JP2010008574A - Wavelength conversion device using optical parametric oscillation - Google Patents

Wavelength conversion device using optical parametric oscillation Download PDF

Info

Publication number
JP2010008574A
JP2010008574A JP2008166020A JP2008166020A JP2010008574A JP 2010008574 A JP2010008574 A JP 2010008574A JP 2008166020 A JP2008166020 A JP 2008166020A JP 2008166020 A JP2008166020 A JP 2008166020A JP 2010008574 A JP2010008574 A JP 2010008574A
Authority
JP
Japan
Prior art keywords
single crystal
parametric oscillation
optical parametric
crystal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008166020A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sho
義彦 正
Seishi Shimamura
清史 島村
Villora Encarnacion Antonia Garcia
ビジョラ エンカルナシオン アントニア ガルシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Original Assignee
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, National Institute for Materials Science filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008166020A priority Critical patent/JP2010008574A/en
Publication of JP2010008574A publication Critical patent/JP2010008574A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion device using optical parametric oscillation that is available in near-infrared and infrared wavelength regions. <P>SOLUTION: The wavelength conversion device includes: a wavelength conversion element 4 wherein a periodically poled structure having positive and negative polarities alternated with a period d given by a formula (1):d=m/[(n3/3λ)-(n2/2λ)-(n1/1λ)] is formed in a nonlinear optical crystal to, by using quasi phase matching, output light beams 2 and 3 at frequencies ω1 and ω2 satisfying ω3=ω1+ω2 in response to incidence of a light beam 1 at the frequency ω3; and an optical resonator 5 wherein this element 4 is disposed. The nonlinear optical crystal includes a nitride single crystal. In the formula (1), m is the degree of phase matching, and λ1, λ2, and λ3 are wavelengths of light beams at frequencies ω1, ω2, and ω3, respectively, and n1, n2, and n3 are refractive indexes of the nitride single crystal for light beams at frequencies ω1, ω2, and ω3, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、波長1μm〜14μmの近赤外、赤外波長領域で利用可能な光パラメトリック発振による波長変換装置の改良に関するものである。   The present invention relates to an improvement in a wavelength conversion device by optical parametric oscillation that can be used in the near-infrared and infrared wavelength regions having a wavelength of 1 μm to 14 μm.

近年、光通信や高密度光記録用に半導体レーザーの高出力化、コンパクト化、発振波長の短波長化が著しく発展してきている。また、これ等の用途以外にも医療や環境計測の分野でレーザー光を応用する技術開発が活発に行われており、レーザー光源の更なる高出力化、コンパクト化、発振波長の多様化は重要な課題となっている。しかし、レーザー光源の開発には巨額の投資や技術課題を克服する必要があり、医療や環境計測、分光分析等への応用では必ずしも最適な波長のレーザー光源が使用出来ていないのが実情である。そこで、既存のレーザー光源を基本光として波長を変換する技術が重要となっている。レーザー光の波長変換は、既存の半導体レーザーや固体レーザーと、非線形光学結晶を用いた波長変換素子の組み合わせにより実現される。この組み合わせによれば原理上は連続発振も可能であり、また、パルス発振の場合に繰り返し周波数を大きくすることが可能である。更に、波長の狭帯域化も可能であり、空間モードの品質が良いという特徴も有している。   In recent years, semiconductor lasers with higher output, smaller size, and shorter oscillation wavelength have been developed for optical communication and high-density optical recording. In addition to these applications, there are active developments in the application of laser light in the fields of medicine and environmental measurement. It is important to further increase the output of laser light sources, make them more compact, and diversify their oscillation wavelengths. It is a difficult issue. However, it is necessary to overcome huge investment and technical problems in the development of laser light sources, and it is a fact that laser light sources with the optimum wavelength cannot always be used for medical, environmental measurement, spectroscopic analysis, etc. . Therefore, a technology for converting the wavelength using an existing laser light source as basic light is important. The wavelength conversion of laser light is realized by a combination of an existing semiconductor laser or solid state laser and a wavelength conversion element using a nonlinear optical crystal. According to this combination, continuous oscillation is possible in principle, and the repetition frequency can be increased in the case of pulse oscillation. Further, the wavelength band can be narrowed, and the quality of the spatial mode is good.

ここで、非線形光学結晶とは非線形光学効果を示す結晶のことである。また、非線形光学効果とは、物質の分極応答の非線形性による効果のことであり、物質中にレーザー光のような強い光を入射したときに、入射光の電界に対する分極の応答が比例しなくなることで入射光の一部が波長変換される現象である。特に、2次の非線形光学効果を利用して入射光の半分の波長の光を取り出す第2高調波発生は、レーザー光の短波長への波長変換方法として最も良く知られている。この方法により、例えばNd:YAGレーザー光(波長1064nm)を波長532nmに変換し、更にもう一段の波長変換により266nmにすることが出来る。   Here, the nonlinear optical crystal is a crystal that exhibits a nonlinear optical effect. The nonlinear optical effect is an effect due to nonlinearity of the polarization response of a substance. When strong light such as laser light is incident on the substance, the polarization response to the electric field of the incident light is not proportional. This is a phenomenon in which a part of incident light is wavelength-converted. In particular, second-harmonic generation, in which light having a wavelength half that of incident light is extracted using a second-order nonlinear optical effect, is best known as a method for converting the wavelength of laser light to a short wavelength. By this method, for example, Nd: YAG laser light (wavelength: 1064 nm) can be converted to a wavelength of 532 nm, and further to 266 nm by another wavelength conversion.

但し、この方法では、波長変換を行う非線形光学結晶に屈折率分散があるため、結晶中の第2高調波の波長は結晶中の入射光の波長に対して正確に1/2にはならず、結晶中の各所で発生した第2高調波同士に位相ずれが生じて、充分な強度の第2高調波を取り出すことが困難な問題を有する。このため、通常は結晶の複屈折を利用して入射光と第2高調波との波長比が正確に1/2になる結晶方位を用いることにより位相を整合させている。   However, in this method, since the nonlinear optical crystal that performs wavelength conversion has refractive index dispersion, the wavelength of the second harmonic in the crystal is not exactly ½ of the wavelength of incident light in the crystal. A phase shift occurs between the second harmonics generated at various points in the crystal, and there is a problem that it is difficult to extract a second harmonic having a sufficient strength. For this reason, the phase is usually matched by using the crystal orientation in which the wavelength ratio between the incident light and the second harmonic is exactly ½ using the birefringence of the crystal.

しかし、複屈折を利用した位相整合では、結晶の複屈折量を超える位相整合が不可能である。そこで、非線形光学結晶の限界を超えて位相整合を行う技術として、擬似位相整合という方法が提案されている(特許文献1)。   However, in phase matching using birefringence, phase matching exceeding the birefringence amount of the crystal is impossible. Therefore, as a technique for performing phase matching beyond the limit of the nonlinear optical crystal, a method called pseudo phase matching has been proposed (Patent Document 1).

擬似位相整合は、非線形光学結晶に周期的分極反転構造を形成することによって実現される。擬似位相整合によれば、非線形光学結晶が所望の波長において適当な複屈折を有していなくても、基本波と第2高調波の位相を整合させることで変換効率を向上させることができる。また、擬似位相整合による波長変換は、結晶の複屈折性を利用しないため、基本波と第2高調波の進行方向によって生じる変換効率の低下やビーム品質の悪化も回避できるという利点を有している。   Quasi-phase matching is realized by forming a periodically poled structure in a nonlinear optical crystal. According to the quasi phase matching, even if the nonlinear optical crystal does not have an appropriate birefringence at a desired wavelength, the conversion efficiency can be improved by matching the phases of the fundamental wave and the second harmonic. In addition, wavelength conversion by quasi-phase matching does not use the birefringence of the crystal, and therefore has the advantage of avoiding deterioration in conversion efficiency and beam quality caused by the traveling direction of the fundamental wave and the second harmonic. Yes.

こうした擬似位相整合を用いた波長変換素子により第2高調波や和周波といった入射光よりも短い波長の光を取り出すことが出来るため、波長の短い深紫外光源への応用等が活発に研究されている。   Since the wavelength conversion element using such quasi-phase matching can extract light having a wavelength shorter than the incident light such as the second harmonic and the sum frequency, the application to a deep ultraviolet light source having a short wavelength has been actively studied. Yes.

一方、このような波長変換素子で入射光よりも波長の長い2つの光に入射光を分解することも可能であり、そのうち波長の短い光をシグナル光、波長の長い光をアイドラ光と呼び、入射光の周波数をω3、シグナル光の周波数をω1、アイドラ光の周波数をω2としたときにω3=ω1+ω2の関係を満たす。このような長波長化の場合は短波長化と比較して利得が低いため光共振器を併用する必要があり、この長波長変換技術は光パラメトリック発振(Optical Parametric Oscillator)と呼ばれる。このような光パラメトリック発振によれば、例えば入射光にNd:YAGレーザー光(波長1064nm)を用いることにより、効率の高い2μm近傍の近赤外あるいは赤外光を取り出すことができる。更に、これ等の光の波長が波長変換素子の温度に依存することを利用し、波長変換素子の温度制御によって広い波長可変性を持たせることが可能であり、連続光源として利用することが可能となる。このような近赤外〜赤外領域での波長可変レーザー光源は、多様な原子・分子の分光操作や基礎物理定数の決定、また周波数標準、長さ標準や光パワー標準等の標準への応用等理化学基礎分野での応用に加え、実用的には大気中の極微量のガスや汚染物質の計測等環境分野での利用も可能となり、現在は多種多様なレーザー光源を用いて実現されている精密計測用光源を単一の原理に基づく光源システムに置き換えることが出来る等の期待が大きい。   On the other hand, it is also possible to decompose the incident light into two lights having a wavelength longer than that of the incident light with such a wavelength conversion element, of which the light having a short wavelength is called signal light, and the light having a long wavelength is called idler light. When the frequency of incident light is ω3, the frequency of signal light is ω1, and the frequency of idler light is ω2, the relationship of ω3 = ω1 + ω2 is satisfied. In the case of such a long wavelength, since the gain is lower than that of the short wavelength, it is necessary to use an optical resonator together. This long wavelength conversion technique is called an optical parametric oscillation (Optical Parametric Oscillator). According to such optical parametric oscillation, for example, by using Nd: YAG laser light (wavelength 1064 nm) as incident light, it is possible to extract near infrared or infrared light in the vicinity of 2 μm with high efficiency. Furthermore, by utilizing the fact that the wavelength of these lights depends on the temperature of the wavelength conversion element, it is possible to have wide wavelength variability by controlling the temperature of the wavelength conversion element, and it can be used as a continuous light source It becomes. Such tunable laser light sources in the near-infrared to infrared range are used for spectroscopic operations of various atoms and molecules, determination of basic physical constants, and application to standards such as frequency standards, length standards and optical power standards In addition to applications in the fundamental field of isophysics and chemistry, it is practically possible to use in the environmental field such as measurement of trace amounts of gases and pollutants in the atmosphere, and is currently realized using a wide variety of laser light sources. There is great expectation that the light source for precision measurement can be replaced with a light source system based on a single principle.

このような光パラメトリック発振波長変換装置に適用される波長変換素子としては、LiNbO3やLiTaO3等の強誘電体酸化物結晶が主に知られており、更にこれ等にMg等の元素をドープして耐光損傷性を改善する等の検討が加えられている(特許文献2)。 As wavelength conversion elements applied to such an optical parametric oscillation wavelength converter, ferroelectric oxide crystals such as LiNbO 3 and LiTaO 3 are mainly known, and further doped with elements such as Mg. Thus, studies such as improving the light damage resistance have been made (Patent Document 2).

しかし、これ等の波長変換素子として用いられるLiNbO3やLiTaO3等の結晶においては、赤外領域での吸収端が5μm付近のため、波長5μm以上の光を取り出すことが困難な問題があり、かつ、LiNbO3やLiTaO3等の結晶において、近赤外あるいは赤外領域に例えばOH−イオンのような波長2800nm近傍の材料固有の吸収がある場合、その波長領域で発生した光が吸収されてしまうためその波長領域の光源としては著しく効率が悪く、最悪の場合には材料それ自身の光吸収のため結晶が破壊される等の問題を生じている(特許文献3)。 However, in crystals such as LiNbO 3 and LiTaO 3 used as these wavelength conversion elements, there is a problem that it is difficult to extract light with a wavelength of 5 μm or more because the absorption edge in the infrared region is around 5 μm. In addition, in a crystal such as LiNbO 3 or LiTaO 3 , when there is absorption specific to a material near a wavelength of 2800 nm such as OH-ion in the near infrared or infrared region, light generated in that wavelength region is absorbed. Therefore, the efficiency of the light source in the wavelength region is remarkably inferior, and in the worst case, there is a problem that the crystal is broken due to light absorption of the material itself (Patent Document 3).

また、LiNbO3やLiTaO3等の熱伝導率は5〜10W/K・mと低いため放熱性が悪く、結晶の熱歪みにより高出力特性が劣化するという問題もあった。
特開2002−122898号公報(特許請求の範囲、段落0056) 特開2002−372731号公報(特許請求の範囲) 特開2000−356793号公報(特許請求の範囲)
In addition, since the thermal conductivity of LiNbO 3 and LiTaO 3 is as low as 5 to 10 W / K · m, heat dissipation is poor, and there is a problem that high output characteristics deteriorate due to thermal distortion of the crystal.
JP 2002-122898 A (Claims, paragraph 0056) JP 2002-372731 A (Claims) JP 2000-356793 A (Claims)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、特許文献3に記載された材料それ自身の光吸収の影響が小さく、高出力特性に優れ、しかも、波長5μm以上の光を取り出すことが可能な光パラメトリック発振波長変換装置を提供することにある。   The present invention was made by paying attention to such problems, and the problem is that the influence of light absorption of the material itself described in Patent Document 3 is small, excellent in high output characteristics, An object of the present invention is to provide an optical parametric oscillation wavelength converter capable of extracting light having a wavelength of 5 μm or more.

上記課題を解決するため、本発明者等は、上述した波長領域において光パラメトリック発振波長変換素子として機能しうる結晶材料の検討を行った。目的とする波長変換素子用の結晶には、熱伝導率が高く放熱性に優れ、近赤外、赤外領域で材料固有の吸収がなく、かつ、赤外領域での吸収端が5μm以上であると共に、擬似位相整合技術を適用するための強誘電性を持つことが求められる。更に、波長変換素子を実際に製造するためには、これ等の物性が満たされた上で一定の大きさ以上の単結晶を製造できなければならない。尚、本発明者等は、短波長領域で用いられる擬似位相整合を用いた波長変換素子として窒化物単結晶が好適であることを既に見出している(特願2007−320441明細書参照)が、この窒化物単結晶が、光パラメトリック発振波長変換装置に用いられる波長変換素子としても有効であることを発見し本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have examined a crystal material that can function as an optical parametric oscillation wavelength conversion element in the above-described wavelength region. The target crystal for wavelength conversion element has high thermal conductivity and excellent heat dissipation, no material-specific absorption in the near infrared and infrared regions, and an absorption edge in the infrared region of 5 μm or more. In addition, it is required to have ferroelectricity for applying the quasi phase matching technique. Furthermore, in order to actually manufacture the wavelength conversion element, it is necessary to manufacture a single crystal having a certain size or more while satisfying these physical properties. The present inventors have already found that a nitride single crystal is suitable as a wavelength conversion element using quasi phase matching used in a short wavelength region (see Japanese Patent Application No. 2007-320441 specification). The inventors have discovered that this nitride single crystal is also effective as a wavelength conversion element used in an optical parametric oscillation wavelength converter, and have completed the present invention.

すなわち、請求項1に係る発明は、
非線形光学結晶に下記式(1)で表される周期dで正負の極性が交番する周期的分極反転構造を形成し、擬似位相整合を用いて、周波数ω3の光を入射させることにより周波数ω3=ω1+ω2の関係を満たす周波数ω1と周波数ω2の光を出力させる波長変換素子と、入力側ミラーと出力側ミラーから成りこれ等ミラー間に上記波長変換素子が配置される光共振器とで構成される光パラメトリック発振波長変換装置において、
上記非線形光学結晶が窒化物単結晶で構成されていることを特徴とするものである。
That is, the invention according to claim 1
A periodic polarization inversion structure in which positive and negative polarities alternate with a period d represented by the following formula (1) is formed on the nonlinear optical crystal, and light having a frequency ω3 is made incident by using pseudo-phase matching. A wavelength conversion element that outputs light having a frequency ω1 and a frequency ω2 that satisfies the relationship ω1 + ω2 and an optical resonator that includes an input-side mirror and an output-side mirror and in which the wavelength conversion element is disposed between the mirrors. In the optical parametric oscillation wavelength converter,
The nonlinear optical crystal is composed of a nitride single crystal.

d=m/[(n3/λ3)−(n2/λ2)−(n1/λ1)] (1)
[上記式(1)において、mは位相整合の次数、λ1、λ2、λ3はそれぞれ周波数ω1、ω2、ω3の光の波長、n1、n2、n3はそれぞれ周波数ω1、ω2、ω3の光に対する窒化物単結晶の屈折率である]
また、請求項2に係る発明は、
請求項1に記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶がAl1-xGaxN(但し、0≦x≦1)で表される窒化物であることを特徴とし、
請求項3に係る発明は、
請求項1に記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶がAlNであることを特徴とする。
d = m / [(n3 / λ3) − (n2 / λ2) − (n1 / λ1)] (1)
[In the above formula (1), m is the phase matching order, λ1, λ2, and λ3 are the wavelengths of the light of the frequencies ω1, ω2, and ω3, respectively, and n1, n2, and n3 are the nitridings for the light of the frequencies ω1, ω2, and ω3, respectively. It is the refractive index of a single crystal]
The invention according to claim 2
In the optical parametric oscillation wavelength converter according to the invention of claim 1,
The nitride single crystal is a nitride represented by Al 1-x Ga x N (where 0 ≦ x ≦ 1),
The invention according to claim 3
In the optical parametric oscillation wavelength converter according to the invention of claim 1,
The nitride single crystal is AlN.

次に、請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶がバルク状結晶で構成されていることを特徴とし、
請求項5に係る発明は、
請求項1〜3のいずれかに記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶が基板上に形成された薄膜で構成されていることを特徴とする。
Next, the invention according to claim 4 is:
In the optical parametric oscillation wavelength converter according to any one of claims 1 to 3,
The nitride single crystal is composed of a bulk crystal,
The invention according to claim 5
In the optical parametric oscillation wavelength converter according to any one of claims 1 to 3,
The nitride single crystal is formed of a thin film formed on a substrate.

また、請求項6に係る発明は、
請求項5に記載の発明に係る光パラメトリック発振波長変換装置において、
薄膜が形成される上記基板が、Si、GaAs、AlN、InP、AlGaN、Al、β−Gaのいずれかであることを特徴とし、
請求項7に係る発明は、
請求項1〜6のいずれかに記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶が気相成長法により製造されていることを特徴とする。
The invention according to claim 6
In the optical parametric oscillation wavelength converter according to the invention of claim 5,
The substrate on which the thin film is formed is any one of Si, GaAs, AlN, InP, AlGaN, Al 2 O 3 , β-Ga 2 O 3 ,
The invention according to claim 7 provides:
In the optical parametric oscillation wavelength converter according to any one of claims 1 to 6,
The nitride single crystal is manufactured by a vapor phase growth method.

次に、請求項8に係る発明は、
請求項1〜6のいずれかに記載の発明に係る光パラメトリック発振波長変換装置において、
上記窒化物単結晶が液相成長法若しくは溶液成長法により製造されていることを特徴とし、
請求項9に係る発明は、
請求項1に記載の発明に係る光パラメトリック発振波長変換素子において、
波長変換して出力される光の少なくとも1つの光が波長1μm〜14μmであることを特徴とするものである。
Next, the invention according to claim 8 is:
In the optical parametric oscillation wavelength converter according to any one of claims 1 to 6,
The nitride single crystal is manufactured by a liquid phase growth method or a solution growth method,
The invention according to claim 9 is:
In the optical parametric oscillation wavelength conversion element according to the invention of claim 1,
At least one of the lights output after wavelength conversion has a wavelength of 1 μm to 14 μm.

本発明に係る光パラメトリック発振波長変換装置によれば、
擬似位相整合によって波長5μm以上の長波長光への波長変換、および、波長変換素子の温度制御によって広い波長可変性を持った連続光源が実現され、レーザー装置の固体化や小型化が図れるという効果を有している。
According to the optical parametric oscillation wavelength converter according to the present invention,
Effect of wavelength conversion to long wavelength light with wavelength of 5μm or more by quasi phase matching and continuous light source with wide wavelength variability by temperature control of wavelength conversion element, and solidification and miniaturization of laser device have.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る光パラメトリック発振波長変換装置は、窒化物単結晶から成る非線形光学結晶に周期的分極反転構造を形成して擬似位相整合を実現させた波長変換素子を、高い反射率を有しかつ互いに向かい合わせて設置した一対の鏡(入力側ミラーと出力側ミラー)により構成された光共振器の中に配置し、光共振器の入力側ミラーから励起レーザー光を入射させ、反対側の出力側ミラーから波長変換された2つの光(シグナル光とアイドラ光)を取り出すものである。   An optical parametric oscillation wavelength converter according to the present invention includes a wavelength conversion element in which a periodic polarization inversion structure is formed in a nonlinear optical crystal made of a nitride single crystal to realize quasi phase matching, and has a high reflectance. It is placed in an optical resonator composed of a pair of mirrors (input side mirror and output side mirror) installed facing each other, and pump laser light is incident from the input side mirror of the optical resonator to output on the opposite side. Two lights (signal light and idler light) that have been wavelength-converted are extracted from the side mirror.

図1は、本発明に係る光パラメトリック発振波長変換装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of an optical parametric oscillation wavelength converter according to the present invention.

この光パラメトリック発振波長変換装置に適用される波長変換素子は、略直方体形状の窒化物単結晶(非線形光学結晶)により構成され、かつ、この窒化物単結晶には下記式(1)で表される周期d(図1において符号6で示す)で正負の極性が図2に示すように交番する周期的分極反転構造が形成されている。   The wavelength conversion element applied to this optical parametric oscillation wavelength converter is composed of a substantially rectangular parallelepiped nitride single crystal (nonlinear optical crystal), and the nitride single crystal is represented by the following formula (1). A periodic domain-inverted structure is formed in which the positive and negative polarities alternate as shown in FIG. 2 in the period d (indicated by reference numeral 6 in FIG. 1).

d=m/[(n3/λ3)−(n2/λ2)−(n1/λ1)] (1)
[上記式(1)において、mは位相整合の次数、λ1、λ2、λ3はそれぞれ周波数ω1、ω2、ω3の光の波長、n1、n2、n3はそれぞれ周波数ω1、ω2、ω3の光に対する窒化物単結晶の屈折率である]
そして、図1に示すように互いに向かい合わせて設置された高反射率の入力側ミラー51と出力側ミラー52から成る光共振器5の中に、周期的分極反転構造が形成された窒化物単結晶(非線形光学結晶)から成る波長変換素子4を配置し、図1と図2に示すように上記入力側ミラー51を介し波長変換素子4の一方の端面から周期的分極反転構造の境界面に垂直に所定の周波数ω3の入射光1を入力すると、波長変換素子4の他方の端面から周波数ω1であるシグナル波2と周波数ω2であるアイドラ波3が出力され、更に波長変換素子4の両側に設置されている入力側ミラー51と出力側ミラー52により発振し、光パラメトリック発振による波長変換装置として機能する。このとき、波長変換素子4の光の入射面または出射面となる窒化物単結晶端面には光学研磨を施し、更に透過する光の波長に対応した反射防止膜を形成すれば波長変換素子としての効率を高めることが出来る。このような周期的分極反転構造を形成する方法としては特に制限はなく、通常行われる高電圧印加による方法を用いれば、窒化物単結晶に対しても容易に周期的分極反転構造を形成することが出来る
ここで、本発明に係る光パラメトリック発振波長変換装置の波長変換素子を構成する窒化物単結晶(非線形光学結晶)としては、Al1-xGaxN(但し、0≦x≦1)で表されるAlNとGaNの混晶が好適であり、特に、波長5μm以上の長波長光を取り出すためにはAlNを用いることが有効である。窒化物単結晶のAlNにおいては、赤外領域での吸収端が14.8μmであるため、波長5μm以上の長波長光(14μm)を取り出せるからである。
d = m / [(n3 / λ3) − (n2 / λ2) − (n1 / λ1)] (1)
[In the above formula (1), m is the phase matching order, λ1, λ2, and λ3 are the wavelengths of the light of the frequencies ω1, ω2, and ω3, respectively, and n1, n2, and n3 are the nitridings for the light of the frequencies ω1, ω2, and ω3, respectively. It is the refractive index of a single crystal]
Then, as shown in FIG. 1, a nitride single unit in which a periodic polarization inversion structure is formed in an optical resonator 5 composed of an input side mirror 51 and an output side mirror 52 which are installed facing each other. A wavelength conversion element 4 made of a crystal (nonlinear optical crystal) is arranged, and from one end face of the wavelength conversion element 4 to the boundary surface of the periodic polarization inversion structure via the input side mirror 51 as shown in FIGS. When incident light 1 having a predetermined frequency ω 3 is inputted vertically, a signal wave 2 having a frequency ω 1 and an idler wave 3 having a frequency ω 2 are output from the other end face of the wavelength conversion element 4. The input side mirror 51 and the output side mirror 52 oscillate and function as a wavelength conversion device based on optical parametric oscillation. At this time, if the nitride single crystal end face which becomes the light incident surface or the light exit surface of the wavelength conversion element 4 is subjected to optical polishing, and an antireflection film corresponding to the wavelength of the transmitted light is further formed, the wavelength conversion element 4 Efficiency can be increased. There is no particular limitation on the method of forming such a periodically poled structure, and a periodic domain-inverted structure can be easily formed even on a nitride single crystal by using the usual high voltage application method. Here, as the nitride single crystal (nonlinear optical crystal) constituting the wavelength conversion element of the optical parametric oscillation wavelength converter according to the present invention, Al 1-x Ga x N (where 0 ≦ x ≦ 1) A mixed crystal of AlN and GaN expressed by the following formula is suitable, and in particular, it is effective to use AlN for extracting long wavelength light having a wavelength of 5 μm or more. This is because long-wavelength light (14 μm) having a wavelength of 5 μm or more can be extracted because nitride single crystal AlN has an absorption edge of 14.8 μm in the infrared region.

更に、AlNの熱伝導率は250W/K・mでLiNbO3やLiTaO3と比較して25倍以上高く、結晶の放熱性に優れているため高出力時における特性の劣化が少ない。 Furthermore, the thermal conductivity of AlN is 250 W / K · m, which is 25 times higher than that of LiNbO 3 or LiTaO 3, and the heat dissipation of the crystal is excellent.

また、窒化物単結晶の形態としては、バルク状結晶あるいは基板上に形成された薄膜を用いることが出来、また、薄膜が形成される上記基板としては、Si、GaAs、AlN、InP、AlGaN、Al、β−Gaのいずれかで構成される基板を用いることが出来る。更に、本発明で用いられる窒化物単結晶の製造方法としては、気相成長法(昇華法、有機金属気相成長法、ハイドライド気相成長法、分子線エピタキシー法)、液相成長法、溶液成長法を用いることが出来るが、その製造方法や成長の条件等により限定されるものではない。 Moreover, as a form of the nitride single crystal, a bulk crystal or a thin film formed on a substrate can be used, and as the substrate on which the thin film is formed, Si, GaAs, AlN, InP, AlGaN, A substrate composed of either Al 2 O 3 or β-Ga 2 O 3 can be used. Furthermore, as a method for producing the nitride single crystal used in the present invention, a vapor phase growth method (sublimation method, metalorganic vapor phase growth method, hydride vapor phase growth method, molecular beam epitaxy method), liquid phase growth method, solution Although a growth method can be used, it is not limited by the manufacturing method, growth conditions, or the like.

以下、実施例により本発明を具体的に説明するが、本発明の技術的内容が実施例によって何ら限定されるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the technical content of this invention is not limited at all by an Example.

この実施例では、昇華法によって成長させたAlN単結晶を用いて波長変換素子を作製した。尚、以下の説明は本発明の例示に過ぎず、これに限定されるものではない。   In this example, a wavelength conversion element was manufactured using an AlN single crystal grown by a sublimation method. In addition, the following description is only an illustration of this invention and is not limited to this.

ここで、上記昇華法とは、図3に示すように、加熱装置8によって成長用ルツボ7内に高温部12と低温部13を持つような温度分布を設け、かつ、高温部12側に配置された原料11を昇華させて低温部13側に配置された種結晶9上に析出させることにより、成長結晶10を製造する方法である。   Here, as shown in FIG. 3, the sublimation method provides a temperature distribution having a high temperature portion 12 and a low temperature portion 13 in the growth crucible 7 by the heating device 8, and is arranged on the high temperature portion 12 side. In this method, the grown crystal 10 is produced by sublimating the deposited raw material 11 and depositing it on the seed crystal 9 arranged on the low temperature part 13 side.

本実施例における昇華法では、加熱方法として高周波誘導加熱を用い、真空排気および高純度窒素ガスの供給が可能な石英容器中に内径50mmφ、高さ80mmの空間を持つ厚さ10mmのグラファイトルツボをセットした。グラファイトルツボの上部低温側に、主面方位がc面であり、表面を化学研磨によって鏡面状に加工した厚さ1mm、直径25mmのAlN単結晶基板(種結晶)をセットした。   In the sublimation method in this example, a graphite crucible with a thickness of 10 mm having a space of an inner diameter of 50 mmφ and a height of 80 mm is placed in a quartz container that can be evacuated and supplied with high-purity nitrogen gas using high-frequency induction heating. I set it. On the upper low temperature side of the graphite crucible, an AlN single crystal substrate (seed crystal) having a thickness of 1 mm and a diameter of 25 mm with a principal surface orientation of c-plane and a mirror-finished surface by chemical polishing was set.

原料にはAlN多結晶粉末を用い、グラファイトルツボ下部の高温側に配置した。雰囲気は高純度窒素101kPaとし、高周波誘導加熱によってグラファイトルツボ上部の種結晶が配置された部分を低温側として2200℃、グラファイトルツボ底部の原料が配置された部分を高温側として2250℃とし、80時間AlN結晶の成長を行った。そして、成長終了後に室温まで冷却を行ってAlN結晶を得た。   AlN polycrystalline powder was used as a raw material, and was placed on the high temperature side below the graphite crucible. The atmosphere is high-purity nitrogen 101 kPa, the portion where the seed crystal at the top of the graphite crucible is placed by high-frequency induction heating is 2200 ° C. as the low temperature side, the portion where the raw material at the bottom of the graphite crucible is placed at 2250 ° C. as the high temperature side, 80 hours An AlN crystal was grown. And after completion | finish of growth, it cooled to room temperature and obtained the AlN crystal | crystallization.

得られたAlN結晶は、直径約30mm、厚さ約10mmの円柱状であり、結晶の外周部に一部多結晶化している部分があるが、それ以外の部分は単結晶であり、上記種結晶の方位であるc面を引き継いで成長していた。   The obtained AlN crystal has a columnar shape with a diameter of about 30 mm and a thickness of about 10 mm, and there are parts that are partly polycrystallized on the outer periphery of the crystal, but other parts are single crystals, The crystal was grown taking over the c-plane which is the crystal orientation.

このようにして得られたAlN単結晶から必要な寸法を有したAlN単結晶板を切り出し、波長変換素子を作製した。   An AlN single crystal plate having a necessary size was cut out from the AlN single crystal thus obtained to produce a wavelength conversion element.

本実施例における光パラメトリック発振波長変換装置は、波長変換素子であるAlN単結晶板に、下記式(1)で表される周期dで正負の極性が図2に示すように交番する周期的分極反転構造を形成し、擬似位相整合を利用して、波長1064nmの光を入射光(基本波)とし、波長1μm〜14μmの光を出力するものである。   The optical parametric oscillation wavelength converter in the present embodiment is a periodic polarization in which positive and negative polarities alternate with a period d represented by the following formula (1) as shown in FIG. 2 on an AlN single crystal plate which is a wavelength conversion element. An inversion structure is formed, and light having a wavelength of 1064 nm is used as incident light (fundamental wave) by using pseudo phase matching, and light having a wavelength of 1 μm to 14 μm is output.

d=m/[(n3/λ3)−(n2/λ2)−(n1/λ1)] (1)
[上記式(1)において、mは位相整合の次数、λ1、λ2、λ3はそれぞれ周波数ω1、ω2、ω3の光の波長、n1、n2、n3はそれぞれ周波数ω1、ω2、ω3の光に対する窒化物単結晶の屈折率である]
本実施例ではAlNの有する強誘電性を利用して周期的分極反転構造を形成した。具体的にはAlNが有する自発分極軸であるc軸方向に、自発分極の向きとは逆方向に外部から高電界を印加することによって自発分極の極性を反転させ、分極反転構造を形成した。
d = m / [(n3 / λ3) − (n2 / λ2) − (n1 / λ1)] (1)
[In the above formula (1), m is the phase matching order, λ1, λ2, and λ3 are the wavelengths of the light of the frequencies ω1, ω2, and ω3, respectively, and n1, n2, and n3 are the nitridings for the light of the frequencies ω1, ω2, and ω3, respectively. It is the refractive index of a single crystal]
In this example, a periodic domain-inverted structure was formed using the ferroelectricity of AlN. Specifically, the polarity of the spontaneous polarization was reversed by applying a high electric field from the outside in the c-axis direction, which is the spontaneous polarization axis of AlN, in the direction opposite to the direction of the spontaneous polarization to form a polarization inversion structure.

まず始めに、得られたAlN単結晶をc軸に垂直にスライスして、厚さ方向がc軸である、10mm×10mm×0.5mmの薄板状AlN単結晶板に加工した。このAlN単結晶板に関しては、薄い方が分極反転構造加工の際に結晶内部に印加される電界強度を大きくとることが出来るが、基本波として入射させる光のビーム径よりは厚くすることが望ましい。これ等の条件を考慮すると、AlN単結晶板の厚さとしては、0.5mm〜1.0mm程度が適当である。   First, the obtained AlN single crystal was sliced perpendicularly to the c-axis and processed into a 10 mm × 10 mm × 0.5 mm thin plate-like AlN single crystal plate in which the thickness direction was the c-axis. With regard to this AlN single crystal plate, the thinner one can increase the electric field strength applied to the inside of the crystal when processing the domain-inverted structure, but it is desirable to make it thicker than the beam diameter of the light incident as the fundamental wave. . Considering these conditions, the thickness of the AlN single crystal plate is suitably about 0.5 mm to 1.0 mm.

次に、薄板状に加工したAlN単結晶板のc軸に垂直な面(〔0001〕面)に、形成しようとする周期的分極反転構造に対応した周期的構造を有する電極を形成した。周期的構造を有する電極は、対向する〔0001〕面(上面および下面)の内、少なくとも一方の面に形成すればよく、他方の面に形成する電極は全面一様なものでもよい。当然のことながら両面に同一の周期的構造を有する電極を形成しても良い。本実施例では、図4に示すように、AlN単結晶板15の下面に一様な下面電極膜16を、また、上面には周期的構造を有する上面電極膜17をそれぞれスパッタリング法によって形成した。   Next, an electrode having a periodic structure corresponding to the periodic domain-inverted structure to be formed was formed on a plane perpendicular to the c-axis ([0001] plane) of the thin AlN single crystal plate. The electrode having a periodic structure may be formed on at least one of the opposing [0001] planes (upper surface and lower surface), and the electrode formed on the other surface may be uniform over the entire surface. Of course, electrodes having the same periodic structure may be formed on both sides. In this embodiment, as shown in FIG. 4, a uniform lower electrode film 16 is formed on the lower surface of the AlN single crystal plate 15, and an upper electrode film 17 having a periodic structure is formed on the upper surface by sputtering. .

電極材の材質には白金を用いたが、白金以外にもアルミニウムやニッケルクロム合金等の他の金属材料を電極膜として使用することは可能である。電極膜の形成方法としてはスパッタリング法の他、真空蒸着法やイオンプレーティング法等、従来の薄膜形成方法を用いることができ、素子のサイズや電極膜の材質等によって適当な方法を選択すれば良い。   Although platinum was used as the material of the electrode material, it is possible to use other metal materials such as aluminum and nickel-chromium alloy as the electrode film in addition to platinum. As a method for forming the electrode film, a conventional thin film forming method such as a vacuum deposition method or an ion plating method can be used in addition to the sputtering method. If an appropriate method is selected depending on the size of the element, the material of the electrode film, and the like. good.

電極膜に周期的パターンを形成する方法として、半導体デバイスの製造に一般的に用いられているフォトリソグラフィ技術を適用した。   As a method for forming a periodic pattern on the electrode film, a photolithography technique generally used in the manufacture of semiconductor devices was applied.

以上の工程より、AlN単結晶板上に所定の周期的構造を有する電極を形成した後、電極に高電圧を印加して該当部分の自発分極を反転させた。印加電圧は数kV〜10kVの範囲内でAlN単結晶板の抗電界および素子厚に応じて調整し、パルス状で印加した。1パルスの時間は数10μs〜200μs程度とした。印加電圧および1パルスあたりの印加時間は、電界印加の際に流れる総電荷量のモニター、分極反転のその場観察および素子作成後のエッチング等により、形成された分極反転構造を観察することにより最適化した。   From the above steps, after forming an electrode having a predetermined periodic structure on the AlN single crystal plate, a high voltage was applied to the electrode to invert the spontaneous polarization of the corresponding part. The applied voltage was adjusted in accordance with the coercive electric field and the element thickness of the AlN single crystal plate within a range of several kV to 10 kV, and applied in a pulse form. The duration of one pulse was set to about several tens of μs to 200 μs. The applied voltage and application time per pulse are optimal by observing the formed polarization inversion structure by monitoring the total amount of charge flowing when applying an electric field, in-situ observation of polarization inversion, etching after device creation, etc. Turned into.

尚、分極反転時に印加する電界は結晶中である程度の広がりを持つため、加工後の分極反転部の長さは電極の長さとは完全に一致せず、通常は電極の長さを所望の分極反転部の長さよりも短めに設定することになる。本実施例では最適な電極の長さを実験的に求めたが、結晶内の電界強度分布をシミュレーションすることにより、予め最適な電極の長さを求めても良い。   Since the electric field applied at the time of polarization inversion has a certain extent in the crystal, the length of the domain-inverted part after processing does not completely match the length of the electrode, and the length of the electrode is usually set to the desired polarization. It is set to be shorter than the length of the reversing part. In this embodiment, the optimum electrode length is experimentally obtained. However, the optimum electrode length may be obtained in advance by simulating the electric field strength distribution in the crystal.

最終的にAlN単結晶板に形成された分極反転構造は図2に示す通りである。結晶端面の矢印が分極方向を示す。尚、実際の分極反転工程では、上下電極間の絶縁を確保するため、AlN単結晶板の周辺部には電極を形成しないマージン部分が設けられる。従って、AlN単結晶板の周辺部には分極反転構造の形成が不完全な部分も存在するが、光軸に沿った部分に所定の周期で分極反転構造が形成されていれば、波長変換素子として十分に機能することは当然でのことである。   The domain-inverted structure finally formed on the AlN single crystal plate is as shown in FIG. The arrow on the crystal end face indicates the polarization direction. In the actual polarization reversal step, a margin portion where no electrode is formed is provided in the peripheral portion of the AlN single crystal plate in order to ensure insulation between the upper and lower electrodes. Therefore, there is an incomplete part of the domain-inverted structure in the peripheral part of the AlN single crystal plate, but if the domain-inverted structure is formed at a predetermined period in the part along the optical axis, the wavelength conversion element As a matter of course it will function as well.

本発明に係る光パラメトリック発振波長変換装置によれば、擬似位相整合によって近赤外あるは赤外光への波長変換、および、波長変換素子の温度制御によって広い波長可変性を持った連続光源が実現され、レーザー装置の固体化や小型化が図れるという産業上の利用可能性を有している。   According to the optical parametric oscillation wavelength conversion device of the present invention, a continuous light source having a wide wavelength variability by wavelength conversion to near infrared or infrared light by quasi phase matching and temperature control of the wavelength conversion element is obtained. It is realized and has industrial applicability that the laser device can be solidified and miniaturized.

本発明に係る光パラメトリック発振波長変換装置の概略構成図。1 is a schematic configuration diagram of an optical parametric oscillation wavelength converter according to the present invention. 本発明に係る光パラメトリック発振波長変換装置における波長変換素子の分極反転構造を示す説明図。Explanatory drawing which shows the polarization inversion structure of the wavelength conversion element in the optical parametric oscillation wavelength converter which concerns on this invention. 実施例1の昇華法を示す概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing which shows the sublimation method of Example 1. 実施例1で形成した電極パターンの概略図。1 is a schematic diagram of an electrode pattern formed in Example 1. FIG.

符号の説明Explanation of symbols

1 入射光ω3
2 シグナル光ω1
3 アイドラ光ω2
4 擬似位相整合波長変換素子
5 光共振器
6 周期d
7 成長用ルツボ
8 加熱装置
9 種結晶
10 成長結晶
11 原料
12 高温部
13 低温部
14 成長方位
15 単結晶板
16 下面電極膜
17 上面電極膜
51 入力側ミラー
52 出力側ミラー
1 Incident light ω3
2 Signal light ω1
3 idler light ω2
4 Pseudo phase matching wavelength conversion element 5 Optical resonator 6 Period d
7 Growing crucible 8 Heating device 9 Seed crystal 10 Grown crystal 11 Raw material 12 High temperature part 13 Low temperature part 14 Growth orientation 15 Single crystal plate 16 Lower electrode film 17 Upper electrode film 51 Input side mirror 52 Output side mirror

Claims (9)

非線形光学結晶に下記式(1)で表される周期dで正負の極性が交番する周期的分極反転構造を形成し、擬似位相整合を用いて、周波数ω3の光を入射させることにより周波数ω3=ω1+ω2の関係を満たす周波数ω1と周波数ω2の光を出力させる波長変換素子と、入力側ミラーと出力側ミラーから成りこれ等ミラー間に上記波長変換素子が配置される光共振器とで構成される光パラメトリック発振波長変換装置において、
上記非線形光学結晶が窒化物単結晶で構成されていることを特徴とする光パラメトリック発振波長変換装置。
d=m/[(n3/λ3)−(n2/λ2)−(n1/λ1)] (1)
[上記式(1)において、mは位相整合の次数、λ1、λ2、λ3はそれぞれ周波数ω1、ω2、ω3の光の波長、n1、n2、n3はそれぞれ周波数ω1、ω2、ω3の光に対する窒化物単結晶の屈折率である]
A periodic polarization reversal structure in which positive and negative polarities alternate with a period d represented by the following formula (1) is formed in the nonlinear optical crystal, and light having a frequency ω3 is made incident by using pseudo phase matching. A wavelength conversion element that outputs light having a frequency ω1 and a frequency ω2 that satisfy the relationship of ω1 + ω2 and an optical resonator that includes an input-side mirror and an output-side mirror and in which the wavelength conversion element is disposed between the mirrors. In an optical parametric oscillation wavelength converter,
An optical parametric oscillation wavelength converter, wherein the nonlinear optical crystal is composed of a nitride single crystal.
d = m / [(n3 / λ3) − (n2 / λ2) − (n1 / λ1)] (1)
[In the above formula (1), m is the phase matching order, λ1, λ2, and λ3 are the wavelengths of the light of the frequencies ω1, ω2, and ω3, respectively, and n1, n2, and n3 are the nitridings for the light of the frequencies ω1, ω2, and ω3, respectively. It is the refractive index of a single crystal]
上記窒化物単結晶がAl1-xGaxN(但し、0≦x≦1)で表される窒化物であることを特徴とする請求項1に記載の光パラメトリック発振波長変換装置。 2. The optical parametric oscillation wavelength converter according to claim 1, wherein the nitride single crystal is a nitride represented by Al 1-x Ga x N (where 0 ≦ x ≦ 1). 上記窒化物単結晶がAlNであることを特徴とする請求項1に記載の光パラメトリック発振波長変換装置。   2. The optical parametric oscillation wavelength converter according to claim 1, wherein the nitride single crystal is AlN. 上記窒化物単結晶がバルク状結晶で構成されていることを特徴とする請求項1〜3のいずれかに記載の光パラメトリック発振波長変換装置。   The optical parametric oscillation wavelength converter according to any one of claims 1 to 3, wherein the nitride single crystal is composed of a bulk crystal. 上記窒化物単結晶が基板上に形成された薄膜で構成されていることを特徴とする請求項1〜3のいずれかに記載の光パラメトリック発振波長変換装置。   The optical parametric oscillation wavelength converter according to any one of claims 1 to 3, wherein the nitride single crystal is formed of a thin film formed on a substrate. 薄膜が形成される上記基板が、Si、GaAs、AlN、InP、AlGaN、Al、β−Gaのいずれかであることを特徴とする請求項5に記載の光パラメトリック発振波長変換装置。 6. The optical parametric oscillation wavelength according to claim 5, wherein the substrate on which the thin film is formed is any one of Si, GaAs, AlN, InP, AlGaN, Al 2 O 3 , and β-Ga 2 O 3. Conversion device. 上記窒化物単結晶が気相成長法により製造されていることを特徴とする請求項1〜6のいずれかに記載の光パラメトリック発振波長変換装置。   7. The optical parametric oscillation wavelength converter according to claim 1, wherein the nitride single crystal is manufactured by a vapor phase growth method. 上記窒化物単結晶が液相成長法若しくは溶液成長法により製造されていることを特徴とする請求項1〜6のいずれかに記載の光パラメトリック発振波長変換装置。   7. The optical parametric oscillation wavelength converter according to claim 1, wherein the nitride single crystal is manufactured by a liquid phase growth method or a solution growth method. 波長変換して出力される光の少なくとも1つの光が波長1μm〜14μmであることを特徴とする請求項1に記載の光パラメトリック発振波長変換装置。   2. The optical parametric oscillation wavelength converter according to claim 1, wherein at least one of the lights output after wavelength conversion has a wavelength of 1 [mu] m to 14 [mu] m.
JP2008166020A 2008-06-25 2008-06-25 Wavelength conversion device using optical parametric oscillation Pending JP2010008574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166020A JP2010008574A (en) 2008-06-25 2008-06-25 Wavelength conversion device using optical parametric oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166020A JP2010008574A (en) 2008-06-25 2008-06-25 Wavelength conversion device using optical parametric oscillation

Publications (1)

Publication Number Publication Date
JP2010008574A true JP2010008574A (en) 2010-01-14

Family

ID=41589192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166020A Pending JP2010008574A (en) 2008-06-25 2008-06-25 Wavelength conversion device using optical parametric oscillation

Country Status (1)

Country Link
JP (1) JP2010008574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508627A (en) * 2013-02-13 2016-03-22 ケーエルエー−テンカー コーポレイション 193nm laser and inspection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356793A (en) * 1999-06-14 2000-12-26 Mitsubishi Cable Ind Ltd Device for wavelength conversion
JP2006243390A (en) * 2005-03-03 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
JP2006251086A (en) * 2005-03-08 2006-09-21 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2007272062A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Wavelength conversion element and optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356793A (en) * 1999-06-14 2000-12-26 Mitsubishi Cable Ind Ltd Device for wavelength conversion
JP2006243390A (en) * 2005-03-03 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
JP2006251086A (en) * 2005-03-08 2006-09-21 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generating element
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2007272062A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Wavelength conversion element and optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508627A (en) * 2013-02-13 2016-03-22 ケーエルエー−テンカー コーポレイション 193nm laser and inspection system

Similar Documents

Publication Publication Date Title
Bartasyte et al. Toward high‐quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications
EP2151712B1 (en) Method of manufacturing a wavelength converter and wavelength converter
Rotermund et al. Optical parametric generation of femtosecond pulses up to 9 μm with LiInS 2 pumped at 800 nm
Isaenko et al. LiInS2: a new nonlinear crystal for the mid-IR
Yu et al. Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped stoichiometric LiTaO3
US8472106B2 (en) Wavelength conversion element
Clavier et al. Piezoelectric and non-linear optical properties of α-quartz type Si 1− x Ge x O 2 single crystals
EP2309324A1 (en) Wavelength conversion element and method for manufacturing wavelength conversion element
JP3511204B2 (en) Optical function element, single crystal substrate for the element, and method of using the same
Lan et al. Langasite family midinfrared nonlinear optical oxide materials: structure, property, and applications
JP4730365B2 (en) Method for producing optical functional element and method for producing lithium tantalate single crystal
JP2010008574A (en) Wavelength conversion device using optical parametric oscillation
CN101802704A (en) Wavelength conversion element and wavelength conversion laser device
Mason et al. Review of the development of nonlinear materials for mid-IR generation
JP2000147584A (en) Manufacture of polarized inversion area, light wavelength conversion element using it and its manufacture
Capmany et al. Bulk periodically poled lithium niobate doped with Yb 3+ ions: Growth and characterization
CN108957901A (en) Polarized crystal waveguide device and its preparation method and application
Busacca et al. Ultraviolet generation in periodically poled lithium tantalate waveguides
Schunemann et al. Recent advances in all-epitaxial growth and properties of orientation-patterned gallium arsenide (OP-GaAs)
JPH11335199A (en) Production of single crystal membrane
Tang et al. Sub-quarter micrometer periodically poled Al0. 68Sc0. 32N for ultra-wideband photonics and acoustic devices
RU2811419C2 (en) Nonlinear optical element with quasicontinuous circuit and method of its manufacture
JP2003295242A (en) Optical wavelength conversion element
Wen et al. Fabrication and photonic applications of Si-integrated LiNbO3 and BaTiO3 ferroelectric thin films
Kim et al. Investigation of Mid-Infrared Broadband Second-Harmonic Generation in Non-Oxide Nonlinear Optic Crystals. Crystals 2021, 11, 921

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A521 Written amendment

Effective date: 20100521

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A02 Decision of refusal

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A02