2A, three OH 2 + are arranged around Al.
Note that in this embodiment there as an ion substitution with acidic, since alkaline region with the addition of alkali to the contrary would bind H + is a hydroxyl group OH @ -, AlO - a state in which the negatively charged becomes .

図2(b)は、天然多孔質鉱石の粒子(粉末)12が負電荷を帯びた永久荷電の状態を示している概念図である。天然多孔質鉱石の構成中のSi4+がAl3+やFe3+に置き換わることがあり、このとき天然多孔質鉱石は構造的に「マイナス(−)」の電荷を帯びることになるものである(「永久荷電」と呼ばれる)。 FIG. 2B is a conceptual diagram showing a state in which the natural porous ore particles (powder) 12 have a negative charge and are permanently charged. Si 4+ in the composition of the natural porous ore may be replaced by Al 3+ or Fe 3+ , and at this time, the natural porous ore is structurally charged with a “minus (−)” charge (“ Called "Permanent Charge").

図2(c)に示すように、図2(a)の水酸化アルミニウム11を、図2(b)の永久荷電の状態にある天然多孔質鉱石の粒子12とイオン置換を行うことで、正に荷電した天燃多孔質鉱石の粒子13が生じることになる。   As shown in FIG. 2C, the aluminum hydroxide 11 of FIG. 2A is ion-replaced with the natural porous ore particles 12 in the permanently charged state of FIG. Thus, natural porous ore particles 13 are generated.

図3(a)は濁水中の濁質粒子15を示すもので、濁質粒子15は非常に軽いため沈降しにくいものであり、また負に荷電しているため、反発力によりファンデルワールス(分子間力)が働かないので凝集することがない状態となっている。   FIG. 3A shows turbid particles 15 in muddy water. The turbid particles 15 are very light and difficult to settle, and are negatively charged. Therefore, the van der Waals ( Since the intermolecular force does not work, it does not aggregate.

図3(b)は、濁水中に図2(c)の正に荷電した天燃多孔質鉱石の粒子13を投入したときの状態を示すもので、負に荷電した濁質粒子15は、正に荷電した天燃多孔質鉱石の粒子13に吸着、凝集される。   FIG. 3 (b) shows the state when the positively charged natural porous ore particles 13 of FIG. 2 (c) are put into muddy water. The negatively charged muddy particles 15 are positively charged. Adsorbed and agglomerated on the particles 13 of the natural porous ore charged to the surface.

図4に示すように、濁質粒子15を吸着、凝集した天燃多孔質鉱石の粒子13は繋がって、非常に大きなかたまりとなり、その自重により沈降することになる。   As shown in FIG. 4, the natural porous ore particles 13 adsorbed and aggregated with the turbid particles 15 are connected to form a very large mass and settle due to its own weight.

本発明に係る水質改善処理剤は、上記図2〜図4で説明した濁質等の吸着、凝集の原理をさらに改良向上させるとともに、沈降後の濁質等のヘドロ化防止をも加味したものである。すなわち、永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合し、温度の異なる2以上の加熱工程を経て生成される、表面が荷電された水質改善処理剤であるため、イオン置換と結合強化を促進し、凝集効果を向上させるので沈降速度を速めることができ、水質改善を迅速に行うことができる。   The water quality-improving treatment agent according to the present invention further improves and improves the principle of adsorption and aggregation of turbidity and the like explained in FIGS. 2 to 4, and also takes into account the prevention of sludge formation such as turbidity after sedimentation. It is. That is, a natural porous ore powder having a permanent charge, a natural ore of an ion-substitution material, an ion-substitution auxiliary material, a bond strengthening material that binds each ore material, and a pore that expands the pore size of the natural porous ore. It is a water quality improving agent with a charged surface that is produced by mixing two or more heating steps at different temperatures by mixing a pore size expanding material and an agglomeration auxiliary material, thus promoting ion substitution and bond strengthening. Since the agglomeration effect is improved, the sedimentation rate can be increased and the water quality can be improved quickly.

また天然多孔質鉱石は、多孔質孔径拡大材料により孔径が大きくなるので、凝集沈降後に多孔質は環境中のバクテリアの住居となり、凝集沈降された濁質等が分解処理されるので水底でヘドロ化することが防止され、湖沼等の底質改善につながることになる。   Since natural porous ore has a large pore size due to the porous pore size expanding material, the porous material becomes the residence of bacteria in the environment after coagulation and sedimentation, and the turbid material that has been coagulated and settled is decomposed, so it becomes sludge at the bottom of the water. Will be prevented and lead to improvement of sediment quality in lakes and marshes.

本発明に係る水質改善処理剤の製造方法の一実施形態の工程図。Process drawing of one Embodiment of the manufacturing method of the water quality improvement processing agent which concerns on this invention. 天然多孔質鉱石がイオン置換される手順を示す概念図であり、(a)は水酸化アルミニウムの水酸基がイオン化した概念図、(b)は天然多孔質鉱石の永久荷電を示す概念図、(c)はイオン置換された天然多孔質鉱石粒子の概念図。It is a conceptual diagram which shows the procedure in which natural porous ore is ion-substituted, (a) is the conceptual diagram in which the hydroxyl group of aluminum hydroxide was ionized, (b) is the conceptual diagram which shows the permanent charge of a natural porous ore, (c ) Is a conceptual diagram of ion-substituted natural porous ore particles. 濁水中の状態を示す概念図であり、(a)は負の荷電状態となっている濁質を示す概念図、(b)はイオン置換された天然多孔質鉱石粉粒子とその周囲に吸着された濁質の概念図。It is a conceptual diagram which shows the state in turbid water, (a) is a conceptual diagram which shows the turbidity which is a negative charge state, (b) is adsorbed by the natural porous ore powder particle | grains by which ion substitution was carried out, and its circumference | surroundings. Conceptual diagram of turbidity. イオン置換された天然多孔質鉱石粉粒子とその周囲に吸着された濁質が凝集した状態を示す概念図。The conceptual diagram which shows the state which the natural porous ore powder particle | grains by which ion substitution was carried out, and the turbidity adsorbed by the circumference | surroundings aggregated.

符号の説明Explanation of symbols

11 水酸化アルミニウム
12 天然多孔質鉱石の粒子
13 正に荷電した天燃多孔質鉱石の粒子
15 濁質粒子
11 Aluminum hydroxide 12 Natural porous ore particles 13 Positively charged natural porous ore particles 15 Turbid particles

Claims (8)

永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合し、温度の異なる2以上の加熱工程を経てイオン置換して生成される、表面が荷電された水質改善処理剤。   Natural porous ore powder having permanent charge, natural ore of ion-substitution material, ion-substitution auxiliary material, bond strengthening material that binds each ore material, and porous pore size that enlarges the pore size of the natural porous ore A surface quality-improved water quality-improving treatment agent produced by mixing an expanding material and an agglomeration auxiliary material and performing ion substitution through two or more heating steps at different temperatures. 前記天然多孔質鉱石が、クリノプチロライト(clinoptilolite)、モルデナイト(mordenite)、輝沸石(heulandite)、ステラ沸石(stellerite)、エリオン沸石(erionite)、雲母(イライトillite)、バーミキュライト(vermiculite)、ベントナイト、モンモリロナイト(montmorillonite)、白雲母(モスコバイト、muscovite)、クロライト(緑泥石)、セピオライト(Sepiolite)の少なくとも1以上からなることを特徴とする請求項1に記載の水質改善処理剤。   The natural porous ore is clinoptilolite, mordenite, heulandite, stellarite, erionite, illite, vermiculite, bentonite. The water quality improving agent according to claim 1, comprising at least one of montmorillonite, muscovite, chlorite, and sepiolite. 前記イオン置換材料の天然鉱石がアルミニウムの水酸化物であるギブサイトであり、前記イオン置換補助材料がオパール(opal)であり、前記結合強化材料がカオリンであり、前記多孔質孔径拡大材料が真珠岩(パーライト、perlite)であり、前記凝集補助材料が苦灰石(ドロマイト、dolomite)であることを特徴とする請求項1に記載の水質改善処理剤。   The natural ore of the ion replacement material is gibbsite which is an aluminum hydroxide, the ion replacement auxiliary material is opal, the bond strengthening material is kaolin, and the porous pore size expanding material is nacre. The water quality improvement treatment agent according to claim 1, wherein the coagulation auxiliary material is dolomite. 前記イオン置換材料によるイオン置換を、酸性領域で行うことにより前記表面を正電気に帯電させ、又はアルカリ領域で行うことにより前記表面を負電気に帯電させることを特徴とする請求項1ないし3のいずれか一項に記載の水質改善処理剤。   4. The surface according to claim 1, wherein the ion substitution by the ion substitution material is performed in an acidic region to charge the surface positively, or the alkali substitution is performed to charge the surface negatively. The water quality improving treatment agent according to any one of the above. 天然鉱石を原料とする、表面が荷電された水質改善処理剤の製造方法であって、
永久荷電を持つ天然多孔質鉱石の粉末と、イオン置換材料の天然鉱石と、イオン置換補助材料と、各鉱石材料を結合する結合強化材料と、前記天然多孔質鉱石の孔径を拡大する多孔質孔径拡大材料と、凝集補助材料と、を混合、加熱処理してイオン置換を行う第一の加熱工程と、
第一の加熱工程よりも高温で更に加熱処理して各材料間の結合を強化する第二の加熱工程と、
該第二の加熱工程の後に粉砕処理する粉砕処理工程と、を備えてなる水質改善処理剤の製造方法。
A method for producing a surface-charged water quality improving treatment agent using natural ore as a raw material,
Natural porous ore powder having permanent charge, natural ore of ion-substitution material, ion-substitution auxiliary material, bond strengthening material that binds each ore material, and porous pore size that enlarges the pore size of the natural porous ore A first heating step in which the expansion material and the coagulation auxiliary material are mixed and heat-treated to perform ion substitution;
A second heating step in which the heat treatment is further performed at a higher temperature than the first heating step to strengthen the bond between the materials;
And a pulverization treatment step of pulverizing after the second heating step.
前記天然多孔質鉱石が、クリノプチロライト(clinoptilolite)、モルデナイト(mordenite)、輝沸石(heulandite)、ステラ沸石(stellerite)、エリオン沸石(erionite)、雲母(イライトillite)、バーミキュライト(vermiculite)、ベントナイト、モンモリロナイト(montmorillonite)、白雲母(モスコバイト、muscovite)、クロライト(緑泥石)、セピオライト(Sepiolite)の少なくとも1以上からなることを特徴とする請求項5に記載の水質改善処理剤の製造方法。   The natural porous ore is clinoptilolite, mordenite, heulandite, stellarite, erionite, illite, vermiculite, bentonite. The method for producing a water quality improving treatment agent according to claim 5, comprising at least one of montmorillonite, muscovite, chlorite, and sepiolite. 前記イオン置換材料の天然鉱石がアルミニウムの水酸化物であるギブサイトであり、前記イオン置換補助材料がオパール(opal)であり、前記結合強化材料がカオリンであり、前記多孔質孔径拡大材料が真珠岩(パーライト、perlite)であり、前記凝集補助材料が苦灰石(ドロマイト、dolomite)であることを特徴とする請求項5に記載の水質改善処理剤の製造方法。   The natural ore of the ion replacement material is gibbsite which is an aluminum hydroxide, the ion replacement auxiliary material is opal, the bond strengthening material is kaolin, and the porous pore size expanding material is nacre. 6. The method for producing a water quality improving treatment agent according to claim 5, wherein the coagulation auxiliary material is dolomite. 前記イオン置換材料によるイオン置換を、酸性領域で行うことにより前記表面を正電気に帯電させ、又はアルカリ領域で行うことにより前記表面を負電気に帯電させることを特徴とする請求項5ないし7のいずれか一項に記載の水質改善処理剤の製造方法。



8. The surface according to claim 5, wherein the ion substitution with the ion substitution material is performed in an acidic region to charge the surface positively, or the alkali substitution is performed to charge the surface negatively. The manufacturing method of the water quality improvement processing agent as described in any one.



JP2008174572A 2008-07-03 2008-07-03 Water quality improving treatment agent and method for producing the same Active JP4822369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174572A JP4822369B2 (en) 2008-07-03 2008-07-03 Water quality improving treatment agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174572A JP4822369B2 (en) 2008-07-03 2008-07-03 Water quality improving treatment agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010012411A true JP2010012411A (en) 2010-01-21
JP4822369B2 JP4822369B2 (en) 2011-11-24

Family

ID=41699056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174572A Active JP4822369B2 (en) 2008-07-03 2008-07-03 Water quality improving treatment agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4822369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099872B1 (en) 2011-10-31 2011-12-28 김상근 Method for making reducer of dissolved solid
KR101466088B1 (en) * 2014-05-30 2014-11-28 부경대학교 산학협력단 Manufacturing method of adsorbent for phosphorus chemisorption and adsorbent by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177025A (en) * 1997-09-05 1999-03-23 Yamao Shokuhin Kk Water purification agent and its manufacture
JP2001278677A (en) * 2000-03-31 2001-10-10 Asahi Fiber Glass Co Ltd Method for manufacturing inorganic foam
JP2004050044A (en) * 2002-07-19 2004-02-19 Shibata Toki Kk Water modifying material
JP2005262209A (en) * 2004-02-19 2005-09-29 Univ Osaka Sangyo Water cleaning material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177025A (en) * 1997-09-05 1999-03-23 Yamao Shokuhin Kk Water purification agent and its manufacture
JP2001278677A (en) * 2000-03-31 2001-10-10 Asahi Fiber Glass Co Ltd Method for manufacturing inorganic foam
JP2004050044A (en) * 2002-07-19 2004-02-19 Shibata Toki Kk Water modifying material
JP2005262209A (en) * 2004-02-19 2005-09-29 Univ Osaka Sangyo Water cleaning material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099872B1 (en) 2011-10-31 2011-12-28 김상근 Method for making reducer of dissolved solid
KR101466088B1 (en) * 2014-05-30 2014-11-28 부경대학교 산학협력단 Manufacturing method of adsorbent for phosphorus chemisorption and adsorbent by the same

Also Published As

Publication number Publication date
JP4822369B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Siyal et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes
Luukkonen et al. Application of alkali-activated materials for water and wastewater treatment: a review
Rajendran et al. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review
Koshy et al. Fly ash zeolites for water treatment applications
Tamjidi et al. Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study
Papandreou et al. Copper and cadmium adsorption on pellets made from fired coal fly ash
Sepehr et al. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems
Foo et al. The environmental applications of activated carbon/zeolite composite materials
Foroutan et al. Fast adsorption of chromium (VI) ions from synthetic sewage using bentonite and bentonite/bio-coal composite: a comparative study
Lan et al. A novel method for solidification/stabilization of Cd (II), Hg (II), Cu (II), and Zn (II) by activated electrolytic manganese slag
Sanguanpak et al. Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater
Kang et al. Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity
Ruthiraan et al. An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater
CN103848469A (en) Method for processing municipal wastewater
WO2021054116A1 (en) Phosphorus adsorbent
Jin et al. A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water
Choi Effect of Mg-sericite flocculant for treatment of brewery wastewater
JP2009136812A (en) Recovering clarification method of incineration ash, soil or the like containing harmful substance
Jeong et al. Evaluation of foam-glass media in a high-rate filtration process for the removal of particulate matter containing phosphorus in municipal wastewater
Kamarzamann et al. Hydroxyapatite/Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials
Dashti et al. Suspended solid removal of palm oil mill effluent using horizontal roughing filter and calcinated limestone
Huang et al. Ceramsite made from drinking water treatment residue for water treatment: a critical review in association with typical ceramsite making
Changalvaei et al. Removal of Ni and Zn heavy metal ions from industrial waste waters using modified slag of electric arc furnace
Candamano et al. Batch and fixed bed adsorption of methylene blue onto foamed metakaolin-based geopolymer: A preliminary investigation
Kayode et al. Clay soil modification techniques for the adsorption of heavy metals in aqueous medium: A review

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Ref document number: 4822369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250