JP2010011187A - Surface acoustic wave device and communication apparatus - Google Patents

Surface acoustic wave device and communication apparatus Download PDF

Info

Publication number
JP2010011187A
JP2010011187A JP2008169112A JP2008169112A JP2010011187A JP 2010011187 A JP2010011187 A JP 2010011187A JP 2008169112 A JP2008169112 A JP 2008169112A JP 2008169112 A JP2008169112 A JP 2008169112A JP 2010011187 A JP2010011187 A JP 2010011187A
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
reference potential
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169112A
Other languages
Japanese (ja)
Other versions
JP5144396B2 (en
Inventor
Yuji Mori
裕二 森
Takeshi Nakai
剛 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008169112A priority Critical patent/JP5144396B2/en
Publication of JP2010011187A publication Critical patent/JP2010011187A/en
Application granted granted Critical
Publication of JP5144396B2 publication Critical patent/JP5144396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device that improves both out-band attenuation adjacent to a pass band and that on more high-frequency side outside the pass band, and to provide a communication apparatus. <P>SOLUTION: A first reference potential through conductor 17 is formed right under the first region of a ring electrode 12, and a second reference potential through conductor 18 is formed right under the second region of the ring electrode 12. The reference potential bus bar electrode of a second IDT electrode 2 is connected to a region which is a predetermined distance away from the first region 25 of the ring electrode 12, and the reference potential bus bar electrode of a fourth IDT electrode 4 is connected to a region which is a predetermined distance away from the second region 26 of the ring electrode 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば携帯電話等の移動体通信機器に用いられる弾性表面波フィルタや弾性表面波共振器等の弾性表面波装置及びこれを備えた通信装置に関し、特に、通過帯域外減衰量を十分に取ることができる弾性表面波フィルタとしての弾性表面波装置及び通信装置に関するものである。   The present invention relates to a surface acoustic wave device such as a surface acoustic wave filter or a surface acoustic wave resonator used in a mobile communication device such as a mobile phone, and a communication device including the surface acoustic wave device. The present invention relates to a surface acoustic wave device and a communication device as a surface acoustic wave filter that can be applied to the above.

従来、携帯電話や自動車電話等の移動体通信機器のRF(無線周波数)段に用いられる周波数選択フィルタ(以下、フィルタともいう)として、弾性表面波フィルタが広く用いられている。一般に、周波数選択フィルタに求められる特性としては、広通過帯域、低損失、高減衰量等の諸特性が挙げられる。   Conventionally, a surface acoustic wave filter has been widely used as a frequency selection filter (hereinafter also referred to as a filter) used in an RF (radio frequency) stage of a mobile communication device such as a mobile phone or a car phone. In general, characteristics required for a frequency selective filter include various characteristics such as a wide passband, low loss, and high attenuation.

また、GSM(Global System for Mobile Communications)などのRxフィルタは受信周波数の信号波(基本波)だけでなく、2倍波、3倍波の信号が漏れてくるために、2倍波、3倍波の周波数における帯域外減衰量を確保することが要求されている。しかし、PCS(Personal Communication Services)など3倍波の周波数が6GHz付近である場合、IDT電極間での電気的な干渉が発生し易いために、減衰量を大きくすることが難しい。従って、6GHzといった高周波帯域における減衰量を大きくすることに対する要望が大きい。   In addition, Rx filters such as GSM (Global System for Mobile Communications) not only receive the signal wave (fundamental wave) of the reception frequency but also the second harmonic and third harmonic signals, so the second harmonic and the third harmonic. It is required to secure out-of-band attenuation at the wave frequency. However, when the frequency of the third harmonic wave such as PCS (Personal Communication Services) is around 6 GHz, it is difficult to increase the amount of attenuation because electrical interference is likely to occur between the IDT electrodes. Therefore, there is a great demand for increasing the attenuation in a high frequency band such as 6 GHz.

これらの要求特性に対して、電気信号を弾性表面波に変換させるIDT(Inter Digital Transducer)電極及び反射器電極を有する弾性表面波素子をラダー型に構成したラダー型回路を有する弾性表面波フィルタが提案されている。   In response to these required characteristics, a surface acoustic wave filter having a ladder type circuit in which a surface acoustic wave element having an IDT (Inter Digital Transducer) electrode and a reflector electrode for converting an electric signal into a surface acoustic wave is configured in a ladder type is provided. Proposed.

例えば、特許文献1には、圧電基板上に複数の弾性表面波素子によりラダー型回路を構成した弾性表面波フィルタが開示されている。並列弾性表面波素子(並列弾性表面波共振子)に直列にインダクタを付加した構成により、通過帯域外に減衰極を形成し、帯域外減衰量を向上させる技術が開示されている(特許文献1を参照)。   For example, Patent Document 1 discloses a surface acoustic wave filter in which a ladder type circuit is configured by a plurality of surface acoustic wave elements on a piezoelectric substrate. A technique is disclosed in which an attenuation pole is formed outside the passband and the out-of-band attenuation is improved by a configuration in which an inductor is added in series to a parallel surface acoustic wave element (parallel surface acoustic wave resonator) (Patent Document 1). See).

また、引用文献2には、並列腕共振子(並列弾性表面波共振子)に、直列にインピーダンス素子を接続し、通過帯域外に減衰極を形成することにより、帯域外減衰量を増大させることが開示されている。   Further, in Cited Document 2, an impedance element is connected in series to a parallel arm resonator (parallel surface acoustic wave resonator), and an attenuation pole is formed outside the pass band, thereby increasing the out-of-band attenuation. Is disclosed.

また、特許文献3には、並列腕共振子に、それぞれ直列にインダクタを付加することにより、帯域外減衰量を向上させることが開示されている。
特開平5−183380号公報 特開平10−163808号公報 特開2004−7250号公報
Patent Document 3 discloses that an out-of-band attenuation is improved by adding an inductor in series to each of the parallel arm resonators.
JP-A-5-183380 JP-A-10-163808 JP 2004-7250 A

しかしながら、従来の技術においては、減衰極を設定する位置を調整することが難しく、通過帯域近傍の帯域外減衰量と、通過帯域外のより高周波側における帯域外減衰量とを両立させて向上させることが困難であるといる問題点があった。   However, in the conventional technique, it is difficult to adjust the position where the attenuation pole is set, and both the out-of-band attenuation near the passband and the out-of-band attenuation on the higher frequency side outside the passband are improved at the same time. There was a problem that it was difficult.

従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、通過帯域近傍の帯域外減衰量と、通過帯域外のより高周波側における帯域外減衰量とを両立させて向上させることができる弾性表面波装置、及び通信装置を得ることである。   Therefore, the present invention has been completed in view of the above-described conventional problems, and the object thereof is to achieve both the out-of-band attenuation near the passband and the out-of-band attenuation on the higher frequency side outside the passband. And obtaining a surface acoustic wave device and a communication device that can be improved.

本発明の弾性表面波装置は、圧電基板と、前記圧電基板の主面に形成された、前記圧電基板の主面を伝搬する弾性表面波の伝搬方向に沿って前記伝搬方向に直交する方向に長い電極指を複数備えた3個以上の奇数個のIDT電極を有する弾性表面波素子と、前記主面に前記弾性表面波素子を取り囲むように形成された環状電極と、前記圧電基板の主面に対向して前記圧電基板を実装するとともに、前記環状電極に接続される第1の基準電位貫通導体と、第2の基準電位貫通導体とを有する実装基板と、を具備している弾性表面波装置であって、前記第1の基準電位貫通導体は前記伝搬方向の延長上にある前記環状電極の第1の部位の直下に形成され、前記第2の基準電位貫通導体は前記伝搬方向の延長上にある前記環状電極における前記第1の部位に対向する第2の部位の直下に形成されており、中央の前記IDT電極の基準電位バスバー電極が、前記伝搬方向に直交する方向の延長上にある前記環状電極の第3の部位に接続されており、中央の前記IDT電極に対して一方の側に配置された前記IDT電極の基準電位バスバー電極が、前記環状電極の前記第3の部位と反対側であって前記第1の部位から所定距離離れた部位に接続されているとともに、中央の前記IDT電極に対して他方の側に配置された前記IDT電極の基準電位バスバー電極が、前記環状電極の前記第3の部位と反対側であって前記第2の部位から所定距離離れた部位に接続されているものである。   A surface acoustic wave device according to the present invention includes a piezoelectric substrate and a direction orthogonal to the propagation direction along the propagation direction of the surface acoustic wave propagating on the principal surface of the piezoelectric substrate, which is formed on the principal surface of the piezoelectric substrate. A surface acoustic wave element having three or more odd-numbered IDT electrodes having a plurality of long electrode fingers, an annular electrode formed on the main surface so as to surround the surface acoustic wave element, and a main surface of the piezoelectric substrate A surface acoustic wave including a mounting substrate having a first reference potential through conductor connected to the annular electrode and a second reference potential through conductor connected to the annular electrode. In the apparatus, the first reference potential through conductor is formed immediately below the first portion of the annular electrode on the extension of the propagation direction, and the second reference potential through conductor is an extension of the propagation direction. The first in the annular electrode on top The reference potential bus bar electrode of the central IDT electrode is connected to the third part of the annular electrode on the extension in the direction orthogonal to the propagation direction. The reference potential bus bar electrode of the IDT electrode disposed on one side with respect to the central IDT electrode is opposite to the third portion of the annular electrode and from the first portion. The reference potential bus bar electrode of the IDT electrode, which is connected to a part separated by a predetermined distance and is disposed on the other side with respect to the central IDT electrode, is on the opposite side of the third part of the annular electrode. Thus, the second part is connected to a part away from the second part by a predetermined distance.

上記の弾性表面波装置において、前記所定距離が100μm以上であることが好ましい。   In the surface acoustic wave device, the predetermined distance is preferably 100 μm or more.

また上記の弾性表面波装置において、中央の前記IDT電極に対して一方の側に配置された前記IDT電極の基準電位バスバー電極と前記環状電極とを接続する第1の接続配線の長さ、及び中央の前記IDT電極に対して他方の側に配置された前記IDT電極の基準電位バスバー電極と前記環状電極とを接続する第2の接続配線の長さが、中央の前記IDT電極の基準電位バスバー電極と前記環状電極の前記第3の部位とを接続する第3の接続配線の長さよりも長いことが好ましい。   In the surface acoustic wave device, the length of the first connection wiring that connects the reference potential bus bar electrode of the IDT electrode disposed on one side with respect to the central IDT electrode and the annular electrode, and The length of the second connection wiring connecting the reference potential bus bar electrode of the IDT electrode and the annular electrode arranged on the other side with respect to the central IDT electrode is equal to the reference potential bus bar of the central IDT electrode. It is preferable that the length of the third connection wiring that connects the electrode and the third portion of the annular electrode is longer.

また上記の弾性表面波装置において、前記弾性表面波素子と前記入力信号端子との間、または前記弾性表面波素子と前記出力信号端子との間に、前記伝搬方向に直交する方向に長い電極指を複数備えたIDT電極と、前記IDT電極の両側にそれぞれ配置され、前記伝搬方向に直交する方向に長い電極指を複数備えた反射器電極とを有する弾性表面波共振子が接続されていることが好ましい。   In the surface acoustic wave device described above, an electrode finger that is long in a direction orthogonal to the propagation direction between the surface acoustic wave element and the input signal terminal or between the surface acoustic wave element and the output signal terminal. And a surface acoustic wave resonator having a plurality of IDT electrodes and reflector electrodes each provided on both sides of the IDT electrode and provided with a plurality of long electrode fingers in a direction orthogonal to the propagation direction. Is preferred.

また本発明の通信装置は、上記の弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたものである。   A communication apparatus according to the present invention includes at least one of a reception circuit and a transmission circuit having the surface acoustic wave device.

本発明の弾性表面波装置によれば、奇数個のIDT電極のキャパシタと配線のインダクタの共振により高周波の減衰極が発現し、中央の前記IDT電極の基準電位バスバー電極が、前記伝搬方向に直交する方向の延長上にある前記環状電極の第3の部位に接続されることによって配線のインダクタが増加し、共振による高周波減衰極の周波数を低く調整することができる。その結果、通過帯域外のより高周波側の帯域外減衰量を大きくすることができる。   According to the surface acoustic wave device of the present invention, a high-frequency attenuation pole appears due to resonance between the capacitors of the odd number of IDT electrodes and the inductor of the wiring, and the reference potential bus bar electrode of the central IDT electrode is orthogonal to the propagation direction. By connecting to the third part of the annular electrode that is on the extension in the direction to be increased, the number of inductors in the wiring increases, and the frequency of the high-frequency attenuation pole due to resonance can be adjusted low. As a result, the out-of-band attenuation on the higher frequency side outside the pass band can be increased.

また配線のインダクタを増加させることで減衰極の周波数を調整できることから、通過帯域近傍の特性に大きな影響を与えることなく、通過帯域外の高周波側の帯域外減衰量を大きくすることができる。これにより6GHzといった高周波においても弾性表面波フィルタの通過帯域外減衰量を向上させることができる。   Further, since the frequency of the attenuation pole can be adjusted by increasing the number of wiring inductors, the out-of-band attenuation on the high frequency side outside the pass band can be increased without greatly affecting the characteristics in the vicinity of the pass band. Thereby, the attenuation amount outside the pass band of the surface acoustic wave filter can be improved even at a high frequency of 6 GHz.

本発明の通信装置は、上記弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたことにより、弾性表面波フィルタとしての弾性表面波装置のカットオフ特性が向上するので、感度が格段に良好な通信装置を実現することができる。   Since the communication device of the present invention includes at least one of the reception circuit and the transmission circuit having the surface acoustic wave device, the cut-off characteristic of the surface acoustic wave device as the surface acoustic wave filter is improved, and thus the sensitivity is improved. A remarkably good communication device can be realized.

以下、本発明の一実施形態にかかる弾性表面波装置および通信装置について図面を参照にしつつ詳細に説明する。本実施形態では弾性表面波装置として共振器型の弾性表面波フィルタを例にとり説明する。なお、以下に説明する図面において同一構成の部分には同一符号を付すものとする。また、各電極の大きさや電極間の距離等、電極指の本数や間隔等は、模式的に図示したものであり現実のものとは必ずしも一致しない。   Hereinafter, a surface acoustic wave device and a communication device according to an embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, a resonator type surface acoustic wave filter will be described as an example of a surface acoustic wave device. In the drawings described below, parts having the same configuration are denoted by the same reference numerals. Further, the number of electrodes, the distance between electrodes, and the like, such as the size of each electrode and the distance between the electrodes, are schematically illustrated and do not necessarily match the actual ones.

〔弾性表面波装置〕
図1に本実施形態にかかる弾性表面波装置102の斜視図を示す。同図に示すように本実施形態の弾性表面波装置102は、圧電基板22と、圧電基板22が実装される実装基板23とから主に構成されている。なお圧電基板22は全体が封止樹脂24で被覆されている。図面では便宜上封止樹脂24を点線で示している。
[Surface acoustic wave device]
FIG. 1 is a perspective view of a surface acoustic wave device 102 according to this embodiment. As shown in the figure, the surface acoustic wave device 102 of this embodiment is mainly composed of a piezoelectric substrate 22 and a mounting substrate 23 on which the piezoelectric substrate 22 is mounted. The entire piezoelectric substrate 22 is covered with a sealing resin 24. In the drawing, the sealing resin 24 is indicated by a dotted line for convenience.

図2に図1に示した圧電基板22の実装面側の主面の平面図を示す。図2に示すように、圧電基板22の主面には、前記主面を伝搬する弾性表面波の伝搬方向に沿って第1のIDT電極1、第2のIDT電極2、第3のIDT電極3、第4のIDT電極4、第5のIDT電極5が順に配列されている。各IDT電極は、伝搬方向に直交する方向に長く伸びる複数の電極指と、電極指同士を接続するバスバー電極とを備えた構成を有している。   FIG. 2 is a plan view of the main surface on the mounting surface side of the piezoelectric substrate 22 shown in FIG. As shown in FIG. 2, the first IDT electrode 1, the second IDT electrode 2, and the third IDT electrode are arranged on the main surface of the piezoelectric substrate 22 along the propagation direction of the surface acoustic wave propagating through the main surface. 3, the 4th IDT electrode 4, and the 5th IDT electrode 5 are arranged in order. Each IDT electrode has a configuration provided with a plurality of electrode fingers extending long in a direction orthogonal to the propagation direction and a bus bar electrode connecting the electrode fingers.

これら第1〜第5のIDT電極の両側には反射器電極6,7が配置されている。反射器電極6,7は、伝搬方向に直交する方向に長く伸びる複数の電極指を備えている。これら第1〜第5のIDT電極と反射器電極6,7とで弾性表面波素子が構成されている。   Reflector electrodes 6 and 7 are disposed on both sides of the first to fifth IDT electrodes. The reflector electrodes 6 and 7 include a plurality of electrode fingers extending long in a direction orthogonal to the propagation direction. The first to fifth IDT electrodes and the reflector electrodes 6 and 7 constitute a surface acoustic wave element.

また圧電基板22の主面には、入力信号電極8、出力信号電極9、グランド電極10が形成されている。弾性表面波素子と入力信号端子8との間には、弾性表面波共振子11が配置されている。弾性表面波共振子11は、弾性表面波の伝搬方向に直交する方向に長い電極指を複数備えたIDT電極と、前記IDT電極の両側に配置されたとから構成されている。弾性表面波素子と弾性表面波共振子11とは直列に接続されている。   An input signal electrode 8, an output signal electrode 9, and a ground electrode 10 are formed on the main surface of the piezoelectric substrate 22. A surface acoustic wave resonator 11 is disposed between the surface acoustic wave element and the input signal terminal 8. The surface acoustic wave resonator 11 includes an IDT electrode having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave, and arranged on both sides of the IDT electrode. The surface acoustic wave element and the surface acoustic wave resonator 11 are connected in series.

これら弾性表面波素子、弾性表面波共振子11、各端子などを取り囲むようにして環状電極12が形成されている。   An annular electrode 12 is formed so as to surround the surface acoustic wave element, the surface acoustic wave resonator 11, each terminal, and the like.

図3は実装基板23の圧電基板22が実装される側の主面を示す平面図である。実装基板23はセラミックスなどの絶縁体からなる。実装基板23の主面には、圧電基板22の実装面に形成された各種の電極と対応する位置に導体パターンが形成されている。すなわち、圧電基板22の環状電極12と対応する位置に環状電極22より若干幅が広い環状導体パターン13が形成され、圧電基板22の入力信号電極8と対応する位置には入力信号パッド14が形成され、圧電基板22の出力信号電極9と対応する位置には出力信号パッド15が形成され、圧電基板22のグランド電極10と対応する位置にはグランドパッド16が形成されている。これら入力信号パッド14、出力信号パッド15、グランドパッド16は、それぞれ実装基板23を厚み方向に貫く貫通導体を介して実装基板23の下面に形成された入力信号端子20、出力信号端子21、基準電位端子19に接続されている。なお本実施形態において基準電位とはグランド電位のことであるが、かならずしもゼロボルトである必要はない。   FIG. 3 is a plan view showing the main surface of the mounting substrate 23 on the side where the piezoelectric substrate 22 is mounted. The mounting substrate 23 is made of an insulator such as ceramics. On the main surface of the mounting substrate 23, conductor patterns are formed at positions corresponding to various electrodes formed on the mounting surface of the piezoelectric substrate 22. That is, an annular conductor pattern 13 having a slightly wider width than the annular electrode 22 is formed at a position corresponding to the annular electrode 12 of the piezoelectric substrate 22, and an input signal pad 14 is formed at a position corresponding to the input signal electrode 8 of the piezoelectric substrate 22. An output signal pad 15 is formed at a position corresponding to the output signal electrode 9 of the piezoelectric substrate 22, and a ground pad 16 is formed at a position corresponding to the ground electrode 10 of the piezoelectric substrate 22. The input signal pad 14, the output signal pad 15, and the ground pad 16 are input signal terminals 20, output signal terminals 21, and reference signals formed on the lower surface of the mounting board 23 through through conductors that penetrate the mounting board 23 in the thickness direction, respectively. It is connected to the potential terminal 19. In the present embodiment, the reference potential is a ground potential, but is not necessarily zero volts.

また環状導体パターン13の直下の所定の位置には、点線で示した第1の基準電位貫通導体17と、第2の基準電位貫通導体18が形成されている。第1の基準電位貫通導体17および第2の基準電位貫通導体18は実装基板23を厚み方向に貫く貫通導体である。第1の基準電位貫通導体17、第2の基準電位貫通導体18は、実装基板23の下面に形成された基準電位用端子19に接続されている。第1の基準電位貫通導体17、第2の基準電位貫通導体18は、例えば、実装基板23の上下主面間を貫通する貫通孔にAgから成る導体を充填して形成される。第1の基準電位貫通導体17、第2の基準電位貫通導体18の直径は50〜100μm程度である。50〜100μm程度とすることによって、環状導体11との電気的、機械的な接続を良好なものとすることができる。   A first reference potential through conductor 17 and a second reference potential through conductor 18 indicated by dotted lines are formed at predetermined positions directly below the annular conductor pattern 13. The first reference potential through conductor 17 and the second reference potential through conductor 18 are through conductors that penetrate the mounting substrate 23 in the thickness direction. The first reference potential through conductor 17 and the second reference potential through conductor 18 are connected to a reference potential terminal 19 formed on the lower surface of the mounting substrate 23. The first reference potential through conductor 17 and the second reference potential through conductor 18 are formed, for example, by filling a through hole penetrating between the upper and lower main surfaces of the mounting substrate 23 with a conductor made of Ag. The diameters of the first reference potential through conductor 17 and the second reference potential through conductor 18 are about 50 to 100 μm. By setting the thickness to about 50 to 100 μm, the electrical and mechanical connection with the annular conductor 11 can be improved.

図2には、第1の基準貫通導体17と対応する位置に点線で17’を、第2の基準電位貫通導体18と対応する位置に点線で18’を示してある。   In FIG. 2, a dotted line 17 ′ is shown at a position corresponding to the first reference through conductor 17, and a dotted line 18 ′ is shown at a position corresponding to the second reference potential through conductor 18.

第1の基準電位貫通導体17は、弾性表面波の伝搬方向の延長線上にある環状電極12の第1の部位25の直下に形成されている。一方、第2の基準電位貫通導体18は、弾性表面波の伝搬方向の延長線上で第1の部位25とは反対側の第2の部位26の直下に形成されている。また中央のIDT電極(第3のIDT電極3)の基準電位バスバー電極3aは、弾性表面波の伝搬方向に直交する方向の延長上にある環状電極12の第3の部位27に第1配線パターン30を介して接続されている。   The first reference potential through conductor 17 is formed immediately below the first portion 25 of the annular electrode 12 on the extension line in the propagation direction of the surface acoustic wave. On the other hand, the second reference potential penetrating conductor 18 is formed immediately below the second portion 26 opposite to the first portion 25 on the extension line in the propagation direction of the surface acoustic wave. The reference potential bus bar electrode 3a of the central IDT electrode (third IDT electrode 3) is connected to the first wiring pattern on the third portion 27 of the annular electrode 12 on the extension in the direction orthogonal to the propagation direction of the surface acoustic wave. 30 is connected.

また中央のIDT電極3に対して一方の側に配された第2のIDT電極2の基準電位バスバー電極2aは、環状電極12の第1の部位25から所定距離だけ離れた第1の接続部位34に第2配線パターン31を介して接続されている。また中央のIDT電極3に対して他方の側に配された第3のIDT電極3の基準電位バスバー電極3aは、環状電極12の第2の部位26から所定距離だけ離れた第2の接続部位35に第3配線パターン32を介して接続されている。換言すれば、環状電極12における第3の部位27と第1の接続部位34との間に第1の基準電位貫通導体17が位置しており、環状電極12における第3の部位27と第2の接続部位34との間に第2の基準電位貫通導体18が位置している。   Further, the reference potential bus bar electrode 2a of the second IDT electrode 2 arranged on one side with respect to the central IDT electrode 3 is a first connection portion that is separated from the first portion 25 of the annular electrode 12 by a predetermined distance. 34 is connected via a second wiring pattern 31. The reference potential bus bar electrode 3a of the third IDT electrode 3 disposed on the other side with respect to the central IDT electrode 3 is a second connection portion separated from the second portion 26 of the annular electrode 12 by a predetermined distance. 35 is connected via a third wiring pattern 32. In other words, the first reference potential through conductor 17 is located between the third portion 27 and the first connection portion 34 in the annular electrode 12, and the third portion 27 and the second portion in the annular electrode 12 are located. The second reference potential through conductor 18 is located between the connection portion 34 and the second reference potential through conductor 18.

第1、第2、第3配線パターン30,31,32はそれぞれ立体配線構造となっている。たとえば第1配線パターン30は、第2のIDT電極2と出力電極9とを接続する配線パターンと交差するが、この交差部分における両者の間には絶縁層33が介在されている。   Each of the first, second, and third wiring patterns 30, 31, and 32 has a three-dimensional wiring structure. For example, the first wiring pattern 30 intersects the wiring pattern that connects the second IDT electrode 2 and the output electrode 9, and an insulating layer 33 is interposed between the two at the intersection.

本実施形態にかかる弾性表面波装置では、第1配線パターン30、環状電極12の第3の部位27から第1の部位25まで、および第1基準電位貫通導体17という経路によって第1インダクタL1が形成されている。同様に、第1配線パターン30、環状電極12の第3の部位27から第2の部位26まで、および第2基準電位貫通導体18という経路によって第2インダクタL2が形成されている。また第2配線パターン31、第2配線パターン31と環状電極12との接続部から環状電極12の第1の部位25、および第1基準電位貫通導体17という経路によって第3インダクタL3が形成されている。さらに第3配線パターン32、第3配線パターン32と環状電極12との接続部から環状電極12の第2の部位26、および第2基準電位貫通導体18という経路によって第4インダクタL4が形成されている。このように第1〜第4インダクタL1〜L4を設けたことによって、高周波側に減衰極が発現し、通過帯域外の高周波側における減衰量を大きくすることができる。この場合、IDT電極のピッチ調整といった複雑な作業を行うことなく配線パターンだけで減衰極の周波数調整をすることができ、通過帯域近傍の帯域外減衰量に与える影響を小さく抑えた上でより高周波側の帯域外減衰量を大きくすることができる。   In the surface acoustic wave device according to the present embodiment, the first inductor L1 is routed through the first wiring pattern 30, the third portion 27 to the first portion 25 of the annular electrode 12, and the first reference potential through conductor 17. Is formed. Similarly, a second inductor L <b> 2 is formed by a path of the first wiring pattern 30, the third portion 27 to the second portion 26 of the annular electrode 12, and the second reference potential through conductor 18. In addition, the third inductor L3 is formed by the path of the second wiring pattern 31, the connection portion between the second wiring pattern 31 and the annular electrode 12, the first portion 25 of the annular electrode 12, and the first reference potential through conductor 17. Yes. Further, a fourth inductor L4 is formed by a path of the third wiring pattern 32, the connection portion between the third wiring pattern 32 and the annular electrode 12, the second portion 26 of the annular electrode 12, and the second reference potential through conductor 18. Yes. By providing the first to fourth inductors L1 to L4 in this way, an attenuation pole appears on the high frequency side, and the attenuation on the high frequency side outside the passband can be increased. In this case, the frequency of the attenuation pole can be adjusted only by the wiring pattern without performing complicated work such as adjusting the pitch of the IDT electrode, and the influence on the out-of-band attenuation near the pass band is suppressed to a higher frequency. The out-of-band attenuation on the side can be increased.

また、第1、第3、第5IDT電極1、3、5は入力電極8に接続されており、第4、第6IDT電極4、6は出力電極9に接続されている。   The first, third, and fifth IDT electrodes 1, 3, and 5 are connected to the input electrode 8, and the fourth and sixth IDT electrodes 4 and 6 are connected to the output electrode 9.

また、圧電基板22の環状電極12と実装基板23の環状導体パターン13とはハンダなどの導電性接合材を介して接続されており、各IDT電極を封止している。   Further, the annular electrode 12 of the piezoelectric substrate 22 and the annular conductor pattern 13 of the mounting substrate 23 are connected via a conductive bonding material such as solder, and each IDT electrode is sealed.

次に、本実施形態にかかる弾性表面波装置の製造方法について説明する。まず第1〜第5IDT電極1〜5および反射器電極6,7からなる弾性表面波素子、環状電極12、入出力電極8,9、グランド電極10、第1〜第3配線パターン30,31,32を形成する。これらの電極や配線パターンは、AlもしくはAl合金(Al−Cu系、Al−Ti系)などの導電性材料からなり、蒸着法、スパッタリング法、またはCVD法等の薄膜形成法により製膜した後、フォトリソグラフィ法などによりパターニングすることで形成される。これらの電極や配線パターンの厚みは、例えば0.1〜0.3μm程度である。   Next, a method for manufacturing the surface acoustic wave device according to this embodiment will be described. First, a surface acoustic wave element including first to fifth IDT electrodes 1 to 5 and reflector electrodes 6 and 7, an annular electrode 12, input / output electrodes 8 and 9, a ground electrode 10, first to third wiring patterns 30, 31, 32 is formed. These electrodes and wiring patterns are made of a conductive material such as Al or an Al alloy (Al-Cu type, Al-Ti type), and are formed by a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method. It is formed by patterning by a photolithography method or the like. The thickness of these electrodes and wiring patterns is, for example, about 0.1 to 0.3 μm.

次に、弾性表面波素子を覆って保護するための絶縁膜を成膜する。絶縁膜の材料としては、Si,SiO2,SiNx,Al23等を用いることができる。その成膜方法としては、スパッタリング法、CVD(Chemical Vapor Deposition)法、電子ビーム蒸着法等を用いることができる。 Next, an insulating film is formed to cover and protect the surface acoustic wave element. As the material of the insulating film, Si, SiO 2 , SiN x , Al 2 O 3 or the like can be used. As the film formation method, a sputtering method, a CVD (Chemical Vapor Deposition) method, an electron beam evaporation method, or the like can be used.

なお、IDT電極、反射器電極において、電極指の本数は数本〜数100本にも及ぶので、簡単のため、図においてはそれらの形状を簡略化して図示している。   In the IDT electrode and the reflector electrode, the number of electrode fingers ranges from several to several hundreds. Therefore, for the sake of simplicity, these shapes are simplified in the drawing.

また、弾性表面波装置の圧電基板としては、36°±3°YカットX伝搬タンタル酸リチウム単結晶、42°±3°YカットX伝搬タンタル酸リチウム単結晶、64°±3°YカットX伝搬ニオブ酸リチウム単結晶、41°±3°YカットX伝搬ニオブ酸リチウム単結晶、45°±3°XカットZ伝搬四ホウ酸リチウム単結晶は電気機械結合係数が大きく、かつ、周波数温度係数が小さいため、圧電基板22として好ましい。また、これらの焦電性圧電単結晶のうち、酸素欠陥やFe等の固溶により焦電性を著しく減少させた圧電基板1であれば、弾性表面波装置の信頼性上良好である。圧電基板1の厚みは、例えば0.1〜0.5mm程度がよく、0.1mm未満では圧電基板23が脆くなり、0.5mmを超えると材料コストと部品寸法が大きくなり好ましくない。   As the piezoelectric substrate of the surface acoustic wave device, 36 ° ± 3 ° Y-cut X propagation lithium tantalate single crystal, 42 ° ± 3 ° Y cut X propagation lithium tantalate single crystal, 64 ° ± 3 ° Y cut X Propagating lithium niobate single crystal, 41 ° ± 3 ° Y-cut X propagating lithium niobate single crystal, 45 ° ± 3 ° X-cut Z-propagating lithium tetraborate single crystal has a large electromechanical coupling coefficient and frequency temperature coefficient Is preferable as the piezoelectric substrate 22. Of these pyroelectric piezoelectric single crystals, the piezoelectric substrate 1 with significantly reduced pyroelectricity due to solid solution of oxygen defects, Fe, or the like is excellent in the reliability of the surface acoustic wave device. The thickness of the piezoelectric substrate 1 is preferably about 0.1 to 0.5 mm, for example. If the thickness is less than 0.1 mm, the piezoelectric substrate 23 becomes brittle, and if it exceeds 0.5 mm, the material cost and component dimensions increase, which is not preferable.

〔通信装置〕
本実施形態の通信装置は、上述した弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたことにより、弾性表面波フィルタのカットオフ特性を向上させることができるので、感度が格段に良好な通信装置を実現することができる。
〔Communication device〕
Since the communication device according to the present embodiment includes at least one of the reception circuit and the transmission circuit having the above-described surface acoustic wave device, the cutoff characteristic of the surface acoustic wave filter can be improved. An excellent communication device can be realized.

即ち、少なくとも受信回路または送信回路の一方を備え、弾性表面波装置をこれらの回路に含まれるバンドパスフィルタとして用いる。例えば、送信回路から出力された送信信号をミキサでキャリア周波数にのせて、不要信号をバンドパスフィルタで減衰させ、その後、パワーアンプで送信信号を増幅して、デュプレクサを通ってアンテナより送信することができる送信回路を備えた通信装置、または、受信信号をアンテナで受信し、デュプレクサを通った受信信号をローノイズアンプで増幅し、その後、バンドパスフィルタで不要信号を減衰して、ミキサでキャリア周波数から信号を分離し、この信号を取り出す受信回路へ伝送するような受信回路を備えた通信装置に適用可能である。   That is, at least one of a receiving circuit and a transmitting circuit is provided, and the surface acoustic wave device is used as a bandpass filter included in these circuits. For example, the transmission signal output from the transmission circuit is put on the carrier frequency by the mixer, the unnecessary signal is attenuated by the band pass filter, and then the transmission signal is amplified by the power amplifier and transmitted from the antenna through the duplexer. A communication device equipped with a transmission circuit capable of receiving signals or receiving a received signal with an antenna, amplifying the received signal that has passed through the duplexer with a low-noise amplifier, and then attenuating an unnecessary signal with a band-pass filter, and a carrier frequency with a mixer Can be applied to a communication apparatus including a receiving circuit that separates a signal from the signal and transmits the signal to a receiving circuit that extracts the signal.

図4は、本実施形態の通信装置を示すブロック回路図である。図5において、アンテナ140に送信回路Txと受信回路Rxが分波器150を介して接続されている。送信される高周波信号は、フィルタ210によりその不要信号が除去され、パワーアンプ220で増幅された後、アイソレータ230と分波器150を通り、アンテナ140から放射される。また、アンテナ140で受信された高周波信号は、分波器150を通りローノイズアンプ160で増幅されフィルタ170でその不要信号を除去された後、アンプ180で再増幅されミキサ190で低周波信号に変換される。   FIG. 4 is a block circuit diagram showing the communication apparatus of this embodiment. In FIG. 5, a transmission circuit Tx and a reception circuit Rx are connected to an antenna 140 via a duplexer 150. The high-frequency signal to be transmitted is removed from the unnecessary signal by the filter 210, amplified by the power amplifier 220, and then radiated from the antenna 140 through the isolator 230 and the duplexer 150. The high-frequency signal received by the antenna 140 is amplified by the low-noise amplifier 160 through the duplexer 150, the unnecessary signal is removed by the filter 170, re-amplified by the amplifier 180, and converted to a low-frequency signal by the mixer 190. Is done.

従って、本実施の形態の弾性表面波装置を採用すれば、感度が格段に良好な優れた通信装置を提供できる。   Therefore, if the surface acoustic wave device according to the present embodiment is employed, an excellent communication device with remarkably good sensitivity can be provided.

本発明の弾性表面波装置の実施例について以下に説明する。図1に示す弾性表面波装置を具体的に作製した実施例について説明する。   Examples of the surface acoustic wave device of the present invention will be described below. A specific example of the surface acoustic wave device shown in FIG. 1 will be described.

38.7°YカットのX方向伝搬とするLiTaO3単結晶からなる圧電基板22上に、Al(99質量%)−Cu(1質量%)合金から成る、IDT電極1〜5及び反射器電極6,7を有する弾性表面波素子、環状電極11、入出力電極8,9、グランド電極10、第1〜第3配線パターン30,31,32を形成した。これら電極や配線パターンの作製は、スパッタリング装置、縮小投影露光機(ステッパー)、及びRIE(Reactive Ion Etching)装置によりフォトリソグラフィを施すことにより行った。 IDT electrodes 1 to 5 and reflector electrodes made of an Al (99 mass%)-Cu (1 mass%) alloy on a piezoelectric substrate 22 made of a LiTaO 3 single crystal with X-propagation of 38.7 ° Y-cut. A surface acoustic wave element having 6 and 7, an annular electrode 11, input / output electrodes 8 and 9, a ground electrode 10, and first to third wiring patterns 30, 31 and 32 were formed. These electrodes and wiring patterns were produced by photolithography using a sputtering apparatus, a reduction projection exposure machine (stepper), and an RIE (Reactive Ion Etching) apparatus.

まず、圧電基板22をアセトン,IPA(イソプロピルアルコール)等によって超音波洗浄し、有機成分を落とした。次に、クリーンオーブンによって充分に圧電基板22の乾燥を行った後、各電極や配線パターンとなる金属層の成膜を行った。金属層の成膜にはスパッタリング装置を使用し、金属層の材料としてAl(99質量%)−Cu(1質量%)合金を用いた。このときの金属層の厚みは約0.15μmとした。   First, the piezoelectric substrate 22 was ultrasonically cleaned with acetone, IPA (isopropyl alcohol) or the like to remove organic components. Next, after sufficiently drying the piezoelectric substrate 22 with a clean oven, a metal layer serving as each electrode and wiring pattern was formed. A sputtering apparatus was used for forming the metal layer, and an Al (99 mass%)-Cu (1 mass%) alloy was used as the material of the metal layer. The thickness of the metal layer at this time was about 0.15 μm.

次に、金属層上にフォトレジストを約0.5μmの厚みにスピンコートし、縮小投影露光装置(ステッパー)により、所望形状にパターニングを行い、現像装置によって不要部分のフォトレジストをアルカリ現像液で溶解させ、所望パターンを表出させた。その後、RIE装置により金属層のエッチングを行い、パターニングを終了し、弾性表面波装置を構成する各電極のパターンを得た。   Next, a photoresist is spin-coated on the metal layer to a thickness of about 0.5 μm, patterned into a desired shape by a reduction projection exposure apparatus (stepper), and an unnecessary portion of photoresist is developed with an alkaline developer by a developing apparatus. Dissolve to reveal the desired pattern. Thereafter, the metal layer was etched by an RIE apparatus, patterning was completed, and a pattern of each electrode constituting the surface acoustic wave device was obtained.

中央の第3のIDT電極3に対して一方の側に配置された第2のIDT電極2の基準電位バスバー電極が、環状電極12の第3の部位27と反対側であって第1の部位25から所定距離離れた部位に接続されているとともに、中央の第3のIDT電極3に対して他方の側に配置された第4のIDT電極4の基準電位バスバー電極が、環状電極12の第3の部位27と反対側であって第2の部位26から150μm離れた部位に接続されているようにした。   The reference potential bus bar electrode of the second IDT electrode 2 arranged on one side with respect to the third third IDT electrode 3 is opposite to the third portion 27 of the annular electrode 12 and the first portion. The reference potential bus bar electrode of the fourth IDT electrode 4 that is connected to a portion that is a predetermined distance away from the central electrode 25 and that is disposed on the other side of the third third IDT electrode 3 is It was made to be connected to a part opposite to the third part 27 and 150 μm away from the second part 26.

また、セラミック多層基板から成る実装基板(図示せず)の環状電極12の直下で対向する部位に第1の基準電位貫通導体17、第2の基準電位貫通導体18を形成した。第1、第2の基準電位貫通導体17,18は銀を用いて形成した。   In addition, a first reference potential through conductor 17 and a second reference potential through conductor 18 were formed at portions facing directly below the annular electrode 12 of a mounting substrate (not shown) made of a ceramic multilayer substrate. The first and second reference potential through conductors 17 and 18 were formed using silver.

この後、各電極や配線パターンの所定領域上にCVD法により、SiO2膜からなる保護膜を形成した。なお保護膜の厚みは0.015μmに設定した。 Thereafter, a protective film made of a SiO 2 film was formed on a predetermined region of each electrode and wiring pattern by a CVD method. The thickness of the protective film was set to 0.015 μm.

その後、フォトリソグラフィによりパターニングを行い、RIE装置等でフリップチップ用窓開け部のエッチングを行った。その後、そのフリップチップ用窓開け部に、スパッタリング装置を使用して、Cr層、Ni層、Au層を積層した構成のパッド電極を成膜した。このときのパッド電極の厚みは1.0μmとした。   Thereafter, patterning was performed by photolithography, and the flip-chip window opening portion was etched by an RIE apparatus or the like. Thereafter, a pad electrode having a structure in which a Cr layer, a Ni layer, and an Au layer were stacked was formed on the flip-chip window opening using a sputtering apparatus. The thickness of the pad electrode at this time was 1.0 μm.

その後、圧電基板22の環状電極12と実装基板23の環状導体パターン13とをハンダを用いて接続することにより圧電基板22を実装基板23に実装した。なお実装基板23の第1、第2基準電位貫通導体17,18は、実装基板23の下面に形成した基準電用端子19接続されるようにした。その後、N2ガス雰囲気中でベーキングを行い、パッケージ化された弾性表面波装置を完成した。 Then, the piezoelectric substrate 22 was mounted on the mounting substrate 23 by connecting the annular electrode 12 of the piezoelectric substrate 22 and the annular conductor pattern 13 of the mounting substrate 23 using solder. The first and second reference potential through conductors 17 and 18 of the mounting substrate 23 are connected to the reference voltage terminal 19 formed on the lower surface of the mounting substrate 23. Thereafter, baking was performed in an N 2 gas atmosphere to complete a packaged surface acoustic wave device.

(比較例)
比較例のサンプルとして、図5に示す構成からなる弾性表面波装置を作製した。この弾性表面波装置の作製方法は上記実施例と同様である。
(Comparative example)
As a sample for the comparative example, a surface acoustic wave device having the configuration shown in FIG. 5 was produced. The method for manufacturing the surface acoustic wave device is the same as in the above embodiment.

図5の弾性表面波装置は、第1、第3、第5のIDT電極1,3,5の基準電位バスバー電極が、グランド電極10に接続されるとともに、第2のIDT電極2の基準電位バスバー電極を環状電極22の第1の部位25に、第4のIDT電極4の基準電位バスバー電極を環状電極22の第2の部位26にそれぞれ接続した。その他の構成は、図1の弾性表面波装置と同様である。   In the surface acoustic wave device of FIG. 5, the reference potential bus bar electrodes of the first, third, and fifth IDT electrodes 1, 3, and 5 are connected to the ground electrode 10 and the reference potential of the second IDT electrode 2. The bus bar electrode was connected to the first portion 25 of the annular electrode 22, and the reference potential bus bar electrode of the fourth IDT electrode 4 was connected to the second portion 26 of the annular electrode 22. Other configurations are the same as those of the surface acoustic wave device of FIG.

次に、本実施例及び比較例の弾性表面波装置について、それぞれの特性をコンピュータシミュレーションによって求めた。弾性表面波装置の動作周波数は0MHz以上8000MHz以下とした。この動作周波数における周波数特性のグラフを図6に示す。図6は、フィルタの伝送特性を表す透過特性(減衰量)の周波数依存性を示すグラフである。   Next, the characteristics of the surface acoustic wave devices of this example and the comparative example were obtained by computer simulation. The operating frequency of the surface acoustic wave device was set to 0 MHz or more and 8000 MHz or less. A graph of frequency characteristics at this operating frequency is shown in FIG. FIG. 6 is a graph showing the frequency dependence of the transmission characteristic (attenuation amount) representing the transmission characteristic of the filter.

本実施例の弾性表面波装置のフィルタ特性は非常に良好であった。即ち、図6の破線で示した比較例の弾性表面波装置と比較して、図6の実線で示すように、6GHz付近の高周波数において、本実施例の弾性表面波装置の帯域外減衰量が非常に大きいことが確認できた。   The filter characteristics of the surface acoustic wave device of this example were very good. That is, as compared with the surface acoustic wave device of the comparative example shown by the broken line in FIG. 6, as shown by the solid line in FIG. 6, the out-of-band attenuation of the surface acoustic wave device of the present embodiment at a high frequency near 6 GHz. Was found to be very large.

本発明の一実施形態にかかる弾性表面波装置の斜視図である。1 is a perspective view of a surface acoustic wave device according to an embodiment of the present invention. 図1に示す弾性表面波装置を構成する圧電基板の主面の平面図である。It is a top view of the main surface of the piezoelectric substrate which comprises the surface acoustic wave apparatus shown in FIG. 図1に示す弾性表面波装置を構成する実装基板の主面の平面図である。It is a top view of the main surface of the mounting substrate which comprises the surface acoustic wave apparatus shown in FIG. 本発明の一実施形態にかかる通信装置のブロック図である。It is a block diagram of the communication apparatus concerning one Embodiment of this invention. 比較例の弾性表面波装置を構成する圧電基板の主面の平面図である。It is a top view of the main surface of the piezoelectric substrate which comprises the surface acoustic wave apparatus of a comparative example. 実施例の弾性表面波装置と比較例の弾性表面波装置についての通過特性のシミュレーション結果である。It is the simulation result of the passage characteristic about the surface acoustic wave apparatus of an Example, and the surface acoustic wave apparatus of a comparative example.

符号の説明Explanation of symbols

1〜5:第1〜第5のIDT電極
1a〜5a:基準電位バスバー電極
6,7:反射器電極
8:入力信号電極
9:出力信号電極
10:グランド電極
11:弾性表面波共振子
25〜27:環状電極の第1〜第3の部位
34、35:第1、第2の接続部位
1 to 5: First to fifth IDT electrodes 1a to 5a: reference potential bus bar electrodes 6, 7: reflector electrodes 8: input signal electrodes 9: output signal electrodes 10: ground electrodes 11: surface acoustic wave resonators 25 to 25 27: First to third parts 34 of the annular electrode, 35: First and second connection parts

Claims (5)

圧電基板と、
前記圧電基板の主面に形成された、前記圧電基板の主面を伝搬する弾性表面波の伝搬方向に沿って前記伝搬方向に直交する方向に長い電極指を複数備えた3個以上の奇数個のIDT電極を有する弾性表面波素子と、
前記主面に前記弾性表面波素子を取り囲むように形成された環状電極と、
前記圧電基板の主面に対向して前記圧電基板を実装するとともに、前記環状電極に接続される第1の基準電位貫通導体と、第2の基準電位貫通導体とを有する実装基板と、を具備している弾性表面波装置であって、
前記第1の基準電位貫通導体は前記伝搬方向の延長上にある前記環状電極の第1の部位の直下に形成され、前記第2の基準電位貫通導体は前記伝搬方向の延長上にある前記環状電極における前記第1の部位に対向する第2の部位の直下に形成されており、
中央の前記IDT電極の基準電位バスバー電極が、前記伝搬方向に直交する方向の延長上にある前記環状電極の第3の部位に接続されており、
中央の前記IDT電極に対して一方の側に配置された前記IDT電極の基準電位バスバー電極が、前記環状電極の前記第3の部位と前記第1の部位を挟んで反対側であって前記第1の部位から所定距離離れた第1の接続部位に接続されているとともに、中央の前記IDT電極に対して他方の側に配置された前記IDT電極の基準電位バスバー電極が、前記環状電極の前記第3の部位と前記第2の部位を挟んで反対側であって前記第2の部位から所定距離離れた第2の接続部位に接続されている弾性表面波装置。
A piezoelectric substrate;
An odd number of 3 or more provided with a plurality of long electrode fingers in the direction orthogonal to the propagation direction along the propagation direction of the surface acoustic wave propagating on the principal surface of the piezoelectric substrate formed on the principal surface of the piezoelectric substrate A surface acoustic wave device having the IDT electrode of
An annular electrode formed on the main surface so as to surround the surface acoustic wave element;
The piezoelectric substrate is mounted so as to face the main surface of the piezoelectric substrate, and includes a first reference potential through conductor connected to the annular electrode, and a mounting substrate having a second reference potential through conductor. A surface acoustic wave device,
The first reference potential through conductor is formed immediately below the first portion of the annular electrode on the extension of the propagation direction, and the second reference potential through conductor is on the extension of the propagation direction. Formed immediately below the second part of the electrode facing the first part,
A reference potential bus bar electrode of the IDT electrode in the center is connected to a third portion of the annular electrode on an extension in a direction orthogonal to the propagation direction;
A reference potential bus bar electrode of the IDT electrode disposed on one side with respect to the central IDT electrode is opposite to the third part of the annular electrode and the first part, and the first The reference potential bus bar electrode of the IDT electrode, which is connected to a first connection site that is a predetermined distance away from one site and is disposed on the other side with respect to the central IDT electrode, is connected to the annular electrode. A surface acoustic wave device that is connected to a second connection site that is opposite to the third site and the second site and that is a predetermined distance away from the second site.
前記所定距離が100μm以上である請求項1記載の弾性表面波装置。   The surface acoustic wave device according to claim 1, wherein the predetermined distance is 100 μm or more. 中央の前記IDT電極に対して一方の側に配置された前記IDT電極の基準電位バスバー電極と前記環状電極とを接続する第1の接続配線の長さ、及び中央の前記IDT電極に対して他方の側に配置された前記IDT電極の基準電位バスバー電極と前記環状電極とを接続する第2の接続配線の長さが、中央の前記IDT電極の基準電位バスバー電極と前記環状電極の前記第3の部位とを接続する第3の接続配線の長さよりも長い請求項1記載の弾性表面波装置。   The length of the first connection wiring connecting the reference potential bus bar electrode of the IDT electrode and the annular electrode arranged on one side with respect to the central IDT electrode, and the other with respect to the central IDT electrode The length of the second connection wiring that connects the reference potential bus bar electrode of the IDT electrode and the annular electrode arranged on the side of the IDT electrode is such that the reference potential bus bar electrode of the IDT electrode in the center and the third of the annular electrode The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is longer than a length of the third connection wiring for connecting the part. 前記弾性表面波素子と前記入力信号端子との間、または前記弾性表面波素子と前記出力信号端子との間に、前記伝搬方向に直交する方向に長い電極指を複数備えたIDT電極と、前記IDT電極の両側にそれぞれ配置され、前記伝搬方向に直交する方向に長い電極指を複数備えた反射器電極とを有する弾性表面波共振子が接続されている請求項1乃至3のいずれか記載の弾性表面波装置。   An IDT electrode comprising a plurality of electrode fingers long in a direction orthogonal to the propagation direction between the surface acoustic wave element and the input signal terminal or between the surface acoustic wave element and the output signal terminal; 4. The surface acoustic wave resonator according to claim 1, wherein the surface acoustic wave resonator includes a reflector electrode that is disposed on both sides of the IDT electrode and includes a plurality of long electrode fingers in a direction orthogonal to the propagation direction. Surface acoustic wave device. 請求項1乃至4のいずれか記載の弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えた通信装置。   A communication apparatus comprising at least one of a reception circuit and a transmission circuit, comprising the surface acoustic wave device according to claim 1.
JP2008169112A 2008-06-27 2008-06-27 Surface acoustic wave device and communication device Expired - Fee Related JP5144396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169112A JP5144396B2 (en) 2008-06-27 2008-06-27 Surface acoustic wave device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169112A JP5144396B2 (en) 2008-06-27 2008-06-27 Surface acoustic wave device and communication device

Publications (2)

Publication Number Publication Date
JP2010011187A true JP2010011187A (en) 2010-01-14
JP5144396B2 JP5144396B2 (en) 2013-02-13

Family

ID=41591119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169112A Expired - Fee Related JP5144396B2 (en) 2008-06-27 2008-06-27 Surface acoustic wave device and communication device

Country Status (1)

Country Link
JP (1) JP5144396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171369A1 (en) * 2013-04-18 2014-10-23 株式会社村田製作所 Surface acoustic wave device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008389A (en) * 2001-04-19 2003-01-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device, its manufacturing method and electronic component using the same
JP2004135092A (en) * 2002-10-10 2004-04-30 Toyo Commun Equip Co Ltd Surface mounting type saw device
JP2004153580A (en) * 2002-10-30 2004-05-27 Kyocera Corp Surface acoustic wave device
JP2004235908A (en) * 2003-01-30 2004-08-19 Kyocera Corp Surface acoustic wave equipment and communication device using it
JP2006014096A (en) * 2004-06-28 2006-01-12 Kyocera Corp Surface acoustic wave device
JP2006066978A (en) * 2004-08-24 2006-03-09 Kyocera Corp Surface acoustic wave device and communication device
JP2006180334A (en) * 2004-12-24 2006-07-06 Kyocera Corp Surface acoustic wave device and communication equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008389A (en) * 2001-04-19 2003-01-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device, its manufacturing method and electronic component using the same
JP2004135092A (en) * 2002-10-10 2004-04-30 Toyo Commun Equip Co Ltd Surface mounting type saw device
JP2004153580A (en) * 2002-10-30 2004-05-27 Kyocera Corp Surface acoustic wave device
JP2004235908A (en) * 2003-01-30 2004-08-19 Kyocera Corp Surface acoustic wave equipment and communication device using it
JP2006014096A (en) * 2004-06-28 2006-01-12 Kyocera Corp Surface acoustic wave device
JP2006066978A (en) * 2004-08-24 2006-03-09 Kyocera Corp Surface acoustic wave device and communication device
JP2006180334A (en) * 2004-12-24 2006-07-06 Kyocera Corp Surface acoustic wave device and communication equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171369A1 (en) * 2013-04-18 2014-10-23 株式会社村田製作所 Surface acoustic wave device

Also Published As

Publication number Publication date
JP5144396B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5110611B2 (en) Surface acoustic wave device and communication device
JP5033876B2 (en) Surface acoustic wave device and communication device
US8552618B2 (en) Surface acoustic wave device with IDT electrodes having different electrode finger pitches and communication apparatus using same
US20070013458A1 (en) Filter device, multiband filter, duplexer and communications equipment using the filter device
JP4518870B2 (en) Surface acoustic wave device and communication device
US20090289741A1 (en) Duplexer and Communication Apparatus Using the Same
JP2007110342A (en) Surface acoustic wave element and manufacturing method thereof
JP4738164B2 (en) Surface acoustic wave device and communication device
JP4901398B2 (en) Surface acoustic wave device
JP5261112B2 (en) Surface acoustic wave element, surface acoustic wave device, and communication device
JP5038452B2 (en) Surface acoustic wave device and communication device
JP5052172B2 (en) Surface acoustic wave device and communication device
JP4841311B2 (en) Substrate mounted surface acoustic wave device, method for manufacturing the same, and communication device
JP2006333171A (en) Surface acoustic wave resonator, surface acoustic wave device and communication apparatus
JP5144396B2 (en) Surface acoustic wave device and communication device
JP5312067B2 (en) Surface acoustic wave device and communication device
JP5144309B2 (en) Surface acoustic wave device and communication device
JP2006333169A (en) Surface acoustic wave resonator, surface acoustic wave device and communication apparatus
JP4502779B2 (en) Surface acoustic wave element and communication device
JP2005079694A (en) Branching filter
JP4550549B2 (en) Surface acoustic wave element and communication device
JP2008011011A (en) Surface acoustic wave device and communication device
JP2007110542A (en) Surface acoustic wave filter and communication apparatus provided therewith
JP4698362B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4741387B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees