JP2010008911A - Liquid crystal element - Google Patents

Liquid crystal element Download PDF

Info

Publication number
JP2010008911A
JP2010008911A JP2008170783A JP2008170783A JP2010008911A JP 2010008911 A JP2010008911 A JP 2010008911A JP 2008170783 A JP2008170783 A JP 2008170783A JP 2008170783 A JP2008170783 A JP 2008170783A JP 2010008911 A JP2010008911 A JP 2010008911A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
alignment
angle
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008170783A
Other languages
Japanese (ja)
Other versions
JP5093779B2 (en
Inventor
Takaki Takato
孝毅 高頭
Mitsuhiro Akimoto
光弘 穐本
Koji Kawashima
康二 河島
Hiroomi Kaneko
裕臣 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2008170783A priority Critical patent/JP5093779B2/en
Publication of JP2010008911A publication Critical patent/JP2010008911A/en
Application granted granted Critical
Publication of JP5093779B2 publication Critical patent/JP5093779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal element which is made much lower in voltage and superior in stability. <P>SOLUTION: The liquid crystal element includes a pair of substrates which are arranged substantially in parallel to each other and at least one of which is transparent, a pair of alignment films arranged inside the substrates, and a liquid crystal material filled between the pair of alignment films, wherein surfaces of the alignment films are subjected to alignment processing so that liquid crystal molecules may be directed to the same direction, and the angle of directions of the alignment processing is 70 to 110°. The liquid crystal material contains an optical active substance which has a spiral pitch giving the reverse twist direction of a twist direction of liquid crystal molecules when a uniform twist structure is formed with a combination of the directions of the alignment processing of the pair of alignment films, and the liquid crystal molecules form the uniform twist structure. Here, pretilt angles of the liquid crystal molecules to the alignment films are from not less than 10° to not larger than an angle θph at which a double twist structure is formed in the absence of an applied electric field, and the ratio of the thickness (d) of a liquid crystal layer to the spiral pitch (p) satisfies 2<p/d<12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶素子に関するもので、特にリバースTN液晶素子の低電圧化、安定化、視野角依存性に関する発明である。
なお、この明細書では、両配向膜の配向処理の方向の組み合わせでユニフォームツイスト構造を形成するときの液晶分子の捩じれ方向に対して反対方向の捩じれ方向を与える螺旋ピッチを有する光学活性物質を上記液晶材料が含有し、その液晶分子がユニフォームツイスト構造を形成するTN液晶を、リバースTN液晶と呼ぶ。
The present invention relates to a liquid crystal element, and particularly relates to a reduction in voltage, stabilization, and viewing angle dependency of a reverse TN liquid crystal element.
In this specification, the optically active substance having a helical pitch that gives a twist direction opposite to the twist direction of liquid crystal molecules when a uniform twist structure is formed by a combination of directions of alignment treatments of both alignment films is described above. A TN liquid crystal that is contained in a liquid crystal material and whose liquid crystal molecules form a uniform twist structure is called a reverse TN liquid crystal.

液晶素子は、ディスプレイとして急速にその市場を拡大している。液晶ディスプレイは、解像度で他のディスプレイ方式に比べて優位であり、従来問題となっていたコントラストや色再現性の視野角依存性・コントラストの問題は解決され、現在は、応答速度(特に低温の応答速度)と、駆動電圧の低減化が特に改善すべき問題点として残っている。   The liquid crystal element is rapidly expanding its market as a display. The liquid crystal display is superior to other display systems in terms of resolution, and the problems of contrast and color reproducibility, which depended on the viewing angle and contrast, which have been problems in the past, have been solved. Response speed) and reduction of driving voltage remain as problems to be improved.

TN液晶に対しても、上記2つの問題点を改善することが強く望まれている。もちろん、これらの点を改善した際に、例えば、透過型TN液晶素子に特有の問題として、後述するように、正面からの透過率が暗くなるというような副次的悪影響が生じる場合には、それを避けるための方策も講じる必要がある。   It is strongly desired to improve the above two problems for the TN liquid crystal. Of course, when these points are improved, for example, as a problem peculiar to the transmission type TN liquid crystal element, as described later, when a secondary adverse effect such as a decrease in transmittance from the front occurs, It is necessary to take measures to avoid it.

特許文献1には、配向膜間に配置されてキラルネマティック液晶材料を有し、2つの配向膜間に誘発された90度未満の捩じれと、液晶材料の捩じれ方向が反対方向を向いている液晶素子が開示されている。   In Patent Document 1, a liquid crystal material having a chiral nematic liquid crystal material disposed between alignment films and a twist of less than 90 degrees induced between the two alignment films and a twist direction of the liquid crystal material are opposite to each other. An element is disclosed.

また、特許文献2には、両配向膜に施された配向処理の方向のなす角が約90度である液晶素子であって、配向膜の配向処理の方向の組み合わせでユニフォームツイスト構造を形成するときの液晶分子の捩じれ方向に対して反対方向の捩じれ方向を与える螺旋ピッチを有する光学活性物質を液晶材料が含有し、上記液晶分子がユニフォームツイスト構造を形成する液晶素子が開示されている。   Patent Document 2 discloses a liquid crystal element in which the angle formed by the alignment treatment directions applied to both alignment films is about 90 degrees, and a uniform twist structure is formed by a combination of alignment treatment direction directions of the alignment films. A liquid crystal element is disclosed in which a liquid crystal material contains an optically active substance having a helical pitch that gives a twist direction opposite to the twist direction of liquid crystal molecules, and the liquid crystal molecules form a uniform twist structure.

さらに、本願発明者等が先に学会発表を行った非特許文献1〜3がある。   Furthermore, there are Non-Patent Documents 1 to 3 that the inventors of the present application previously made a conference presentation.

特開2000−199903号公報JP 2000-199903 A 特開2007−293278号公報JP 2007-293278 A K.Takatoh, T. Kaneko, T.Uesugi, S. Kobayashi, Proceeding of IDW2007, 421(2007)K. Takatoh, T. Kaneko, T. Uesugi, S. Kobayashi, Proceeding of IDW2007, 421 (2007) 高頭、金子、上杉、小林 日本液晶学会討論会 講演予稿集 3pA03Takagami, Kaneko, Uesugi, Kobayashi Japanese Liquid Crystal Society Annual Meeting Proceedings 3pA03 高頭 液晶ディスプレイの高速・高画質・広視野角化技術、10ページ、技術情報協会(2006)High-head, high-speed, high-quality, wide viewing angle technology for liquid crystal displays, 10 pages, Technical Information Association (2006)

特許文献1に記載されている方法では、低電圧化の程度は極めて限られている。最も大きな効果を示す値でも、飽和電圧が3Vに対して2.5V程度である。
特許文献2の液晶素子は、不安定であり電圧無印加状態では数分でスプレイツイスト構造に戻るという問題点が発見された。1度使用をやめた後に、次に使用をはじめる場合には、電場を再度印加して全体をTN構造にする必要がある。すなわち、特許文献2の液晶素子は、大きな低電圧化駆動の可能性を示すが、安定性は低い。
そこで、本発明は、低電圧化の程度が大きく、かつ、安定性にすぐれた液晶素子を提案することを第1の課題とする。
In the method described in Patent Document 1, the degree of voltage reduction is extremely limited. Even at the value showing the greatest effect, the saturation voltage is about 2.5V with respect to 3V.
It has been discovered that the liquid crystal element of Patent Document 2 is unstable and returns to a spray twist structure in a few minutes when no voltage is applied. When the use is started after the use is stopped once, it is necessary to reapply an electric field to make the whole TN structure. That is, the liquid crystal element of Patent Document 2 shows the possibility of large low voltage driving, but the stability is low.
Accordingly, a first object of the present invention is to propose a liquid crystal element having a large degree of voltage reduction and excellent stability.

また、通常の液晶素子設計のガイドライン(例えば、非特許文献3に記載されている)に沿って設計するだけでは、正面からみた透過率が低くなるという透過型TN液晶素子に特有の問題点が生じる場合がある。
そこで、本発明は、そのような問題点を解決するための方策を提案することを第2の課題とする。
Further, there is a problem peculiar to the transmission type TN liquid crystal element that the transmittance as viewed from the front is lowered only by designing according to the normal liquid crystal element design guidelines (for example, described in Non-Patent Document 3). May occur.
Therefore, a second object of the present invention is to propose a measure for solving such a problem.

上記第1の課題は、請求項1の発明により解決された。
すなわち、略平行に配置され少なくとも一方が透明な1組の基板と、それぞれの基板の内側に配設された1組の配向膜と、上記1組の配向膜の間に充填された液晶材料を備え、上記配向膜の表面に上記液晶材料中の液晶分子が同一方向に向くように配向処理が施され、両配向膜に施された配向処理の方向のなす角が70度から110度である液晶素子であって、上記1組の配向膜の配向処理の方向の組み合わせでユニフォームツイスト構造を形成するときの液晶分子の捩じれ方向に対して反対方向の捩じれ方向を与える螺旋ピッチを有する光学活性物質を上記液晶材料が含有し、上記液晶分子がユニフォームツイスト構造を形成する液晶素子において、上記配向膜に対する上記液晶分子のプレチルト角が10度以上かつ電場無印加時にダブルツイスト構造を形成する角度θph以下であることと、上記螺線ピッチpと液晶層の厚みdの比が2<p/d<12であることを特徴とする液晶素子によって解決された。
The first problem has been solved by the invention of claim 1.
That is, a set of substrates arranged substantially in parallel and at least one of which is transparent, a set of alignment films disposed inside each substrate, and a liquid crystal material filled between the set of alignment films And an alignment treatment is performed on the surface of the alignment film so that the liquid crystal molecules in the liquid crystal material are oriented in the same direction, and the angle formed by the alignment treatment directions applied to both alignment films is 70 to 110 degrees. An optically active substance having a helical pitch that provides a twist direction opposite to a twist direction of liquid crystal molecules when forming a uniform twist structure by a combination of orientation directions of the one alignment film. In the liquid crystal element in which the liquid crystal material contains and the liquid crystal molecules form a uniform twist structure, the pretilt angle of the liquid crystal molecules with respect to the alignment film is 10 degrees or more and doubles when no electric field is applied. And not more than the angle θph forming the ist structure was solved by the liquid crystal element, wherein a ratio of the thickness d of the spiral pitch p and the liquid crystal layer is 2 <p / d <12.

また、上記第2の課題は、請求項2の発明により解決された。
すなわち、上記請求項1の発明に係る液晶素子において、上記液晶材料の屈折率異方性をΔn とするとき、上記液晶層の厚みdとの積Δn ×dの値が0.5μmより大きく3μm以下の値であり、好ましくは0.75μm以上1.5μm以下、さらに望ましくは0.8μm以上1.2μm以下であることを特徴とする液晶素子によって解決された。
The second problem has been solved by the invention of claim 2.
That is, in the liquid crystal element according to the first aspect of the invention, when the refractive index anisotropy of the liquid crystal material is Δn, the product Δn × d with the thickness d of the liquid crystal layer has a value larger than 0.5 μm and 3 μm. The present invention has been solved by a liquid crystal element having the following values, preferably 0.75 μm to 1.5 μm, more preferably 0.8 μm to 1.2 μm.

配向膜に垂直な方向(この明細書では、この方向を軸方向と呼ぶ)に垂直な面に対する角度を、この明細書では極角( azimuth角)という。配向膜と平行なとき極角はゼロ、軸方向に平行なとき極角は90度または−90度である。   An angle with respect to a plane perpendicular to a direction perpendicular to the alignment film (this direction is referred to as an axial direction in this specification) is referred to as a polar angle (azimuth angle) in this specification. When parallel to the alignment film, the polar angle is zero, and when parallel to the axial direction, the polar angle is 90 degrees or -90 degrees.

図1は、リバースTN液晶の中での液晶分子1の配列を示す。両側の配向膜2,3の配向方向は90度をなし(下の配向膜2は4時の方向、上の配向膜3は1時の方向)、液晶分子は両方の配向膜に接する部分で、その配向膜の配向方向と軸方向4を含む面内で配向膜に対してあるプレチルト角で立ち上がる。中間の領域では、液晶分子の極角を余り変えないで(正確には、後述するように、中間の領域では液晶分子の極角はやや軸方向4に近づく)、配向方向を90度旋回させる。   FIG. 1 shows the arrangement of liquid crystal molecules 1 in a reverse TN liquid crystal. The alignment directions of the alignment films 2 and 3 on both sides are 90 degrees (the lower alignment film 2 is at 4 o'clock and the upper alignment film 3 is at 1 o'clock), and the liquid crystal molecules are in contact with both alignment films. In the plane including the alignment direction of the alignment film and the axial direction 4, the film rises at a certain pretilt angle with respect to the alignment film. In the middle region, the polar angle of the liquid crystal molecules is not changed much (to be precise, in the middle region, the polar angle of the liquid crystal molecules is slightly closer to the axial direction 4), and the alignment direction is rotated by 90 degrees. .

図2は、スプレイ構造の配列を示している。両配向膜2,3に接する領域でのプレチルト角の方向が等しく、中間の領域では、液晶分子1の極角がゼロになるように変化する。すなわち、一旦軸方向に対して直角の方向になる。この結果、液晶分子の配向方向が扇形に分布するスプレイ構造を形成している。   FIG. 2 shows an array of spray structures. The direction of the pretilt angle in the region in contact with both alignment films 2 and 3 is equal, and in the intermediate region, the polar angle of the liquid crystal molecules 1 changes so as to be zero. That is, the direction is once perpendicular to the axial direction. As a result, a splay structure is formed in which the alignment directions of the liquid crystal molecules are distributed in a fan shape.

図3は、スプレイツイスト構造の配列を示す。スプレイツイスト構造とは、スプレイ構造と、上下基板間で90度捩じれるツイスト構造が組み合わさった構造である。   FIG. 3 shows an array of spray twist structures. The spray twist structure is a structure in which a spray structure and a twist structure twisted 90 degrees between upper and lower substrates are combined.

本願の発明者等は、安定なリバースTN液晶が得られるプレチルト角を求めて、低プレチルト角を実現する配向膜材料と、高プレチルト角を実現する配向膜材料との混合比を種々変えて混合することで、数々のプレチルト角を示す配向膜を作製し、リバースTN構造の液晶の安定性を調べた。
その結果、プレチルト角が10度の配向膜を用いた場合、少なくとも1分以上の間、リバースTN液晶が安定に持続させ得ることが確認された。
The inventors of the present application seek a pretilt angle at which a stable reverse TN liquid crystal can be obtained, and perform mixing by changing the mixing ratio of the alignment film material realizing a low pretilt angle and the alignment film material realizing a high pretilt angle. Thus, alignment films having various pretilt angles were produced, and the stability of the liquid crystal having a reverse TN structure was examined.
As a result, it was confirmed that when an alignment film having a pretilt angle of 10 degrees is used, the reverse TN liquid crystal can be stably maintained for at least 1 minute.

他方、プレチルト角の上限について、本願の発明者等は、プレチルト角とリバースTN構造の安定性を調べた。
その結果、プレチルト角が一定の角度θph以上になると、リバースTN構造が実現されなくなることが分かった。これは予想外の結果であった。
On the other hand, regarding the upper limit of the pretilt angle, the inventors of the present application investigated the stability of the pretilt angle and the reverse TN structure.
As a result, it was found that the reverse TN structure cannot be realized when the pretilt angle is equal to or larger than a certain angle θph. This was an unexpected result.

スプレイ構造あるいはスプレイツイスト構造において、プレチルト角が大きくなると、スプレイ構造はより圧縮された構造となる。すなわち、ギブスのフリーエネルギーが高くなり、これらの構造は不安定になる。一方、リバースTN液晶が不安定であるのは、リバースTN液晶がスプレイツイスト液晶に転移するためである。従って、プレチルト角を大きくすると、リバースTN液晶が相対的に安定になる、すなわち、安定なリバースTN液晶が得られると予想していたからである。   In the splay structure or the spray twist structure, when the pretilt angle increases, the splay structure becomes a more compressed structure. That is, the Gibbs free energy increases and these structures become unstable. On the other hand, the reverse TN liquid crystal is unstable because the reverse TN liquid crystal is transferred to the spray twist liquid crystal. Therefore, it is expected that when the pretilt angle is increased, the reverse TN liquid crystal becomes relatively stable, that is, a stable reverse TN liquid crystal can be obtained.

しかし、実験結果が、上記のように予想に反するものとなった理由は、プレチルト角が高くなった場合、スプレイツイスト構造とは別の構造である、(図4に示す)右回りと左回りが共存する、ダブルツイスト構造が形成されるためと推定している。   However, the reason why the experimental results were not as expected as described above is that when the pretilt angle is high, the structure is different from the spray twist structure, as shown in FIG. This is presumed to be due to the formation of a double twist structure.

図4に示すダブルツイスト構造は、プレチルト角が10度程度の場合でも、飽和電圧に近い電場を印加すると形成されることが判っている(非特許文献1,2)。このような構造をとる場合、駆動電圧が大きく増加し、低電圧化を図るという本発明の目的を達成することができない。   It has been found that the double twist structure shown in FIG. 4 is formed when an electric field close to the saturation voltage is applied even when the pretilt angle is about 10 degrees (Non-Patent Documents 1 and 2). In the case of adopting such a structure, the drive voltage is greatly increased, and the object of the present invention to achieve a low voltage cannot be achieved.

図5は、図4のダブルツイスト構造における、液晶分子の極角を配向膜からの距離の関数として示したものである。図から分かるように、極角は配向膜の近傍で一旦逆方向に曲がり、中間領域で反転し、さらに他方の配向膜の近傍で一旦行過ぎてから戻るという、複雑な極角分布を伴う。これは、ストレスエネルギーを、複雑な捩れでエネルギーで吸収するためであると説明できる。   FIG. 5 shows the polar angle of liquid crystal molecules as a function of the distance from the alignment film in the double twist structure of FIG. As can be seen from the figure, the polar angle is bent in the reverse direction in the vicinity of the alignment film, is inverted in the intermediate region, and is then excessively returned in the vicinity of the other alignment film. It can be explained that this is because stress energy is absorbed by energy with a complicated twist.

プレチルト角が10度程度の場合、電圧無印加時ではこのような構造は生じない。しかし、プレチルト角を大きくすることは、大きな印加電圧を印加することと同様の効果を持つため、電圧無印加時でも図4のようなダブルツイスト構造が形成されると考えられる。   When the pretilt angle is about 10 degrees, such a structure does not occur when no voltage is applied. However, since increasing the pretilt angle has the same effect as applying a large applied voltage, it is considered that a double twist structure as shown in FIG. 4 is formed even when no voltage is applied.

このような構造が生じることがあるため、安定なリバースTN液晶素子を作るためには、プレチルト角に上限があることが分かった。すなわち、プレチルト角は、所定の角θph以下であることが必要である。ここで、所定角θphは、電圧を印加してもリバースTN液晶構造を維持し、他の構造が形成されない最大角度である。これは、液晶材料、液晶素子の弾性率、および(後述する)p/dの値で変わる。   Since such a structure may occur, it has been found that there is an upper limit on the pretilt angle in order to produce a stable reverse TN liquid crystal element. That is, the pretilt angle needs to be equal to or smaller than a predetermined angle θph. Here, the predetermined angle θph is the maximum angle at which the reverse TN liquid crystal structure is maintained even when a voltage is applied and no other structure is formed. This varies depending on the liquid crystal material, the elastic modulus of the liquid crystal element, and the value of p / d (described later).

リバースTN液晶において、液晶層の厚みをd、液晶材料の螺旋ピッチをpとするとき、p/dの値は重要な指標である。例えば、p=5μm、d=5μmであれば、p/d=1となり、360度の螺旋構造となる。p=15μm、d=5μmの場合はp/d=3となり、液晶層内で1/3ピッチが形成される。すなわち120度捩じれた構造となる。p=10μm、d=5μmの場合はp/d=2となり、180度捩じれた構造となる。p/d=10の場合、36度捩じれた構造になる。   In the reverse TN liquid crystal, when the thickness of the liquid crystal layer is d and the helical pitch of the liquid crystal material is p, the value of p / d is an important index. For example, if p = 5 μm and d = 5 μm, p / d = 1 and a spiral structure of 360 degrees is obtained. When p = 15 μm and d = 5 μm, p / d = 3, and a 1/3 pitch is formed in the liquid crystal layer. That is, the structure is twisted 120 degrees. When p = 10 μm and d = 5 μm, p / d = 2, and the structure is twisted 180 degrees. When p / d = 10, the structure is twisted 36 degrees.

リバースTN液晶では、上下配向膜のプレチルト角の組み合わせで決まる捩じれ方向と、液晶材料の捩じれ方向が逆になっており、かつスプレイツイスト構造ではなく、ユニフォームツイスト構造となっている。すなわち、リバースTN構造では、液晶材料は液晶材料本来の螺旋構造とは逆の向きに捩じれている。その結果、液晶材料内でストレスが発生している。これ故、リバースTN液晶では、p/dの値が大きいほど、液晶材料内部のストレスが小さく安定である。しかし、低電圧化の程度は小さくなる。p/d=12より大きい場合、低電圧化の効果が現れないので、リバースTN構造を形成する価値はほとんどなくなる。   In the reverse TN liquid crystal, the twist direction determined by the combination of the pre-tilt angles of the upper and lower alignment films and the twist direction of the liquid crystal material are reversed, and a uniform twist structure is used instead of a spray twist structure. That is, in the reverse TN structure, the liquid crystal material is twisted in the opposite direction to the original spiral structure of the liquid crystal material. As a result, stress is generated in the liquid crystal material. Therefore, in the reverse TN liquid crystal, the larger the value of p / d, the less the stress inside the liquid crystal material and the more stable. However, the degree of voltage reduction is reduced. If p / d = 1 is greater than 12, the effect of lowering the voltage does not appear, so the value of forming the reverse TN structure is almost lost.

一方、p/dが小さい場合、低電圧化の効果が顕著になるが、リバースTNの構造が不安定になる。プレチルト角が10度からθphの場合、p/dが2以下のとき、リバースTN液晶は1分以内にスプレイツイスト構造に戻る。このように非常に不安定な構造となる。このため、p/dは2以上であることが必要である。   On the other hand, when p / d is small, the effect of lowering the voltage becomes remarkable, but the structure of the reverse TN becomes unstable. When the pretilt angle is 10 degrees to θph, the reverse TN liquid crystal returns to the spray twist structure within 1 minute when p / d is 2 or less. Thus, it becomes a very unstable structure. For this reason, p / d needs to be 2 or more.

図6は、同じ条件でピッチpだけを変化させたときの飽和電圧(透過率が飽和する印加電圧)の変化をプロットした図である。図から分かるように、ピッチpが大きい領域では、pが小さくなるに従って直線的に飽和電圧が下がる。しかし、ピッチpがある限界値より小さくなると、グラフは折れ曲がり、飽和電圧が急激に低下する。本発明は、この限界値より小さいピッチpで、リバースTN液晶を作成することを推奨するものである。
なお、特許文書1の液晶は、このグラフでは、右の部分のピッチpが大きい領域の液晶に関するものである。
FIG. 6 is a graph plotting changes in saturation voltage (applied voltage at which transmittance is saturated) when only the pitch p is changed under the same conditions. As can be seen from the figure, in a region where the pitch p is large, the saturation voltage decreases linearly as p decreases. However, when the pitch p becomes smaller than a certain limit value, the graph bends and the saturation voltage rapidly decreases. The present invention recommends that a reverse TN liquid crystal be produced with a pitch p smaller than this limit value.
Note that the liquid crystal of Patent Document 1 relates to a liquid crystal in a region where the pitch p in the right part is large in this graph.

一般にTN素子は、電圧無印加時の透過率を最大にとるために、液晶材料の屈折率異方性をΔn、液晶の厚みをdとするとき Δn×d=0.5μmとして設計する(例えば、非特許文献3)。工業製品として、この条件から逸脱することはない。しかしながら、本発明の液晶素子を、この条件で作製すると、正面の透過率が低下することが分かった。   In general, a TN device is designed such that Δn × d = 0.5 μm when the refractive index anisotropy of the liquid crystal material is Δn and the thickness of the liquid crystal is d in order to maximize the transmittance when no voltage is applied (for example, Non-Patent Document 3). As an industrial product, there is no departure from this condition. However, it has been found that when the liquid crystal element of the present invention is manufactured under these conditions, the front transmittance decreases.

後述するように、本発明の液晶素子では、正面透過率は最大透過率の30%になり、正面から目視した場合暗くなっているのが観察される。これは本発明の場合、電圧無印加で、液晶分子が基板に対して立ち上がるため、正面からみたΔnが減少するためである。   As will be described later, in the liquid crystal element of the present invention, the front transmittance is 30% of the maximum transmittance, and it is observed that it is dark when viewed from the front. This is because, in the case of the present invention, since no liquid crystal is applied to the substrate when no voltage is applied, Δn as viewed from the front is reduced.

この問題を解決するための方法として、従来のΔn×d=0.5μmの条件ではなく、Δn×dを0.5μmより大きくすればいいことが分かった(実用上では3μm以下)。液晶材料やプレチルト角にもよるが、十分な低電圧化の効果を得る場合は、Δn×dは0.75μm以上1.5μm以下、好ましくは0.8μm以上1.2μm以下である。   As a method for solving this problem, it was found that Δn × d should be made larger than 0.5 μm instead of the conventional condition of Δn × d = 0.5 μm (3 μm or less in practical use). Although depending on the liquid crystal material and the pretilt angle, Δn × d is not less than 0.75 μm and not more than 1.5 μm, preferably not less than 0.8 μm and not more than 1.2 μm, in order to obtain a sufficiently low voltage effect.

なお、Δn×dの値が0.75μmよりも小さい場合、正面の透過率が低いという問題を生じる。また、Δn×dの値が大きすぎる場合は、液晶材料は本発明の効果で電圧無印加状態で立ち上がっても、透過率の変化が現れるためには高い電圧を印加する必要が出てくるため、低電圧化の効果が十分得られなくなる。   When the value of Δn × d is smaller than 0.75 μm, there arises a problem that the front transmittance is low. On the other hand, if the value of Δn × d is too large, the liquid crystal material needs to be applied with a high voltage in order to exhibit a change in transmittance even if it rises in the absence of voltage application due to the effect of the present invention. Therefore, the effect of lowering the voltage cannot be obtained sufficiently.

以上の記載から明らかなように、上記した請求項1の本発明によれば、低電圧で駆動可能なTN構造の液晶素子を実現することができる。
また、上記した請求項2の本発明によれば、低電圧で駆動可能なリバースTN構造の液晶素子の正面での透過率を改善することができる。
As is clear from the above description, according to the present invention of claim 1 described above, a liquid crystal element having a TN structure that can be driven at a low voltage can be realized.
Further, according to the second aspect of the present invention, it is possible to improve the transmittance in the front of the liquid crystal element having a reverse TN structure that can be driven at a low voltage.

以下、本発明に係る液晶素子の実施例と比較例を対比しながら、さらに本発明を詳しく説明する。   Hereinafter, the present invention will be described in more detail while comparing Examples and Comparative Examples of the liquid crystal element according to the present invention.

<実施例1>
ガラス基板上に30Ω/cm2 の電気抵抗を持つ面積1×1cm2 のITO透明電極を形成した。このガラス基板上に、チッソ石油(株)製の液晶配向膜用ポリイミドPIA−X768−01Xを40重量%、同PIA−X359を60重量%混合したポリイミドの溶液を用いてスピンコーターにより3000RPMの条件でポリイミド膜を形成した。
このポリイミド膜に対して、2.5cmのローラー径で、押し込み量0.5mm、ローラー回転速度1000RPMでラビング処理を施した。このようにして作製した配向膜を、ラビング方向が図7に示す配置になるように組み合わせ、基板両端を接着剤で固定することにより液晶セルを作製した。
この液晶セルに、大日本インキ工業(株)製のRDP94808E062(ピッチ15μm:左回り)を注入した。注入直後は、スプレイツイスト構造を形成した。このセルに、60Hz矩形波10Vの電圧を10分間印加することにより、リバースTN構造を得た。得られたリバースTN液晶の透過率の印加電圧依存性を、図8に実施例1として示す。
<Example 1>
To form an ITO transparent electrode with an area of 1 × 1 cm 2 which on a glass substrate having an electrical resistance of 30Ω / cm 2. The condition of 3000 RPM by a spin coater using a polyimide solution in which 40% by weight of polyimide PIA-X768-01X for liquid crystal alignment film and 60% by weight of PIA-X359 made by Chisso Petroleum Co., Ltd. were mixed on this glass substrate. A polyimide film was formed.
The polyimide film was rubbed at a roller diameter of 2.5 cm, an indentation amount of 0.5 mm, and a roller rotation speed of 1000 RPM. The alignment films thus prepared were combined so that the rubbing direction was as shown in FIG. 7, and both ends of the substrate were fixed with an adhesive to prepare a liquid crystal cell.
RDP94808E062 (pitch 15 μm: counterclockwise) manufactured by Dainippon Ink Industries, Ltd. was injected into this liquid crystal cell. Immediately after the injection, a spray twist structure was formed. A reverse TN structure was obtained by applying a voltage of 10 V of 60 Hz rectangular wave to this cell for 10 minutes. The dependence of the transmittance of the obtained reverse TN liquid crystal on the applied voltage is shown as Example 1 in FIG.

<比較例1>
注入する液晶材料が螺旋構造を持たない(液晶材料にカイラル剤を添加していない)液晶材料(RDP94808)であること以外は、上記実施例1記載の液晶素子と同じ構成の液晶素子を作製し、その液晶素子の透過率の印加電圧依存性を測定した。結果を図8に比較例1として示す。
<Comparative Example 1>
A liquid crystal element having the same configuration as that of the liquid crystal element described in Example 1 was prepared except that the liquid crystal material to be injected was a liquid crystal material (RDP94808) having no spiral structure (no chiral agent added to the liquid crystal material). The dependency of the transmittance of the liquid crystal element on the applied voltage was measured. The results are shown as Comparative Example 1 in FIG.

<比較例2>
上下配向膜のラビング方向を図9の方向にしたこと以外は、上記実施例1に記載の方法と同様にして作製した液晶素子の透過率の印加電圧依存性を測定した。結果を図8に比較例2として示す。
<Comparative example 2>
Except that the rubbing direction of the vertical alignment film was changed to the direction of FIG. 9, the dependency of the transmittance of the liquid crystal element produced in the same manner as in the method described in Example 1 on the applied voltage was measured. The results are shown as Comparative Example 2 in FIG.

図8から分かるように、実施例1の場合、螺旋構造を持たないRDP94808(比較例1)、右回りの同じ螺旋ピッチを持つRDP94808R062(比較例2)に比べて、閾値電圧はほぼ0Vになっており、飽和電圧(最小輝度を示す電圧)も1.2Vと、比較例1,2の液晶セルに比べて極めて低くなった。このリバースTN液晶は、電圧無印加状態で5分間安定に存在し、その後、スプレイツイスト構造に変化した。   As can be seen from FIG. 8, in the case of Example 1, the threshold voltage is almost 0 V compared to RDP94808 (Comparative Example 1) having no spiral structure and RDP94808R062 (Comparative Example 2) having the same clockwise clockwise spiral pitch. The saturation voltage (voltage indicating the minimum luminance) was 1.2 V, which was extremely low as compared with the liquid crystal cells of Comparative Examples 1 and 2. This reverse TN liquid crystal existed stably for 5 minutes in a state where no voltage was applied, and then changed to a spray twist structure.

比較例1の場合、閾値電圧0.9V、飽和電圧2.7Vと、実施例1の結果に比べて高い値を示した。比較例2の場合、閾値電圧2.0V、飽和電圧5.0Vと、実施例1に対して高い値を示した。   In the case of Comparative Example 1, the threshold voltage was 0.9 V and the saturation voltage was 2.7 V, which were higher than the results of Example 1. In the case of Comparative Example 2, the threshold voltage was 2.0V and the saturation voltage was 5.0V, which was higher than that of Example 1.

<比較例3>
使用する配向膜をポリイミドPIA−X768−01X、50%、PIA−X359−01X、50%とすること以外は、上記実施例1と同様にして液晶素子を作製し、透過率の印加電圧依存性を測定した。結果を図10に比較例3として示す。また、比較するために上記実施例1の結果を図10に示す。
<Comparative Example 3>
A liquid crystal device was prepared in the same manner as in Example 1 except that the alignment film used was polyimide PIA-X768-01X, 50%, PIA-X359-01X, 50%, and the transmittance depends on the applied voltage. Was measured. The results are shown as Comparative Example 3 in FIG. For comparison, the results of Example 1 are shown in FIG.

別に、比較例3の場合と同じポリイミドPIA−X768−01X、50%、PIA−X359−01X、50%の配向膜を用いて反平行(平行で向きは互いに逆)のセルを作製し、プレチルト角測定装置(米国Elsicon 社製 プレチルト角測定システム PAS−301型)によりプレチルト角を測定した。この配向膜のプレチルト角は、17度であった。   Separately, an anti-parallel cell (parallel and opposite directions) was prepared using the same polyimide PIA-X768-01X, 50%, PIA-X359-01X, and 50% alignment film as in Comparative Example 3, and a pretilt was made. The pretilt angle was measured with an angle measuring device (Pretilt angle measuring system PAS-301, manufactured by Elsicon, USA). The pretilt angle of this alignment film was 17 degrees.

図10によると、プレチルト角が17度である場合、その透過率の印加電圧依存性は実施例1記載のプレチルト角が13度の場合と全く異なり、閾値電圧2.0V、(図示は省略したが)飽和電圧9.0Vと、比較例1記載のカイラル剤を添加しない場合に比べても極めて高い値となった。この挙動は、通常のTN液晶・スプレイツイスト液晶では説明できない。この液晶構造は、実施例1で飽和電圧以上の透過率が増加したときに出現する状態と同じ、1つのセル内に右回り・左回りの捩じれ構造が共存している状態(図4のダブルツイスト構造)が出現したと考えられる。   According to FIG. 10, when the pretilt angle is 17 degrees, the dependency of the transmittance on the applied voltage is completely different from the case of the pretilt angle of 13 degrees described in Example 1, and the threshold voltage is 2.0 V (not shown). The saturation voltage was 9.0 V, which was an extremely high value as compared with the case where the chiral agent described in Comparative Example 1 was not added. This behavior cannot be explained by ordinary TN liquid crystal / spray twist liquid crystal. This liquid crystal structure is the same as the state that appears when the transmittance equal to or higher than the saturation voltage is increased in the first embodiment, in which a clockwise and counterclockwise twisted structure coexists in one cell (see the double line in FIG. 4). It is thought that (twist structure) appeared.

<比較例4>
使用する配向膜をポリイミドPIA−X768−0X、65%、PIA−X359−01X、35%とすること以外は、上記実施例1と同様にして液晶素子を作製し、透過率の印加電圧依存性を測定した。実施例1と同様にして作製した液晶セルに電場処理を行った。しかし、このセルはリバースTN液晶への転移は見られなかった。
<Comparative example 4>
A liquid crystal device was prepared in the same manner as in Example 1 except that the alignment film used was polyimide PIA-X768-0X, 65%, PIA-X359-01X, 35%, and the transmittance depends on the applied voltage. Was measured. An electric field treatment was performed on a liquid crystal cell produced in the same manner as in Example 1. However, this cell showed no transition to reverse TN liquid crystal.

<実施例2>
用いる液晶材料をメルク社製のZLI−4792(UR019) 、螺旋ピッチ50μmとし、また用いる配向膜材料をチッソ石油化学(株)製のポリイミドPIA−X768−01X、45% PIA−X359−01X,55%(プレチルト角21度)を混合したポリイミドとすること以外は、上記実施例1と同様にして液晶素子を作製した。次に実施例1と同様の方法で電場処理を行いリバースTN液晶を作製した。プレチルト角21度のこの液晶は3時間安定に存在した。このリバースTN液晶の透過率の印加電圧依存性を図11に実施例2として示す。また、比較のために通常のTN液晶の透過率の印加電圧依存性を図11に示す。この実施例でも、低電圧化が実現されている。
<Example 2>
The liquid crystal material used is ZLI-4792 (UR019) manufactured by Merck and the spiral pitch is 50 μm, and the alignment film material used is polyimide PIA-X768-01X, 45% PIA-X359-01X, 55 manufactured by Chisso Petrochemical Co., Ltd. A liquid crystal device was produced in the same manner as in Example 1 except that polyimide mixed with% (pretilt angle 21 degrees) was used. Next, an electric field treatment was performed in the same manner as in Example 1 to produce a reverse TN liquid crystal. This liquid crystal having a pretilt angle of 21 degrees existed stably for 3 hours. The dependence of the transmittance of the reverse TN liquid crystal on the applied voltage is shown in FIG. For comparison, FIG. 11 shows the applied voltage dependence of the transmittance of a normal TN liquid crystal. Also in this embodiment, a low voltage is realized.

<実施例3>
実施例2では、配向膜のポリイミドの焼成温度を200度としたが、この焼成温度を220度とすること以外は、全て上記実施例2と同じ条件で液晶素子を作製し、電場処理によってリバースTN液晶素子を形成した。得られたリバースTN液晶素子は3か月間安定に存在した。このリバースTN素子の透過率の印加電圧依存性を図12に実施例3として示す。また、比較のために通常のTN液晶の透過率の印加電圧依存性を図12に示す。この実施例でも、低電圧化が実現されている。
<Example 3>
In Example 2, the firing temperature of the polyimide of the alignment film was set to 200 ° C. However, except that this firing temperature was set to 220 ° C., a liquid crystal element was manufactured under the same conditions as in Example 2 above, and reverse by electric field treatment. A TN liquid crystal element was formed. The obtained reverse TN liquid crystal element existed stably for 3 months. The dependence of the transmittance of the reverse TN device on the applied voltage is shown in FIG. For comparison, FIG. 12 shows the applied voltage dependence of the transmittance of a normal TN liquid crystal. Also in this embodiment, a low voltage is realized.

<比較例5>
液晶材料としてカイラル剤を添加せず螺旋構造を持たないこと以外は、上記実施例2と同様にして液晶素子を形成した。この場合p/dが小さ過ぎ、リバースTN液晶が形成されず、閾値電圧1.8V、飽和電圧4.0VとリバースTN液晶に比べていずれも高い値になった。
<Comparative Example 5>
A liquid crystal element was formed in the same manner as in Example 2 except that no chiral agent was added as a liquid crystal material and no spiral structure was formed. In this case, p / d was too small, the reverse TN liquid crystal was not formed, and the threshold voltage was 1.8 V and the saturation voltage was 4.0 V, both of which were higher than the reverse TN liquid crystal.

<比較例6>
液晶材料として、メルク社製のZLI−4792(US093) 、螺旋ピッチ10μmを用いること以外は、上記実施例2と同様の方法で液晶素子を作製した。この場合電場を印加することによってもリバースTN液晶を形成することはできなかった。すなわち、p/dが小さ過ぎると、リバースTN液晶が形成されない。
<Comparative Example 6>
A liquid crystal device was produced in the same manner as in Example 2 except that ZLI-4792 (US093) manufactured by Merck & Co., Ltd. and a helical pitch of 10 μm were used as the liquid crystal material. In this case, the reverse TN liquid crystal could not be formed even by applying an electric field. That is, if p / d is too small, the reverse TN liquid crystal is not formed.

<比較例7>
液晶材料としてメルク社製のZLI−4792(UR012) 、螺旋ピッチ75μmを用いること以外は、上記実施例2と同様の方法で液晶素子を作製した。得られた液晶素子に実施例2と同様の方法で電圧を印加する電場処理を施した。螺旋ピッチ75μmの場合、閾値電圧の低下はほとんど見られなかった。
<Comparative Example 7>
A liquid crystal device was produced in the same manner as in Example 2 except that ZLI-4792 (UR012) manufactured by Merck and a spiral pitch of 75 μm were used as the liquid crystal material. The obtained liquid crystal element was subjected to an electric field treatment in which a voltage was applied in the same manner as in Example 2. When the helical pitch was 75 μm, the threshold voltage was hardly decreased.

<実施例4>
実施例3で作製した本発明にかかる液晶素子につき、大塚電子(株)製の液晶電気光学特性測定装置LCD5200を用いて透過率の視野角依存性を測定した。得られた結果を図13に実施例4として示す。また、比較のために高プレチルト角(20度)のTN液晶の透過率の視野角依存性を図13に示す。
<Example 4>
With respect to the liquid crystal element according to the present invention produced in Example 3, the viewing angle dependency of the transmittance was measured using a liquid crystal electro-optical characteristic measuring device LCD5200 manufactured by Otsuka Electronics Co., Ltd. The obtained result is shown as Example 4 in FIG. For comparison, FIG. 13 shows the viewing angle dependence of the transmittance of a TN liquid crystal having a high pretilt angle (20 degrees).

通常のTN液晶では、プレチルト角が5度以下で低いため、電圧無印加時には視野角(極角、polar angle )による透過率の変化はないが、図13では、プレチルト角が20度と大きいため、透過率の視野角依存性が見られる。しかし、正面での透過率の減少はさほど大きくない。   In a normal TN liquid crystal, the pretilt angle is as low as 5 degrees or less, so there is no change in transmittance depending on the viewing angle (polar angle) when no voltage is applied, but in FIG. 13, the pretilt angle is as large as 20 degrees. The viewing angle dependency of the transmittance is seen. However, the decrease in transmittance at the front is not so great.

それに対して、本発明の液晶素子(実施例4)では、正面透過率は最大透過率の30%になっている。図13は正面の電圧無印加時の透過率を100としているため、図からは分からないが、実際は、正面から見ると透過率が低く暗くなっている。実際上記のように正面から目視した場合暗くなっているのが観察される。これは本発明の場合、電圧無印加で、液晶分子が基板に対して立ち上がるため、正面からみたΔnが減少するためと考えられる。   On the other hand, in the liquid crystal element of the present invention (Example 4), the front transmittance is 30% of the maximum transmittance. In FIG. 13, since the transmittance when no voltage is applied on the front is 100, it is not clear from the figure, but actually, the transmittance is low and dark when viewed from the front. In fact, it is observed that it is dark when viewed from the front as described above. In the case of the present invention, this is probably because the liquid crystal molecules rise with respect to the substrate when no voltage is applied, and Δn as viewed from the front is reduced.

先に示した実施例1の図8は、液晶材料として屈折率異方性Δnが0.19の液晶材料RDP9408E062、液晶層の厚みを5μmとし、Δn×d=0.95μmとした場合の透過率の印加電圧依存性を、本発明の液晶素子(実施例1)、及びTN液晶素子(比較例1,2)について示したものである。   FIG. 8 of the first embodiment shown above shows the liquid crystal material RDP9408E062 having a refractive index anisotropy Δn of 0.19, the thickness of the liquid crystal layer is 5 μm, and transmission when Δn × d = 0.95 μm. The dependence of the rate on the applied voltage is shown for the liquid crystal element of the present invention (Example 1) and the TN liquid crystal elements (Comparative Examples 1 and 2).

この条件の場合、TN液晶素子では、正面での透過率は最大にはならず閾値付近でいったん透過率が上昇しコブのようになる現象が観察される。それに対して本発明の場合、このコブの部分が、ちょうど電圧無印加時の状態に相当する。すなわち、TN液晶に1.1V程度のバイアス電圧を印加した状態に相当する。このことは本発明の液晶素子が、TN液晶に約1Vのバイアス電圧を印加している(TN液晶の曲線にたいして、本発明の曲線が1V分左に移動している)ことに相当している。これ故、図13に図示する場合のように、正面からの透過率は低くならず、目視により正面から見て暗くなる現象も観察されない。   Under this condition, in the TN liquid crystal element, the frontal transmittance does not become the maximum, and a phenomenon in which the transmittance once rises near the threshold and becomes like a bump is observed. On the other hand, in the case of the present invention, this bump portion corresponds to a state when no voltage is applied. That is, this corresponds to a state in which a bias voltage of about 1.1 V is applied to the TN liquid crystal. This corresponds to the fact that the liquid crystal element of the present invention applies a bias voltage of about 1 V to the TN liquid crystal (the curve of the present invention is moved to the left by 1 V with respect to the curve of the TN liquid crystal). . Therefore, as in the case shown in FIG. 13, the transmittance from the front is not lowered, and the phenomenon of darkness when viewed from the front is not observed.

図14は、Δn×d=0.5μmの場合の本発明の液晶素子とTN液晶素子の正面での透過率の印加電圧依存性を示すものである。なお、液晶材料はメルク社製のZLI−4792を用い、低プレチルト角(1度)のTN液晶、高プレチルト角(20度)のTN液晶、及び高プレチルト角(20度)の本発明のリバースTN液晶である。飽和電圧はTN液晶が4Vに対して、本発明の場合2V程度になっており、約半減していることが判る。   FIG. 14 shows the applied voltage dependence of the transmittance in front of the liquid crystal element of the present invention and the TN liquid crystal element when Δn × d = 0.5 μm. The liquid crystal material used is ZLI-4792 manufactured by Merck, Inc., a TN liquid crystal having a low pretilt angle (1 degree), a TN liquid crystal having a high pretilt angle (20 degrees), and a reverse of the present invention having a high pretilt angle (20 degrees). TN liquid crystal. The saturation voltage is about 2V in the case of the present invention with respect to 4V for the TN liquid crystal, and it can be seen that the saturation voltage is about halved.

以上、記載した実施例及び比較例に基づき、特許請求の範囲に記載した本発明に係る液晶素子を説明したが、本発明の技術的範囲は、何ら既述の実施例に限定されるものではない。   The liquid crystal element according to the present invention described in the claims has been described based on the described examples and comparative examples. However, the technical scope of the present invention is not limited to the examples described above. Absent.

リバースTN液晶の液晶分子の配列を概念的に示した斜視図である。It is the perspective view which showed notionally the arrangement | sequence of the liquid crystal molecule of a reverse TN liquid crystal. スプレイ構造の液晶分子の配列を概念的に示した断面図である。It is sectional drawing which showed notionally the arrangement | sequence of the liquid crystal molecule of a spray structure. スプレイツイスト構造の液晶分子の配列を概念的に示した斜視図である。It is the perspective view which showed notionally the arrangement | sequence of the liquid crystal molecule of a spray twist structure. 右回りと左回りが共存するダブルツイスト構造の液晶分子の配列を概念的に示した斜視図である。It is the perspective view which showed notionally the arrangement | sequence of the liquid crystal molecule | numerator of the double twist structure in which clockwise and counterclockwise coexist. 液晶分子の極角を印加電圧をパラメータとして配向膜からの距離の関数として示したグラフである。It is the graph which showed the polar angle of the liquid crystal molecule as a function of the distance from alignment film by making an applied voltage into a parameter. ピッチだけを変化させたときの飽和電圧(透過率が飽和する印加電圧)の変化をプロットしたグラフである。It is the graph which plotted the change of the saturation voltage (applied voltage which the transmittance | permeability saturates) when only a pitch is changed. 実施例1のラビング方向を示した図である。It is the figure which showed the rubbing direction of Example 1. FIG. 実施例1、比較例1,2の液晶の透過率の印加電圧依存性を示したグラフである。It is the graph which showed the applied voltage dependence of the transmittance | permeability of the liquid crystal of Example 1 and Comparative Examples 1 and 2. FIG. 比較例2のラビング方向を示した図である。It is the figure which showed the rubbing direction of the comparative example 2. 実施例1、比較例3の液晶の透過率の印加電圧依存性を示したグラフである。6 is a graph showing the applied voltage dependence of the transmittance of the liquid crystals of Example 1 and Comparative Example 3. 実施例2のリバースTN液晶、通常のTN液晶の透過率の印加電圧依存性を示したグラフである。It is the graph which showed the applied voltage dependence of the transmittance | permeability of the reverse TN liquid crystal of Example 2, and a normal TN liquid crystal. 実施例3のリバースTN液晶、通常のTN液晶の透過率の印加電圧依存性を示したグラフである。It is the graph which showed the applied voltage dependence of the transmittance | permeability of the reverse TN liquid crystal of Example 3, and a normal TN liquid crystal. 高プレチルト角のTN液晶、実施例4のリバースTN液晶の視野角に対する透過率を現したグラフである。10 is a graph showing the transmittance with respect to the viewing angle of a TN liquid crystal having a high pretilt angle and a reverse TN liquid crystal of Example 4. 低プレチルト角のTN液晶、高プレチルト角のTN液晶、本発明のリバースTN液晶の透過率の印加電圧依存性を示したグラフである。It is the graph which showed the applied voltage dependence of the transmittance | permeability of TN liquid crystal of a low pretilt angle, TN liquid crystal of a high pretilt angle, and the reverse TN liquid crystal of this invention.

符号の説明Explanation of symbols

1 液晶分子
2 下の配向膜
3 上の配向膜
4 軸方向
DESCRIPTION OF SYMBOLS 1 Liquid crystal molecule 2 Alignment film 3 Lower alignment film 4 Axial direction

Claims (2)

略平行に配置され少なくとも一方が透明な1組の基板と、それぞれの基板の内側に配設された1組の配向膜と、上記1組の配向膜の間に充填された液晶材料を備え、上記配向膜の表面に上記液晶材料中の液晶分子が同一方向に向くように配向処理が施され、両配向膜に施された配向処理の方向のなす角が70度から110度である液晶素子であって、上記1組の配向膜の配向処理の方向の組み合わせでユニフォームツイスト構造を形成するときの液晶分子の捩じれ方向に対して反対方向の捩じれ方向を与える螺旋ピッチを有する光学活性物質を上記液晶材料が含有し、上記液晶分子がユニフォームツイスト構造を形成する液晶素子において、上記配向膜に対する上記液晶分子のプレチルト角が10度以上かつ電場無印加時にダブルツイスト構造を形成する角度θph以下であることと、上記螺線ピッチpと液晶層の厚みdの比が2<p/d<12であることを特徴とする液晶素子。   A set of substrates arranged substantially in parallel and at least one of which is transparent; a set of alignment films disposed inside each substrate; and a liquid crystal material filled between the set of alignment films, A liquid crystal element in which the alignment treatment is performed on the surface of the alignment film so that the liquid crystal molecules in the liquid crystal material are oriented in the same direction, and the angle formed by the alignment treatment directions applied to both alignment films is 70 degrees to 110 degrees. An optically active substance having a helical pitch that gives a twist direction opposite to a twist direction of liquid crystal molecules when forming a uniform twist structure by a combination of orientation directions of the one alignment film. In a liquid crystal element that includes a liquid crystal material and in which the liquid crystal molecules form a uniform twist structure, a double twist structure is used when the pretilt angle of the liquid crystal molecules with respect to the alignment film is 10 degrees or more and no electric field is applied. And not more than the angle θph forming a liquid crystal element, wherein a ratio of the thickness d of the spiral pitch p and the liquid crystal layer is 2 <p / d <12. 上記液晶材料の屈折率異方性をΔn とするとき、上記液晶層の厚みdとの積Δn ×dの値が0.5μmより大きく3μm以下の値であることを特徴とする、請求項1に記載の液晶素子。   2. The product of the liquid crystal material having a thickness Δd of Δn × d having a refractive index anisotropy of Δn is greater than 0.5 μm and not greater than 3 μm. The liquid crystal element described in 1.
JP2008170783A 2008-06-30 2008-06-30 Liquid crystal element Expired - Fee Related JP5093779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170783A JP5093779B2 (en) 2008-06-30 2008-06-30 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170783A JP5093779B2 (en) 2008-06-30 2008-06-30 Liquid crystal element

Publications (2)

Publication Number Publication Date
JP2010008911A true JP2010008911A (en) 2010-01-14
JP5093779B2 JP5093779B2 (en) 2012-12-12

Family

ID=41589456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170783A Expired - Fee Related JP5093779B2 (en) 2008-06-30 2008-06-30 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP5093779B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164273A (en) * 2010-02-08 2011-08-25 Tokyo Univ Of Science Liquid crystal display element
JP2011203547A (en) * 2010-03-26 2011-10-13 Stanley Electric Co Ltd Liquid crystal display element, method of manufacturing the same, and method of driving the same
JP2011257664A (en) * 2010-06-11 2011-12-22 Stanley Electric Co Ltd Liquid crystal display element, method for manufacturing liquid crystal display element, and method for driving the same
KR20220014101A (en) * 2020-07-28 2022-02-04 주식회사 엘지화학 Light Modulating Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647875B2 (en) * 2010-11-29 2015-01-07 スタンレー電気株式会社 Liquid crystal element, liquid crystal display device
JP2016102932A (en) 2014-11-28 2016-06-02 株式会社ジャパンディスプレイ Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710116A (en) * 1980-06-20 1982-01-19 Seiko Epson Corp Liquid crystal display cell
JPH0282225A (en) * 1988-09-20 1990-03-22 Fujitsu Ltd Liquid crystal display element
JP2007193362A (en) * 2007-04-09 2007-08-02 Nec Corp Method of driving liquid crystal panel
JP2007293278A (en) * 2006-03-30 2007-11-08 Tokyo Univ Of Science Liquid crystal element, method of manufacturing the liquid crystal element, and method of using the liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710116A (en) * 1980-06-20 1982-01-19 Seiko Epson Corp Liquid crystal display cell
JPH0282225A (en) * 1988-09-20 1990-03-22 Fujitsu Ltd Liquid crystal display element
JP2007293278A (en) * 2006-03-30 2007-11-08 Tokyo Univ Of Science Liquid crystal element, method of manufacturing the liquid crystal element, and method of using the liquid crystal element
JP2007193362A (en) * 2007-04-09 2007-08-02 Nec Corp Method of driving liquid crystal panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164273A (en) * 2010-02-08 2011-08-25 Tokyo Univ Of Science Liquid crystal display element
JP2011203547A (en) * 2010-03-26 2011-10-13 Stanley Electric Co Ltd Liquid crystal display element, method of manufacturing the same, and method of driving the same
JP2011257664A (en) * 2010-06-11 2011-12-22 Stanley Electric Co Ltd Liquid crystal display element, method for manufacturing liquid crystal display element, and method for driving the same
KR20220014101A (en) * 2020-07-28 2022-02-04 주식회사 엘지화학 Light Modulating Device
KR102619980B1 (en) * 2020-07-28 2024-01-02 주식회사 엘지화학 Light Modulating Device

Also Published As

Publication number Publication date
JP5093779B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US7639332B2 (en) Display element and display device, driving method of display element, and program
US7307685B2 (en) Display element and display device
US7768589B2 (en) Display device
JP5190818B2 (en) Liquid crystal device and method for manufacturing liquid crystal device
US20050237472A1 (en) Display element and display device
JP5093779B2 (en) Liquid crystal element
JP2005227759A (en) Display element and display device
JP2005234541A (en) Display element and display device
JP2006003840A (en) Display element and device
JP5210677B2 (en) Liquid crystal display
KR100403845B1 (en) LCD Display
KR100523777B1 (en) Liquid display device
JP2000292815A (en) Perpendicularly aligned ecb mode liquid crystal display device
Ge et al. High transmittance in-plane switching liquid crystal displays
JP4846222B2 (en) Liquid crystal display element
JP4721252B2 (en) Normally white type LCD
JP2011164273A (en) Liquid crystal display element
JPS61226730A (en) Twisted nematic type liquid crystal display element
JP4104048B2 (en) π-cell liquid crystal device
WO2009154021A1 (en) Liquid crystal panel and liquid crystal display device
JP2010186045A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
WO2017099124A1 (en) Method for improving optical response and liquid crystal display element using same
Ito et al. Polymer sustained alignment for vertical aligned liquid crystal devices with a fast response and high contrast
JP3190857B2 (en) Liquid crystal display device
JP4515203B2 (en) Vertical alignment type ECB mode liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

R150 Certificate of patent or registration of utility model

Ref document number: 5093779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees