JP2010009816A - Dry battery - Google Patents

Dry battery Download PDF

Info

Publication number
JP2010009816A
JP2010009816A JP2008165561A JP2008165561A JP2010009816A JP 2010009816 A JP2010009816 A JP 2010009816A JP 2008165561 A JP2008165561 A JP 2008165561A JP 2008165561 A JP2008165561 A JP 2008165561A JP 2010009816 A JP2010009816 A JP 2010009816A
Authority
JP
Japan
Prior art keywords
explosion
gasket
dry battery
protrusion
proof thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165561A
Other languages
Japanese (ja)
Inventor
Tomoaki Nakaguchi
知章 中口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008165561A priority Critical patent/JP2010009816A/en
Publication of JP2010009816A publication Critical patent/JP2010009816A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dry battery capable of gas exhaustion at pressure rise of the inside sealed by a sealing body equipped with an explosion-proof thin part at a power-generating member side of a gasket as well as a protrusion cut up from a bottom plate at a corresponding position, capable of restraining scatter of electrolyte solution, and realizing large capacity due to thinning of a gasket. <P>SOLUTION: The dry battery houses a power generating member having a cathode mixture 6 and a gel-like anode mixture 5 arranged in opposition inside a battery case 8 with an interposition of a separator 7, and an opening of the battery case 8 is sealed with a sealing body 4 provided with a bottom plate 3 equipped with a cut-up protrusion 11 and an explosion-proof thin part 1c at a power-generating side of the gasket 1 made of an insulating material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内部の圧力が異常に高まったときに防爆弁が破断してガスを速やかに放出させる乾電池に関するものである。   The present invention relates to a dry battery in which an explosion-proof valve is broken and gas is quickly released when an internal pressure is abnormally increased.

近年、デジタルスチルカメラあるいは携帯音楽プレーヤーなどの長時間駆動化に伴い搭載機器の部品や特に電源のひとつであるアルカリマンガン乾電池の長寿命化が強く要望される傾向にある。従来の上記機器に利用されるアルカリマンガン乾電池では、同じ外形寸法で内容積を増やして乾電池容量を増やすためにはアルカリマンガン乾電池を構成する部品の小型化、特に樹脂で成形された絶縁機能と安全弁機構であるガスケットの薄型化が不可欠であった。   2. Description of the Related Art In recent years, there is a strong demand for extending the life of components of installed devices and especially alkaline manganese batteries, which are one of power sources, as digital still cameras or portable music players are driven for a long time. In the conventional alkaline manganese batteries used in the above equipment, in order to increase the internal battery capacity by increasing the internal volume with the same external dimensions, miniaturization of parts constituting the alkaline manganese battery, in particular, the insulation function and safety valve formed of resin It was indispensable to make the gasket as a mechanism thin.

図8は従来のアルカリマンガン乾電池の一部断面正面図である。正極端子を兼ねる鉄製の電池ケース38の中には、二酸化マンガンと黒鉛とを主構成材料とし、短い円筒状に成形された正極合剤36が複数個挿入されている。この正極合剤36の内側には、底面に電池ケース38との接触を隔離するための絶縁キャップ30と円筒状に構成したセパレータ37を介して、ゲル状の負極剤35が注入されている。負極剤35中には負極集電体32が挿入されている。一般に、ガスケット31は、プラスチック又はゴム製であり、底板33、集電体32などと組合せて、電池ケース38の開口部を封口する構造をとっている。また電池ケース38には外部との絶縁をかねた外装ラベル39で被覆している。   FIG. 8 is a partial cross-sectional front view of a conventional alkaline manganese dry battery. In an iron battery case 38 that also serves as a positive electrode terminal, a plurality of positive electrode mixtures 36 made of manganese dioxide and graphite and mainly formed into a short cylindrical shape are inserted. Inside the positive electrode mixture 36, a gel-like negative electrode agent 35 is injected through an insulating cap 30 for isolating contact with the battery case 38 on the bottom surface and a cylindrical separator 37. A negative electrode current collector 32 is inserted into the negative electrode agent 35. In general, the gasket 31 is made of plastic or rubber, and has a structure in which the opening of the battery case 38 is sealed in combination with the bottom plate 33, the current collector 32, and the like. The battery case 38 is covered with an exterior label 39 that also serves as insulation from the outside.

一般に、ガスケット31は、例えば溶融した熱可塑性樹脂を金型に送り込む射出成形法によって成形され、その底壁部31dより内部の圧力を受ける。このガスケット31の平板部31bの受圧側に環状の溝部31aを設けることにより、その底壁部31dを防爆薄肉部31cとしている。そして、ガスが発生し、内部の圧力が上昇した際に内部の圧力がある圧力に達するとこの溝部31aの底壁の防爆薄肉部31cに破断が生じ、電池内部のガスを排出する防爆機構として働くものが提案されている(例えば、特許文献1参照)。   In general, the gasket 31 is molded by, for example, an injection molding method in which a molten thermoplastic resin is fed into a mold, and receives internal pressure from the bottom wall portion 31d. By providing an annular groove 31a on the pressure receiving side of the flat plate portion 31b of the gasket 31, the bottom wall portion 31d is made an explosion-proof thin portion 31c. When the internal pressure reaches a certain pressure when the gas is generated and the internal pressure rises, the explosion-proof thin portion 31c of the bottom wall of the groove 31a breaks, and the explosion-proof mechanism discharges the gas inside the battery. The thing which works is proposed (for example, refer patent document 1).

また、図9に示すようにガスケット41のスカート部の延長上に配された防爆薄肉部41cの伸張距離を平面部に具備したリブ44によって規制し、防爆薄肉部41cのみの伸張へと変え、ガスケット41の薄肉化による防爆薄肉部41cの伸張距離の短縮を軽減し、内圧上昇時に十分伸張、破断できる空間を実現する機構形状が提案されている(例えば、特許文献2参照)。   Further, as shown in FIG. 9, the extension distance of the explosion-proof thin part 41 c arranged on the extension of the skirt part of the gasket 41 is regulated by the rib 44 provided on the flat part, and the extension of the explosion-proof thin part 41 c is changed. There has been proposed a mechanism shape that reduces a reduction in the extension distance of the explosion-proof thin portion 41c due to the thinning of the gasket 41 and realizes a space that can be sufficiently extended and broken when the internal pressure increases (see, for example, Patent Document 2).

さらにガスケットの材料を変更し、図8に示すガスケット31における防爆薄肉部31cの伸張の特性を変化させて、破断到達までの伸張を軽減させることが提案されている(例えば、特許文献3参照)。
特開平9−45303号公報 特開2003−217532号公報 特開2005−79021号公報
Further, it has been proposed to change the material of the gasket and change the extension characteristic of the explosion-proof thin-walled portion 31c in the gasket 31 shown in FIG. 8 to reduce the extension until reaching the break (see, for example, Patent Document 3). .
Japanese Patent Laid-Open No. 9-45303 JP 2003-217532 A JP-A-2005-79021

しかしながら、上述した特許文献1に示される従来技術では、高容量化を目的とした乾電池の内容積の増大に伴い、図8に示したガスケット31の部品高さの薄型化が必要であり、過放電時、あるいは逆接続時によって起こる内部の圧力の上昇時に、ガスケット31と底板33との短縮された距離で、防爆薄肉部31cが加圧や伸張されて破断して内部の
ガスを安定して排出することが困難であるという課題があり、高容量化の障壁となっている。また、ガスとともにセパレータ37との間に介在する強アルカリ質である電解液などが勢いよく排出されることで、安全性に欠けるという課題がある。
However, in the conventional technique shown in Patent Document 1 described above, the height of the parts of the gasket 31 shown in FIG. When the internal pressure rises due to discharge or reverse connection, the explosion-proof thin-walled portion 31c is pressurized or stretched at a shortened distance between the gasket 31 and the bottom plate 33 to break and stabilize the internal gas. There is a problem that it is difficult to discharge, which is a barrier to increasing the capacity. In addition, there is a problem that safety is lacking because the electrolyte solution, which is a strong alkaline substance interposed between the gas and the separator 37, is exhausted vigorously.

また、上述した特許文献2に示される従来技術では、図9に示すように内部の圧力上昇時に発生する内部温度の上昇に伴ったガスケット41の昇温状態でガスケット41の平面部に配されたリブ44の材料の伸びが変化し、防爆薄肉部41cを破断させるためには、底板43と防爆薄肉部41cとの間で破断に達するまでの材料が伸びる距離が必要であるという課題があり、ガスケット41の薄型化が困難で高容量化の障壁となっている。   In the prior art disclosed in Patent Document 2 described above, as shown in FIG. 9, the gasket 41 is disposed on the flat surface portion of the gasket 41 with the temperature rise of the gasket 41 as the internal temperature rises when the internal pressure rises. In order for the elongation of the material of the rib 44 to change and the explosion-proof thin portion 41c to break, there is a problem that a distance is required between the bottom plate 43 and the explosion-proof thin portion 41c to extend the material, It is difficult to reduce the thickness of the gasket 41, which is a barrier for increasing the capacity.

また、上述した特許文献3に示される従来技術では、図8に示すように内部の圧力上昇時に発生する内部温度の上昇に伴ったガスケット31の昇温状態で、ガスケット31の材料の伸びが変化し、防爆薄肉部31cを破断させるためには、底板33と防爆薄肉部31cとの間で破断に達するまでの材料が伸びる距離が必要であるという課題があり、ガスケット31の薄型化が困難で高容量化の障壁となっている。   Further, in the prior art disclosed in Patent Document 3 described above, the material elongation of the gasket 31 changes in the temperature rising state of the gasket 31 as the internal temperature rises when the internal pressure rises as shown in FIG. However, in order to break the explosion-proof thin portion 31c, there is a problem that a distance is required between the bottom plate 33 and the explosion-proof thin portion 31c to extend the material, and it is difficult to make the gasket 31 thin. It is a barrier to high capacity.

本発明は上記従来の課題を鑑みて成されたもので、ガスケットの発電部材側に溝部を設けて防爆薄肉部を設け、このガスケットの防爆薄肉部に対応する位置に底板から切起された突起部を設けた封口体によって封口し、内部の圧力上昇時の安定したガス排出が可能で、且つ、電解液の飛散を抑制できる上、ガスケットの薄型化によって大容量な乾電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems. A groove is provided on the power generation member side of the gasket to provide an explosion-proof thin part, and a protrusion cut from the bottom plate at a position corresponding to the explosion-proof thin part of the gasket. It is possible to provide a large-capacity dry battery by reducing the thickness of the gasket while enabling stable gas discharge when the internal pressure rises and suppressing the scattering of the electrolyte. It is said.

上記のような目的を達成するために本発明の乾電池は、電池ケース内に正極合剤と負極剤をセパレータを介在させて対向配置した発電部材を収納し、電池ケースの開口部を底板と絶縁材からなるガスケットとで構成される封口体で封口した乾電池において、ガスケットの発電部材側に溝部を設けた防爆薄肉部を形成し、このガスケットの防爆薄肉部に対応する位置に底板から切起された突起部を設けたことを特徴としている。   In order to achieve the above-described object, the dry battery of the present invention accommodates a power generation member in which a positive electrode mixture and a negative electrode agent are disposed opposite to each other with a separator interposed in a battery case, and the opening of the battery case is insulated from the bottom plate. In a dry battery sealed with a sealing member composed of a gasket made of a material, an explosion-proof thin wall portion having a groove portion is formed on the power generation member side of the gasket, and the gasket is cut from the bottom plate at a position corresponding to the explosion-proof thin wall portion of the gasket. It is characterized by providing a protruding portion.

本発明によれば、防爆作動性に優れ、且つ、ガス排出時の電解液の飛散を抑えた乾電池を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the dry battery which was excellent in explosion-proof operation | movement property and suppressed scattering of the electrolyte solution at the time of gas discharge | emission.

本発明の第1の発明では、電池ケース内に正極合剤と負極剤とをセパレータを介在させて対向配置した発電部材を収納し、電池ケースの開口部を底板と絶縁材からなるガスケットの一部に発電部材側に溝部を設けて防爆薄肉部を形成し、このガスケットの防爆薄肉部に対応する位置に底板から切起された突起部を設けた構成とすることにより、内圧上昇時にガスケットの防爆薄肉部を効率的に破断することができる。   According to the first aspect of the present invention, a power generation member in which a positive electrode mixture and a negative electrode agent are disposed to face each other with a separator interposed therebetween is housed in a battery case, and an opening of the battery case is formed as a gasket made of a bottom plate and an insulating material. By forming a groove on the power generation member side to form an explosion-proof thin part, and providing a protrusion raised from the bottom plate at a position corresponding to the gasket's explosion-proof thin part, the gasket The explosion-proof thin wall portion can be efficiently broken.

本発明の第2の発明では、突起部を防爆薄肉部に対応して複数個設けたことにより、ガスによる内圧上昇時に平面上での圧力バランスのバラつきが発生しその防爆薄肉部の伸びる位置が変動しても、複数配置された突起部の一部に必ず触れることで、安定的な破断を行い、ガスを排気することができる。   In the second invention of the present invention, by providing a plurality of projections corresponding to the explosion-proof thin part, the pressure balance on the plane varies when the internal pressure rises due to gas, and the position where the explosion-proof thin part extends is Even if it fluctuates, by always touching a part of the plurality of projecting portions, it is possible to perform stable breakage and exhaust gas.

本発明の第3の発明では、突起部の先端を尖鋭としたことにより、軟質な樹脂で形成された防爆薄肉部が内圧上昇時に一定の高さまで伸び、環状の防爆薄肉部の上面が突起部の尖鋭部によって効率的に破断を行い、ガスを排気することができる。   In the third invention of the present invention, the tip of the protrusion is sharpened so that the explosion-proof thin wall portion formed of a soft resin extends to a certain height when the internal pressure rises, and the upper surface of the annular explosion-proof thin wall portion is the protrusion portion. It is possible to efficiently rupture and exhaust gas by the sharp part.

本発明の第4の発明では、突起部にガスケットの防爆薄肉部が密着してもガスを通すガ
ス流路を設けたことにより、内圧上昇時に防爆薄肉部の上面が突起部の先端で破断されると同時に、破断後も薄肉部と突起部の間にガス流路を通してガスを遮断することなく外部へ排気することができ、且つ、排出時に内部の電解液を飛散させないことができる。
In the fourth aspect of the present invention, by providing a gas passage through which gas passes even if the explosion-proof thin part of the gasket is in close contact with the protrusion, the upper surface of the explosion-proof thin part is broken at the tip of the protrusion when the internal pressure rises. At the same time, it is possible to exhaust the gas without blocking the gas through the gas flow path between the thin portion and the protruding portion even after the breakage, and it is possible to prevent the electrolytic solution inside from being scattered during the discharge.

本発明の第5の発明では、ガス流路を突起部の表面に形成した溝としたことにより、内圧上昇時に環状の防爆薄肉部の上面が突起部の先端で破断されると同時に、破断後も防爆薄肉部と突起部の間に溝形状のガス流路を通してガスを遮断することなく外部へ排気することができ、且つ、排出時に突起部に形成された溝に内部の電解液を収容し、飛散させないことができる。   In the fifth invention of the present invention, the gas flow path is a groove formed on the surface of the projection, so that the upper surface of the annular explosion-proof thin portion is broken at the tip of the projection when the internal pressure is increased, and at the same time after the break In addition, gas can be exhausted to the outside without blocking gas through a groove-shaped gas flow path between the explosion-proof thin wall part and the projection part, and the internal electrolyte is accommodated in the groove formed in the projection part at the time of discharge. Can not be scattered.

本発明の第6の発明では、ガス流路を突起部の高さ方向に形成したスリットとしたことにより、溝形状のガス流路と同様にガスを遮断することなく排気することが可能な上、且つ、ガスが排気するに伴っての内部に収容した電解液を飛散させないことができる。   In the sixth aspect of the present invention, the gas flow path is a slit formed in the height direction of the protrusion, so that the gas can be exhausted without being cut off as in the case of the groove-shaped gas flow path. In addition, it is possible to prevent the electrolyte contained in the interior as the gas is exhausted from being scattered.

本発明の第7の発明では、ガス流路を突起部の表面に形成した粗面加工の連続した凹凸部としたことにより、溝形状のガス流路と同様にガスを遮断することなく外部へ排気することができ、且つ、突起部表面の凹凸部が排出時に内部の電解液の遮蔽する表面積を増やし、結果、排出される電解液のみを遮蔽することが可能で、電解液の飛散をさせないことができる。   In the seventh invention of the present invention, the gas flow path is formed as a rough uneven part formed by roughing on the surface of the protrusion, so that the gas flow is not cut off as in the case of the groove-shaped gas flow path. It can be evacuated, and the projections and depressions on the surface of the protrusion increase the surface area shielded by the electrolyte inside, and as a result, it is possible to shield only the electrolyte that is discharged, so that the electrolyte does not scatter be able to.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。以下に示される一実施の形態については、本発明を説明するために掲げた乾電池としての代表的なアルカリマンガン乾電池の構造を示すものであって、本発明は乾電池の構造を下記のものに特定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. An embodiment shown below shows the structure of a typical alkaline manganese dry battery as a dry battery listed for explaining the present invention, and the present invention specifies the structure of the dry battery as follows. Not what you want.

図1は本発明の一実施の形態におけるアルカリマンガン乾電池の半断面図である。図1に示すように、正極端子を兼ねる鉄製の電池ケース8の中には二酸化マンガンと黒鉛とを主構成材料とし、短い円筒状に成形された正極合剤6が複数個挿入されている。この正極合剤6の内側には、セパレータ7を介してゲル状の負極剤5が注入されている。   FIG. 1 is a half sectional view of an alkaline manganese battery in one embodiment of the present invention. As shown in FIG. 1, a plurality of positive electrode mixtures 6 made of manganese dioxide and graphite as main constituent materials and formed into a short cylindrical shape are inserted into an iron battery case 8 also serving as a positive electrode terminal. Inside the positive electrode mixture 6, a gelled negative electrode agent 5 is injected through a separator 7.

ゲル状の負極剤5の中には負極集電体2が挿入されており、ゲル状の負極剤5の底面には電池ケース8との絶縁を目的とした絶縁キャップ10が挿入されている。また、電池ケース8の絶縁被覆と商品の外装を目的として外装ラベル9が巻かれている。   The negative electrode current collector 2 is inserted into the gelled negative electrode agent 5, and an insulating cap 10 is inserted on the bottom surface of the gelled negative electrode agent 5 for the purpose of insulation from the battery case 8. Further, an exterior label 9 is wound for the purpose of insulating coating of the battery case 8 and the exterior of the product.

一般に、ガスケット1はプラスチック又はゴム製であり、また、底板3と溶接接続された負極集電体2をガスケット1の軸中心に圧入して組みこんだものを封口体4と呼び、この封口体4で電池ケース8の開口部を封口することによってアルカリマンガン乾電池を構成している。一般に、ガスケット1は、例えば溶融した熱可塑性樹脂を金型に送り込む射出成形法によって成形され、底壁部1dより内部の圧力を受ける。このガスケット1の平板部1bの受圧側に環状の溝部1aを設けることにより、その底壁部1dを防爆薄肉部1cとしている。そして、乾電池の過放電や乾電池を逆接続した時にガスが発生し、内部の圧力が上昇した際に内部の圧力が防爆薄肉部1cの変形を開始する圧力に達すると防爆薄肉部1cが外方に膨張するように突出し、底板3に切起して設けた突起部11で防爆薄肉部1cを突き破り、この溝部1aの底壁部1dの防爆薄肉部1cに破断が生じ、底板3に切起して設けた突起部11の加工穴11aを通って内部のガスを排出する。   In general, the gasket 1 is made of plastic or rubber, and a negative electrode current collector 2 welded to the bottom plate 3 is press-fitted into the axial center of the gasket 1 and called a sealing body 4. 4, an alkaline manganese dry battery is configured by sealing the opening of the battery case 8. In general, the gasket 1 is molded by, for example, an injection molding method in which a molten thermoplastic resin is fed into a mold, and receives internal pressure from the bottom wall portion 1d. By providing an annular groove portion 1a on the pressure receiving side of the flat plate portion 1b of the gasket 1, the bottom wall portion 1d is made an explosion-proof thin portion 1c. Gas is generated when the dry battery is overdischarged or when the dry battery is reversely connected, and when the internal pressure rises and the internal pressure reaches a pressure at which deformation of the explosion-proof thin part 1c starts, the explosion-proof thin part 1c is moved outward. The explosion-proof thin-walled portion 1c is pierced by the projection 11 provided by cutting and raising the bottom plate 3, and the explosion-proof thin-walled portion 1c of the bottom wall portion 1d of the groove 1a is ruptured. The internal gas is discharged through the processing hole 11a of the protrusion 11 provided.

この防爆機構として、防爆薄肉部1cと突起部11をさらに詳しく説明する。ガスケット1の平板部1bに沿って環状に設けた溝部1aの肉厚が0.25mm以下で形成された防爆薄肉部1cに対し、過放電時や逆接続によって起こる乾電池のガス発生によって生じる内圧上昇によって発生する圧力が集中し、外方に膨張するように突出し、突起部11と
接触することで破断され、電池ケース8の内部に高い圧力で存在するガスを突起部11に破断された防爆薄肉部1cと突起部11の隙間を利用して効率よく排出することができる。
As this explosion-proof mechanism, the explosion-proof thin-walled portion 1c and the protrusion 11 will be described in more detail. Increase in internal pressure caused by gas generation of dry battery caused by overdischarge or reverse connection with respect to the explosion-proof thin-walled portion 1c formed in a ring-shaped groove portion 1a having a thickness of 0.25 mm or less along the flat plate portion 1b of the gasket 1 The explosion-proof thin wall in which the pressure generated by the gas is concentrated, protrudes so as to expand outward, is broken by contact with the protrusion 11, and the gas existing in the battery case 8 at high pressure is broken by the protrusion 11. The gap can be efficiently discharged using the gap between the portion 1c and the protruding portion 11.

また、円柱の高さ方向において、薄型のガスケット1を用いた封口体4で、開口部を封口封止することにより、防爆薄肉部1cが伸張するために必要な空間を最小にすることができ、結果的には封口体4を構成するガスケット1の薄型化が可能となり、内容積を増大しアルカリマンガン乾電池の電池容量を増大させることができる。   In addition, in the height direction of the cylinder, by sealing the opening with the sealing body 4 using the thin gasket 1, the space necessary for the explosion-proof thin portion 1c to extend can be minimized. As a result, the gasket 1 constituting the sealing body 4 can be thinned, the internal volume can be increased, and the battery capacity of the alkaline manganese dry battery can be increased.

次に、図2は本発明の一実施の形態における封口体4の防爆薄肉部1cの破断状態の断面模式図である。図2に示すように、底板3の裏面に塑性加工によって形成された先端が尖鋭な突起部11と、その加工時に形成された加工穴11aがあり、防爆薄肉部1cを突起部11が破断して内部のガスを排気する際にガス流路13を通って、破断した防爆薄肉部1cと突起部11が接触している場合でも内部のガスを効率的に排気することができる構造となっている。   Next, FIG. 2 is a schematic cross-sectional view of the fractured state of the explosion-proof thin portion 1c of the sealing body 4 in the embodiment of the present invention. As shown in FIG. 2, there are a projection 11 having a sharp tip formed by plastic working on the back surface of the bottom plate 3 and a machining hole 11a formed at the time of the machining, and the projection 11 breaks the explosion-proof thin portion 1c. Thus, when exhausting the internal gas, the internal gas can be efficiently exhausted through the gas flow path 13 even when the fractured explosion-proof thin-walled portion 1c and the protrusion 11 are in contact with each other. Yes.

次に図3は本発明の一実施の形態における底板3の斜視図である。図3に示すように底板3の裏面に塑性加工によって形成された突起部11とその加工時に形成された加工穴11aが、底板3の中心に対し、ガスケット1の平板部1bに沿って環状に設けた溝部1aの対向面になるように複数個設置されており、万が一、一箇所での排気が機能しない時には防爆薄肉部1cを破断して乾電池の過放電時などに発生して内部で圧縮されたガスを排気する場所が複数箇所確保でき、内圧上昇時に確実に排気を行うことができる。   Next, FIG. 3 is a perspective view of the bottom plate 3 in one embodiment of the present invention. As shown in FIG. 3, the protrusion 11 formed by plastic processing on the back surface of the bottom plate 3 and the processing hole 11 a formed at the time of processing are annularly formed along the flat plate portion 1 b of the gasket 1 with respect to the center of the bottom plate 3. Plurally, it is installed so as to be opposed to the groove 1a provided, and if the exhaust at one place does not function, the explosion-proof thin part 1c is broken and compressed inside the battery when it is overdischarged. A plurality of locations for exhausting the generated gas can be secured, and exhaust can be reliably performed when the internal pressure increases.

図4は本発明の一実施の形態における突起部11の形状の斜視図である。図4に示すように、防爆薄肉部1cを破断して内部の圧縮ガスを排気する際に突起部11の表面にガス流路溝13aを設けて、破断後に突起部11と防爆薄肉部1cが接触している場合でも内部のガスを効率的に排気することができる構造となっている。また、突起部11のガス流路溝13aを通って排気されたガスは、突起部11に設けたガス流路溝13aの間で、排気時の圧力開放に伴って加工穴11aに向かって排出される乾電池の電解液を制止できることで、乾電池の外部への飛散を抑制することができる。   FIG. 4 is a perspective view of the shape of the protrusion 11 according to the embodiment of the present invention. As shown in FIG. 4, when the explosion-proof thin portion 1c is broken and the internal compressed gas is exhausted, a gas flow channel groove 13a is provided on the surface of the projection portion 11, and after the fracture, the projection portion 11 and the explosion-proof thin portion 1c are formed. Even when they are in contact with each other, the internal gas can be efficiently exhausted. Further, the gas exhausted through the gas flow path groove 13a of the protrusion 11 is discharged toward the processing hole 11a between the gas flow path grooves 13a provided in the protrusion 11 as the pressure is released during exhaust. By being able to stop the electrolyte solution of the dry battery, scattering to the outside of the dry battery can be suppressed.

図5は本発明の一実施の形態における突起部11の形状の斜視図である。図5に示すように、防爆薄肉部1cを破断して内部の圧縮されたガスを排気する際に突起部11のガス流路スリット13bを利用し、破断後に突起部11と防爆薄肉部1cが接触している場合でも内部のガスを効率的に排気することができる構造となっている。また、突起部11のガス流路スリット13bを通って排気されたガスは、突起部11のガス流路スリット13bの配置距離の間で、排気時の圧力開放に伴って加工穴11aに向かって排出される乾電池の電解液を制止できることで、乾電池の外部への飛散を抑制することができる。   FIG. 5 is a perspective view of the shape of the protrusion 11 according to the embodiment of the present invention. As shown in FIG. 5, the gas passage slit 13b of the projection 11 is used when the explosion-proof thin portion 1c is broken and the compressed gas inside is exhausted. After the fracture, the projection 11 and the explosion-proof thin portion 1c are Even when they are in contact with each other, the internal gas can be efficiently exhausted. Further, the gas exhausted through the gas flow path slit 13b of the protrusion 11 is directed toward the machining hole 11a along with the pressure release during exhaust between the arrangement distance of the gas flow path slit 13b of the protrusion 11. Since the electrolyte solution of the discharged dry battery can be stopped, scattering to the outside of the dry battery can be suppressed.

図6は本発明の一実施の形態における突起部11の形状の斜視図である。図6に示すように、防爆薄肉部1cを破断して内部の圧縮されたガスを排気する際に突起部11の平面に形成した粗面加工の連続した凹凸部13cを利用し、破断後に突起部11と防爆薄肉部1cが接触している場合でも内部のガスを効率的に排気することができる構造となっている。また、突起部11の平面に形成した粗面加工の連続した凹凸部13cの粗面加工の凹凸間で、排気時の圧力開放に伴って加工穴11aに向かって排出される乾電池の電解液を制止できることで、乾電池の外部への飛散を抑制することができる。   FIG. 6 is a perspective view of the shape of the protrusion 11 according to the embodiment of the present invention. As shown in FIG. 6, when the explosion-proof thin-walled portion 1c is ruptured and the compressed gas inside is exhausted, the rough uneven portion 13c formed on the flat surface of the protruding portion 11 is used to make a protrusion after the rupture. Even when the part 11 and the explosion-proof thin part 1c are in contact with each other, the internal gas can be efficiently exhausted. In addition, the electrolyte solution of the dry battery discharged toward the processing hole 11a when the pressure is released at the time of exhausting between the unevenness of the rough surface processing of the uneven surface portion 13c of the uneven surface portion 13c formed on the flat surface of the protruding portion 11 is supplied. By being able to stop, scattering to the exterior of a dry cell can be suppressed.

図7は本発明の実施例における防爆部作動圧力測定実験の模式図である。図7に示すように、封口体14で電池ケース20の開口部を封口して封止した乾電池21に接続された油圧ホース16に油圧ポンプ19から送られる油で、電池ケース20の内部圧力を15M
Paまで加圧して、電池ケース20に接続された圧力センサ15を用いて防爆薄肉部1cの破断時の圧力を測定することができる構成となっている。また、その圧力状態を確認するために圧力計22を油圧ホース16と油圧ポンプ19の間に接続して、且つ、圧力状態をセンサーアンプ兼オシロスコープ18を用いて記録するとともに、乾電池21に密接された飛散量計量タンク17内に排出された油を計量できる構成としている。以下、本発明の実施例について説明する。
FIG. 7 is a schematic diagram of an experiment for measuring the operating pressure of the explosion-proof portion in the embodiment of the present invention. As shown in FIG. 7, the internal pressure of the battery case 20 is reduced by oil sent from a hydraulic pump 19 to a hydraulic hose 16 connected to a dry battery 21 that is sealed by sealing the opening of the battery case 20 with a sealing body 14. 15M
The pressure at the time of fracture of the explosion-proof thin-walled portion 1c can be measured using the pressure sensor 15 connected to the battery case 20 by pressurizing to Pa. In order to check the pressure state, a pressure gauge 22 is connected between the hydraulic hose 16 and the hydraulic pump 19, and the pressure state is recorded using the sensor amplifier / oscilloscope 18 and is in close contact with the dry battery 21. In addition, the oil discharged into the scattering amount measuring tank 17 can be measured. Examples of the present invention will be described below.

図1に示されるように、防爆薄肉部1cの肉厚を0.25mmで設定し、且つ、その防爆薄肉部1cとほぼ垂直に底板3を環状方向に長さが3mmで尖鋭した先端を持つ突起部11を具備したアルカリマンガン乾電池を実施例1とした。   As shown in FIG. 1, the thickness of the explosion-proof thin part 1c is set to 0.25 mm, and the bottom plate 3 is substantially perpendicular to the explosion-proof thin part 1c and has a sharp tip with a length of 3 mm in the annular direction. An alkaline manganese dry battery provided with the protrusions 11 was taken as Example 1.

実施例1と同じ仕様で、突起部11の長さのみ5mm長くして破断距離の長さを2mm短くしたものを具備したアルカリマンガン乾電池を実施例2とした。   An alkaline manganese dry battery having the same specification as that of Example 1 and having only the length of the protrusion 11 increased by 5 mm and the length of the breaking distance reduced by 2 mm was taken as Example 2.

実施例1と同じ仕様で、突起部11を複数の4個設置したものを具備したアルカリマンガン乾電池を実施例3とした。   An alkaline manganese dry battery having the same specification as that of Example 1 and having a plurality of four protrusions 11 provided therein was designated as Example 3.

図4に示されるように実施例1と同じ仕様で、突起部11にガス流路溝13aを設けたアルカリマンガン乾電池を実施例4とした。   As shown in FIG. 4, an alkaline manganese dry battery having the same specifications as in Example 1 and having a gas flow channel groove 13 a in the protruding portion 11 was taken as Example 4.

図5に示されるように実施例1と同じ仕様で、突起部11にガス流路スリット13bを設けたアルカリマンガン乾電池を実施例5とした。   As shown in FIG. 5, an alkaline manganese dry battery having the same specifications as in Example 1 and having a gas flow path slit 13 b in the protrusion 11 was taken as Example 5.

図6に示されるように実施例1と同じ仕様で、突起部11に粗面加工による連続した凹凸部13cを設けたアルカリマンガン乾電池を実施例6とした。   As shown in FIG. 6, an alkaline manganese dry battery having the same specifications as in Example 1 and having protrusions 11 provided with continuous irregularities 13 c by roughening was used as Example 6.

(比較例1)
本発明の実施例と比較するため実施例1と同じ仕様で、底板3に突起部11を具備しないものを比較例1とした。
(Comparative Example 1)
In order to compare with the example of the present invention, the same specification as that of Example 1 and the base plate 3 not including the protruding portion 11 was used as Comparative Example 1.

(比較例2)
実施例1と同じ仕様で、底板3の突起部11に具備するガス流路13のないものを比較例2とした。
(Comparative Example 2)
A comparative example 2 having the same specifications as in Example 1 and having no gas flow path 13 provided in the protrusion 11 of the bottom plate 3 was used.

上記のような実施例および比較例に示される封口体14で電池ケース20の開口部に封口封止した乾電池21を用いて、図7のような実験装置を利用して、乾電池21に接続された油圧ホース16を通って油圧ポンプ19から送られる油で、電池ケース20の内部圧力を15MPaまで加圧して、電池ケース20に接続された圧力センサ15を用いて防爆薄肉部1cの破断時の圧力を比較するために測定する。   Using the dry battery 21 sealed in the opening of the battery case 20 with the sealing body 14 shown in the examples and comparative examples as described above, the battery is connected to the dry battery 21 using an experimental apparatus as shown in FIG. The internal pressure of the battery case 20 is increased to 15 MPa with oil sent from the hydraulic pump 19 through the hydraulic hose 16, and the pressure sensor 15 connected to the battery case 20 is used to break the explosion-proof thin portion 1c. Measure to compare pressures.

また、その状態をセンサーアンプ兼オシロスコープ18を用いて記録するとともに、ガスケット1に密接された飛散量計量タンク17内に排出された油を計量し、内圧上昇に伴う防爆薄肉部1cの破断時の圧力と飛散量などを比較するために測定した。実施例1〜6、および比較例1,2のアルカリマンガン乾電池を測定し、それぞれの防爆薄肉部1cの
破断時の圧力を測定し結果と破断時に飛散した油の飛散量を(表1)に示す。
In addition, the state is recorded using the sensor amplifier / oscilloscope 18, and the oil discharged into the scattering amount measuring tank 17 in close contact with the gasket 1 is measured, and the explosion-proof thin-walled portion 1 c is broken when the internal pressure increases. Measurements were made to compare the pressure and the amount of scattering. The alkaline manganese dry batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were measured, the pressure at the time of rupture of each explosion-proof thin-walled portion 1c was measured, and the results and the amount of oil scattered at the time of rupture are shown in (Table 1). Show.

Figure 2010009816
Figure 2010009816

(表1)から明らかなように、本発明の実施例1〜6は、比較例1,2と比べ、同一条件下で防爆作動する防爆薄肉部1cを低い圧力で破断できる。また、その飛散量でも実施例1〜6が比較例1,2のような高圧状態での油の飛散量に比べて、その飛散量が低圧状態での破断に伴って減量することから、破断により排出された油の飛散の大幅な抑制と改善が考えられる。また、実施例2のようにその突起部11の長さを長く変えることで、防爆薄肉部1cが破断するための距離を短くし、鋭利な突起部11に早く接触することで破断する到達圧力を下げることが可能で、破断によって排出される油の飛散量の大幅な抑制と改善が考えられる。   As is clear from Table 1, Examples 1 to 6 of the present invention can break the explosion-proof thin-walled portion 1c that performs explosion-proof operation under the same conditions at a lower pressure than Comparative Examples 1 and 2. In addition, even in the amount of scattering, since Examples 1 to 6 are less than the amount of oil scattered in the high pressure state as in Comparative Examples 1 and 2, the amount of scattering decreases with the breakage in the low pressure state. It is possible to greatly suppress and improve the scattering of oil discharged by Moreover, the distance for the explosion-proof thin-walled portion 1c to be broken is shortened by changing the length of the protruding portion 11 as in the second embodiment, and the ultimate pressure at which the sharp protruding portion 11 is quickly broken is broken. It is possible to significantly reduce the amount of oil scattered due to breakage and to improve it.

さらに、実施例3のように突起部11を複数個設置することで、排出口の数が増えて、破断により排出された油の飛散の大幅な抑制と改善が考えられる。また、実施例4のように突起部11に溝加工を施すことで、比較例1,2の平面状態に比べて、排出される油を溝加工で形成された溝で制止することが可能となり、それぞれ破断による飛散量の抑制が可能となり、油の飛散の大幅な抑制と改善が考えられる。また、実施例5のように突起部11にスリット加工を施すことで、比較例1,2の平面状態に比べて、さらには実施例4より、排出される油をスリット加工で形成されたスリットの配置間の壁で制止することが可能となり、それぞれ破断による飛散量の抑制が可能となり、油の飛散の大幅な抑制と改善が考えられる。   Furthermore, by installing a plurality of protrusions 11 as in the third embodiment, the number of discharge ports is increased, and it is possible to significantly suppress and improve the scattering of oil discharged due to breakage. Further, by performing the groove processing on the protruding portion 11 as in the fourth embodiment, it becomes possible to restrain the discharged oil by the groove formed by the groove processing as compared with the planar state of Comparative Examples 1 and 2. In addition, it is possible to suppress the amount of scattering due to the breakage, and it is possible to significantly suppress and improve oil scattering. Further, by slitting the protrusion 11 as in the fifth embodiment, compared to the planar state of the first and second comparative examples, a slit formed by slitting the oil discharged from the fourth embodiment. It is possible to stop by the wall between the arrangements of the two, respectively, it becomes possible to suppress the amount of scattering due to breakage, and it is possible to greatly suppress and improve the oil scattering.

最後に、実施例5のように突起部11に粗面加工を施すことで、比較例1,2の平面状態に比べて、さらには実施例4,5より、排出される油を粗面加工で突起部11の平面に形成された凹凸部13cで制止することが可能となり、それぞれ破断による飛散量の抑制が可能となり、油の飛散の大幅な抑制と改善が考えられる。なお、上記比較するための測定においては乾電池21を構成する上で電池ケース20内に油を供給し、油圧による破壊にてその飛散量を計測しているが、実施例1〜6、および比較例1,2のアルカリマンガン乾電池の過放電時の電解液の飛散量に相当することを実験し確認している。また、上記
比較するための測定においては、アルカリマンガン乾電池を代表として説明してきたが、ニッケルマンガン乾電池においても同様の構成とすることで同じ効果が得られる。
Finally, by roughening the projection 11 as in the fifth embodiment, the oil discharged from the fourth and fifth embodiments is further roughened as compared to the planar states of the first and second comparative examples. Therefore, it can be restrained by the concavo-convex portion 13c formed on the flat surface of the protruding portion 11, and it becomes possible to suppress the amount of scattering due to breakage, respectively, and it is possible to significantly suppress and improve oil scattering. In the measurement for comparison, oil is supplied into the battery case 20 to configure the dry battery 21 and the amount of scattering is measured by breakage due to hydraulic pressure. Examples 1 to 6 and comparison Experiments have confirmed that the alkaline manganese dry batteries of Examples 1 and 2 correspond to the amount of electrolyte scattered during overdischarge. Moreover, in the measurement for the comparison, the alkaline manganese battery has been described as a representative, but the same effect can be obtained by adopting the same configuration in the nickel manganese battery.

本発明によれば、電池ケース内に正極合剤と負極剤をセパレータを介在させて対向配置した発電部材を収納し、電池ケースの開口部を底板と絶縁材からなるガスケットの一部に発電部材側に溝部を設けて防爆薄肉部を設け、このガスケットの防爆薄肉部に対応する位置に底板から切起された突起部を設けたことを特徴とするアルカリマンガン乾電池によって、外部への排気経路を確保し、効率的に内部に発生したガスを外部へ放出させることができ、且つ、封口体の占有体積を下げることが可能であり、その封口体によって乾電池開口部を封口封止された乾電池の内容積の拡大により、乾電池容量の増大が可能となり、アルカリマンガン乾電池の長寿命化が可能となる。   According to the present invention, the power generation member in which the positive electrode mixture and the negative electrode agent are arranged to face each other with the separator interposed therebetween is housed in the battery case, and the opening of the battery case is formed in a part of the gasket made of the bottom plate and the insulating material. An exhaust path to the outside is provided by an alkaline manganese dry battery characterized in that a groove portion is provided on the side to provide an explosion-proof thin wall portion, and a protrusion cut from the bottom plate is provided at a position corresponding to the explosion-proof thin wall portion of this gasket. The gas generated inside can be efficiently discharged to the outside, and the occupied volume of the sealing body can be reduced, and the opening of the dry battery is sealed by the sealing body. By expanding the internal volume, it is possible to increase the battery capacity, and it is possible to extend the life of the alkaline manganese battery.

本発明の一実施の形態におけるアルカリマンガン乾電池の半断面図Half sectional view of an alkaline manganese battery in an embodiment of the present invention 本発明の一実施の形態における防爆薄肉部が破断した際の排気状態の断面模式図Cross-sectional schematic diagram of the exhaust state when the explosion-proof thin-walled portion in one embodiment of the present invention is broken 本発明の一実施の形態における底板の斜視図The perspective view of the baseplate in one embodiment of this invention 本発明の一実施の形態における封口体の突起部の形状を示す斜視図The perspective view which shows the shape of the projection part of the sealing body in one embodiment of this invention 本発明の一実施の形態における封口体の突起部の形状を示す斜視図The perspective view which shows the shape of the projection part of the sealing body in one embodiment of this invention 本発明の一実施の形態における封口体の突起部の形状を示す斜視図The perspective view which shows the shape of the projection part of the sealing body in one embodiment of this invention 同実施例における防爆部作動圧力測定実験の模式図Schematic diagram of the explosion-proof operating pressure measurement experiment in the same example 従来例におけるアルカリマンガン乾電池の半断面正面図Half sectional front view of an alkaline manganese dry battery in the conventional example 従来例における封口体の断面図Sectional view of the sealing body in the conventional example

符号の説明Explanation of symbols

1 ガスケット
1a 溝部
1b 平板部
1c 防爆薄肉部
1d 底壁部
2 負極集電体
3 底板
4 封口体
5 負極剤
6 正極合剤
7 セパレータ
8 電池ケース
9 外装ラベル
10 絶縁キャップ
11 突起部
11a 加工穴
13 ガス流路
13a ガス流路溝
13b ガス流路スリット
13c 凹凸部
14 封口体
15 圧力センサ
16 油圧ホース
17 飛散量計量タンク
18 センサーアンプ兼オシロスコープ
19 油圧ポンプ
20 電池ケース
21 乾電池
22 圧力計
DESCRIPTION OF SYMBOLS 1 Gasket 1a Groove part 1b Flat plate part 1c Explosion-proof thin part 1d Bottom wall part 2 Negative electrode collector 3 Bottom plate 4 Sealing body 5 Negative electrode agent 6 Positive electrode mixture 7 Separator 8 Battery case 9 Exterior label 10 Insulation cap 11 Protrusion part 11a Processing hole 13 Gas flow path 13a Gas flow path groove 13b Gas flow path slit 13c Concavity and convexity 14 Sealing body 15 Pressure sensor 16 Hydraulic hose 17 Scattering amount measuring tank 18 Sensor amplifier and oscilloscope 19 Hydraulic pump 20 Battery case 21 Dry cell 22 Pressure gauge

Claims (7)

電池ケース内に正極合剤と負極剤とをセパレータを介在させて対向配置した発電部材を収納し、前記電池ケースの開口部を底板と絶縁材からなるガスケットとで構成される封口体で封口した乾電池において、前記ガスケットの発電部材側に溝部を設けて防爆薄肉部を形成し、このガスケットの防爆薄肉部に対応する位置に底板から切起された突起部を設けたことを特徴とする乾電池。   A power generation member in which a positive electrode mixture and a negative electrode agent are disposed opposite to each other with a separator interposed therebetween is housed in the battery case, and the opening of the battery case is sealed with a sealing body including a bottom plate and a gasket made of an insulating material. In the dry battery, a groove part is provided on the power generation member side of the gasket to form an explosion-proof thin part, and a protruding part cut from the bottom plate is provided at a position corresponding to the explosion-proof thin part of the gasket. 前記突起部を防爆薄肉部に対応して複数個設けたことを特徴とする請求項1に記載の乾電池。   The dry battery according to claim 1, wherein a plurality of the protrusions are provided corresponding to the explosion-proof thin-walled parts. 前記突起部の先端を尖鋭としたことを特徴とする請求項1に記載の乾電池。   The dry battery according to claim 1, wherein a tip of the protrusion is sharpened. 前記突起部にガスケットの防爆薄肉部が密着してもガスを通すガス流路を設けたことを特徴とする請求項1に記載の乾電池。   2. The dry battery according to claim 1, wherein a gas flow path is provided to allow gas to pass even when the explosion-proof thin-walled portion of the gasket is in close contact with the protruding portion. 前記ガス流路を突起部の表面に形成した溝とした請求項4に記載の乾電池。   The dry battery according to claim 4, wherein the gas flow path is a groove formed on a surface of the protrusion. 前記ガス流路を突起部の高さ方向に形成したスリットとした請求項4に記載の乾電池。 The dry battery according to claim 4, wherein the gas flow path is a slit formed in the height direction of the protrusion. 前記ガス経路を突起部の表面に形成した粗面加工の連続した凹凸部とした請求項4に記載の乾電池。   The dry battery according to claim 4, wherein the gas path is a rough surface formed by a rough surface process formed on the surface of the protrusion.
JP2008165561A 2008-06-25 2008-06-25 Dry battery Pending JP2010009816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165561A JP2010009816A (en) 2008-06-25 2008-06-25 Dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165561A JP2010009816A (en) 2008-06-25 2008-06-25 Dry battery

Publications (1)

Publication Number Publication Date
JP2010009816A true JP2010009816A (en) 2010-01-14

Family

ID=41590070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165561A Pending JP2010009816A (en) 2008-06-25 2008-06-25 Dry battery

Country Status (1)

Country Link
JP (1) JP2010009816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023033A (en) * 2016-11-01 2018-05-11 福特全球技术公司 Battery enclosure gas deflation assembly and method for exhausting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023033A (en) * 2016-11-01 2018-05-11 福特全球技术公司 Battery enclosure gas deflation assembly and method for exhausting
CN108023033B (en) * 2016-11-01 2022-04-26 福特全球技术公司 Battery enclosure vent assembly and venting method

Similar Documents

Publication Publication Date Title
KR100945067B1 (en) Sealed and square type battery
JP5294248B2 (en) Flat battery
KR101352098B1 (en) Flat battery
JP2009530767A (en) Cylindrical secondary battery with high charge / discharge rate
KR102394494B1 (en) System and method for producing secondary battery
CN104769749A (en) Hermetic battery manufacturing method, sealing member for hermetic battery, and hermetic battery
JP2006286561A (en) Sealing plate for sealed battery
JP2008251438A (en) Battery
US20100273047A1 (en) Sealed battery
JP2014041769A (en) Manufacturing process of sealed battery
CN101563798A (en) Battery can having off-center C-shaped vent
KR101416520B1 (en) Cap plate for secondary batteries having vent structure and manufacturing mathod of it
JP5876794B2 (en) Secondary battery case and secondary battery
JP2010009816A (en) Dry battery
JP5288685B2 (en) Battery safety device
JP5128433B2 (en) Setting the distance between the end of the central gas pipe in the battery and the bottom of the battery can
JP2012234784A (en) Cylindrical alkaline battery
KR20160121106A (en) Cap Assembly Of Cylindrical Type Secondary Battery And Manufacturing Method Thereof
JP2006040684A (en) Sealed rectangular battery
JP2002063888A (en) Sealing component with safety valve, and its manufacturing method
JP2012243433A (en) Power supply unit and manufacturing method of the same
JP5990064B2 (en) Secondary battery case and secondary battery
KR20160087696A (en) Rechargeable battery
JP2006244722A (en) Sealed battery
JP2006286284A (en) Flat battery and its manufacturing method