JP2010004753A - Electrode unit for separating cell and cell separation device - Google Patents

Electrode unit for separating cell and cell separation device Download PDF

Info

Publication number
JP2010004753A
JP2010004753A JP2008164636A JP2008164636A JP2010004753A JP 2010004753 A JP2010004753 A JP 2010004753A JP 2008164636 A JP2008164636 A JP 2008164636A JP 2008164636 A JP2008164636 A JP 2008164636A JP 2010004753 A JP2010004753 A JP 2010004753A
Authority
JP
Japan
Prior art keywords
cell
electrode
cell separation
cells
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008164636A
Other languages
Japanese (ja)
Inventor
Masaru Hakoda
優 箱田
Hiroki Hibino
浩樹 日比野
Hiroshi Fukuda
宏 福田
Yoshiaki Shiba
良昭 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Olympus Corp
Original Assignee
Gunma University NUC
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Olympus Corp filed Critical Gunma University NUC
Priority to JP2008164636A priority Critical patent/JP2010004753A/en
Publication of JP2010004753A publication Critical patent/JP2010004753A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode unit for separating cells, constituted so as to have a small and compact volume while improving separation ability by securing the area, and to provide a cell separation device. <P>SOLUTION: The electrode unit 4 for separating cells includes a plurality of ring-shaped electrodes 6 arranged in a pathway 3 through which a cell suspension flows, having the axial directions coinciding with the flowing direction, and arranged in the axial direction at nearly parallel intervals so as to have alternately different polarities. When a high-frequency voltage is applied between the electrodes, a non-uniform high-frequency electric field with a changing intensity is formed around each of the electrodes, and dielectrophoretic forces having a magnitude and sign based on the dielectrophoretic characteristics acts on the cells in the cell suspension. As a result, the cells in the cell suspension are separated based on the electrophoretic characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、細胞分離用電極ユニットおよび細胞分離装置に関するものである。   The present invention relates to an electrode unit for cell separation and a cell separation device.

従来、平面状に配置された電極によって、該電極の周囲に高周波不平等電界を形成し、該高周波不平等電界中を通過する細胞に作用する誘電泳動力の大きさによって細胞を種別毎に分離する細胞分離装置が知られている(例えば、特許文献1参照。)。   Conventionally, a high-frequency unequal electric field is formed around the electrodes by electrodes arranged in a plane, and the cells are separated by type according to the magnitude of the dielectrophoretic force acting on the cells passing through the high-frequency unequal electric field. A cell separation device is known (see, for example, Patent Document 1).

特開2005−227111号公報JP-A-2005-227111

しかしながら、特許文献1の細胞分離装置は、電極を平面状に配列しており、分離能力を高めるためにはその平面上における面積を広げる必要がある。特に、誘電泳動力が作用する電極からの距離は500μm程度であるために、従来の細胞分離装置は、装置が極めて薄くならざるを得ないという不都合がある。   However, the cell separation device of Patent Document 1 has electrodes arranged in a plane, and it is necessary to increase the area on the plane in order to increase the separation capability. In particular, since the distance from the electrode on which the dielectrophoretic force acts is about 500 μm, the conventional cell separation device has a disadvantage that the device must be extremely thin.

本発明は上述した事情に鑑みてなされたものであって、面積を確保して分離能力を高めつつ、体積を小さくコンパクトに構成することができる細胞分離用電極ユニットおよび細胞分離装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and provides a cell separation electrode unit and a cell separation device that can be configured to be small and compact while ensuring an area and enhancing separation performance. It is an object.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、細胞懸濁液を流通させる流路内に配置され、流通方向に軸方向を一致させ、かつ、軸方向に略平行間隔をあけて交互に極性を異ならせて配置された複数の環状の電極を備える細胞分離用電極ユニットを提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention is arranged in a flow path for circulating a cell suspension, the axial direction coincides with the flow direction, and a plurality of polarities alternately arranged at substantially parallel intervals in the axial direction An electrode unit for cell separation comprising an annular electrode is provided.

本発明によれば、流路内に配置された状態で隣接する電極間に高周波電圧を加えることにより、各電極回りに強度が変化する高周波不平等電界が形成される。この状態で、流路内に細胞懸濁液を流通させると、細胞懸濁液内の細胞には、その誘電泳動特性に基づく大きさおよび符号の誘電泳動力が作用する。環状の電極により囲まれた空間には、その中心に向かって傾度が低くなる高周波不平等電界が形成されるので、負の誘電泳動特性を有する細胞は、誘電泳動力によって電極の中心に向かって引き寄せられ、流路の中央領域に沿って流動させられる。一方、正の誘電泳動特性を有する細胞は、電極に引き寄せられて、流路の外側領域に沿って流動させられる。これにより、細胞懸濁液内の細胞が、その誘電泳動特性に基づいて分離される。   According to the present invention, a high frequency unequal electric field whose intensity changes around each electrode is formed by applying a high frequency voltage between adjacent electrodes while being arranged in the flow path. In this state, when the cell suspension is circulated in the flow path, a dielectrophoretic force having a size and a sign based on the dielectrophoretic characteristics acts on the cells in the cell suspension. In the space surrounded by the annular electrode, a high-frequency unequal electric field with a lower gradient toward the center is formed, so that cells having negative dielectrophoretic characteristics move toward the center of the electrode by the dielectrophoretic force. It is drawn and allowed to flow along the central region of the flow path. On the other hand, cells having positive dielectrophoretic properties are attracted to the electrode and flow along the outer region of the channel. Thereby, the cells in the cell suspension are separated based on their dielectrophoretic properties.

この場合において、本発明によれば、電極を環状に形成することで、従来の平面状に形成された電極と比較して、空間を有効に利用することができ、小さい体積で面積を確保して、装置のコンパクト化を図りながら、分離能力を高めることができる。   In this case, according to the present invention, by forming the electrode in an annular shape, it is possible to effectively use the space and secure an area with a small volume as compared with the conventional flat electrode. Thus, the separation capability can be enhanced while the device is made compact.

上記発明においては、前記環状の電極が径方向に間隔をあけて複数配置されていてもよい。
このようにすることで、径方向に間隔をあけて配置された環状の電極に異なる周波数の高周波電圧を加えて、異なる高周波不平等電界を形成し、それぞれ誘電泳動特性の異なる細胞を引き寄せることができる。これにより、径方向の中央の流路、その外側の管状の流路に誘電泳動特性の異なる細胞を集めることができ、細胞懸濁液内の細胞をさらに細かく分離することができる。
In the above invention, a plurality of the annular electrodes may be arranged at intervals in the radial direction.
By doing this, it is possible to apply high frequency voltages of different frequencies to the annular electrodes arranged in the radial direction to form different high frequency unequal electric fields and attract cells with different dielectrophoretic characteristics. it can. Thereby, cells having different dielectrophoretic characteristics can be collected in the central flow path in the radial direction and the tubular flow path outside thereof, and the cells in the cell suspension can be further finely separated.

また、本発明は、細胞懸濁液を流通させる流路内に配置され、流通方向に軸方向を一致させ、かつ、軸方向に沿って周方向に略平行間隔をあけて交互に極性を異ならせて管状に配列された複数の直線状の電極を備える細胞分離用電極ユニットを提供する。   Further, the present invention is arranged in a flow path for circulating the cell suspension, and the axial direction is made coincident with the flow direction, and the polarities are alternately different at substantially parallel intervals in the circumferential direction along the axial direction. An electrode unit for cell separation comprising a plurality of linear electrodes arranged in a tubular shape is provided.

本発明によれば、流路内に配置された状態で隣接する電極間に高周波電圧を加えることにより、各電極回りに強度が変化する高周波不平等電界が形成される。この状態で、流路内に細胞懸濁液を流通させると、細胞懸濁液内の細胞には、その誘電泳動特性に基づく大きさおよび符号の誘電泳動力が作用する。管状に配列された直線状の電極により囲まれ他空間には、その中心に向かって傾度が高くなる高周波不平等電界が形成されるので、正の誘電泳動特性を有する細胞は、誘電泳動力によって電極の中心に向かって引き寄せられる。一方、負の誘電泳動特性を有する細胞は、電極の隙間から半径方向外方に流れる。これにより、細胞懸濁液内の細胞が、その誘電泳動特性に基づいて分離される。   According to the present invention, a high frequency unequal electric field whose intensity changes around each electrode is formed by applying a high frequency voltage between adjacent electrodes while being arranged in the flow path. In this state, when the cell suspension is circulated in the flow path, a dielectrophoretic force having a size and a sign based on the dielectrophoretic characteristics acts on the cells in the cell suspension. A high-frequency unequal electric field is formed in the other space surrounded by the linear electrodes arranged in a tubular shape, and the gradient increases toward the center of the other spaces. It is drawn toward the center of the electrode. On the other hand, cells having negative dielectrophoretic characteristics flow radially outward from the gaps between the electrodes. Thereby, the cells in the cell suspension are separated based on their dielectrophoretic properties.

この場合においても、直線状の電極を周方向に間隔をあけて管状に配列することで、従来の平面状に形成された電極と比較して、空間を有効に利用することができ、小さい体積で面積を確保して、装置のコンパクト化を図りながら、分離能力を高めることができる。   Even in this case, by arranging the linear electrodes in a tubular shape with an interval in the circumferential direction, it is possible to effectively use the space and to reduce the volume as compared with the conventional electrodes formed in a planar shape. Thus, it is possible to increase the separation capability while securing an area and reducing the size of the apparatus.

上記発明においては、前記管状に配列された電極が径方向に間隔をあけて複数配置されていてもよい。
このようにすることで、径方向に間隔をあけて配置された直線状の電極に異なる周波数の高周波電圧を加えて、異なる高周波不平等電界を形成し、それぞれ誘電泳動特性の異なる細胞を引き寄せることができる。これにより、径方向の中央近傍の流路、その外側の各電極に対応する半径方向位置近傍の環状の流路に、誘電泳動特性の異なる細胞を集めることができ、細胞懸濁液内の細胞をさらに細かく分離することができる。
In the above-described invention, a plurality of the electrodes arranged in the tubular shape may be arranged at intervals in the radial direction.
By doing so, high frequency voltages of different frequencies are applied to linear electrodes arranged at intervals in the radial direction to form different high frequency unequal electric fields and attract cells with different dielectrophoretic characteristics. Can do. As a result, cells having different dielectrophoretic characteristics can be collected in a flow path near the center in the radial direction and an annular flow path in the vicinity of the radial position corresponding to each of the outer electrodes. Can be further finely separated.

また、本発明は、細胞懸濁液を流通させる流路と、該流路内に配置された上記いずれかの細胞分離用電極ユニットとを備える細胞分離装置を提供する。
本発明によれば、電極間に高周波電圧を加えた状態で流路に細胞懸濁液を流通させると、環状の電極の周囲に高周波不平等電界が形成されるので、電極近傍を通過する細胞には、その誘電泳動特性に応じた誘電泳動力が作用する。これにより、環状の電極内に留められる細胞と、電極間の隙間を貫通して電極の外側に流れ出す細胞とが発生し、細胞懸濁液内の細胞を誘電泳動特性に応じて分離することが可能となる。
The present invention also provides a cell separation apparatus comprising a flow path for circulating a cell suspension and any one of the cell separation electrode units disposed in the flow path.
According to the present invention, when a cell suspension is circulated through the flow path with a high frequency voltage applied between the electrodes, a high frequency unequal electric field is formed around the annular electrode, so that cells passing near the electrode A dielectrophoretic force in accordance with the dielectrophoretic characteristics acts on. As a result, cells that are retained in the annular electrode and cells that flow through the gap between the electrodes and flow outside the electrode are generated, and the cells in the cell suspension can be separated according to the dielectrophoretic characteristics. It becomes possible.

本発明によれば、面積を確保して分離能力を高めつつ、体積を小さくコンパクトに構成することができるという効果を奏する。   According to the present invention, there is an effect that the volume can be reduced and the configuration can be made compact while securing the area and increasing the separation capability.

以下、本発明の第1の実施形態に係る細胞分離用電極ユニットおよび細胞分離装置について、図1〜図4を参照して説明する。
本実施形態に係る細胞分離装置1は、図1および図2に示されるように、細胞懸濁液を貯留する容器2と、該容器2に接続された流路3と、流路3内に配置された細胞分離用電極ユニット4と、流路3を流通してきた細胞を回収する細胞回収部5とを備えている。
Hereinafter, an electrode unit for cell separation and a cell separation device according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1 and FIG. 2, the cell separation device 1 according to this embodiment includes a container 2 for storing a cell suspension, a flow path 3 connected to the container 2, and a flow path 3. The cell separation electrode unit 4 and the cell collection unit 5 that collects the cells that have flowed through the flow path 3 are provided.

容器2には、例えば、ヒトから採取した脂肪組織を消化酵素液とともに攪拌することにより単離させた脂肪由来細胞を含む細胞懸濁液が貯留されている。
流路3は、円管状に形成されている。
In the container 2, for example, a cell suspension containing adipose-derived cells isolated by stirring adipose tissue collected from a human together with a digestive enzyme solution is stored.
The flow path 3 is formed in a circular tube shape.

細胞分離用電極ユニット4は、図3に示されるように、ワイヤを加工することにより、円筒の籠状に形成された電極体4Aと、該電極体4Aに高周波電圧を加える電圧供給部4Bを備えている。電極体4Aは、流路の長手方向に間隔をあけて複数配列された円環状の環状電極6と、周方向に間隔をあけて複数配列され、円環状の電極を相互に連結する直棒状の棒状電極7とから構成されている。環状電極6の径寸法は直径約1mmである。隣接する環状電極6間の距離および隣接する棒状電極7間の距離は約100μmである。   As shown in FIG. 3, the cell separation electrode unit 4 includes an electrode body 4A formed in a cylindrical bowl shape by processing a wire, and a voltage supply unit 4B that applies a high-frequency voltage to the electrode body 4A. I have. The electrode body 4A has a plurality of annular annular electrodes 6 arranged at intervals in the longitudinal direction of the flow path, and a straight rod-like shape that is arranged at intervals in the circumferential direction and connects the annular electrodes to each other. It is comprised from the rod-shaped electrode 7. FIG. The diameter of the annular electrode 6 is about 1 mm in diameter. The distance between adjacent annular electrodes 6 and the distance between adjacent rod-shaped electrodes 7 are about 100 μm.

電圧供給部4Bは、電極体4Aの隣接する環状電極6どうしおよび棒状電極7どうしに、それぞれ、異なる極性の高周波電圧を加え、各電極6,7から離れるに従って徐々に電位傾度が小さくなる高周波不平等電解を形成するようになっている。
電極体4Aに加えられる高周波電圧の周波数としては、分離したい細胞の誘電泳動特性に合わせて、正の誘電泳動特性または負の誘電泳動特性が大きくなる周波数が選択されるようになっている。
The voltage supply unit 4B applies high-frequency voltages of different polarities to the adjacent annular electrodes 6 and rod-shaped electrodes 7 of the electrode body 4A, respectively, and the high-frequency voltage decreases gradually as the distance from the electrodes 6 and 7 increases. An equal electrolysis is formed.
As a frequency of the high frequency voltage applied to the electrode body 4A, a frequency at which the positive dielectrophoretic characteristic or the negative dielectrophoretic characteristic becomes large is selected in accordance with the dielectrophoretic characteristic of the cell to be separated.

例えば、第1の細胞は、一の周波数において大きな負の誘電泳動特性を有し、第2の細胞は、同じ周波数において大きな正の誘電泳動特性を有するような周波数が選択されることが好ましい。あるいは、第1の細胞は第1の周波数において大きな負の誘電泳動特性を有するが第2の周波数においては小さな誘電泳動特性しか有さず、第2の細胞は第1の周波数においては小さな誘電泳動特性しか有しないが第2の周波数においては大きな正の誘電泳動特性を有するような周波数が選択できる場合には両方の周波数を含む高周波電圧を加えることが好ましい。   For example, it is preferable that the first cell has a large negative dielectrophoretic characteristic at one frequency and the second cell is selected such that it has a large positive dielectrophoretic characteristic at the same frequency. Alternatively, the first cell has a large negative dielectrophoretic characteristic at the first frequency but a small dielectrophoretic characteristic at the second frequency, and the second cell has a small dielectrophoretic characteristic at the first frequency. In the case where a frequency having only a characteristic but having a large positive dielectrophoretic characteristic can be selected at the second frequency, it is preferable to apply a high frequency voltage including both frequencies.

細胞回収部5は、流路3の下流の半径方向の中央部分と、周縁部分とにそれぞれ接続された回収容器8,9を備えている。各回収容器8,9によって、流路3の半径方向の中央近傍を流動してきた細胞懸濁液および流路3の周縁の電極体4A近傍を流動してきた細胞懸濁液をそれぞれ別々に回収することができるようになっている。   The cell recovery unit 5 includes recovery containers 8 and 9 connected to a radial center portion downstream of the flow path 3 and a peripheral portion, respectively. With each of the collection containers 8 and 9, the cell suspension that has flowed in the vicinity of the center in the radial direction of the flow path 3 and the cell suspension that has flowed in the vicinity of the electrode body 4A at the periphery of the flow path 3 are separately collected. Be able to.

このように構成された本実施形態に係る細胞分離用電極ユニット4および細胞分離装置1の作用について以下に説明する。
本実施形態に係る細胞分離装置1を用いて、細胞懸濁液内に含まれる細胞を分離するには、容器2内に細胞懸濁液を収容しておき、細胞分離用電極ユニット4の電圧供給部4Bを作動させて電極体4Aに高周波電圧を加えた状態で、容器2内の細胞懸濁液を流路3内に流入させる。
The operation of the cell separation electrode unit 4 and the cell separation device 1 according to this embodiment configured as described above will be described below.
In order to separate the cells contained in the cell suspension using the cell separation device 1 according to the present embodiment, the cell suspension is accommodated in the container 2 and the voltage of the cell separation electrode unit 4 is stored. The cell suspension in the container 2 is caused to flow into the flow path 3 in a state where the supply unit 4B is operated and a high frequency voltage is applied to the electrode body 4A.

電極体4Aには、半径方向内方に向かって徐々に傾度が低くなる高周波不平等電界が発生する。したがって、電極体4Aの半径方向内方には、半径方向の中心に向かって漸次傾度が低くなり、中心で最低となる高周波不平等が発生する。   In the electrode body 4A, a high-frequency unequal electric field is generated in which the gradient gradually decreases inward in the radial direction. Therefore, in the radially inward direction of the electrode body 4A, the gradient gradually decreases toward the center in the radial direction, and high frequency inequality that is lowest at the center occurs.

容器2から流路3を介して細胞分離用電極ユニット4の電極体4A内に流入した細胞懸濁液の内、加えられた高周波電圧の周波数において正の誘電泳動特性を有する細胞S1は、図4に塗りつぶされた円で示されるように、電位傾度の高くなる方向、すなわち、電極体4Aに近接する方向に引き寄せられるように半径方向外方に移動する。逆に、加えられた高周波電圧の周波数において負の誘電泳動特性を有する細胞S2は、図4に白抜きの円で示されるように、電極体4Aから離れて電極体4Aの半径方向の中心位置近傍に保持される。   Of the cell suspension that has flowed from the container 2 into the electrode body 4A of the cell separation electrode unit 4 through the flow path 3, the cell S1 having positive dielectrophoretic characteristics at the frequency of the applied high-frequency voltage is shown in FIG. As indicated by a circle filled with 4, it moves outward in the radial direction so as to be drawn in a direction in which the potential gradient increases, that is, in a direction close to the electrode body 4 </ b> A. On the contrary, the cell S2 having negative dielectrophoretic characteristics at the frequency of the applied high-frequency voltage is separated from the electrode body 4A as shown by a white circle in FIG. Held in the vicinity.

これにより、流路3の径方向の中央に負の誘電泳動特性を有する細胞S1を多く含む細胞懸濁液が流動し、流路3の径方向の外周側に配置された電極体4Aの近傍には、正の誘電泳動特性を有する細胞S2を多く含む細胞懸濁液が流動するようになる。
細胞分離用電極ユニット4の電極体4Aの下流側には、半径方向の中央と外周とにそれぞれ回収容器8,9が接続されているので、それぞれの回収容器8,9には、異なる誘電泳動特性を有する細胞S1,S2がそれぞれ別々に回収されることになる。
As a result, a cell suspension containing a large amount of cells S1 having negative dielectrophoretic characteristics flows in the center of the flow path 3 in the radial direction, and in the vicinity of the electrode body 4A disposed on the outer peripheral side of the flow path 3 in the radial direction. The cell suspension containing many cells S2 having positive dielectrophoretic properties flows.
Since the collection containers 8 and 9 are connected to the center and the outer periphery in the radial direction on the downstream side of the electrode body 4A of the cell separation electrode unit 4, different dielectrophoresis is performed on each of the collection containers 8 and 9. The cells S1 and S2 having characteristics are collected separately.

この場合において、本実施形態に係る細胞分離用電極ユニット4および細胞分離装置1によれば、電極体4Aを円筒の籠状に形成することで、従来の平面状に形成された電極と比較して、空間を有効に利用することができ、小さい体積で面積を確保して、装置のコンパクト化を図りながら、分離能力を高めることができるという利点がある。   In this case, according to the cell separation electrode unit 4 and the cell separation device 1 according to the present embodiment, the electrode body 4A is formed in a cylindrical bowl shape, which is compared with a conventional flat electrode. Thus, there is an advantage that the space can be used effectively, and the separation capacity can be enhanced while ensuring the area with a small volume and making the apparatus compact.

次に、本発明の第2の実施形態に係る細胞分離用電極ユニット4’および細胞分離装置1’について、図5を参照して以下に説明する。
本実施形態の説明において、上述した第1の実施形態に係る細胞分離用電極ユニット4および細胞分離装置1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, a cell separation electrode unit 4 ′ and a cell separation device 1 ′ according to a second embodiment of the present invention will be described below with reference to FIG.
In the description of the present embodiment, the same reference numerals are given to the portions having the same configurations as those of the cell separation electrode unit 4 and the cell separation device 1 according to the first embodiment described above, and the description thereof is omitted.

本実施形態に係る細胞分離用電極ユニット4’は、図5に示されるように、半径寸法の異なる円筒の籠状の2つの電極体4A,4A’を備えている。2つの電極体4A,4A’は、各電極体4A,4A’を構成する環状電極6,6’の径寸法が異なるもので、半径方向に間隔をあけて同軸に配置され、2重管状に形成されている。   As shown in FIG. 5, the cell separation electrode unit 4 ′ according to the present embodiment includes two cylindrical bowl-shaped electrode bodies 4 </ b> A and 4 </ b> A ′ having different radial dimensions. The two electrode bodies 4A and 4A ′ have different diameter dimensions of the annular electrodes 6 and 6 ′ constituting the respective electrode bodies 4A and 4A ′, and are arranged coaxially with a space in the radial direction. Is formed.

これにより、流路3内には、内側の電極体4A’によって囲まれる第1の流路3Aと、その外側に配置され、2つの電極体4A,4A’によって囲まれる円管状の第2の流路3Bとが形成されている。容器2は第1の流路3Aに接続されており、容器2から流動してくる細胞懸濁液は、全て第1の流路3Aに流入させられるようになっている。   Thereby, in the flow path 3, the first flow path 3 </ b> A surrounded by the inner electrode body 4 </ b> A ′, and the second tubular tube disposed outside and surrounded by the two electrode bodies 4 </ b> A and 4 </ b> A ′. A flow path 3B is formed. The container 2 is connected to the first flow path 3A, and all the cell suspension flowing from the container 2 is allowed to flow into the first flow path 3A.

2つの電極体4A,4A’には、電圧供給部4Bによって隣接する環状電極6,6’および棒状電極7,7’に、それぞれ、異なる極性の高周波電圧が加えられ、各電極6,6’,7,7’から離れるに従って徐々に電位傾度が小さくなる高周波不平等電解が形成されるようになっている。また、2つの電極体4A,4A’には、異なる周波数の高周波電圧が加えられるようになっている。
電極体4A,4A’に加えられる高周波電圧の周波数としては、分離したい細胞の誘電泳動特性に合わせて、正の誘電泳動特性または負の誘電泳動特性が大きくなる周波数が選択されるようになっている。
The two electrode bodies 4A and 4A ′ are respectively applied with high-frequency voltages of different polarities to the annular electrodes 6 and 6 ′ and the rod-like electrodes 7 and 7 ′ that are adjacent to each other by the voltage supply unit 4B. , 7, 7 ′, high-frequency unequal electrolysis is formed with the potential gradient gradually decreasing as the distance from 7, 7 ′ increases. Further, a high frequency voltage having a different frequency is applied to the two electrode bodies 4A and 4A ′.
As the frequency of the high frequency voltage applied to the electrode bodies 4A and 4A ′, a frequency at which the positive dielectrophoretic characteristic or the negative dielectrophoretic characteristic becomes large is selected in accordance with the dielectrophoretic characteristic of the cell to be separated. Yes.

例えば、第1の細胞は、第1の周波数において大きな負の誘電泳動特性を有するが第2の周波数においては小さな誘電泳動特性しか有さず、第2の細胞は、同じ第1の周波数において大きな正の誘電泳動特性を有するが第2の周波数においては小さな誘電泳動特性しか有さず、第3の細胞は、第1の周波数においては小さな誘電泳動特性しか有しないが第2の周波数においては大きな正の誘電泳動特性を有するような周波数が選択されることが好ましい。   For example, a first cell has a large negative dielectrophoretic characteristic at a first frequency but a small dielectrophoretic characteristic at a second frequency, and a second cell is large at the same first frequency. Has positive dielectrophoretic properties but only small dielectrophoretic properties at the second frequency, and the third cell has small dielectrophoretic properties at the first frequency but large at the second frequency. Preferably, a frequency is selected that has positive dielectrophoretic properties.

細胞回収部5は、流路3の半径方向の中央の下流と、2つの電極体4A,4A’の配されている半径方向位置の下流とにそれぞれ接続された3つの回収容器8,9を備えている。各回収容器8,9によって、流路3の半径方向の中央近傍を流動してきた細胞懸濁液および各電極体4A,4A’の近傍を流動してきた細胞懸濁液をそれぞれ別々に回収することができるようになっている。   The cell recovery unit 5 includes three recovery containers 8 and 9 connected to the downstream of the center in the radial direction of the flow path 3 and the downstream of the radial position where the two electrode bodies 4A and 4A ′ are arranged. I have. With each of the collection containers 8 and 9, the cell suspension flowing in the vicinity of the center in the radial direction of the flow path 3 and the cell suspension flowing in the vicinity of each of the electrode bodies 4A and 4A ′ are separately collected. Can be done.

このように構成された本実施形態に係る細胞分離装置1’の作用について以下に説明する。
本実施形態に係る細胞分離装置1’を用いて、細胞懸濁液内に含まれる細胞を分離するには、容器2内に細胞懸濁液を収容しておき、細胞分離用電極ユニット4の電圧供給部4Bに高周波電圧を加えた状態で、容器2内の細胞懸濁液を流路内に流入させる。
The operation of the cell separation device 1 ′ according to this embodiment configured as described above will be described below.
In order to separate the cells contained in the cell suspension using the cell separation device 1 ′ according to this embodiment, the cell suspension is accommodated in the container 2, and the cell separation electrode unit 4 In a state where a high frequency voltage is applied to the voltage supply unit 4B, the cell suspension in the container 2 is caused to flow into the flow path.

2つの電極体4A,4A’には、それぞれ半径方向内方に向かって徐々に傾度が低くなる高周波不平等電界が発生する。したがって、内側の電極体4Aの半径方向内方には、半径方向の中心に向かって漸次傾度が低くなり、中心で最低となる高周波不平等が発生する。   A high-frequency unequal electric field is generated in the two electrode bodies 4A and 4A '. Accordingly, inwardly in the radial direction of the inner electrode body 4A, the gradient gradually decreases toward the center in the radial direction, and high-frequency inequality that is lowest at the center occurs.

また、2つの電極体に4A,4A’は、それぞれ異なる周波数の高周波電圧が加えられ、異なる高周波不平等電界が発生する。
容器2から細胞分離用電極ユニット4の内側の電極体4Aの半径方向内方に流入した細胞懸濁液の内、電極体4Aに加えられた高周波電圧の第1の周波数および/または第2の周波数において正の誘電泳動特性を有する細胞は、電位傾度の高くなる方向、すなわち、2つの電極体4A,4A’にそれぞれ近接する方向に引き寄せられるように半径方向外方に移動する。
In addition, high frequency voltages of different frequencies are applied to the two electrode bodies 4A and 4A ′, and different high frequency unequal electric fields are generated.
Of the cell suspension that has flowed inward in the radial direction of the electrode body 4A inside the electrode unit 4 for cell separation from the container 2, the first frequency and / or the second frequency of the high-frequency voltage applied to the electrode body 4A. Cells having positive dielectrophoretic characteristics in frequency move outward in the radial direction so as to be attracted in the direction in which the potential gradient increases, that is, in the direction approaching the two electrode bodies 4A and 4A ′.

逆に、電極体4A,4A’に加えられた高周波電圧の第1の周波数および/または第2の周波数において負の誘電泳動特性を有する細胞S1は、電極体4A,4A’から離れて電極体4A,4A’の半径方向の中心位置近傍に保持される。
さらに、内側の電極体4Aに加えられた高周波電圧の第1の周波数において大きな正の誘電泳動特性を有するが、外側の電極体4A’に加えられた高周波電圧の第2の周波数においては小さい誘電泳動特性しか有しない細胞は、内側の電極体4A近傍の位置に保持される。
Conversely, the cells S1 having negative dielectrophoretic characteristics at the first frequency and / or the second frequency of the high-frequency voltage applied to the electrode bodies 4A and 4A ′ are separated from the electrode bodies 4A and 4A ′. 4A and 4A ′ are held in the vicinity of the center position in the radial direction.
Furthermore, it has a large positive dielectrophoretic characteristic at the first frequency of the high-frequency voltage applied to the inner electrode body 4A, but has a small dielectric at the second frequency of the high-frequency voltage applied to the outer electrode body 4A ′. Cells having only electrophoretic properties are held at positions near the inner electrode body 4A.

さらに、外側の電極体に加えられた高周波電圧の第2の周波数において大きな正の誘電泳動特性を有するが、内側の電極体4Aに加えられた高周波電圧の第1の周波数においては小さい誘電泳動特性しか有しない細胞は、内側の電極体4Aを透過して外側の電極体4A’近傍の位置に保持される。   Furthermore, it has a large positive dielectrophoretic characteristic at the second frequency of the high frequency voltage applied to the outer electrode body, but has a small dielectrophoretic characteristic at the first frequency of the high frequency voltage applied to the inner electrode body 4A. The cells having only the permeation pass through the inner electrode body 4A and are held at a position near the outer electrode body 4A ′.

これにより、流路3の径方向の中央に負の誘電泳動特性を有する細胞を多く含む細胞懸濁液が流動し、2つの電極体4A,4A’近傍には、異なる周波数において正の誘電泳動特性を有する細胞を多く含む細胞懸濁液がそれぞれ流動するようになる。
細胞分離用電極ユニット4’の電極体4A,4A’の下流側には、半径方向の中央と各電極体4A,4A’の下流位置にそれぞれ回収容器8,9が接続されているので、それぞれの回収容器8,9には、異なる誘電泳動特性を有する細胞がそれぞれ別々に回収されることになる。
As a result, a cell suspension containing a large number of cells having negative dielectrophoretic properties flows in the center of the flow path 3 in the radial direction, and positive dielectrophoresis is performed near the two electrode bodies 4A and 4A ′ at different frequencies. Each of the cell suspensions containing many cells having characteristics flows.
The collection containers 8 and 9 are connected to the downstream side of the electrode bodies 4A and 4A 'on the downstream side of the electrode bodies 4A and 4A' of the cell separation electrode unit 4 ', respectively. In the collection containers 8 and 9, cells having different dielectrophoretic characteristics are collected separately.

すなわち、本実施形態に係る細胞分離用電極ユニット4’および細胞分離装置1’によれば、負の誘電泳動特性を有する細胞を流路3の半径方向の中央位置近傍に集めるとともに、異なる正の誘電泳動特性を有する細胞を2つの電極体4A,4A’の半径方向位置近傍に集めるので、細胞懸濁液をさらに細かく分離することができるという利点がある。
なお、本実施形態においては、電極体4A,4A’の数が2つの場合について説明したが、これに限定されるものではなく、3以上の電極体を有することにしてもよい。
That is, according to the cell separation electrode unit 4 ′ and the cell separation device 1 ′ according to the present embodiment, cells having negative dielectrophoretic characteristics are collected in the vicinity of the central position in the radial direction of the flow path 3, and different positive Since cells having dielectrophoretic properties are collected near the radial positions of the two electrode bodies 4A and 4A ′, there is an advantage that the cell suspension can be further finely separated.
In the present embodiment, the case where the number of electrode bodies 4A and 4A ′ is two has been described. However, the present invention is not limited to this, and three or more electrode bodies may be provided.

また、上記各実施形態においては、電極体4A,4A’として、軸方向に間隔をあけて複数配列された環状電極6,6’および周方向に間隔をあけて複数配列された棒状電極7,7’の両方を有する場合について説明したが、これに代えて、いずれか一方の電極6’,6,7,7’を有することにしてもよい。   In each of the above embodiments, as the electrode bodies 4A and 4A ′, a plurality of annular electrodes 6 and 6 ′ arranged in the axial direction and a plurality of rod-like electrodes 7 arranged in the circumferential direction at intervals, Although the case of having both 7 'has been described, any one of the electrodes 6', 6, 7, 7 'may be provided instead.

本発明の第1の実施形態に係る細胞分離装置を示す模式的な縦断面図である。It is a typical longitudinal section showing the cell separation device concerning a 1st embodiment of the present invention. 図1の細胞分離装置を軸方向から見た正面図である。It is the front view which looked at the cell separation device of Drawing 1 from the direction of an axis. 図1の細胞分離装置に備えられた本実施形態に係る細胞分離用電極ユニットを示す斜視図である。It is a perspective view which shows the electrode unit for cell separation which concerns on this embodiment with which the cell separation apparatus of FIG. 1 was equipped. 図1の細胞分離装置の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of the cell separation apparatus of FIG. 本発明の第2の実施形態に係る細胞分離装置を軸方向から見た正面図である。It is the front view which looked at the cell separation device concerning a 2nd embodiment of the present invention from the axial direction.

符号の説明Explanation of symbols

1,1’ 細胞分離装置
3 流路
3A 第1の流路
3B 第2の流路
4,4’ 細胞分離用電極ユニット
5 細胞回収部
6,6’ 環状電極(電極)
7,7’ 棒状電極(電極)
DESCRIPTION OF SYMBOLS 1,1 'Cell separation apparatus 3 Flow path 3A 1st flow path 3B 2nd flow path 4, 4' Cell separation electrode unit 5 Cell collection | recovery part 6, 6 'Annular electrode (electrode)
7,7 'Rod electrode (electrode)

Claims (6)

細胞懸濁液を流通させる流路内に配置され、流通方向に軸方向を一致させ、かつ、軸方向に略平行間隔をあけて交互に極性を異ならせて配置された複数の環状の電極を備える細胞分離用電極ユニット。   A plurality of annular electrodes arranged in a flow path for circulating the cell suspension, aligned in the axial direction with the flow direction, and arranged with different polarities alternately at substantially parallel intervals in the axial direction. An electrode unit for cell separation provided. 前記環状の電極が径方向に間隔をあけて複数配置されている請求項1に記載の細胞分離用電極ユニット。   The electrode unit for cell separation according to claim 1, wherein a plurality of the annular electrodes are arranged at intervals in the radial direction. 細胞懸濁液を流通させる流路内に配置され、流通方向に軸方向を一致させ、かつ、軸方向に沿って周方向に略平行間隔をあけて交互に極性を異ならせて管状に配列された複数の直線状の電極を備える細胞分離用電極ユニット。   Arranged in a flow channel that circulates the cell suspension, aligned in the axial direction in the flow direction, and arranged in a tubular shape with different polarities alternately spaced substantially parallel in the circumferential direction along the axial direction. A cell separation electrode unit comprising a plurality of linear electrodes. 前記管状に配列された電極が径方向に間隔をあけて複数配置されている請求項3に記載の細胞分離用電極ユニット。   The electrode unit for cell separation according to claim 3, wherein a plurality of the electrodes arranged in a tubular shape are arranged at intervals in the radial direction. 細胞懸濁液を流通させる流路と、
該流路内に配置された請求項1から請求項4のいずれかに記載の細胞分離用電極ユニットとを備える細胞分離装置。
A flow path for circulating the cell suspension;
A cell separation apparatus comprising the cell separation electrode unit according to any one of claims 1 to 4 disposed in the flow path.
前記電極の径方向の内外の空間を流通してきた細胞をそれぞれ回収する細胞回収部を備える請求項5に記載の細胞分離装置。   The cell separation device according to claim 5, further comprising a cell collection unit that collects cells that have circulated through the inner and outer spaces in the radial direction of the electrode.
JP2008164636A 2008-06-24 2008-06-24 Electrode unit for separating cell and cell separation device Withdrawn JP2010004753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164636A JP2010004753A (en) 2008-06-24 2008-06-24 Electrode unit for separating cell and cell separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164636A JP2010004753A (en) 2008-06-24 2008-06-24 Electrode unit for separating cell and cell separation device

Publications (1)

Publication Number Publication Date
JP2010004753A true JP2010004753A (en) 2010-01-14

Family

ID=41585959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164636A Withdrawn JP2010004753A (en) 2008-06-24 2008-06-24 Electrode unit for separating cell and cell separation device

Country Status (1)

Country Link
JP (1) JP2010004753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042682A (en) * 2011-08-23 2013-03-04 Hitachi Ltd Apparatus, system and method for cell concentration
JP2016099113A (en) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 Surface-enhanced raman measurement method and surface-enhanced raman measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042682A (en) * 2011-08-23 2013-03-04 Hitachi Ltd Apparatus, system and method for cell concentration
JP2016099113A (en) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 Surface-enhanced raman measurement method and surface-enhanced raman measurement device

Similar Documents

Publication Publication Date Title
Zhu et al. Continuous dielectrophoretic separation of particles in a spiral microchannel
US6467630B1 (en) Continuous particle and molecule separation with an annular flow channel
Demircan et al. Dielectrophoresis: Applications and future outlook in point of care
CN106794469B (en) Rotary drum type magnetic separation device
Kose et al. Ferrofluid mediated nanocytometry
KR100624460B1 (en) A microfluidic device comprising a membrane formed with nano to micro sized pores and method for separating a polarizable material using the same
ES2949966T3 (en) Corona effect plasma device and plasma reactor
US10585022B2 (en) Collecting apparatus for extracellular vesicles and method for using the same
Ramirez‐Murillo et al. Toward low‐voltage dielectrophoresis‐based microfluidic systems: A review
JP2009533044A (en) Methods and apparatus for particle selection and / or processing, typified by selective lysis and / or optimized lysis of cells
Ding et al. Biofluid pretreatment using gradient insulator-based dielectrophoresis: separating cells from biomarkers
JP2010004753A (en) Electrode unit for separating cell and cell separation device
Huang et al. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection
ES2781772T3 (en) Filter apparatus and filter device for biological samples
Lapizco-Encinas The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review
KR101598592B1 (en) Energy harvesting apparatus using triboelectrification
Saucedo‐Espinosa et al. Polarization behavior of polystyrene particles under direct current and low‐frequency (< 1 kHz) electric fields in dielectrophoretic systems
Matbaechi Ettehad et al. Characterization and separation of live and dead yeast cells using cmos-based dep microfluidics
Kumar et al. A novel microfluidic device with tapered sidewall electrodes for efficient ternary blood cells (WBCs, RBCs and PLTs) separation
ITBO20130002A1 (en) DEVICE FOR THE REFINED DIELECTROPHORETIC SEPARATION
Jen et al. Trapping of cells by insulator-based dielectrophoresis using open-top microstructures
US20090061504A1 (en) Apparatus for Performing Magnetic Electroporation
Abdelghany et al. Efficient nanoparticle focusing utilizing cascade AC electroosmotic flow
US20210053061A1 (en) Inertial cell focusing and sorting
Ozcelik et al. Microfluidic methods used in exosome isolation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906