JP2010003530A - Rotating anode x-ray tube device - Google Patents

Rotating anode x-ray tube device Download PDF

Info

Publication number
JP2010003530A
JP2010003530A JP2008161146A JP2008161146A JP2010003530A JP 2010003530 A JP2010003530 A JP 2010003530A JP 2008161146 A JP2008161146 A JP 2008161146A JP 2008161146 A JP2008161146 A JP 2008161146A JP 2010003530 A JP2010003530 A JP 2010003530A
Authority
JP
Japan
Prior art keywords
anode
bearing
rotating
fixed shaft
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161146A
Other languages
Japanese (ja)
Other versions
JP2010003530A5 (en
JP5205139B2 (en
Inventor
Hidefumi Okamura
秀文 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2008161146A priority Critical patent/JP5205139B2/en
Publication of JP2010003530A publication Critical patent/JP2010003530A/en
Publication of JP2010003530A5 publication Critical patent/JP2010003530A5/ja
Application granted granted Critical
Publication of JP5205139B2 publication Critical patent/JP5205139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating anode X-ray tube device without fear of liquid metal leaking from a gap between bearings even if liquid metal is used for a lubricant of fluid slide bearings for a rotating anode, and without fear of degradation of bearing lubricity performance. <P>SOLUTION: The X-ray tube device, provided with a cathode and an anode opposed to the cathode, and a rotating mechanism in which thermoelectron emitted from the cathode is made collided with an anode surface to generate X rays to rotate the anode, and heat generated on the anode surface at electron collision is released, and filling a lubricant between a bearing rotor and a fixed shaft for maintaining a constant gap between them by dynamic pressure generated at the lubricant at rotation of an anode rotating shaft, uses liquid metal consisting of an alloy of gallium, indium, and tin as the lubricant, and forms a surface endowed with liquid repellence by providing a number of micro convex parts at a surface of the bearing rotor and at a part of the surface of the fixed shaft at an interface part within the vacuum part between the bearing rotor and the fixed shaft. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転陽極型X線管装置に係り、特に、回転陽極用の流体すべり軸受の潤滑剤に液体金属を用いたときに軸受隙間から液体金属が漏洩することのない回転陽極型X線管装置に関する。   The present invention relates to a rotary anode type X-ray tube device, and in particular, a rotary anode type X-ray in which liquid metal does not leak from a bearing gap when a liquid metal is used as a lubricant for a fluid sliding bearing for a rotary anode. It relates to a pipe device.

一般に、ガリウム/インジウム/スズの合金からなる液体金属は、低融点で、かつ無毒である。このため、近年、工業的に液体金属に水銀を利用している分野でのガリウム/インジウム/スズの合金への置換えが図られている。
ところが、ガリウム/インジウム/スズの合金からなる液体金属は、金属等との親和性が高く、ガリウム/インジウム/スズの合金からなる液体金属の利用に当たって付着性が大きな障害となっている。
このガリウム/インジウム/スズの合金からなる液体金属は、共晶合金であり、他物質との反応性が高く、他物質表面に付着すると、当該液体金属を他物質表面から剥離除去することが困難なものとなっている。
In general, a liquid metal made of a gallium / indium / tin alloy has a low melting point and is nontoxic. Therefore, in recent years, replacement with gallium / indium / tin alloys has been attempted in a field where mercury is industrially used as a liquid metal.
However, a liquid metal made of a gallium / indium / tin alloy has a high affinity with a metal or the like, and adhesion is a major obstacle to the use of a liquid metal made of a gallium / indium / tin alloy.
This liquid metal made of gallium / indium / tin alloy is a eutectic alloy and has high reactivity with other substances, and if it adheres to the surface of another substance, it is difficult to peel and remove the liquid metal from the other substance surface. It has become a thing.

このため、物質表面にガリウム/インジウム/スズの合金からなる液体金属が付着するのを防止するためには、酸化ガリウム、酸化チタンなどの酸化物によるコーティングが必要となっている。
例えば、このガリウム/インジウム/スズの合金からなる液体金属は、従来、水銀が多く使用されていた体温計などで一般的に利用されている。しかしながら、ガリウム/インジウム/スズの合金からなる液体金属は、ガラスにも付着する性質を有している。このため、このガラス表面への付着を防止するために、体温計ガラス管の内側表面に、前述した、酸化ガリウム、酸化チタンなどの酸化物によるコーティングを施している。
For this reason, in order to prevent the liquid metal which consists of a gallium / indium / tin alloy from adhering to the material surface, the coating by oxides, such as a gallium oxide and a titanium oxide, is needed.
For example, a liquid metal made of an alloy of gallium / indium / tin is generally used in a thermometer or the like in which mercury has been conventionally used. However, a liquid metal made of a gallium / indium / tin alloy has a property of adhering to glass. For this reason, in order to prevent adhesion to the glass surface, the inner surface of the thermometer glass tube is coated with the above-described oxide such as gallium oxide or titanium oxide.

また、このガリウム/インジウム/スズの合金からなる液体金属は、蒸気圧が低い性質を有している。このことから、このガリウム/インジウム/スズの合金からなる液体金属は、X線管装置などの真空管内部で使用される潤滑材として用いられることが期待されている。
液体金属としてガリウム合金、インジウム合金又はスズ合金が使用されることについては、既に一般的なことである。そして、この液体金属は、すべり軸受装置の一種である動圧軸受装置、例えば、X線管の回転陽極を回転自在に支持する真空用軸受装置に使用されている(例えば、特許文献1)。
Further, the liquid metal made of this gallium / indium / tin alloy has a low vapor pressure. For this reason, it is expected that the liquid metal made of this gallium / indium / tin alloy is used as a lubricant used inside a vacuum tube such as an X-ray tube device.
It is already common for gallium alloys, indium alloys or tin alloys to be used as liquid metals. And this liquid metal is used for the hydrodynamic bearing apparatus which is a kind of slide bearing apparatus, for example, the vacuum bearing apparatus which rotatably supports the rotating anode of an X-ray tube (for example, patent document 1).

すなわち、この特許文献1には、X線管の回転陽極を回転自在に支持する真空用軸受装置として、一端部が蓋体93によって閉塞された筒状のスリーブ91に、軸92を回転自在に導入し、このスリーブ91と軸92との間及び軸92と蓋体93との間に、液体ガリウム等の潤滑用の液体金属94を充填したものが示されている。
そして、この特許文献1においては、液体金属94がスリーブ91の開口部の内周面及びこの内周面に対向する軸92の外周面に付着するのを防止するため、筒状のスリーブ91の内部に、軸92を相対回転可能に導入し、上記スリーブ91と軸92との間の隙間に、潤滑用の液体金属94を充填しているすべり軸受装置で、スリーブ91の開口部の内周面及びこの内周面に対向する軸92の外周面に、液体金属94が付着するのを防止する酸化膜を形成することが開示されている。
That is, in Patent Document 1, as a vacuum bearing device that rotatably supports a rotating anode of an X-ray tube, a shaft 92 is freely rotatable on a cylindrical sleeve 91 whose one end is closed by a lid 93. Introduced and filled between the sleeve 91 and the shaft 92 and between the shaft 92 and the lid 93 are filled with a liquid metal 94 for lubrication such as liquid gallium.
And in this patent document 1, in order to prevent the liquid metal 94 from adhering to the inner peripheral surface of the opening part of the sleeve 91 and the outer peripheral surface of the shaft 92 facing this inner peripheral surface, A slide bearing device in which a shaft 92 is introduced so as to be relatively rotatable, and a gap between the sleeve 91 and the shaft 92 is filled with a liquid metal 94 for lubrication. It is disclosed that an oxide film that prevents the liquid metal 94 from adhering to the surface and the outer peripheral surface of the shaft 92 facing the inner peripheral surface is disclosed.

さらに、液体金属94がスリーブ91の開口部の内周面及びこの内周面に対向する軸92の外周面に付着するのを防止する抗湿潤剤として金属酸化物、特に、酸化チタン(TiO)や酸化アルミ(Al)の膜を物理蒸着(PVD:Physical Vapor Deposition)等の方法により成膜する技術や、真空境界近傍の軸受母材表面を酸化させる技術が知られている(例えば、特許文献2)。 Further, a metal oxide, particularly titanium oxide (TiO 2) is used as an anti-wetting agent to prevent the liquid metal 94 from adhering to the inner peripheral surface of the opening of the sleeve 91 and the outer peripheral surface of the shaft 92 opposed to the inner peripheral surface. ) And aluminum oxide (Al 2 O 3 ) films by a method such as physical vapor deposition (PVD), and a technique for oxidizing the bearing base material surface near the vacuum boundary is known ( For example, Patent Document 2).

特開平11−93946号公報Japanese Patent Laid-Open No. 11-93946 特開平08−55595号公報Japanese Patent Application Laid-Open No. 08-55595

このように、従来技術の特許文献1、特許文献2においては、金属酸化物、特に、酸化チタン(TiO)や酸化アルミ(Al)の膜を形成し、この酸化被膜の撥液作用によって液体金属94の漏洩を防止する構造を提案している。
しかしながら、特許文献1、特許文献2においては、酸化物や酸化膜が剥離しないことについて、また、X線管内部で使用する場合の高真空、高温環境下で酸化物や酸化膜が還元されることがないようにする対策がされていない。
As described above, in Patent Documents 1 and 2 of the prior art, a film of metal oxide, particularly titanium oxide (TiO 2 ) or aluminum oxide (Al 2 O 3 ) is formed, and the liquid repellent of this oxide film is formed. A structure that prevents leakage of the liquid metal 94 by action is proposed.
However, in Patent Document 1 and Patent Document 2, the oxide and oxide film are not peeled off, and the oxide and oxide film are reduced in a high vacuum and high temperature environment when used inside the X-ray tube. No measures are taken to prevent this from happening.

本発明の目的は、回転陽極用の流体すべり軸受の潤滑剤に液体金属を用いても軸受隙間から液体金属が漏洩することなく軸受潤滑性能劣化を生じさせることのない回転陽極型X線管装置を提供することにある。   An object of the present invention is to provide a rotary anode type X-ray tube device that does not cause deterioration of bearing lubrication performance without leakage of liquid metal from a bearing gap even when liquid metal is used as a lubricant for a fluid sliding bearing for a rotary anode. Is to provide.

本発明の目的を達成するために、請求項1に記載の発明に係る回転陽極型X線管装置は、陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面と前記固定軸の表面の一部に微小なの凸部を隙間がない状態で多数設けて撥液性を有した表面を形成して構成したことを特徴としている。
In order to achieve the object of the present invention, a rotary anode type X-ray tube apparatus according to claim 1 has a cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode are transferred to the anode. A X-ray is generated by colliding with the surface, and includes a rotation mechanism that radiates heat generated on the anode surface during the electron collision by rotating the anode.
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A liquid repellency is provided by providing a large number of minute protrusions on the surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum and a part of the surface of the fixed shaft without a gap. It is characterized by forming a surface having the property.

本発明の目的を達成するために、請求項2に記載の発明に係る回転陽極型X線管装置は、陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面を、クロムを含有した鉄系金属に、露点が10℃以上、40℃以下のWet水素雰囲気で、軸受部品材料の焼鈍し温度または固溶化温度より高温で熱処理して形成したことを特徴としている。
In order to achieve the object of the present invention, a rotary anode type X-ray tube device according to claim 2 has a cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode are transferred to the anode. A X-ray is generated by colliding with the surface, and includes a rotation mechanism that radiates heat generated on the anode surface during the electron collision by rotating the anode.
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
The surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum is made of iron-based metal containing chromium in a wet hydrogen atmosphere having a dew point of 10 ° C. or higher and 40 ° C. or lower. It is characterized by being formed by heat treatment at a temperature higher than the annealing temperature or solution temperature of the bearing component material.

本発明の目的を達成するために、請求項3に記載の発明に係る回転陽極型X線管装置は、陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面を,クロムを含有した鉄系金属に、露点が10℃以上、40℃以下のWet水素雰囲気で、軸受部品材料の焼鈍し温度または固溶化温度より高温で熱処理して形成したリング状部品を取り付けて、撥液表面を形成したことを特徴としている。
In order to achieve the object of the present invention, a rotary anode type X-ray tube device according to claim 3 has a cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode are transferred to the anode. A X-ray is generated by colliding with the surface, and includes a rotation mechanism that radiates heat generated on the anode surface during the electron collision by rotating the anode.
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
The surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum is made of iron-based metal containing chromium in a wet hydrogen atmosphere having a dew point of 10 ° C. or higher and 40 ° C. or lower. The liquid-repellent surface is formed by attaching a ring-shaped component formed by heat treatment at a temperature higher than the annealing temperature or solution temperature of the bearing component material.

本発明の目的を達成するために、請求項4に記載の発明に係る回転陽極型X線管装置は、陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸の表面全体に微小な凸部を多数設けて撥液性を有した表面を形成し、しかる後、液体金属とよく濡れることが望ましい範囲について前記撥液表面を除去して形成したことを特徴としている。
In order to achieve the object of the present invention, a rotary anode type X-ray tube device according to the invention of claim 4 has a cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode are transferred to the anode. A X-ray is generated by colliding with the surface, and includes a rotation mechanism that radiates heat generated on the anode surface during the electron collision by rotating the anode.
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A surface having liquid repellency is formed by providing a large number of minute projections on the entire surface of the bearing rotating body and the fixed shaft, and then the liquid repellent surface is removed in a range where it is desirable to wet well with the liquid metal. It is characterized by being formed.

本発明の目的を達成するために、請求項5に記載の発明に係る回転陽極型X線管装置は、陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸の表面全体に微小な凸部を多数設けて撥液性を有した表面を形成し、しかる後、液体金属とよく濡れることが望ましい範囲について前記撥液表面にNi,Au、Cuのいずれかの金属被膜を形成したことを特徴としている。
In order to achieve the object of the present invention, a rotary anode type X-ray tube device according to claim 5 has a cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode are transferred to the anode. A X-ray is generated by colliding with the surface, and includes a rotation mechanism that radiates heat generated on the anode surface during the electron collision by rotating the anode.
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A surface having liquid repellency is formed by providing a large number of minute protrusions on the entire surface of the bearing rotating body and the fixed shaft, and then Ni is formed on the liquid repellent surface in a range where it is desirable to wet well with the liquid metal. , Au, or Cu is formed.

本発明によれば、回転陽極用の流体すべり軸受の潤滑剤に液体金属を用いても軸受隙間から液体金属が漏洩することなく軸受潤滑性能劣化を生じさせることのない回転陽極型X線管装置を提供することができる。   According to the present invention, even if liquid metal is used as a lubricant for a fluid sliding bearing for a rotating anode, the rotating anode type X-ray tube device does not cause deterioration of bearing lubrication performance without leakage of liquid metal from the bearing gap. Can be provided.

以下、本発明の実施例を図面を用いて説明する。
本件明細書においては、液体金属を利用したX線管装置回転陽極を例にとって説明する。
図1には、本発明に係る回転陽極型X線管装置の実施形態が示されている。
図1において、回転陽極1は、陰極から放出された熱電子が衝突しX線を発生する陽極ターゲット2と、陽極回転軸3と、ターゲット2から流入する熱による軸受劣化防止のための断熱部4、及び液体金属軸受5とによって構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
In the present specification, an X-ray tube apparatus rotating anode using liquid metal will be described as an example.
FIG. 1 shows an embodiment of a rotary anode type X-ray tube apparatus according to the present invention.
In FIG. 1, a rotating anode 1 includes an anode target 2 that generates X-rays by collision of thermoelectrons emitted from the cathode, an anode rotating shaft 3, and a heat insulating portion for preventing bearing deterioration due to heat flowing from the target 2. 4 and the liquid metal bearing 5.

液体金属軸受5は、固定軸6と、軸受回転体7とによって構成されている。この液体金属軸受5においては、固定軸6と軸受回転体7の嵌合隙間に潤滑剤として液体金属8が挿入されている。
そして、この潤滑剤である液体金属8によって、固定軸6と軸受回転体7との隙間が、回転陽極1の回転時に、液体金属8に発生する動圧によって、一定に保たれるようになっている。
また、固定軸6表面には、螺旋溝が設けられており、この螺旋溝は、発生する動圧を高め、耐荷重性能を高める作用を有している。
なお、図1から明らかなように、陽極回転体9は、陽極ターゲット2と、陽極回転軸3と、断熱部4と、軸受回転体7とを結合したものである。
The liquid metal bearing 5 includes a fixed shaft 6 and a bearing rotating body 7. In the liquid metal bearing 5, a liquid metal 8 is inserted as a lubricant in a fitting gap between the fixed shaft 6 and the bearing rotating body 7.
The gap between the fixed shaft 6 and the bearing rotating body 7 is kept constant by the dynamic pressure generated in the liquid metal 8 when the rotary anode 1 is rotated by the liquid metal 8 as the lubricant. ing.
Further, a spiral groove is provided on the surface of the fixed shaft 6, and this spiral groove has a function of increasing the generated dynamic pressure and enhancing the load bearing performance.
As is clear from FIG. 1, the anode rotating body 9 is a combination of the anode target 2, the anode rotating shaft 3, the heat insulating portion 4, and the bearing rotating body 7.

図1に図示の回転陽極1及び陰極は、外囲器12内に対向して保持され、外囲器12内部は、絶縁のために真空に保たれている。
外囲器12の外部には、回転陽極1を回転させるために、回転陽極1の周囲に回転磁界を発生させるコイル13が設置されている。そして、回転陽極1には、このコイル13により発生した回転磁界によって、陽極回転軸3の表面に渦電流が発生し、この渦電流と回転磁界の作用によって回転可能となっている。
The rotating anode 1 and the cathode shown in FIG. 1 are held opposite to each other in the envelope 12, and the inside of the envelope 12 is kept in a vacuum for insulation.
A coil 13 that generates a rotating magnetic field around the rotating anode 1 is installed outside the envelope 12 in order to rotate the rotating anode 1. In the rotating anode 1, an eddy current is generated on the surface of the anode rotating shaft 3 by the rotating magnetic field generated by the coil 13, and the rotating anode 1 can be rotated by the action of the eddy current and the rotating magnetic field.

液体金属8を潤滑剤として利用したすべり軸受においては、固定軸6または軸受回転体7のどちらか一方が有底円筒形状を有している。この固定軸6または軸受回転体7のどちらか一方の有底円筒によって固定軸6または軸受回転体7が保持され、軸受回転体7が回転した際に各々の隙間に充填された液体金属8に発生する動圧によって軸受隙間を一定に保ち滑らかな回転を可能にしている。
したがって、固定軸6と軸受回転体7により構成される軸受隙間には、外部との境界面が存在し、この境界部分で潤滑剤は、外部と接することとなる。また、X線管内においては潤滑剤である液体金属8と真空とが接することとなる。このため、この液体金属8と真空との境界部分おける液体金属8が真空中へ漏洩するのを防止することが重要となる。
In the sliding bearing using the liquid metal 8 as a lubricant, either the fixed shaft 6 or the bearing rotating body 7 has a bottomed cylindrical shape. The fixed shaft 6 or the bearing rotating body 7 is held by the bottomed cylinder of either the fixed shaft 6 or the bearing rotating body 7, and when the bearing rotating body 7 rotates, the liquid metal 8 filled in each gap The generated dynamic pressure keeps the bearing gap constant and enables smooth rotation.
Therefore, the bearing clearance formed by the fixed shaft 6 and the bearing rotating body 7 has a boundary surface with the outside, and the lubricant contacts the outside at this boundary portion. Further, in the X-ray tube, the liquid metal 8 that is a lubricant is in contact with the vacuum. For this reason, it is important to prevent the liquid metal 8 at the boundary between the liquid metal 8 and the vacuum from leaking into the vacuum.

すべり軸受では軸受回転体7に液体金属8が引かれ流動することにより動圧が発生し、軸受隙間を一定に保ち潤滑されている。このためには軸受材料は、液体金属8と良くなじむ、すなわち良く濡れる材料が適している。
したがって、液体金属8と良く濡れる材料で構成されている軸受母材の上に液体金属8を滴下すると、図2(A)の上段に示すように液体金属8は母材表面全体に流れてしまう。このような状態で、図2(A)の下段に示すように軸受隙間を形成し、液体金属8を充填すると、真空境界部分から漏洩してしまう。
In the slide bearing, the liquid metal 8 is drawn and flows in the bearing rotating body 7 to generate dynamic pressure, and the bearing gap is kept constant and lubricated. For this purpose, a bearing material that is well compatible with the liquid metal 8, that is, a material that wets well, is suitable.
Therefore, when the liquid metal 8 is dropped on the bearing base material made of a material that wets well with the liquid metal 8, the liquid metal 8 flows over the entire surface of the base material as shown in the upper part of FIG. . In such a state, when a bearing gap is formed as shown in the lower part of FIG. 2A and the liquid metal 8 is filled, leakage occurs from the vacuum boundary portion.

このような液体金属8と真空との境界部分での液体金属8が真空中に漏洩するのを防止する漏洩防止技術として、軸受隙間中の液体金属8、真空境界近傍の固定軸6と軸受回転体7の表面に液体金属8をはじく撥液性のある表面11を形成する方法がある。
液体金属8をはじく撥液性のある表面11が形成されている軸受母材の上に液体金属8を滴下すると、図2(B)の上段に示すように液体金属8は母材表面の濡れない表面11で液体金属8を弾き、液体金属8は、それ自身の表面張力によって表面11上で流れずに留まろうとする。
軸受隙間を形成する固定軸6、軸受回転体7の両方に撥液表面11を形成すると、図2(B)の下段に示すように液体金属8の真空中への漏洩を防止することができる。
As a leakage prevention technique for preventing the liquid metal 8 at the boundary between the liquid metal 8 and the vacuum from leaking into the vacuum, the liquid metal 8 in the bearing gap, the fixed shaft 6 near the vacuum boundary, and the bearing rotation There is a method of forming a liquid repellent surface 11 that repels the liquid metal 8 on the surface of the body 7.
When the liquid metal 8 is dropped on the bearing base material on which the liquid repellent surface 11 that repels the liquid metal 8 is formed, the liquid metal 8 is wetted on the surface of the base material as shown in the upper part of FIG. The liquid metal 8 is repelled by the non-surface 11 and the liquid metal 8 tries to stay on the surface 11 without flowing due to its own surface tension.
If the liquid repellent surface 11 is formed on both the fixed shaft 6 and the bearing rotating body 7 that form the bearing gap, the liquid metal 8 can be prevented from leaking into the vacuum as shown in the lower part of FIG. .

図3には、本発明に係る回転陽極型X線管装置の固定軸6および軸受回転体7に形成される撥液表面11の実施例が示されている。
図3は、潤滑材としてガリウム/インジウム/スズの合金からなる液体金属8を用い,軸受母材として金型鋼(SKD11)を用いた、場合の撥液表面の凸部構造が示されている。
図3(A)には、軸受母材が未処理の場合の表面状態が示されており、この軸受母材が未処理の場合には、表面に凹凸は無く液体金属に濡れてしまう。また、図3(B)には、軸受母材に露点27℃のWet水素中、1000℃の処理を施した場合の表面状態が示されており、図3(B)の軸受母材の表面には、金属母材表面に0.5〜3.0μm程度の凸が多数生成されており、液体金属にはほとんど濡れないことが分かる。
FIG. 3 shows an embodiment of the liquid repellent surface 11 formed on the fixed shaft 6 and the bearing rotating body 7 of the rotary anode type X-ray tube apparatus according to the present invention.
FIG. 3 shows the convex structure of the liquid repellent surface when the liquid metal 8 made of an alloy of gallium / indium / tin is used as the lubricant and the mold steel (SKD11) is used as the bearing base material.
FIG. 3A shows the surface state when the bearing base material is not treated. When the bearing base material is not treated, the surface is not rough and gets wet with the liquid metal. FIG. 3B shows the surface state when the bearing base material is treated at 1000 ° C. in wet hydrogen having a dew point of 27 ° C., and the surface of the bearing base material in FIG. 3B is shown. It can be seen that a large number of protrusions of about 0.5 to 3.0 μm are formed on the surface of the metal base material, and that the liquid metal hardly gets wet.

また、図3(C)には、図3(B)の撥液性表面が模式的に示されている。
金属母材表面に0.5〜3.0μm程度の凸が多数生成される図3(B)の軸受母材の表面のような凸部構造の表面が撥液性を有する原理は、図3(C)に示すように金属母材表面の凸部が半球に近い形状を呈しており、この金属母材表面に液体金属8が接触した状態でも液体金属8が密集した凸部の奥にまで浸入することができず、凸部表面での点接触のみで支持されている状態となるため、金属母材表面に濡れ広がることが無いためである。
3C schematically shows the liquid repellent surface of FIG. 3B.
The principle that the surface of the convex structure such as the surface of the bearing base material in FIG. 3B in which many convexes of about 0.5 to 3.0 μm are generated on the surface of the metal base material has liquid repellency is shown in FIG. As shown in (C), the convex part on the surface of the metal base material has a shape close to a hemisphere, and even when the liquid metal 8 is in contact with the surface of the metal base material, the convex part where the liquid metal 8 is concentrated This is because it cannot penetrate and is supported only by point contact on the surface of the convex portion, so that it does not wet and spread on the surface of the metal base material.

潤滑材としてガリウム/インジウム/スズの合金からなる液体金属8を用いる場合には,凸部の半径、及び高さが0.5〜3.0μm程度であることが望ましい。
このような金属母材表面を形成する方法としては、種々があるが、本実施例においては、露点が10℃以上の40℃以下のWet水素雰囲気中で、金型鋼を利用する場合には、これの焼鈍し温度(約800℃)以上で熱処理をする方法を用いている。
このような金属母材表面に処理を施すと、金型鋼表面に0.5〜3.0μm程度の凸が均一に形成され液体金属8を撥液する表面が形成される。
When the liquid metal 8 made of a gallium / indium / tin alloy is used as the lubricant, it is desirable that the radius and height of the convex portion be about 0.5 to 3.0 μm.
There are various methods for forming such a metal base material surface, but in this example, when using mold steel in a wet hydrogen atmosphere with a dew point of 10 ° C. or higher and 40 ° C. or lower, A method of performing a heat treatment at an annealing temperature (about 800 ° C.) or higher is used.
When such a surface of the metal base material is treated, a convex of about 0.5 to 3.0 μm is uniformly formed on the surface of the mold steel, and a surface that repels the liquid metal 8 is formed.

このような金属母材表面の処理によって撥液性表面を形成すると、金型鋼表面には、凸部以外の部分にクロムが集中して存在し、これに反して凸部にはクロムが希薄であることが分かった。このことから凸部表面形成に合金元素として12%程度添加されているクロムが関係していることがわかる。これらのことから金型鋼以外でもクロムを含有する鉄系合金では同様の効果を期待することができる。   When a liquid-repellent surface is formed by such a treatment on the surface of the metal base material, chromium is concentrated on the surface of the mold steel at a portion other than the convex portion, and on the contrary, the chromium is thin on the convex portion. I found out. From this, it can be seen that the chromium added about 12% as an alloy element is related to the convex surface formation. For these reasons, similar effects can be expected with iron-based alloys containing chromium other than die steel.

また、本発明においては、露点が10℃以上、40℃以下のWet水素雰囲気中で焼鈍し温度(約800℃)以上で熱処理を施して凹凸表面を生成している。しかしながら、図4に示すように、熱処理を施して凹凸表面を生成する処理条件は、鉄が還元される条件であり、母材表面の酸化は、発生しない。
一方、この熱処理を施して凹凸表面を生成する処理条件は、クロムが酸化される条件にある。
これらのことから、本発明は、従来の単なる酸化膜、酸化物による撥液ではなく、鉄とクロムの還元と酸化条件下で生成される表面の凸構造によるものであることが分かる。
In the present invention, the uneven surface is generated by annealing in a wet hydrogen atmosphere having a dew point of 10 ° C. or higher and 40 ° C. or lower and performing a heat treatment at a temperature (about 800 ° C.) or higher. However, as shown in FIG. 4, the treatment condition for generating a concavo-convex surface by heat treatment is a condition in which iron is reduced, and oxidation of the base material surface does not occur.
On the other hand, the processing conditions for generating the uneven surface by performing this heat treatment are conditions in which chromium is oxidized.
From these facts, it can be seen that the present invention is not based on a conventional simple lyophobic film or liquid repellency but by a convex structure on the surface produced under the reduction and oxidation conditions of iron and chromium.

液体金属8を利用した動圧軸受において、軸受隙間の真空境界近傍で、液体金属8に対して撥液性が要求されるのとは逆に軸受隙間内部では液体金属8が軸受回転軸と固定軸表面に良く濡れ、付着する必要がある。
この軸受隙間内部では液体金属8が軸受回転軸と固定軸表面に良く濡れ、付着することが必要なのは、回転軸、固定軸表面に付着した液体金属8が回転軸の回転により引かれ流動することにより、軸受隙間を一定に保つ動圧が発生するからである。
すなわち、軸受隙間内部では、液体金属8が軸受表面に良く濡れるほうが動圧を効率的に発生させることができるためである。
In the hydrodynamic bearing using the liquid metal 8, the liquid metal 8 is fixed to the bearing rotating shaft inside the bearing gap, contrary to the liquid repellency required for the liquid metal 8 near the vacuum boundary of the bearing gap. It is necessary to wet and adhere well to the shaft surface.
Inside the bearing gap, the liquid metal 8 needs to be well wetted and adhered to the bearing rotating shaft and the fixed shaft surface because the liquid metal 8 adhered to the rotating shaft and the fixed shaft surface is drawn and flows by the rotation of the rotating shaft. This is because a dynamic pressure that keeps the bearing gap constant is generated.
That is, in the inside of the bearing gap, it is possible to generate the dynamic pressure more efficiently when the liquid metal 8 gets better on the bearing surface.

このように液体金属8を利用した動圧軸受において、軸受隙間の真空境界近傍では、液体金属8に対して撥液性を備え、軸受隙間内部では液体金属8が軸受回転軸と固定軸表面に良く濡れ、付着するようにするための実施例を図5〜7に示されている。
図5は、陽極回転軸3の軸受隙間の真空境界近傍を金型鋼、高速度工具鋼などのクロムを含有した鉄系金属で構成される別部品とし、この鉄系金属だけを露点が10℃以上、40℃以下のWet水素雰囲気で、軸受部品材料の焼鈍し温度または固溶化温度より高温で熱処理して撥液表面を設け、陽極回転軸3には処理を施さない部品を組立てるようにしたものである。
Thus, in the hydrodynamic bearing using the liquid metal 8, the liquid metal 8 has liquid repellency near the vacuum boundary of the bearing gap, and the liquid metal 8 is placed on the bearing rotating shaft and the fixed shaft surface inside the bearing gap. Examples for ensuring good wetting and adhesion are shown in FIGS.
FIG. 5 shows that the vicinity of the vacuum boundary of the bearing gap of the anode rotating shaft 3 is a separate part made of iron-based metal containing chromium, such as mold steel and high-speed tool steel, and only this iron-based metal has a dew point of 10 ° C. As described above, in a wet hydrogen atmosphere of 40 ° C. or less, a heat-repellent surface is provided by annealing at a temperature higher than the annealing temperature or the solution temperature of the bearing component material, and the anode rotating shaft 3 is assembled with an untreated component. Is.

この陽極回転軸3の軸受隙間の真空境界近傍を金型鋼、高速度工具鋼などのクロムを含有した鉄系金属で構成される別部品は、図5においては、一枚の板状に形成されたものとなっているか、リング状に形成したものであっても良い。   In FIG. 5, another part composed of iron-based metal containing chromium such as mold steel and high-speed tool steel is formed in a single plate shape in the vicinity of the vacuum boundary of the bearing gap of the anode rotating shaft 3. Or may be formed in a ring shape.

図6には、軸受回転軸、固定軸を一つの部品として仕上げ、軸受隙間の精度を確保する実施例が示されている。
すなわち、図6は、陽極回転軸3、固定軸6を1次仕上した後、撥液表面を設けるための熱処理を施し、しかる後、2次加工を行い、最終形状に仕上げると供に、真空境界近傍の撥液表面のみを残して軸受隙間内部の表面の撥液表面を除去するして形成したものである。
この真空境界近傍の撥液表面のみを残して軸受隙間内部の表面の撥液表面を除去する際、撥液表面を除去するには、方法としては機械加工による方法、エッチングなどの表面加工により撥液表面を除去する方法等がある。
FIG. 6 shows an embodiment in which the bearing rotating shaft and the fixed shaft are finished as one part to ensure the accuracy of the bearing gap.
That is, FIG. 6 shows that after the anode rotating shaft 3 and the fixed shaft 6 are primary-finished, heat treatment for providing a liquid-repellent surface is performed, and then secondary processing is performed to finish the final shape. It is formed by removing the liquid repellent surface inside the bearing gap, leaving only the liquid repellent surface near the boundary.
When removing the liquid-repellent surface inside the bearing gap, leaving only the liquid-repellent surface near the vacuum boundary, the liquid-repellent surface can be removed by a machining method or surface treatment such as etching. There are methods for removing the liquid surface.

図7には、軸受回転軸、固定軸を一つの部品として仕上げ、軸受隙間の精度を確保する他の実施例が示されている。
すなわち、図7は、軸受部品形状を仕上げた後に撥液表面を設けるための熱処理を施し、その後濡れ性が必要な範囲にNi、Au、Cuなど液体金属8との濡れ性が良い金属の薄膜をコーティングして形成したものである。
このコーティング手法としては、メッキなどの他に、真空蒸着によるコーティングなどがある。
FIG. 7 shows another embodiment in which the bearing rotating shaft and the fixed shaft are finished as one part to ensure the accuracy of the bearing gap.
That is, FIG. 7 shows a metal thin film having good wettability with a liquid metal 8 such as Ni, Au, Cu, etc. within a range where wettability is necessary after heat treatment for providing a liquid repellent surface after finishing the bearing part shape. Is formed by coating.
As this coating method, there is a coating by vacuum deposition in addition to plating.

本発明は、X線管装置ばかりでなく、液体金属の特性を利用した装置で、撥液性が要求されるあらゆる部材、部品に適用することができる。   The present invention can be applied not only to an X-ray tube apparatus but also to any member or part that requires liquid repellency, using an apparatus utilizing the characteristics of liquid metal.

本発明に係る回転陽極型X線管装置の全体構成図である。1 is an overall configuration diagram of a rotary anode X-ray tube device according to the present invention. 撥液表面による液体金属漏洩防止の原理説明図である。It is a principle explanatory view of liquid metal leakage prevention by a liquid repellent surface. 軸受母材表面の未処理の表面状態と、軸受母材表面に撥液表面を設けるための熱処理を施した表面状態を示す図である。It is a figure which shows the untreated surface state of the bearing base material surface, and the surface state which performed the heat processing for providing a liquid repellent surface in the bearing base material surface. Wet水素熱処理の熱力学状態を示す図である。It is a figure which shows the thermodynamic state of Wet hydrogen heat processing. 液体金属軸受を採用したX線管の回転陽極概略図である。It is a rotating anode schematic diagram of the X-ray tube which employ | adopted the liquid metal bearing. 濡れ性を制御するX線管回転陽極軸受構造の一例を示す図である。It is a figure which shows an example of the X-ray tube rotary anode bearing structure which controls wettability. 濡れ性を制御するX線管回転陽極軸受構造の一例を示す図である。It is a figure which shows an example of the X-ray tube rotary anode bearing structure which controls wettability.

符号の説明Explanation of symbols

1……………………回転陽極
2……………………陽極ターゲット
3……………………陽極回転軸
4……………………断熱部
5……………………液体金属軸受
6……………………固定軸
7……………………軸受回転体
8……………………液体金属
9……………………ジャーナル軸受
10…………………スラスト軸受
11…………………漏洩防止のための撥液表面
12…………………外囲器
13…………………コイル
1 …………………… Rotating anode 2 …………………… Anode target 3 …………………… Anode rotating shaft 4 …………………… Heat insulation 5 ………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Journal bearing 10 …………………… Thrust bearing 11 ………………… Liquid repellent surface 12 for preventing leakage 12 …………………… Enclosure 13 ………………… Coil

Claims (5)

陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面と前記固定軸の表面の一部に微小なの凸部を隙間がない状態で多数設けて撥液性を有した表面を形成して構成した
ことを特徴とする回転陽極型X線管装置。
A cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode collide with the surface of the anode to generate X-rays, the anode being rotated to rotate the anode during the electron collision; Equipped with a rotating mechanism to dissipate heat generated on the surface,
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A liquid repellency is provided by providing a large number of minute protrusions on the surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum and a part of the surface of the fixed shaft without a gap. A rotating anode type X-ray tube device characterized by forming a surface having a property.
陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面を、クロムを含有した鉄系金属に、露点が10℃以上、40℃以下のWet水素雰囲気で、軸受部品材料の焼鈍し温度または固溶化温度より高温で熱処理して形成した
ことを特徴とする回転陽極型X線管装置。
A cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode collide with the surface of the anode to generate X-rays, the anode being rotated to rotate the anode during the electron collision; Equipped with a rotating mechanism to dissipate heat generated on the surface,
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
The surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum is made of iron-based metal containing chromium in a wet hydrogen atmosphere having a dew point of 10 ° C. or higher and 40 ° C. or lower. The rotary anode X-ray tube device is characterized by being formed by heat treatment at a temperature higher than the annealing temperature or solution temperature of the bearing component material.
陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸との間の真空内との境界部の前記軸受回転体の表面を,クロムを含有した鉄系金属に、露点が10℃以上、40℃以下のWet水素雰囲気で、軸受部品材料の焼鈍し温度または固溶化温度より高温で熱処理して形成したリング状部品を取り付けて、撥液表面を形成した
ことを特徴とする回転陽極型X線管装置。
A cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode collide with the surface of the anode to generate X-rays, the anode being rotated to rotate the anode during the electron collision; Equipped with a rotating mechanism to dissipate heat generated on the surface,
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
The surface of the bearing rotating body at the boundary between the bearing rotating body and the fixed shaft in the vacuum is made of iron-based metal containing chromium in a wet hydrogen atmosphere having a dew point of 10 ° C. or higher and 40 ° C. or lower. A rotary anode X-ray tube device characterized in that a liquid-repellent surface is formed by attaching a ring-shaped component formed by heat treatment at a temperature higher than the annealing temperature or solution temperature of the bearing component material.
陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸の表面全体に微小な凸部を多数設けて撥液性を有した表面を形成し、しかる後、液体金属とよく濡れることが望ましい範囲について前記撥液表面を除去して形成した
ことを特徴とする回転陽極型X線管装置。
A cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode collide with the surface of the anode to generate X-rays, the anode being rotated to rotate the anode during the electron collision; Equipped with a rotating mechanism to dissipate heat generated on the surface,
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A surface having liquid repellency is formed by providing a large number of minute projections on the entire surface of the bearing rotating body and the fixed shaft, and then the liquid repellent surface is removed in a range where it is desirable to wet well with the liquid metal. A rotating anode type X-ray tube device characterized by being formed as described above.
陰極と該陰極に対向する陽極を有し、前記陰極から放出さる熱電子を前記陽極表面に衝突させてX線を発生するものであって、前記陽極を回転させて前記電子衝突時の前記陽極表面に発生する熱を放熱する回転機構を備え、
前記回転機構は、前記陽極と締結されており軸受回転体を設けた陽極回転軸と、前記陽極回転軸を前記軸受回転体で保持する固定軸と、前記陰極と前記陽極を真空気密して絶縁を保つ外囲器と、前記外囲器の周囲に設けられ前記回転機構を回転させるために回転磁界を発生させるコイルとからなり,
前記回転軸または前記固定軸のいずれか一方を有底円筒構造となし、
前記軸受回転体と前記固定軸との間に潤滑材を充填し、前記陽極回転軸の回転時に前記潤滑材に生じる動圧によって前記軸受回転体と前記固定軸に一定の隙間を保つX線管装置において,
前記潤滑材としてガリウム/インジウム/スズの合金からなる液体金属を用い,
前記軸受回転体と前記固定軸の表面全体に微小な凸部を多数設けて撥液性を有した表面を形成し、しかる後、液体金属とよく濡れることが望ましい範囲について前記撥液表面にNi,Au、Cuのいずれかの金属被膜を形成した
ことを特徴とする回転陽極型X線管装置。
A cathode and an anode facing the cathode, and thermionic electrons emitted from the cathode collide with the surface of the anode to generate X-rays, the anode being rotated to rotate the anode during the electron collision; Equipped with a rotating mechanism to dissipate heat generated on the surface,
The rotating mechanism includes an anode rotating shaft that is fastened to the anode and provided with a bearing rotating body, a fixed shaft that holds the anode rotating shaft by the bearing rotating body, and the cathode and the anode are vacuum-tightly insulated. And a coil that is provided around the envelope and generates a rotating magnetic field to rotate the rotating mechanism,
Either one of the rotating shaft or the fixed shaft has a bottomed cylindrical structure,
An X-ray tube is filled with a lubricant between the bearing rotating body and the fixed shaft, and maintains a certain gap between the bearing rotating body and the fixed shaft by dynamic pressure generated in the lubricant when the anode rotating shaft rotates. In the device
A liquid metal made of a gallium / indium / tin alloy is used as the lubricant,
A surface having liquid repellency is formed by providing a large number of minute protrusions on the entire surface of the bearing rotating body and the fixed shaft, and then Ni is formed on the liquid repellent surface in a range where it is desirable to wet well with the liquid metal. A rotating anode type X-ray tube device characterized in that a metal film of any one of Au, Au and Cu is formed.
JP2008161146A 2008-06-20 2008-06-20 Rotating anode type X-ray tube device Expired - Fee Related JP5205139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161146A JP5205139B2 (en) 2008-06-20 2008-06-20 Rotating anode type X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161146A JP5205139B2 (en) 2008-06-20 2008-06-20 Rotating anode type X-ray tube device

Publications (3)

Publication Number Publication Date
JP2010003530A true JP2010003530A (en) 2010-01-07
JP2010003530A5 JP2010003530A5 (en) 2011-08-04
JP5205139B2 JP5205139B2 (en) 2013-06-05

Family

ID=41585091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161146A Expired - Fee Related JP5205139B2 (en) 2008-06-20 2008-06-20 Rotating anode type X-ray tube device

Country Status (1)

Country Link
JP (1) JP5205139B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198495A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
CN112309806A (en) * 2020-10-14 2021-02-02 北京智束科技有限公司 X-ray tube and liquid metal sliding bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325706A (en) * 1993-04-14 1994-11-25 Toshiba Corp Rotary anode type x-ray tube
JPH0855595A (en) * 1994-07-12 1996-02-27 Siemens Ag Slide bearing part that is used for liquid-metal slide bearing
JP2004204890A (en) * 2002-12-24 2004-07-22 Koyo Seiko Co Ltd Dynamic-pressure bearing device
WO2008153089A1 (en) * 2007-06-13 2008-12-18 Hitachi Medical Corporation Mechanism and x-ray tube apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325706A (en) * 1993-04-14 1994-11-25 Toshiba Corp Rotary anode type x-ray tube
JPH0855595A (en) * 1994-07-12 1996-02-27 Siemens Ag Slide bearing part that is used for liquid-metal slide bearing
JP2004204890A (en) * 2002-12-24 2004-07-22 Koyo Seiko Co Ltd Dynamic-pressure bearing device
WO2008153089A1 (en) * 2007-06-13 2008-12-18 Hitachi Medical Corporation Mechanism and x-ray tube apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198495A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
CN112309806A (en) * 2020-10-14 2021-02-02 北京智束科技有限公司 X-ray tube and liquid metal sliding bearing
CN112309806B (en) * 2020-10-14 2024-04-02 北京智束科技有限公司 X-ray tube and liquid metal sliding bearing

Also Published As

Publication number Publication date
JP5205139B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5140667B2 (en) Mechanism, X-ray tube apparatus, and method for producing liquid repellent surface
JP5259406B2 (en) Rotating anode X-ray tube
KR940009195B1 (en) Rotary-anode type x-ray tube
US4097759A (en) X-ray tube
US10094425B2 (en) Hydrodynamic bearing, and X-ray tube, and X-ray system, and a method for manufacturing a hydrodynamic bearing,
US9972472B2 (en) Welded spiral groove bearing assembly
JP2009081069A (en) Rotating anode x-ray tube
US9911570B2 (en) Antiwetting coating for liquid metal
US9263224B2 (en) Liquid bearing assembly and method of constructing same
KR970002680B1 (en) X-ray tube of the rotary anode type
JP5205139B2 (en) Rotating anode type X-ray tube device
US20080056450A1 (en) X-ray tubes and methods of making the same
JP2002251970A (en) Rotating anode x-ray tube
JP2006261096A (en) Radiation emitting apparatus with bearings and its production method
US20090103684A1 (en) Molybdenum-molybdenum brazing and rotary-anode x-ray tube comprising such a brazing
US9275822B2 (en) Liquid metal containment in an X-ray tube
JP4810069B2 (en) Liquid metal gasket in X-ray tube
JP4112829B2 (en) Rotating anode X-ray tube
JPH07103247A (en) Rolling bearing
JP4467740B2 (en) Rotating anode X-ray tube
US7004635B1 (en) Lubricated ball bearings
WO2015114917A1 (en) Metal electrode, and, electron gun, electron tube, and x-ray tube using same
JP2010212088A (en) Rotating anode x-ray tube
JP3394616B2 (en) Manufacturing method of dynamic pressure bearing device for vacuum
JPH10172483A (en) Rotary anode type x-ray tube

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5205139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees