JP2010007944A - Household hot-water heater - Google Patents

Household hot-water heater Download PDF

Info

Publication number
JP2010007944A
JP2010007944A JP2008167542A JP2008167542A JP2010007944A JP 2010007944 A JP2010007944 A JP 2010007944A JP 2008167542 A JP2008167542 A JP 2008167542A JP 2008167542 A JP2008167542 A JP 2008167542A JP 2010007944 A JP2010007944 A JP 2010007944A
Authority
JP
Japan
Prior art keywords
heating
burner
thermoelectric generator
combustion
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167542A
Other languages
Japanese (ja)
Other versions
JP5014272B2 (en
Inventor
Yoshihiko Takasu
芳彦 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008167542A priority Critical patent/JP5014272B2/en
Publication of JP2010007944A publication Critical patent/JP2010007944A/en
Application granted granted Critical
Publication of JP5014272B2 publication Critical patent/JP5014272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a household hot-water heater for achieving high energy-saving performance by efficiently combining air-heating and power generation. <P>SOLUTION: This hot-water heater includes a first burner 7 for heating a heat exchanger 5 in which the water for air heating is circulated, by an exhaust gas, a second burner 18 for heating a high temperature-side of a thermal power generating element 16, an exhaust passage 23 for supplying the exhaust gas generated in the second burner 18 between the first burner 7 and the heat exchanger 5, a heating operation control means 13 for controlling a heating operation, and a power generating operation control means 22 for controlling a power generating operation. The power generating operation control means 22 supplies the electric power corresponding to the minimum electric power consumed in the home from the thermal power generating element 16 as a part of a household power source. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加熱した暖房用水により家庭内における暖房を行う家庭用温水暖房装置に関する。   The present invention relates to a domestic hot water heater that performs heating in the home with heated heating water.

従来、特許文献1に見られるように、給湯器に設けた熱発電素子を給湯運転時にバーナの火炎により加熱して発電を行う装置が知られている。熱発電素子は、周知のようにN型半導体とP型半導体との間に閉回路が形成され、高温側と低温側とに温度差を付与することにより起電力が得られる。熱発電素子から得られた電力は他の電気部品に供給したり、バッテリ等に蓄電することができ、更には、家庭用電源として供給することも考えられる。   Conventionally, as can be seen in Patent Document 1, there is known an apparatus for generating electricity by heating a thermoelectric generator provided in a water heater with a flame of a burner during a hot water supply operation. As is well known, a thermoelectric generator has a closed circuit formed between an N-type semiconductor and a P-type semiconductor, and an electromotive force is obtained by applying a temperature difference between a high temperature side and a low temperature side. The electric power obtained from the thermoelectric generator can be supplied to other electrical components, stored in a battery or the like, and further supplied as a household power source.

この種の装置においては、バーナにより熱発電素子と熱交換器とを加熱し、該熱交換器において湯を生成すると同時に熱発電素子により発電を行う。これによれば、熱発電素子と熱交換器とでバーナの熱を効率よく利用できるため、省エネルギー性が向上する。しかし、1つのバーナにより熱発電素子と熱交換器とを加熱する構成では、湯温の調節等に伴ってバーナの燃焼量が低下する場合があり、この場合には熱発電素子に対する加熱が不十分となって必要な温度差が得られず発電効率が悪化する。このため、熱発電素子における発電状態が不安定となり、例えば、熱発電素子から得られた電力を家庭用電源として供給する場合に、安定した電力供給を維持することが困難である。   In this type of apparatus, the thermoelectric generator and the heat exchanger are heated by a burner, hot water is generated in the heat exchanger, and at the same time, electric power is generated by the thermoelectric generator. According to this, since the heat of the burner can be efficiently used by the thermoelectric generator and the heat exchanger, the energy saving property is improved. However, in a configuration in which the thermoelectric generator and the heat exchanger are heated by a single burner, the burner combustion amount may decrease as the hot water temperature is adjusted. In this case, heating of the thermoelectric generator is not effective. As a result, the necessary temperature difference cannot be obtained and the power generation efficiency deteriorates. For this reason, the power generation state in the thermoelectric generator becomes unstable. For example, when supplying electric power obtained from the thermoelectric generator as a household power source, it is difficult to maintain stable power supply.

また、特許文献1には、熱交換器を加熱するバーナとは別に熱発電素子を加熱する発電用のバーナを設けた構成のものも記載されている。これによれば、発電用のバーナにおいて一定の燃焼量が維持できるので、熱交換器用のバーナの燃焼量の影響を受けることなく、熱発電素子から安定した電力供給を行うことができる。しかし、発電用のバーナによって熱発電素子を加熱した場合には、発電時に熱発電素子に吸熱されたもの以外の熱が排気と共に放出されてしまい、この排気熱が無駄になって不経済である。更に、例えば、上記の熱交換器に暖房負荷を接続して温水暖房を行う場合には、比較的長時間の運転となるため、発電用のバーナからは熱発電素子を加熱した後の排気熱が長時間に亘り発生し、省エネルギー性が低い。このように、従来の構成では暖房と発電とを効率よく両立させることができず、省エネルギー性が十分に得られない不都合があった。
特開平11−55975号公報(図2、図6、図7)
Patent Document 1 also describes a configuration in which a power generation burner for heating the thermoelectric generator is provided separately from the burner for heating the heat exchanger. According to this, since a constant combustion amount can be maintained in the power generation burner, stable power supply from the thermoelectric generator can be performed without being affected by the combustion amount of the heat exchanger burner. However, when the thermoelectric generator is heated by the power generation burner, heat other than that absorbed by the thermoelectric generator during power generation is released together with the exhaust, and this exhaust heat is wasted and is uneconomical. . Furthermore, for example, when heating water heating is performed by connecting a heating load to the heat exchanger described above, the operation takes a relatively long time. Therefore, the exhaust heat after heating the thermoelectric generator from the power generation burner. Occurs for a long time, and energy saving is low. Thus, the conventional configuration cannot efficiently achieve both heating and power generation, and there is a disadvantage that sufficient energy saving cannot be obtained.
JP-A-11-55975 (FIGS. 2, 6, and 7)

本発明は、上記の点に鑑み、暖房と発電とを効率よく両立させて高い省エネルギー性を得ることができる家庭用温水暖房装置を提供することを課題とする。   In view of the above points, an object of the present invention is to provide a domestic hot water heating apparatus that can achieve both high efficiency and energy saving by efficiently combining heating and power generation.

かかる課題を解決するために、本発明は、加熱した暖房用水により家庭内における暖房を行う家庭用温水暖房装置において、暖房用水が内部を流動する熱交換器と、該熱交換器を燃焼排気により加熱する第1バーナと、前記熱交換器を介して暖房用水が循環する暖房用水回路と、該暖房用水回路に接続された暖房負荷と、高温側と低温側との温度差により発電する熱発電素子と、該熱発電素子の高温側を加熱する第2バーナと、該第2バーナにより生成した燃焼排気を前記熱交換器に向かって案内する排気路と、冷却水が内部を流動して前記熱発電素子の低温側を冷却する冷却水路と、前記第1バーナ及び第2バーナによる暖房運転を制御する暖房運転制御手段と、前記熱発電素子による発電を制御する発電運転制御手段とを備え、該発電運転制御手段は、暖房運転が行われているとき、家庭において消費される最小の電力に相当する電力を家庭用電源の一部として前記熱発電素子から供給することを特徴とする。ここで、家庭において消費される最小の電力とは、冷蔵庫等の待機電力を中心とした、家庭において必ず消費されると予想される電力である。   In order to solve this problem, the present invention provides a domestic hot water heating apparatus that performs heating in the home with heated heating water, a heat exchanger in which the heating water flows, and the heat exchanger by combustion exhaust. Thermoelectric power generation that generates power by a temperature difference between a first burner to be heated, a heating water circuit in which heating water circulates through the heat exchanger, a heating load connected to the heating water circuit, and a high temperature side and a low temperature side An element, a second burner that heats the high temperature side of the thermoelectric generator, an exhaust passage that guides combustion exhaust generated by the second burner toward the heat exchanger, and cooling water flows through the inside A cooling water passage for cooling the low temperature side of the thermoelectric generator, heating operation control means for controlling heating operation by the first burner and the second burner, and power generation operation control means for controlling power generation by the thermoelectric generator, Power generation Control means, when the heating operation is being performed, the power corresponding to the minimum of the power consumed in the home and supplying from the heat generating element as a part of the domestic power supply. Here, the minimum electric power consumed at home is electric power that is expected to be consumed at home, centering on standby electric power such as a refrigerator.

本発明は、第1バーナにより熱交換器を加熱し、第2バーナにより熱発電素子を加熱するので、第1バーナの燃焼量に影響されることなく熱発電素子において安定した発電を行うことができる。そして、熱発電素子を加熱した後の第2バーナの燃焼排気は、前記排気路により熱交換器に向かって案内されるので、第2バーナの排気熱も暖房用水の加熱に用いることができる。これによって、比較的長時間に亘る暖房運転に際して熱発電素子からの電力供給を効率よく行うことができ、同時に、第1バーナの燃焼量を抑えて十分な暖房性能を得ることができるので高い省エネルギー性を得ることができる。また、発電と暖房とが連動しているので、発電効率を上げると共に暖房効率も上げることができる。   In the present invention, since the heat exchanger is heated by the first burner and the thermoelectric generator is heated by the second burner, stable power generation can be performed in the thermoelectric generator without being affected by the combustion amount of the first burner. it can. The combustion exhaust of the second burner after heating the thermoelectric generator is guided toward the heat exchanger by the exhaust path, so that the exhaust heat of the second burner can also be used for heating the heating water. As a result, it is possible to efficiently supply power from the thermoelectric generator during the heating operation for a relatively long time, and at the same time, it is possible to obtain a sufficient heating performance by suppressing the combustion amount of the first burner. Sex can be obtained. In addition, since power generation and heating are linked, it is possible to increase power generation efficiency and heating efficiency.

更に、上記構成によれば、熱発電素子から得られた電力を家庭用電源の一部として供給し、このときの電力を、家庭において消費される最小の電力に相当する電力とするので、家庭において1日のうちに電力負荷が変動してもその最小電力を常に安定して供給することができ、しかも、第2バーナの燃焼量を比較的小さく抑えて、省エネルギー性を一層向上させることができる。しかも、上記構成によれば、熱発電素子から得られた電力が家庭用電源の一部として直接的に供給できるのでその電力を無駄なく用いることができ、例えば、深夜長時間の暖房運転で暖房能力を低く抑えていても確実に電力を供給することができる。   Furthermore, according to the above configuration, the electric power obtained from the thermoelectric generator is supplied as a part of the household power supply, and the electric power at this time is the electric power corresponding to the minimum electric power consumed in the home. In this case, even if the power load fluctuates within a day, the minimum power can always be stably supplied, and the combustion amount of the second burner can be kept relatively small to further improve energy saving. it can. In addition, according to the above configuration, the electric power obtained from the thermoelectric generator can be directly supplied as a part of the household power supply, so that the electric power can be used without waste. Even if the capacity is kept low, power can be supplied reliably.

また、本発明において、暖房運転が行われているとき、前記暖房運転制御手段は、要求される暖房能力に応じて前記第1バーナの燃焼量を増減させることが好ましく、前記暖房運転制御手段は、前記第1バーナの燃焼量を最小としても要求される暖房能力を上まわるとき、該第1バーナの燃焼を停止させることが好ましい。これによれば、第2バーナの燃焼による安定した熱発電素子の加熱を維持しつつ第1バーナの燃焼量増減や燃焼停止による暖房用水の加熱調節を行うことができ、熱発電素子において暖房温度の増減に影響されずに安定した発電を行うことができる。   In the present invention, when the heating operation is performed, the heating operation control means preferably increases or decreases the combustion amount of the first burner according to the required heating capacity, and the heating operation control means When the required heating capacity is exceeded even when the combustion amount of the first burner is minimized, the combustion of the first burner is preferably stopped. According to this, it is possible to adjust the heating amount of the heating water by increasing / decreasing the combustion amount of the first burner or stopping the combustion while maintaining the stable heating of the thermoelectric generator by the combustion of the second burner. Stable power generation can be performed without being affected by the increase / decrease.

更に、前記第1バーナの燃焼を停止しても要求される暖房能力を上まわるときには、前記暖房運転制御手段により前記第2バーナの燃焼を停止させ、燃焼が停止された両バーナの残熱を利用することで、暖房能力を小さく抑えながら残熱による発電も行えて経済的である。   Further, when the required heating capacity is exceeded even when the combustion of the first burner is stopped, the heating operation control means stops the combustion of the second burner, and the residual heat of both burners where the combustion is stopped is reduced. By using it, it is economical to generate power using residual heat while keeping the heating capacity small.

また、本発明において、前記冷却水路は、前記温水暖房回路の前記暖房負荷より下流側に接続され、前記熱発電素子の低温側は暖房負荷から前記熱交換器へ向かう暖房用水により冷却されることが好ましい。これによれば、暖房負荷を通過した暖房用水により熱発電素子の低温側を冷却することができるので、暖房用水を暖房用水回路に沿って循環させておくだけで熱発電素子の低温側を確実に冷却することができる。   Moreover, in this invention, the said cooling water channel is connected downstream from the said heating load of the said hot water heating circuit, and the low temperature side of the said thermoelectric generation element is cooled with the heating water which goes to the said heat exchanger from a heating load. Is preferred. According to this, since the low temperature side of the thermoelectric generator can be cooled by the heating water that has passed through the heating load, the low temperature side of the thermoelectric generator can be reliably secured only by circulating the heating water along the heating water circuit. Can be cooled to.

本発明の一実施形態を図面に基づいて説明する。図1は本実施形態の家庭用温水暖房装置を示す概略構成図、図2は本実施形態の家庭用温水暖房装置における運転制御を示すフローチャート、図3は家庭における1日の電力負荷変動と熱発電素子からの供給電力を示す線図である。以下、各部の詳細を説明する。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a domestic hot water heating apparatus of the present embodiment, FIG. 2 is a flowchart showing operation control in the domestic hot water heating apparatus of the present embodiment, and FIG. 3 is a daily power load fluctuation and heat in the home. It is a diagram which shows the electric power supplied from a power generation element. Details of each part will be described below.

本実施形態の家庭用温水暖房装置1は、図1に示すように、暖房燃焼部2と発電燃焼部3とを備えている。暖房燃焼部2は、暖房用水回路4に接続された熱交換器5と、ガス供給管6から供給される燃料ガスの燃焼排気によって熱交換器5を加熱する第1バーナ7と、第1バーナ7へ燃焼用の空気を送り込むファン8とを備えている。暖房用水回路4には家屋内の床暖房や温風暖房等の暖房負荷9が接続されており、循環ポンプ10により暖房用水が循環される。熱交換器5は、第1バーナ7から放出される燃焼排気中の顕熱を回収する一次熱交換部5aと、燃焼排気中の潜熱を回収する二次熱交換部5bとによって構成されている。二次熱交換部5bの下方には二次熱交換部5bから生じるドレンを受けて図外の中和器へ導くドレン受け11が設けられている。   As shown in FIG. 1, the domestic hot water heating apparatus 1 of the present embodiment includes a heating combustion unit 2 and a power generation combustion unit 3. The heating combustion unit 2 includes a heat exchanger 5 connected to the heating water circuit 4, a first burner 7 that heats the heat exchanger 5 by combustion exhaust of fuel gas supplied from the gas supply pipe 6, and a first burner And a fan 8 for feeding combustion air into the air. The heating water circuit 4 is connected to a heating load 9 such as floor heating or hot air heating in the house, and heating water is circulated by a circulation pump 10. The heat exchanger 5 includes a primary heat exchange unit 5a that collects sensible heat in the combustion exhaust discharged from the first burner 7, and a secondary heat exchange unit 5b that collects latent heat in the combustion exhaust. . Below the secondary heat exchange section 5b, there is provided a drain receiver 11 that receives the drain generated from the secondary heat exchange section 5b and guides it to a neutralizer outside the figure.

第1バーナ7へ繋がるガス供給管6には、元弁やガス量調整弁等により構成される弁装置12が介設されている。そして、第1バーナ7の点火・消火、ファン8の動作、及び弁装置12の動作等は暖房運転制御部13(暖房運転制御手段)により制御される。   The gas supply pipe 6 connected to the first burner 7 is provided with a valve device 12 including a main valve, a gas amount adjusting valve, and the like. The ignition / extinguishing of the first burner 7, the operation of the fan 8, the operation of the valve device 12, and the like are controlled by the heating operation control unit 13 (heating operation control means).

暖房用水回路4は、一次熱交換部5aから暖房負荷9に至る部分が暖房用水の往路とされ、暖房負荷9から二次熱交換部5bへ至る部分が復路とされる。   In the heating water circuit 4, a part from the primary heat exchange unit 5 a to the heating load 9 is a forward path of the heating water, and a part from the heating load 9 to the secondary heat exchange unit 5 b is a return path.

後述する暖房運転が開始されると、第1バーナ7の燃焼排気により熱交換器5内の暖房用水が加熱され、循環ポンプ10の作動により熱交換器5において加熱された暖房用水が一次熱交換部5aから往路に沿って暖房負荷9へ送り出され、更に、暖房負荷9を通過して温度が低下した暖房用水が復路に沿って流動して二次熱交換部5bへ戻る。第1バーナ7から発生した燃焼排気は、一次熱交換部5a、二次熱交換部5bの順に通過して装置外へ排出される。このとき、二次熱交換部5bでは、復路から流れて来る暖房用水へ燃焼排気中の潜熱を回収させ、一次熱交換部5aでは、二次熱交換部5bから流れて来る潜熱回収済みの暖房用水へ燃焼排気中の顕熱を回収させる。   When the heating operation described later is started, the heating water in the heat exchanger 5 is heated by the combustion exhaust of the first burner 7, and the heating water heated in the heat exchanger 5 by the operation of the circulation pump 10 is primary heat exchange. The heating water that has been sent from the part 5a along the forward path to the heating load 9 and has passed through the heating load 9 and has fallen in temperature flows along the return path and returns to the secondary heat exchange part 5b. The combustion exhaust generated from the first burner 7 passes through the primary heat exchange unit 5a and the secondary heat exchange unit 5b in this order and is discharged out of the apparatus. At this time, the secondary heat exchanger 5b recovers the latent heat in the combustion exhaust to the heating water flowing from the return path, and the primary heat exchanger 5a recovers the latent heat recovered from the secondary heat exchanger 5b. The sensible heat in the combustion exhaust is recovered to the water.

また、暖房用水回路4には往路を流れる暖房用水の温度を検出する第1温度センサ14と、復路を流れる暖房用水の温度を検出する第2温度センサ15とが設けられ、前記暖房運転制御部13は、第1温度センサ14と第2温度センサ15との温度に基づいて第1バーナ7の燃焼量等を制御する。   The heating water circuit 4 is provided with a first temperature sensor 14 for detecting the temperature of the heating water flowing in the forward path and a second temperature sensor 15 for detecting the temperature of the heating water flowing in the backward path, and the heating operation control unit 13 controls the amount of combustion of the first burner 7 based on the temperature of the first temperature sensor 14 and the second temperature sensor 15.

発電燃焼部3は、熱発電素子16と、ガス供給管17から供給される燃料ガスの燃焼排気や輻射熱によって熱発電素子16の高温側を加熱する第2バーナ18と、第2バーナ18へ燃焼用の空気を送り込むファン19とを備えている。熱発電素子16の低温側には冷却水路20が密着して設けられている。冷却水路20は、温水暖房回路4の復路である暖房負荷9より下流側に接続されている。これにより、暖房負荷9を経て温度が低下した暖房用水が冷却水として冷却水路20に送られ、この暖房用水により熱発電素子16の低温側が冷却される。熱発電素子16は、高温側と低温側とに生じる温度差により発電する。   The power generation / combustion unit 3 combusts the thermoelectric power generation element 16, the second burner 18 that heats the high temperature side of the thermoelectric power generation element 16 by combustion exhaust or radiant heat of the fuel gas supplied from the gas supply pipe 17, and the second burner 18. And a fan 19 for sending in air. A cooling water channel 20 is provided in close contact with the low temperature side of the thermoelectric generator 16. The cooling water channel 20 is connected to the downstream side of the heating load 9 that is the return path of the hot water heating circuit 4. Thereby, the heating water whose temperature has decreased through the heating load 9 is sent to the cooling water channel 20 as cooling water, and the low temperature side of the thermoelectric generator 16 is cooled by this heating water. The thermoelectric generator 16 generates electricity due to a temperature difference generated between the high temperature side and the low temperature side.

第2バーナ18へ繋がるガス供給管17には、元弁やガス量調整弁等により構成される弁装置21が介設されている。そして、第2バーナ18の点火・消火、ファン19の動作、及び弁装置21の動作等は発電運転制御部22(発電運転制御手段)により制御される。発電運転制御部22は暖房運転制御部13に接続され、暖房運転制御部13の制御に連動して第2バーナ18の燃焼制御が行えるようになっている。   The gas supply pipe 17 connected to the second burner 18 is provided with a valve device 21 including a main valve, a gas amount adjusting valve, and the like. The ignition / extinguishing of the second burner 18, the operation of the fan 19, the operation of the valve device 21, and the like are controlled by the power generation operation control unit 22 (power generation operation control means). The power generation operation control unit 22 is connected to the heating operation control unit 13 so that the combustion control of the second burner 18 can be performed in conjunction with the control of the heating operation control unit 13.

また、第2バーナ18の上方には、熱発電素子16の高温側の加熱を経た燃焼排気を暖房燃焼部2へ案内する排気路23が設けられている。排気路23は、一次熱交換部5aと二次熱交換部5bとの間に第2バーナ18の燃焼排気を導入する。これにより、二次熱交換部5bにおいては第2バーナ18により生成されて熱発電素子16の高温側を加熱した後の燃焼排気の熱を暖房用水へ回収させることができる。   Further, an exhaust path 23 is provided above the second burner 18 to guide the combustion exhaust gas that has been heated on the high temperature side of the thermoelectric generator 16 to the heating combustion unit 2. The exhaust path 23 introduces combustion exhaust of the second burner 18 between the primary heat exchange unit 5a and the secondary heat exchange unit 5b. Thereby, in the secondary heat exchange part 5b, the heat of the combustion exhaust gas generated by the second burner 18 and heating the high temperature side of the thermoelectric generator 16 can be recovered into the heating water.

熱発電素子16には、この熱発電素子16から発電出力を取り出す発電電力線24を介して分電装置25が接続されている。分電装置25には商用電力線26を介して商用電力が供給され、発電出力と商用電力とを連係して家庭用電源とし、照明器具や家庭電器等の電力機器27に電力を供給する。分電装置25は、発電運転制御部22によって家庭用電源とする発電出力と商用電力との配分を行う。   A power distribution device 25 is connected to the thermoelectric generator 16 via a generated power line 24 that extracts a generated output from the thermoelectric generator 16. Commercial power is supplied to the power distribution device 25 via the commercial power line 26, and the power generation output and the commercial power are linked to form a household power source, and power is supplied to a power device 27 such as a lighting fixture or a home appliance. The power distribution device 25 distributes the power generation output used as a household power source and the commercial power by the power generation operation control unit 22.

なお、分電装置25には、熱発電素子16の発電出力を蓄電するバッテリ28を接続しておくことも可能である。この場合には、熱発電素子16からの電力に余剰電力が生じた場合等に分電装置25を介して余剰出力をバッテリ28に蓄電したり、或いは、熱発電素子16からの電力とバッテリ28からの電力とを分電装置25により切換えて供給することもできる。   Note that a battery 28 that stores the power generation output of the thermoelectric generator 16 may be connected to the power distribution device 25. In this case, when surplus power is generated in the power from the thermoelectric generator 16, the surplus output is stored in the battery 28 via the power distribution device 25, or the power from the thermoelectric generator 16 and the battery 28 are stored. Can be switched by the power distribution device 25 and supplied.

次に、以上の構成による家庭用温水暖房装置1の作動を説明する。図2を参照して、使用者により家庭用温水暖房装置1の運転開始操作がされると、先ず、STEP1において暖房運転制御部13が循環ポンプ10の駆動を開始させる。これにより、暖房用水回路4に沿って暖房用水が循環し熱発電素子16の低温側に密着する冷却水路20に水流が生じる。   Next, the operation of the domestic hot water heating apparatus 1 configured as described above will be described. Referring to FIG. 2, when the user performs an operation start operation of domestic hot water heating apparatus 1, first, heating operation control unit 13 starts driving circulation pump 10 in STEP 1. Thereby, a water flow is generated in the cooling water channel 20 in which the heating water circulates along the heating water circuit 4 and is in close contact with the low temperature side of the thermoelectric generator 16.

次いで、STEP2において発電運転制御部22が第2バーナ18の燃焼を開始させ、STEP3において暖房運転制御部13が第1バーナ7の燃焼を開始させる。これにより、熱発電素子16の高温側が加熱され、熱発電素子16の高温側と低温側との温度差が大となって熱発電素子16が発電を開始する。更に、第1バーナ7により加熱された暖房用水が暖房負荷9に供給されて暖房が行われる。   Next, in STEP2, the power generation operation control unit 22 starts combustion of the second burner 18, and in STEP3, the heating operation control unit 13 starts combustion of the first burner 7. Thereby, the high temperature side of the thermoelectric generator 16 is heated, and the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator 16 becomes large, and the thermoelectric generator 16 starts to generate power. Further, the heating water heated by the first burner 7 is supplied to the heating load 9 for heating.

ここで、発電運転制御部22は、分電装置25を制御することによって、家庭において消費される最小の電力に相当する電力を家庭用電源の一部として熱発電素子16から供給する。即ち、図3に示すように、家庭における1日の電力負荷変動を予め計測採取することで、一部の時間帯の電力負荷(電力消費)が1日のうちで最も小さいことが確認できる。そこで、このときの電力(本実施形態においては約300Wの電力)を1日に亘って熱発電素子16から供給することで、家庭において消費される最小の電力を1日に亘って供給することができ、その分、商用電力の消費を削減することができる。特に、寒冷地等においては冬場に比較的長期間に亘って暖房運転が連続して行われるので、熱発電素子16からの電力を家庭用電源の一部として長期間に亘って供給することができる。   Here, the power generation operation control unit 22 controls the power distribution device 25 to supply power corresponding to the minimum power consumed at home from the thermoelectric generator 16 as a part of the household power source. That is, as shown in FIG. 3, it is possible to confirm that the power load (power consumption) in a part of the time period is the smallest in the day by measuring and collecting the power load fluctuation in the home in advance in one day. Therefore, by supplying the electric power at this time (in the present embodiment, about 300 W) from the thermoelectric generator 16 for one day, the minimum electric power consumed at home is supplied for one day. The amount of commercial power consumed can be reduced accordingly. In particular, in cold districts and the like, heating operation is continuously performed for a relatively long time in winter, so that the electric power from the thermoelectric generator 16 can be supplied as a part of the household power source for a long time. it can.

次いで、図2に示すように、STEP4で暖房運転制御部13が暖房用水回路4の復路に設けられている第2温度センサ15によって検出される暖房用水の温度(以下、戻り温)と設定温度とを比較し、戻り温が設定温度を超えたときSTEP5へ進む。設定温度は、使用者の操作により設定された温度であり、暖房運転で要求される暖房能力に相当するものである。   Next, as shown in FIG. 2, the temperature (hereinafter referred to as return temperature) of the heating water detected by the second temperature sensor 15 provided in the return path of the heating water circuit 4 by the heating operation control unit 13 and the set temperature in STEP 4. When the return temperature exceeds the set temperature, the process proceeds to STEP5. The set temperature is a temperature set by a user's operation and corresponds to the heating capacity required in the heating operation.

STEP5においては、暖房運転制御部13によって温調制御を行い、第1バーナ7の燃焼量を減少させる。このとき、第2バーナ18の燃焼排気が一次熱交換部5aと二次熱交換部5bとの間に導入されていることにより、第1バーナ7の燃焼量を比較的小さくすることができ、省エネルギー性が向上する。   In STEP 5, the heating operation control unit 13 performs temperature control to reduce the combustion amount of the first burner 7. At this time, the combustion exhaust of the second burner 18 is introduced between the primary heat exchange part 5a and the secondary heat exchange part 5b, so that the combustion amount of the first burner 7 can be made relatively small, Energy saving is improved.

続いて、STEP6へ進んで戻り温と設定温度とを比較する。STEP6において戻り温が設定温度を超えたときには、第1バーナ7の燃焼量を最小としても要求される暖房能力を上まわる状態であるため、STEP7へ進んで暖房運転制御部13が第1バーナ7の燃焼を停止させる。   Then, it progresses to STEP6 and a return temperature is compared with preset temperature. When the return temperature exceeds the set temperature in STEP 6, it is in a state exceeding the required heating capacity even if the combustion amount of the first burner 7 is minimized, so that the process proceeds to STEP 7 and the heating operation control unit 13 performs the first burner 7. Stop burning.

次いで、STEP8で戻り温と設定温度とを比較する。そして、STEP8において戻り温が設定温度を超えないときには、STEP9へ進んで第1バーナ7の燃焼を開始し、STEP5へ戻る。そして、通常は、STEP5からSTEP9の処理が繰り返されて暖房運転が継続される。これにより、暖房用水の加熱が第1バーナ7の燃焼排気熱と第2バーナ18の燃焼排気熱とによって行われるので、効率の良い暖房運転が続けられ、しかも、第2バーナ18の燃焼により第1バーナ7の燃焼量に影響されることなく熱発電素子16からは安定した電力供給が維持される。従って、本実施形態によれば、暖房と発電とを効率よく両立させることができ、極めて高い省エネルギー性を長時間に亘って得ることができる。しかも、発電運転制御部22においては、例えば、熱発電素子16から供給している電力のうち、不要な余剰電力が発生したときにはバッテリ28に蓄電を行うことができる。   Next, in STEP 8, the return temperature is compared with the set temperature. When the return temperature does not exceed the set temperature in STEP 8, the process proceeds to STEP 9 to start combustion of the first burner 7, and the process returns to STEP 5. And usually, the process of STEP5 to STEP9 is repeated and heating operation is continued. Thus, the heating water is heated by the combustion exhaust heat of the first burner 7 and the combustion exhaust heat of the second burner 18, so that an efficient heating operation is continued, and the second burner 18 is combusted. Stable power supply is maintained from the thermoelectric generator 16 without being affected by the combustion amount of the one burner 7. Therefore, according to this embodiment, both heating and power generation can be efficiently achieved, and extremely high energy saving can be obtained for a long time. Moreover, in the power generation operation control unit 22, for example, when unnecessary surplus power is generated from the power supplied from the thermoelectric generator 16, the battery 28 can be charged.

ここで、STEP8において、戻り温が設定温度を超えているときには、第1バーナ7の燃焼を停止しても要求される暖房能力を上まわる状態であるとみなし、STEP10へ進んで発電運転制御部22により第2バーナ18の燃焼を停止させる。これにより、第2バーナ18から一次熱交換部5aと二次熱交換部5bとの間への燃焼排気の供給が停止し暖房用水の温度上昇が抑えられる。そして、STEP11において、戻り温が設定温度を下回ったとき、STEP12で発電運転制御部22により第2バーナ18の燃焼を開始させてSTEP8へ戻る。このように、第2バーナ18の燃焼制御も暖房運転に連動させることで、設定温度の比較的低い範囲できめの細かい温調制御が行え、使い勝手が良い。   Here, in STEP8, when the return temperature exceeds the set temperature, it is considered that the required heating capacity is exceeded even if the combustion of the first burner 7 is stopped, and the process proceeds to STEP10 to proceed to the power generation operation control unit. The combustion of the second burner 18 is stopped by 22. Thereby, supply of the combustion exhaust from the 2nd burner 18 between the primary heat exchange part 5a and the secondary heat exchange part 5b stops, and the temperature rise of the water for heating is suppressed. In STEP 11, when the return temperature is lower than the set temperature, the power generation operation control unit 22 starts combustion of the second burner 18 in STEP 12, and the process returns to STEP 8. As described above, the combustion control of the second burner 18 is also linked to the heating operation, whereby fine temperature control can be performed in a relatively low range of the set temperature, which is easy to use.

なお、第2バーナ18の燃焼が停止しているときにも、循環ポンプ10の作動により暖房用水が循環され、熱発電素子16の低温側の冷却が続けられる。この間、熱発電素子16は第2バーナ18の余熱を受けている間は発電を続け、また、熱発電素子16から供給する電力が減少した場合には、発電運転制御部22により分電装置25を介してバッテリ28からの電力供給に切り替え、家庭用電源の一部として電力を供給することができる。   Even when the combustion of the second burner 18 is stopped, the heating water is circulated by the operation of the circulation pump 10 and the cooling of the thermoelectric generator 16 on the low temperature side is continued. During this time, the thermoelectric generator 16 continues to generate power while receiving the remaining heat of the second burner 18, and when the power supplied from the thermoelectric generator 16 decreases, the power generation operation control unit 22 causes the power distribution device 25 to perform power generation. It is possible to switch to power supply from the battery 28 via the power supply and supply power as part of the household power supply.

また、本実施形態においては、熱交換器5の一次熱交換部5aと二次熱交換部5bとの間に第2バーナ18の燃焼排気を導入するものを示したが、第1バーナ7と一次熱交換部5aとの間に第2バーナ18の燃焼排気を導入することも可能であり、熱交換器5が単一の熱交換部のみを備える場合でも、第1バーナ7と熱交換器5との間に第2バーナ18の燃焼排気を導入するようにすれば、第2バーナ18の燃焼排気熱を暖房に用いることができる。   Moreover, in this embodiment, although what showed the combustion exhaust of the 2nd burner 18 between the primary heat exchange part 5a and the secondary heat exchange part 5b of the heat exchanger 5 was shown, It is also possible to introduce the combustion exhaust of the second burner 18 between the primary heat exchange part 5a, and even when the heat exchanger 5 has only a single heat exchange part, the first burner 7 and the heat exchanger If the combustion exhaust gas of the second burner 18 is introduced between the second burner 18 and the combustion exhaust heat of the second burner 18, it can be used for heating.

また、本実施形態においては、熱発電素子16の低温側を冷却する冷却水路20を、暖房用水回路4における暖房負荷9と熱交換器5との間の復路に直列に接続したものを示したが、これ以外に、暖房負荷9と熱交換器5との間から分岐する流路を設けてこの流路に冷却水路20を接続し、冷却水路20を暖房負荷9と熱交換器5との間の復路に並列に接続して暖房用水の一部を熱発電素子16の冷却水としてもよい。   In the present embodiment, the cooling water channel 20 that cools the low temperature side of the thermoelectric generator 16 is connected in series to the return path between the heating load 9 and the heat exchanger 5 in the heating water circuit 4. However, in addition to this, a flow path branched from between the heating load 9 and the heat exchanger 5 is provided, and the cooling water path 20 is connected to the flow path, and the cooling water path 20 is connected to the heating load 9 and the heat exchanger 5. A part of the heating water may be used as cooling water for the thermoelectric generator 16 by connecting in parallel to the return path between them.

本発明の一実施形態の家庭用温水暖房装置を示す概略構成図。The schematic block diagram which shows the domestic hot water heating apparatus of one Embodiment of this invention. 本実施形態の家庭用温水暖房装置における運転制御を示すフローチャート。The flowchart which shows the operation control in the domestic hot water heating apparatus of this embodiment. 家庭における1日の電力負荷変動と熱発電素子からの供給電力を示す線図。The diagram which shows the electric power load fluctuation | variation of 1 day in a home, and the electric power supplied from a thermoelectric generator.

符号の説明Explanation of symbols

1…家庭用温水暖房装置、5…熱交換器、4…暖房用水回路、7…第1バーナ、9…暖房負荷、13…暖房運転制御部(暖房運転制御手段)、16…熱発電素子、18…第2バーナ、20…冷却水路、22…発電運転制御部(発電運転制御手段)、23…排気路。
DESCRIPTION OF SYMBOLS 1 ... Domestic hot water heating apparatus, 5 ... Heat exchanger, 4 ... Heating water circuit, 7 ... 1st burner, 9 ... Heating load, 13 ... Heating operation control part (heating operation control means), 16 ... Thermoelectric generation element, 18 ... 2nd burner, 20 ... Cooling water channel, 22 ... Power generation operation control part (power generation operation control means), 23 ... Exhaust channel.

Claims (5)

加熱した暖房用水により家庭内における暖房を行う家庭用温水暖房装置において、
暖房用水が内部を流動する熱交換器と、該熱交換器を燃焼排気により加熱する第1バーナと、前記熱交換器を介して暖房用水が循環する暖房用水回路と、該暖房用水回路に接続された暖房負荷と、高温側と低温側との温度差により発電する熱発電素子と、該熱発電素子の高温側を加熱する第2バーナと、該第2バーナにより生成した燃焼排気を前記熱交換器に向かって案内する排気路と、冷却水が内部を流動して前記熱発電素子の低温側を冷却する冷却水路と、暖房運転を制御する暖房運転制御手段と、発電運転を制御する発電運転制御手段とを備え、
該発電運転制御手段は、暖房運転が行われているとき、家庭において消費される最小の電力に相当する電力を家庭用電源の一部として前記熱発電素子から供給することを特徴とする家庭用温水暖房装置。
In a domestic hot water heating apparatus for heating in the home with heated heating water,
A heat exchanger in which heating water flows, a first burner that heats the heat exchanger by combustion exhaust, a heating water circuit in which heating water circulates through the heat exchanger, and a connection to the heating water circuit The generated heating load, the thermoelectric generator that generates electricity by the temperature difference between the high temperature side and the low temperature side, the second burner that heats the high temperature side of the thermoelectric generator, and the combustion exhaust generated by the second burner An exhaust path for guiding toward the exchanger, a cooling water path in which cooling water flows inside to cool the low temperature side of the thermoelectric generator, heating operation control means for controlling the heating operation, and power generation for controlling the power generation operation Operation control means,
The power generation operation control means supplies the electric power corresponding to the minimum electric power consumed in the home from the thermoelectric generator as a part of the household power source when the heating operation is performed. Hot water heater.
請求項1記載の家庭用温水暖房装置において、
暖房運転が行われているとき、前記暖房運転制御手段は、要求される暖房能力に応じて前記第1バーナの燃焼量を増減させることを特徴とする家庭用温水暖房装置。
The domestic hot water heating apparatus according to claim 1,
When the heating operation is performed, the heating operation control means increases or decreases the combustion amount of the first burner according to the required heating capacity.
請求項2記載の家庭用温水暖房装置において、
前記暖房運転制御手段は、前記第1バーナの燃焼量を最小としても要求される暖房能力を上まわるとき、該第1バーナの燃焼を停止させることを特徴とする家庭用温水暖房装置。
In the domestic hot water heating device according to claim 2,
The domestic hot water heater is characterized in that the heating operation control means stops the combustion of the first burner when the required heating capacity is exceeded even if the combustion amount of the first burner is minimized.
請求項3記載の家庭用温水暖房装置において、
前記暖房運転制御手段は、前記第1バーナの燃焼を停止しても要求される暖房能力を上まわるとき、前記第2バーナの燃焼を停止させることを特徴とする家庭用温水暖房装置。
The domestic hot water heater according to claim 3,
The heating operation control means stops the combustion of the second burner when the required heating capacity is exceeded even if the combustion of the first burner is stopped.
請求項1乃至4の何れか1項記載の家庭用温水暖房装置において、
前記冷却水路は、前記温水暖房回路の前記暖房負荷より下流側に接続され、前記熱発電素子の低温側は暖房負荷から前記熱交換器へ向かう暖房用水により冷却されることを特徴とする家庭用温水暖房装置。
The domestic hot water heating apparatus according to any one of claims 1 to 4,
The cooling water channel is connected to the downstream side of the heating load of the hot water heating circuit, and the low temperature side of the thermoelectric generator is cooled by heating water from the heating load toward the heat exchanger. Hot water heater.
JP2008167542A 2008-06-26 2008-06-26 Household hot water heater Expired - Fee Related JP5014272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167542A JP5014272B2 (en) 2008-06-26 2008-06-26 Household hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167542A JP5014272B2 (en) 2008-06-26 2008-06-26 Household hot water heater

Publications (2)

Publication Number Publication Date
JP2010007944A true JP2010007944A (en) 2010-01-14
JP5014272B2 JP5014272B2 (en) 2012-08-29

Family

ID=41588663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167542A Expired - Fee Related JP5014272B2 (en) 2008-06-26 2008-06-26 Household hot water heater

Country Status (1)

Country Link
JP (1) JP5014272B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175845U (en) * 1985-04-23 1986-11-01
JPS6298127A (en) * 1985-10-22 1987-05-07 Matsushita Electric Works Ltd Heating apparatus
JPS63210535A (en) * 1987-02-25 1988-09-01 Matsushita Electric Ind Co Ltd Hot water space heater
JPH1155975A (en) * 1997-07-28 1999-02-26 Gastar Corp Thermal power generating equipment
JP2003259671A (en) * 2002-02-26 2003-09-12 Ntt Power & Building Facilities Inc Power supply method and power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175845U (en) * 1985-04-23 1986-11-01
JPS6298127A (en) * 1985-10-22 1987-05-07 Matsushita Electric Works Ltd Heating apparatus
JPS63210535A (en) * 1987-02-25 1988-09-01 Matsushita Electric Ind Co Ltd Hot water space heater
JPH1155975A (en) * 1997-07-28 1999-02-26 Gastar Corp Thermal power generating equipment
JP2003259671A (en) * 2002-02-26 2003-09-12 Ntt Power & Building Facilities Inc Power supply method and power supply system

Also Published As

Publication number Publication date
JP5014272B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011062B2 (en) Cogeneration system
US11402106B2 (en) Self-powered water heater
JP2006214619A (en) Hot-water supply device
JP2012013293A (en) Heat supply system
JP4879228B2 (en) Hot water heater
JP6040347B2 (en) Hot air generating device and hot air generating method
JP2004150646A (en) Cogeneration system
US8201750B2 (en) Fuel economizer improvements
JP2010190455A (en) Water heater using solar light and heat combined power generation system
JP4879227B2 (en) Hot water heater
JP7260352B2 (en) energy supply system
JP5014272B2 (en) Household hot water heater
JP4685553B2 (en) Cogeneration system
JP2019173977A (en) Hot water storage and supply system
TWI682135B (en) Solar auxiliary heating system of electric water heater
JP2004108173A (en) Cogeneration system
JP5317810B2 (en) Water heater
JP2002298863A (en) Exhaust heat recovery system for fuel cell power generating equipment
JP2011185573A (en) Heat supply device
JP6709691B2 (en) Thermal equipment
KR101664792B1 (en) Apparatus for supplying hot water connected with solar energy and fuel burning equipment
JP2004190870A (en) Cogeneration system
JP2014103782A (en) Heat source machine
US20230022372A1 (en) Combined heat and power systems including power cells, and associated methods
JPH05126402A (en) Combination device for feeding heat and electric power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5014272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees