JP2010005491A - Electrolytic phosphorus recovery device and sewage treatment system using it - Google Patents

Electrolytic phosphorus recovery device and sewage treatment system using it Download PDF

Info

Publication number
JP2010005491A
JP2010005491A JP2008164159A JP2008164159A JP2010005491A JP 2010005491 A JP2010005491 A JP 2010005491A JP 2008164159 A JP2008164159 A JP 2008164159A JP 2008164159 A JP2008164159 A JP 2008164159A JP 2010005491 A JP2010005491 A JP 2010005491A
Authority
JP
Japan
Prior art keywords
phosphorus
electrolytic
sludge
phosphorus recovery
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008164159A
Other languages
Japanese (ja)
Inventor
Toshiro Tazaki
敏郎 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2008164159A priority Critical patent/JP2010005491A/en
Publication of JP2010005491A publication Critical patent/JP2010005491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic phosphorus recovery device which is excellent in resource conservation and excellent as a measure against global warming, and enables reuse of phosphorus resources, and a sewage treatment system using the device. <P>SOLUTION: The sewage treatment system comprises a wastewater treatment facility 1 for cleaning inflow sewage using at least activated sludge, a sludge treatment facility 2 for dewatering and drying surplus sludge discharged from the wastewater treatment facility to separate it into concentrated sludge and desorbed water, the electrolytic phosphorus recovery device 3 for recovering phosphorus components in the desorbed water discharged from the sludge treatment facility, a solar cell 4 for generating electricity using sunlight, a hydrogen gas recovery device 5 for recovering hydrogen gas generated from the electrolytic phosphorus recovery device 3, a hydrogen battery 6 for generating electricity using the hydrogen gas recovered in the hydrogen gas recovery device as a fuel, and a power source switching device 7. A direct-current power source for electrolysis, applied to the electrolytic phosphorus recovery device 3 can be switched to either the solar cell 4 or the hydrogen battery 6 by the power source switching device 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電解式リン回収装置とこれを用いた下水処理システムに関するものである。   The present invention relates to an electrolytic phosphorus recovery apparatus and a sewage treatment system using the same.

下水道などを通じて送られてくる下水(生活排水、し尿排水、一般産業排水、これらと雨水の混合水など)を浄化処理する下水処理システムでは、通常、その処理過程において活性汚泥を利用して浄化処理を行なうのが一般的である。この活性汚泥を用いた浄化処理の場合、下水中に含まれるリン成分を完全に除去することは難しく、リン成分は最終的に余剰汚泥のかたちで外部へ排出される。   In sewage treatment systems that purify sewage (such as domestic wastewater, human wastewater, general industrial wastewater, and mixed water with rainwater) sent through the sewer, etc., purification treatment is usually performed using activated sludge during the treatment process. Is generally performed. In the purification treatment using this activated sludge, it is difficult to completely remove the phosphorus component contained in the sewage, and the phosphorus component is finally discharged to the outside in the form of excess sludge.

従来、汚水や余剰汚泥中に含まれるリン成分を回収除去する方法として、例えば薬品添加によるリン回収法や電気分解を利用したリン回収法が知られている。薬品添加によるリン回収法は、リン化合物を含む被処理水中に無機凝集剤や高分子凝集剤を添加し、リン化合物をフロック化して凝集沈殿させることにより、回収するものである。この薬品添加によるリン回収法によるときは、添加した凝集剤によって被処理水のpHが低下するため、水酸化ナトリウムなどのpH調整剤を用いてpH調整を行なわねばならないという不具合がある。   Conventionally, as a method for recovering and removing a phosphorus component contained in sewage or excess sludge, for example, a phosphorus recovery method using chemical addition or a phosphorus recovery method utilizing electrolysis is known. The phosphorus recovery method by adding chemicals is to recover by adding an inorganic flocculant or a polymer flocculant to the water to be treated containing the phosphorus compound, flocking the phosphorus compound, and aggregating and precipitating. When using the phosphorus recovery method by adding this chemical, the pH of the water to be treated is lowered by the added flocculant, so that there is a problem that the pH must be adjusted using a pH adjusting agent such as sodium hydroxide.

一方、電解式のリン回収法は、例えば特許文献1、2に示されるように、活性汚泥を用いた浄化処理後に排出される余剰汚泥を脱水して濃縮汚泥と脱離水とに分離し、脱離水を不溶性リン酸塩形成金属(例えば、鉄やアルミニウムなど)からなる電極を用いて電気分解することにより、脱離水中に溶出した鉄イオンやアルミニウムイオンと脱離水中に含まれるリンイオンとを電気化学的に反応させ、脱離水中のリン成分を不溶性リン酸塩(リン酸鉄やリン酸アルミニウムなど)のかたちで沈殿回収するものである。この電解式のリン回収法は、処理後の脱離水のpH調整が不要であり、極めて優れた回収方法である。   On the other hand, as shown in Patent Documents 1 and 2, for example, the electrolytic phosphorus recovery method dehydrates excess sludge discharged after purification treatment using activated sludge, separates it into concentrated sludge and desorbed water, and removes it. By electrolyzing the water separation using an electrode made of an insoluble phosphate-forming metal (for example, iron or aluminum), the iron ions and aluminum ions eluted in the desorbed water and the phosphorus ions contained in the desorbed water are electrically It is chemically reacted to recover the phosphorus component in the desorbed water in the form of an insoluble phosphate (such as iron phosphate or aluminum phosphate). This electrolytic phosphorus recovery method does not require pH adjustment of treated desorption water, and is an extremely excellent recovery method.

特開平3−89998号公報(全文、全図)Japanese Patent Laid-Open No. 3-89998 (full text, all figures) 特開2007−330919号公報(全文、全図)JP 2007-330919 A (the whole sentence, all figures)

前記電解式リン回収法によるときは、電気分解用の直流電源を必要とする。従来、この電気分解用の直流電源としては商用交流電源を用い、これを直流に変換して用いるのが一般的であるが、下水処理システムはその規模がかなり大きく、リン回収用の電気分解に使用する電力量も膨大なものとなる。また、変圧器や交流−直流変換装置を始めとする電気設備もかなりの大型のものとなる。   When the electrolytic phosphorus recovery method is used, a DC power source for electrolysis is required. Conventionally, a commercial AC power source is generally used as the DC power source for the electrolysis, and this is converted into a direct current. The amount of power to be used is enormous. Also, electrical equipment such as transformers and AC-DC converters are considerably large.

ところで、昨今、地球環境保全の立場から省資源化や温暖化対策が強く叫ばれている。下水処理システムにおいても例外ではなく、省資源化と温暖化対策に優れた下水処理システムの開発が要望されている。そこで、本発明が課題とするところは、省資源化、温暖化対策に優れ、リン資源の再利用も可能な電解式リン回収装置と、これを用いた下水処理システムを提供することである。   By the way, in recent years, from the standpoint of global environmental conservation, resource saving and global warming countermeasures are strongly screamed. There is no exception in sewage treatment systems, and there is a demand for the development of sewage treatment systems that are excellent in resource conservation and global warming countermeasures. Accordingly, an object of the present invention is to provide an electrolytic phosphorus recovery apparatus that is excellent in resource saving and global warming countermeasures and that can reuse phosphorus resources, and a sewage treatment system using the same.

上記課題を解決するため、請求項1の電解式リン回収装置は、リン成分を含有する処理対象水を貯留する電解槽と、貯留された処理対象水中に浸漬配置されるとともに、少なくともアノード電極は不溶性リン酸塩形成金属からなる正負一対の電極と、該一対の電極に電気分解用の直流電圧を供給する太陽電池とからなることを特徴とするものである。   In order to solve the above-mentioned problems, an electrolytic phosphorus recovery apparatus according to claim 1 is arranged to be immersed in an electrolytic tank for storing water to be treated containing a phosphorus component, in the stored water to be treated, and at least the anode electrode is It is characterized by comprising a pair of positive and negative electrodes made of an insoluble phosphate-forming metal and a solar cell for supplying a direct current voltage for electrolysis to the pair of electrodes.

また、請求項2の電解式リン回収装置は、前記請求項1の電解式リン回収装置において、前記一対の電極のカソード電極から発生する水素ガスを回収する水素ガス回収装置と、該水素ガス回収装置で回収した水素ガスを燃料として用いた水素電池と、前記一対の電極に印加する電気分解用の直流電源を前記太陽電池または水素電池のいずれかの側に切り替え可能な電源切替装置とを付加し、太陽光発電を利用できる時間帯には太陽電池側に、太陽光発電を利用できない時間帯には水素電池側に切り替えるようにしたことを特徴とするものである。   The electrolytic phosphorus recovery apparatus according to claim 2 is the electrolytic phosphorus recovery apparatus according to claim 1, wherein the hydrogen gas recovery apparatus recovers hydrogen gas generated from the cathode electrodes of the pair of electrodes, and the hydrogen gas recovery A hydrogen battery using hydrogen gas recovered by the device as fuel and a power source switching device capable of switching the direct current power source for electrolysis applied to the pair of electrodes to either the solar cell or the hydrogen cell. However, it is characterized in that it is switched to the solar cell side in a time zone in which solar power generation can be used, and to the hydrogen battery side in a time zone in which solar power generation cannot be used.

請求項3の電解式リン回収装置は、前記請求項2の電解式リン回収装置において、前記電気分解用の一対の電極のアノード電極として鉄電極を、カソード電極としてチタン電極を用いたことを特徴とするものである。   The electrolytic phosphorus recovery apparatus according to claim 3 is the electrolytic phosphorus recovery apparatus according to claim 2, wherein an iron electrode is used as an anode electrode of the pair of electrodes for electrolysis and a titanium electrode is used as a cathode electrode. It is what.

請求項4の下水処理システムは、流入してくる下水を少なくとも活性汚泥を利用して浄化処理する汚水処理施設と、該汚水処理施設から排出される余剰汚泥を脱水乾燥処理して濃縮汚泥と脱離水とに分離する汚泥処理施設と、該汚泥処理施設から排出される脱離水中のリン成分を回収するリン回収装置とを備え、脱リン後の脱離水を前記汚水処理施設に返送するようにした下水処理システムにおいて、前記リン回収装置として、前記請求項1〜3のいずれかの電解式リン回収装置を用いたことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a sewage treatment system for purifying incoming sewage using at least activated sludge, and dewatering and drying excess sludge discharged from the sewage treatment facility to remove concentrated sludge. A sludge treatment facility that separates into dewatered water, and a phosphorus recovery device that collects phosphorus components in the desorbed water discharged from the sludge treatment facility, and returns the desorbed water after dephosphorization to the sewage treatment facility. In the sewage treatment system, the electrolytic phosphorus recovery apparatus according to any one of claims 1 to 3 is used as the phosphorus recovery apparatus.

上記構成になる本発明の電解式リン回収装置とこれを用いた下水処理システムによれば、電解式リン回収装置で用いる電気分解用の直流電源として太陽電池を採用したので、従来用いていた商用交流電源を不要とすることができ、下水処理のコスト低減と省資源化を図ることができる。例えば、処理脱離水の量を5,000m/日、脱離水中のリン化合物の総リン濃度(PO−P)64mg/L、PO−P流入量320kg/日、リン除去率90%で処理した場合を例にとると、電気分解のための1日の電力量は約97〜98kWh(DC3V、32,400A)を必要とするが、これをすべて太陽電池(例えば、153Wパネル×約635枚、約732m)でまかなうことができるので、コスト削減と省資源化を図ることができる。また、石油や石炭、LNGなどの化石燃料による火力発電を利用しないので、炭酸ガスの排出量も低減することができ、環境破壊の防止にも資することができる。また、回収したリンを再利用することにより、リンの再資源化を図ることができる。さらに、商用交流電源を用いないので、大容量の変圧器や交流−直流変換装置なども不要となり、設備費や管理コストなども低減することができる。 According to the electrolytic phosphorus recovery apparatus of the present invention and the sewage treatment system using the same, the solar cell is employed as the direct current power source for electrolysis used in the electrolytic phosphorus recovery apparatus. An AC power supply can be eliminated, and cost reduction and resource saving of sewage treatment can be achieved. For example, the amount of processing eliminated water 5,000 m 3 / day, total phosphorus concentration (PO 4 -P) 64mg / L of phosphorus compound in the eliminated water, PO 4 -P inflow 320 kg / day, phosphorus removal of 90% As an example, the daily power for electrolysis requires about 97 to 98 kWh (DC3V, 32,400A), all of which are solar cells (for example, 153W panel × about 635 sheets, approximately 732 m 2 ), cost reduction and resource saving can be achieved. In addition, since thermal power generation using fossil fuels such as oil, coal, and LNG is not used, the amount of carbon dioxide emission can be reduced, which contributes to prevention of environmental destruction. Further, by recycling the collected phosphorus, it is possible to recycle the phosphorus. Furthermore, since a commercial AC power supply is not used, a large-capacity transformer, an AC-DC converter, and the like are not required, and facility costs and management costs can be reduced.

また、電解式リン回収装置のカソード電極から発生する水素ガスを回収する水素ガス回収装置と、回収した水素ガスを燃料とする水素電池と、電源切替装置とを付加し、太陽光発電を利用できる時間帯(例えば昼間時)には太陽電池によって電気分解を行ない、太陽光発電を利用できない時間帯(例えば夜間や雨天時)には水素電池によって電気分解を行なうようにしたので、太陽光発電を利用できない時間帯でも電気分解によるリン成分の回収を継続することができ、安価で効率的なリン回収を実現できる。   In addition, a hydrogen gas recovery device that recovers hydrogen gas generated from the cathode electrode of the electrolytic phosphorus recovery device, a hydrogen battery that uses the recovered hydrogen gas as fuel, and a power source switching device can be added to use solar power generation. Electrolysis is performed by solar cells during time periods (for example, daytime), and electrolysis is performed by hydrogen batteries during times when solar power generation cannot be used (for example, at night or in the rain). It is possible to continue the recovery of the phosphorus component by electrolysis even when it is not available, and it is possible to realize an inexpensive and efficient phosphorus recovery.

また、電気分解用の一対の電極のアノード電極として鉄電極を用いたので、脱離水中のリン成分を水に不溶性のリン酸鉄(FePO)のかたちで効率よく回収することができる。また、アノード電極は電気分解によって脱離水中へ溶出して消耗されるため、一定期間毎に交換する必要があるが、鉄電極は安価であるためコスト低減にも資することができる。さらに、カソード電極として強度、硬度、耐食性に優れたチタン電極を用いたので、長期にわたって安定的に電気分解を継続することができ、効率的なリン回収を行なうことができる。 In addition, since the iron electrode is used as the anode electrode of the pair of electrodes for electrolysis, the phosphorus component in the desorbed water can be efficiently recovered in the form of iron phosphate (FePO 4 ) that is insoluble in water. In addition, since the anode electrode is eluted into the desorbed water by electrolysis and consumed, it must be replaced at regular intervals. However, since the iron electrode is inexpensive, it can contribute to cost reduction. Furthermore, since a titanium electrode excellent in strength, hardness and corrosion resistance is used as the cathode electrode, electrolysis can be continued stably over a long period of time, and efficient phosphorus recovery can be performed.

以下、本発明の電解式リン回収装置を用いて構成した下水処理システムの一実施の形態について、図面を参照して説明する。
本実施の形態に係る下水処理システムは、図1に示すように、流入してくる下水を少なくとも活性汚泥を利用して浄化処理する汚水処理施設1と、該汚水処理施設1から排出される余剰汚泥を脱水乾燥処理して濃縮汚泥と脱離水とに分離する汚泥処理施設2と、該汚泥処理施設2から排出される脱離水中のリン成分を回収する電解式リン回収装置3と、太陽光によって発電し、得られた直流電力を電気分解用の直流電源として前記電解式リン回収装置3に供給する太陽電池4と、前記電解式リン回収装置3のカソード電極から発生する水素ガスを回収する水素ガス回収装置5と、該水素ガス回収装置5で回収した水素ガスを燃料として発電し、得られた直流電力を電気分解用の直流電源として前記電解式リン回収装置3に供給する水素電池6と、前記電解式リン回収装置3に供給される電気分解用の直流電源を前記太陽電池4または水素電池6のいずれかに切り替える電源切替装置7とから構成されている。
Hereinafter, an embodiment of a sewage treatment system constructed using the electrolytic phosphorus recovery apparatus of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the sewage treatment system according to the present embodiment includes a sewage treatment facility 1 that purifies incoming sewage using at least activated sludge, and surplus discharged from the sewage treatment facility 1. Sludge treatment facility 2 for dewatering and drying sludge to separate concentrated sludge and desorbed water, electrolytic phosphorus recovery device 3 for collecting phosphorus components in desorbed water discharged from sludge treatment facility 2, solar light The solar cell 4 that supplies the generated DC power to the electrolytic phosphorus recovery device 3 as a DC power source for electrolysis and the hydrogen gas generated from the cathode electrode of the electrolytic phosphorus recovery device 3 is recovered. A hydrogen gas recovery device 5 and a hydrogen battery 6 that generates power using the hydrogen gas recovered by the hydrogen gas recovery device 5 as fuel and supplies the obtained DC power to the electrolytic phosphorus recovery device 3 as a DC power source for electrolysis , And a power supply switching device 7 for switching a DC power supply for electrolysis is supplied to the electrolytic phosphorus recovery device 3 in any of the solar cell 4 or hydrogen batteries 6.

前記電解式リン回収装置3は、図2に示すように、流入口35を通じて送られてくる汚泥処理施設2からの脱離水を貯留するとともに、流出口36を通じて脱リン後の脱離水を汚水処理施設1へ返送する電解槽31を備えており、電気分解用の正負一対の電極32,33が所定の間隔をおいて脱離水中に浸漬した状態で対向配置されている。この実施の形態の場合、正負一対の電極32,33のうち、アノード電極(陽極)32には鉄(Fe)電極を、カソード電極(陰極)33にはチタン(Ti)電極を用いた。   As shown in FIG. 2, the electrolytic phosphorus recovery device 3 stores the desorbed water from the sludge treatment facility 2 sent through the inflow port 35 and treats the desorbed water after dephosphorization through the outflow port 36. An electrolysis tank 31 for returning to the facility 1 is provided, and a pair of positive and negative electrodes 32 and 33 for electrolysis are opposed to each other in a state of being immersed in desorption water at a predetermined interval. In this embodiment, of the pair of positive and negative electrodes 32 and 33, an iron (Fe) electrode is used for the anode electrode (anode) 32 and a titanium (Ti) electrode is used for the cathode electrode (cathode) 33.

また、図示例の場合、前記電解槽31の底面はすり鉢状とされているとともに、このすり鉢状をした底面の中央位置にはリン回収用のバルブ34が設けられており、電解槽31の底部に凝集沈殿して貯まったリン酸鉄を回収できるように構成されている。   In the illustrated example, the bottom surface of the electrolytic cell 31 has a mortar shape, and a phosphorus recovery valve 34 is provided at the center of the mortar-shaped bottom surface. It is configured so that the iron phosphate accumulated and precipitated can be recovered.

一方、電解槽31内のカソード電極33の上部側には、電気分解によってカソード電極33から発生する水素(H)ガスを集めて回収するための水素ガス回収塔51と、圧縮ポンプ52と、水素ガス貯蔵タンク53と、圧力調整用のレギュレータ54からなる水素ガス回収装置5が配備されており、回収貯蔵した水素ガスを水素発電用の燃料として水素電池6へ供給可能とされている。 On the other hand, on the upper side of the cathode electrode 33 in the electrolytic cell 31, a hydrogen gas recovery tower 51 for collecting and recovering hydrogen (H 2 ) gas generated from the cathode electrode 33 by electrolysis, a compression pump 52, A hydrogen gas recovery device 5 including a hydrogen gas storage tank 53 and a pressure adjusting regulator 54 is provided, and the recovered and stored hydrogen gas can be supplied to the hydrogen cell 6 as a fuel for hydrogen power generation.

また、電源切替装置7は、太陽電池4と水素電池6からの直流電源を受け、図示を略したコントローラからの指示に従って一対の電極32,33に印加する直流電源を太陽電池4、水素電池6のいずれかの側に自在に切り替えることができるように構成されている。   The power supply switching device 7 receives direct current power from the solar battery 4 and the hydrogen battery 6 and applies direct current power to the pair of electrodes 32 and 33 according to instructions from a controller (not shown). It is configured to be able to freely switch to either side of the.

上記構成からなる下水処理システムにおいて、下水道などを通じて下水が流れ込んでくると、下水は汚水処理施設1へ送られ、活性汚泥を利用して浄化処理が行なわれる。   In the sewage treatment system having the above-described configuration, when sewage flows in through a sewer or the like, the sewage is sent to the sewage treatment facility 1 and purified using activated sludge.

例えば、まず沈砂池において土砂類を沈降除去するとともにスクリーンによって大きなゴミ類を取り除き、さらに第1沈殿池において沈砂池で取り除くことのできなかった細かなゴミ類を時間をかけて沈降除去した後、曝気槽へと送る。曝気槽では、送られてきた下水を曝気しながら活性汚泥と攪拌混合し、活性汚泥を用いた浄化処理を行なう。活性汚泥による浄化処理後の下水は、第2沈殿池へ送られ、曝気槽でできたフロックやその他のごみを時間をかけてゆっくりと沈降除去する。そして、沈降除去後の上澄み水を取り出し、これを塩素消毒した後、河川へと放流する。   For example, first, sediment and sediment are removed by sedimentation in the sand basin, and large garbage is removed by a screen. Send to aeration tank. In the aeration tank, the sent sewage is agitated and mixed with the activated sludge while aerated, and the purification treatment using the activated sludge is performed. The sewage after the purification treatment with activated sludge is sent to the second settling basin, where flocs and other garbage generated in the aeration tank are slowly settled and removed over time. Then, the supernatant water after removal of sedimentation is taken out, sterilized with chlorine, and then discharged into a river.

一方、上記汚水処理施設1では、活性汚泥を用いた浄化処理が進むにつれて処理系内に多量の活性汚泥が発生するが、その一部は種汚泥として曝気槽へ返送され、また余った汚泥は余剰汚泥として汚泥処理施設2へ送られる。   On the other hand, in the sewage treatment facility 1, a large amount of activated sludge is generated in the treatment system as the purification treatment using activated sludge proceeds. A part of the sludge is returned to the aeration tank as seed sludge. It is sent to the sludge treatment facility 2 as surplus sludge.

汚泥処理施設2へ送られた余剰汚泥は、濃縮槽、脱水機などを用いて脱水乾燥され、濃縮汚泥と脱離水とに分離される。濃縮汚泥は消化槽で消化処理された後、焼却炉へ送られて焼却され、焼却後の灰は埋め立てなどによって廃棄処理される。また、余剰汚泥から分離された脱離水は、電解式リン回収装置3へ送られ、電解槽31(図2参照)に貯留される。   The excess sludge sent to the sludge treatment facility 2 is dehydrated and dried using a concentration tank, a dehydrator, etc., and separated into concentrated sludge and desorbed water. The concentrated sludge is digested in a digestion tank, then sent to an incinerator for incineration, and the incinerated ash is disposed of by landfill. The desorbed water separated from the excess sludge is sent to the electrolytic phosphorus recovery device 3 and stored in the electrolytic bath 31 (see FIG. 2).

電解槽内に浸漬配置された一対の電極32,33には、電源切替装置7を介して、例えば太陽電池4から電気分解用の直流電源が供給されている。すなわち、鉄電極からなるアノード電極32にはプラス電圧が印加されているとともに、チタン電極からなるカソード電極33にはマイナス電圧が印加されている。   A pair of electrodes 32 and 33 immersed in the electrolytic cell is supplied with, for example, a DC power source for electrolysis from the solar cell 4 via the power source switching device 7. That is, a positive voltage is applied to the anode electrode 32 made of an iron electrode, and a negative voltage is applied to the cathode electrode 33 made of a titanium electrode.

電極32,33に直流電圧が印加されると、電気分解作用によってアノード電極32を構成する鉄電極から2価の鉄イオンFe2+が脱離水中へ溶出する。そして、この2価の鉄イオンは脱離水中の溶存酸素と反応して3価の鉄イオンFe3+となる。一方、脱離水中にはリン成分が3価のリン酸イオンPO 3−のかたちで存在している。この結果、鉄イオンFe3+とリン酸イオンPO 3−が結合し、水に不溶性のリン酸鉄(FePO)となって電解槽31の底部に凝集沈殿する。従って、一定期間毎あるいは必要な時に、リン回収用バルブ34を開いて電解槽31の底部に貯まっているリン酸鉄を回収すれば、これをリン資源として再利用することができる。なお、リン回収後の脱離水は、流出口36を通じて汚水処理施設1へ返送される(図1参照)。 When a DC voltage is applied to the electrodes 32 and 33, divalent iron ions Fe 2+ are eluted from the iron electrode constituting the anode electrode 32 into the desorbed water by electrolysis. The divalent iron ions react with dissolved oxygen in the desorbed water to become trivalent iron ions Fe 3+ . On the other hand, the phosphorus component is present in the form of trivalent phosphate ions PO 4 3− in the desorbed water. As a result, the iron ions Fe 3+ and phosphate ions PO 4 3- is bound to water becomes iron phosphate insoluble (FePO 4) aggregate sedimentation on the bottom of the electrolytic cell 31. Therefore, if the iron phosphate stored in the bottom of the electrolytic cell 31 is recovered by opening the phosphorus recovery valve 34 at regular intervals or when necessary, it can be reused as phosphorus resources. The desorbed water after phosphorus recovery is returned to the sewage treatment facility 1 through the outlet 36 (see FIG. 1).

上記電気分解によるリン成分の回収が開始されると、カソード電極33からは水素(H)ガスが発生する。水素ガス回収塔51(図2参照)はこの水素ガスを集め、圧縮ポンプ52を介して水素ガス貯蔵タンク53に送り、水素発電のための燃料として貯蔵する。そして、貯蔵された水素ガスは、図示を略したコントローラの制御の下に圧力調整用のレギュレータ54を介して水素電池6に送られ、酸素と反応させることによって水素ガス発電が行なわれる。水素電池6で発電された直流電力は電源切替装置7に送られ、以下のようにして太陽電池4とともに電気分解用の直流電源として利用される。 When the recovery of the phosphorus component by the electrolysis is started, hydrogen (H 2 ) gas is generated from the cathode electrode 33. The hydrogen gas recovery tower 51 (see FIG. 2) collects this hydrogen gas, sends it to the hydrogen gas storage tank 53 via the compression pump 52, and stores it as fuel for hydrogen power generation. The stored hydrogen gas is sent to the hydrogen battery 6 through a pressure adjusting regulator 54 under the control of a controller (not shown), and hydrogen gas power generation is performed by reacting with oxygen. The DC power generated by the hydrogen battery 6 is sent to the power supply switching device 7 and used as a DC power source for electrolysis together with the solar battery 4 as follows.

すなわち、太陽電池4は、昼間時の太陽が出ている時間帯しか発電することができない。そこで、電源切替装置7によって、昼間時の太陽光発電を利用できる時間帯には太陽電池4側に切り替え、電気分解用の直流電源として太陽電池4を使用する。一方、太陽電池4を利用することができない夜間などの時間帯においては、水素電池6側に切り替え、電気分解用の直流電源として水素電池6を利用する。これによって、昼夜連続してリン成分の回収処理を行なうことが可能となる。なお、このような切り替えを行なうには、例えば、夜間自動点灯式の街路灯などで使用されている照度センサーを用い、この照度センサーの出力に従って電源切替装置7で切り替えるようにすればよい。もちろん、手動で切り替えるようにしてもよいし、タイマーによって切り替えるようにしてもよい。   That is, the solar cell 4 can generate power only during the daytime when the sun is out. Therefore, the solar cell 4 is used as a DC power source for electrolysis by switching to the solar cell 4 side in a time zone in which solar power generation at daytime can be used by the power source switching device 7. On the other hand, in a time zone such as nighttime when the solar battery 4 cannot be used, the hydrogen battery 6 is used as a DC power source for electrolysis by switching to the hydrogen battery 6 side. As a result, the phosphorus component can be collected continuously day and night. In order to perform such switching, for example, an illuminance sensor used in a night-time automatic lighting street light or the like may be used, and switching may be performed by the power supply switching device 7 according to the output of the illuminance sensor. Of course, it may be switched manually or by a timer.

上記実施の形態に係る下水処理システムによれば、次のような優れた効果を奏する。
(1)リンの再資源化
肥料の最大栄養素であるリンはほとんどの農家で肥料として利用されるが、我が国にはリン鉱石が存在せず、100%輸入に頼っている。また、最近は世界の需要逼迫に伴い、リン鉱石の価格が高騰している。本システムによれば、リン鉱石からではなく、下水に含まれるリンを原料として人工的にリン鉱石を作るため、安定的に供給・販売することができ、リンの再資源化を図ることができる。
The sewage treatment system according to the above embodiment has the following excellent effects.
(1) Recycling of phosphorus Phosphorus, the maximum nutrient of fertilizer, is used as a fertilizer by most farmers, but in Japan there is no phosphorus ore and 100% import is relied on. Recently, the price of phosphorus ore has soared due to the tight demand in the world. According to this system, since phosphorus ore is artificially made from phosphorus contained in sewage instead of phosphorus ore, it can be supplied and sold stably, and phosphorus can be recycled. .

(2)下水処理費用の低減
下水処理過程で発生する汚泥には大量のリンが含まれている。この汚泥を焼却処分する過程では汚泥に含まれている水分を脱水するが、そのとき得られる脱離水には大量のリンが含まれている。そのため、この脱離水をそのまま河川に放流することはできず、返送して再び下水処理場で処理している。この脱離水によるリン負荷の影響は、下水処理場における全リン負荷の2割以上に達しており、処理過程で膨大なエネルギーを要し、下水処理費用のコストアップにつながっている。本システムによれば、脱離水中のリンをほぼ全量回収することができるため、リン処理におけるエネルギーとコストを約2割程度削減することができる。
(2) Reduction of sewage treatment costs Sludge generated during the sewage treatment process contains a large amount of phosphorus. In the process of incinerating this sludge, the water contained in the sludge is dehydrated, and the desorbed water obtained at that time contains a large amount of phosphorus. Therefore, this desorbed water cannot be discharged into the river as it is, but is returned and treated again at the sewage treatment plant. The influence of the phosphorus load due to this desorbed water has reached 20% or more of the total phosphorus load in the sewage treatment plant, requiring enormous energy in the treatment process, leading to an increase in the cost of sewage treatment costs. According to the present system, almost all the phosphorus in the desorbed water can be recovered, so that the energy and cost in the phosphorus treatment can be reduced by about 20%.

(3)温暖化対策
通常、リン鉱石を掘り出す過程では炭酸ガス(CO)などの温室効果ガスが排出される上、外国から我が国に輸送する過程でもリン鉱石を積んだ船舶などが温室効果ガスを排出する。本システムは、リン鉱石作製に要するエネルギー源として太陽電池と水素電池を使用しているので、温室効果ガスをまったく発生しない環境に優しいシステムとすることができる。
(3) Global warming countermeasures Normally, greenhouse gas such as carbon dioxide (CO 2 ) is emitted in the process of digging phosphorus ore, and ships carrying phosphorus ore are also greenhouse gas in the process of transporting to Japan from abroad. Is discharged. Since this system uses solar cells and hydrogen batteries as energy sources required for the production of phosphate ore, it can be an environment-friendly system that does not generate any greenhouse gases.

(4)汚泥焼却灰の削減
本システムは、下水汚泥焼却灰に含まれるリンも減らすことができるので、結果として焼却灰の量も減らすことができ、埋め立てや運搬などに要する処理費用も低減することができる。ちなみに、1日当たり218kgのリンを回収する場合、1年間で約80トンの焼却灰の削減につながる。
(4) Reduction of sludge incineration ash This system can also reduce the phosphorus contained in sewage sludge incineration ash, resulting in a reduction in the amount of incineration ash and the processing costs required for landfill and transportation. be able to. By the way, when recovering 218kg of phosphorus per day, it leads to a reduction of about 80 tons of incineration ash in one year.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態では、電気分解用の正負一対の電極として鉄電極とチタン電極を用いた場合について例示したが、アノード側電極としては、電気分解によって不溶性リン酸塩を形成可能な金属であれば良く、鉄以外にも、例えばアルミニウム電極、鉄−アルミニウム合金電極などを用いることができる。また、カソード側電極もチタン電極に限られるものではなく、炭素電極やアノード側と同じ金属からなる電極を用いることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, in the above-described embodiment, the case where an iron electrode and a titanium electrode are used as a pair of positive and negative electrodes for electrolysis is exemplified, but the anode side electrode is a metal that can form an insoluble phosphate by electrolysis. What is necessary is just to have, and besides iron, an aluminum electrode, an iron-aluminum alloy electrode, etc. can be used, for example. Further, the cathode side electrode is not limited to the titanium electrode, and an electrode made of the same metal as the carbon electrode or the anode side can be used.

また、上記実施の形態では、電解式リン回収装置から発生する水素ガスを用いた水素発電による電力を電気分解用の直流電源として利用したが、これに加えて、消化ガス(メタンガス)によるガス発電による電力を電気分解用の直流電源として利用することもできる。   In the above embodiment, the electric power generated by the hydrogen power generation using the hydrogen gas generated from the electrolytic phosphorus recovery apparatus is used as the direct current power source for the electrolysis. In addition to this, the gas power generation using the digestion gas (methane gas). It is also possible to use the electric power from the above as a direct current power source for electrolysis.

すなわち、汚泥処理施設2では、汚泥処理工程の1つとして消化槽を用いた消化処理を採用しているが、この消化処理において分解された汚泥から消化ガス(メタンガス)が発生する。従って、この消化ガスを用いてガス発電を行えば、この発電電力も電気分解用の直流電源として利用することができる。消化ガス発電も利用するようにすれば、電気分解用の直流電源として太陽電池、水素電池、消化ガス発電の三者を用いることができ、さらなるコスト低減を図ることができる。   That is, in the sludge treatment facility 2, a digestion treatment using a digestion tank is adopted as one of the sludge treatment steps, and digestion gas (methane gas) is generated from the sludge decomposed in this digestion treatment. Therefore, if gas power generation is performed using this digestion gas, this generated power can also be used as a DC power source for electrolysis. If digestion gas power generation is also used, three of the solar battery, hydrogen battery, and digestion gas power generation can be used as a direct current power source for electrolysis, and further cost reduction can be achieved.

本発明の電解式リン回収装置を用いて構成した下水処理システムの一実施の形態を示す図である。It is a figure which shows one Embodiment of the sewage treatment system comprised using the electrolytic phosphorus collection | recovery apparatus of this invention. 図1中の電解式リン回収装置の具体例な構成例を示す図である。It is a figure which shows the example of a specific example of the electrolytic phosphorus collection | recovery apparatus in FIG.

符号の説明Explanation of symbols

1 汚水処理施設
2 汚泥処理施設
3 電解式リン回収装置
4 太陽電池
5 水素ガス回収装置
6 水素電池
7 電源切替装置
31 電解槽
32 アノード電極
33 カソード電極
34 リン回収用バルブ
35 脱離水流入口
36 脱離水流出口
51 水素ガス回収塔
52 圧縮ポンプ
53 水素ガス貯蔵タンク
54 圧力調整用レギュレータ
DESCRIPTION OF SYMBOLS 1 Sewage treatment facility 2 Sludge treatment facility 3 Electrolytic phosphorus recovery device 4 Solar cell 5 Hydrogen gas recovery device 6 Hydrogen battery 7 Power supply switching device 31 Electrolysis tank 32 Anode electrode 33 Cathode electrode 34 Phosphorus recovery valve 35 Desorption water inlet 36 Desorption Water separation outlet 51 Hydrogen gas recovery tower 52 Compression pump 53 Hydrogen gas storage tank 54 Regulator for pressure adjustment

Claims (4)

リン成分を含有する処理対象水を貯留する電解槽と、
貯留された処理対象水中に浸漬配置されるとともに、少なくともアノード電極は不溶性リン酸塩形成金属からなる正負一対の電極と、
該一対の電極に電気分解用の直流電圧を供給する太陽電池とからなることを特徴とする電解式リン回収装置。
An electrolytic cell for storing water to be treated containing a phosphorus component;
While being immersed in the stored water to be treated, at least the anode electrode is a pair of positive and negative electrodes made of an insoluble phosphate forming metal,
An electrolytic phosphorus recovery apparatus comprising a solar cell that supplies a direct current voltage for electrolysis to the pair of electrodes.
請求項1記載の電解式リン回収装置において、
前記一対の電極のカソード電極から発生する水素ガスを回収する水素ガス回収装置と、
該水素ガス回収装置で回収した水素ガスを燃料として用いた水素電池と、
前記一対の電極に印加する電気分解用の直流電源を前記太陽電池または水素電池のいずれかの側に切り替え可能な電源切替装置とを付加し、
太陽光発電を利用できる時間帯には太陽電池側に、太陽光発電を利用できない時間帯には水素電池側に切り替えるようにしたことを特徴とする電解式リン回収装置。
The electrolytic phosphorus recovery apparatus according to claim 1,
A hydrogen gas recovery device for recovering hydrogen gas generated from the cathode electrode of the pair of electrodes;
A hydrogen battery using hydrogen gas recovered by the hydrogen gas recovery device as a fuel;
A power switching device capable of switching a direct current power source for electrolysis applied to the pair of electrodes to either the solar cell or the hydrogen cell; and
An electrolytic phosphorus recovery apparatus characterized by switching to a solar cell side during a time zone in which solar power generation can be used, and switching to a hydrogen battery side in a time zone in which solar power generation cannot be used.
請求項2記載の電解式リン回収装置において、
前記電気分解用の一対の電極のアノード電極として鉄電極を、カソード電極としてチタン電極を用いたことを特徴とする電解式リン回収装置。
The electrolytic phosphorus recovery apparatus according to claim 2,
An electrolytic phosphorus recovery apparatus using an iron electrode as an anode electrode of a pair of electrodes for electrolysis and a titanium electrode as a cathode electrode.
流入してくる下水を少なくとも活性汚泥を利用して浄化処理する汚水処理施設と、該汚水処理施設から排出される余剰汚泥を脱水乾燥処理して濃縮汚泥と脱離水とに分離する汚泥処理施設と、該汚泥処理施設から排出される脱離水中のリン成分を回収するリン回収装置とを備え、脱リン後の脱離水を前記汚水処理施設に返送するようにした下水処理システムにおいて、
前記リン回収装置として、請求項1〜3に記載のいずれかの電解式リン回収装置を用いたことを特徴とする下水処理システム。
A sewage treatment facility that purifies inflowing sewage using at least activated sludge, and a sludge treatment facility that separates excess sludge discharged from the sewage treatment facility into concentrated sludge and desorbed water by dehydration and drying. A sewage treatment system comprising a phosphorus recovery device for recovering phosphorus components in the desorbed water discharged from the sludge treatment facility, and returning the desorbed water after dephosphorization to the sewage treatment facility,
A sewage treatment system using the electrolytic phosphorus recovery apparatus according to any one of claims 1 to 3 as the phosphorus recovery apparatus.
JP2008164159A 2008-06-24 2008-06-24 Electrolytic phosphorus recovery device and sewage treatment system using it Pending JP2010005491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164159A JP2010005491A (en) 2008-06-24 2008-06-24 Electrolytic phosphorus recovery device and sewage treatment system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164159A JP2010005491A (en) 2008-06-24 2008-06-24 Electrolytic phosphorus recovery device and sewage treatment system using it

Publications (1)

Publication Number Publication Date
JP2010005491A true JP2010005491A (en) 2010-01-14

Family

ID=41586574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164159A Pending JP2010005491A (en) 2008-06-24 2008-06-24 Electrolytic phosphorus recovery device and sewage treatment system using it

Country Status (1)

Country Link
JP (1) JP2010005491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492517A (en) * 2011-12-22 2012-06-13 湖北和远新能源科技有限公司 OSA-composite enzyme sludge combustion coal and preparation method thereof
CN104003601A (en) * 2014-05-28 2014-08-27 程礼华 Process and device for generating power by using solar multidimensional electrode and microwave catalysis sludge
WO2016048218A1 (en) * 2014-09-25 2016-03-31 Tb-Lager Process for waste water clarification and separation of contaminants and phosphorous compounds from the waste water
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257568A (en) * 1995-03-20 1996-10-08 Nissui Kiko Kk Sewage treatment method and apparatus
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2003112180A (en) * 2001-10-03 2003-04-15 Hitachi Ltd Water purifier
JP2007330919A (en) * 2006-06-16 2007-12-27 Eiji Nagatsuka Sewage treatment facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257568A (en) * 1995-03-20 1996-10-08 Nissui Kiko Kk Sewage treatment method and apparatus
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2003112180A (en) * 2001-10-03 2003-04-15 Hitachi Ltd Water purifier
JP2007330919A (en) * 2006-06-16 2007-12-27 Eiji Nagatsuka Sewage treatment facility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492517A (en) * 2011-12-22 2012-06-13 湖北和远新能源科技有限公司 OSA-composite enzyme sludge combustion coal and preparation method thereof
CN102492517B (en) * 2011-12-22 2014-02-05 湖北和远新能源科技有限公司 OSA-composite enzyme sludge combustion coal and preparation method thereof
CN104003601A (en) * 2014-05-28 2014-08-27 程礼华 Process and device for generating power by using solar multidimensional electrode and microwave catalysis sludge
CN104003601B (en) * 2014-05-28 2015-12-09 程礼华 Sun power multidimension electrode and microwave catalysis sludge power generation technique and device thereof
WO2016048218A1 (en) * 2014-09-25 2016-03-31 Tb-Lager Process for waste water clarification and separation of contaminants and phosphorous compounds from the waste water
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain

Similar Documents

Publication Publication Date Title
Tang et al. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency
JP5491183B2 (en) Comprehensive utility equipment
Pathak et al. Integrated approach for textile industry wastewater for efficient hydrogen production and treatment through solar PV electrolysis
US11761097B2 (en) Systems and methods of water treatment for hydrogen production
CN113502485B (en) System and method for producing hydrogen by electrolyzing seawater in thermal power plant
CN110002639A (en) A kind of processing unit and method of middle and advanced stage aged refuse in MSW landfill percolate
JP2010005491A (en) Electrolytic phosphorus recovery device and sewage treatment system using it
JP2015147185A (en) Sewage treatment system
Khaki et al. Integrating eco-environmental assessment with energy recovery for petrochemical wastewater treatment technologies: A transition towards green and sustainable management
KR101683074B1 (en) bio-gas producing method with high efficiency and system for the same
CN205473191U (en) Domestic waste filtration liquid sewage treatment system
JP2002307065A (en) Domestic wastewater reutilization equipment
JP5283831B2 (en) Sewage treatment facility and sewage treatment method
US20130175210A1 (en) Odor treatment device for septic tanks
Yu et al. Evaluation of bipolar electrocoagulation applied to biofiltration for phosphorus removal
KR100911658B1 (en) System for supplying power using microbial fuel cell and method therefor
Lin et al. Solar-powered electrocoagulation treatment of wet flue gas desulfurization wastewater using dimensionally stable anode and induced electrode
CN209081658U (en) It is percolated liquid processing device
WO2013017901A1 (en) System and method for producing electrical energy
KR101231854B1 (en) Wastewater Treatment System
Yasui et al. Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal
Fu et al. A review of the eco-revolution of organic carbon capture in wastewater treatment: limitations and coupled processes
CN213388161U (en) Non-clean water source purification treatment system
CN215048906U (en) Drop well sewage normal position processing system
CN212102133U (en) Photovoltaic-powered river channel dispersed pollution source electric flocculation treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228