JP2010003178A - Image processing apparatus and method for controlling image processing apparatus - Google Patents

Image processing apparatus and method for controlling image processing apparatus Download PDF

Info

Publication number
JP2010003178A
JP2010003178A JP2008162415A JP2008162415A JP2010003178A JP 2010003178 A JP2010003178 A JP 2010003178A JP 2008162415 A JP2008162415 A JP 2008162415A JP 2008162415 A JP2008162415 A JP 2008162415A JP 2010003178 A JP2010003178 A JP 2010003178A
Authority
JP
Japan
Prior art keywords
rechargeable battery
power
detection unit
power source
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008162415A
Other languages
Japanese (ja)
Inventor
Masataka Sakata
昌隆 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008162415A priority Critical patent/JP2010003178A/en
Publication of JP2010003178A publication Critical patent/JP2010003178A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Power Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processing apparatus wherein AC0W is achieved and a network answer is performed without turning off a power supply of the image processing apparatus in a power saving mode. <P>SOLUTION: When a charging state detection part 5 detects that the state of a rechargeable battery 4 becomes lower than a predetermined value (S5;Y), a power source selection-switch part 8 which selects and switches a power source to a recover factor detection part 2 turns on the power source of the minimum power consumption in a plurality of power sources 6 (S6). The rechargeable battery 4 turns off power supply to the recover factor detection part 2 (S7). A charging source selection-switch part 7 which selects and switches as a charging source to the rechargeable battery 4 (S8) to recharge the rechargeable battery (S9). When charging is finished, a power source selection-switch part 8 which selects and switches the power source to the recover factor detection part 2 turns on power supply to the recover factor detection part 2 of the rechargeable battery 4 (S11) and turns off the power source of minimum power consumption among a plurality of power sources which has been supplying power to the recover factor detection part 2 (S12). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、省電力モード時のAC電力供給を0Wにする画像処理装置および画像処理装置の制御方法に関する。   The present invention relates to an image processing apparatus and an image processing apparatus control method for setting AC power supply to 0 W in a power saving mode.

オフィスなどで、複数の画像処理装置をネットワークで接続して、効率的に事務処理を行うことが広く普及している。また、これらの画像処理装置は、待機の時間も通電しており、消費電力を抑制するという省エネルギーの観点から、可能な限り電力の消費を減少させるとする要請が強い。そこで、省エネモードを設けるなど、種々の技術が開発が行われてきた。
特開2005−278110 特開2002−063011
In offices and the like, it is widely used to efficiently perform office processing by connecting a plurality of image processing apparatuses via a network. In addition, these image processing apparatuses are energized during the standby time, and there is a strong demand to reduce power consumption as much as possible from the viewpoint of energy saving to suppress power consumption. Therefore, various technologies have been developed, such as providing an energy saving mode.
JP-A-2005-278110 JP 2002-063011 A

これらの技術は、画像処理装置の待機時の消費電力を抑制することを目的としたものである。   These techniques are intended to suppress power consumption during standby of the image processing apparatus.

ところで、待機時の消費電力を削減するため、上記特許文献に記載されたような、省電力モードを有する画像処理装置が種々提案されているが、省電力モード時においても通常モードに復帰するためにAC電源が必要である。
そこで、本発明は、省エネモード時に画像処理装置の電源を落とさず、且つAC0Wを実現し、ネットワーク応答を可能にする画像処理装置を提供することである。
By the way, in order to reduce power consumption during standby, various image processing apparatuses having a power saving mode as described in the above-mentioned patent document have been proposed. However, in order to return to the normal mode even in the power saving mode. AC power is required.
Accordingly, the present invention is to provide an image processing apparatus that realizes AC0W and enables a network response without turning off the power of the image processing apparatus in the energy saving mode.

請求項1記載の発明では、通常動作モードと、電力消費を抑制する省エネモードとを有する画像処理装置において、省エネモードから通常動作モードへ復帰するための復帰要因を検知する復帰要因検知部と、前記復帰要因検知部へ電力供給可能な充電池と、前記充電池の状態検知が可能な充電池状態検知部と、前記復帰要因検知部への電力供給と前記充電池への充電が同時に可能である複数の電力源と、前記復帰要因検知部への電力供給源を前記充電池か前記複数の電力源のいずれかまたは両方かの選択・切り替えを行い、選択が前記複数の電力源であれば使用可能な最も消費電力が少ない電力源を選択し切り替える電源選択・切り替え部と、充電元として前記複数の電力源の中から使用可能な最も消費電力が少ない電力源を選択し切り替える充電元選択・切り替え部と、を備え、省エネモードでは前記充電池からの電力供給を行い、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知した時に、前記電源選択・切り替え部が、前記復帰要因検知部への電力源を選択し切り替え、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知した時に、前記充電元選択・切り替え部が、充電池への充電元として電力源を選択し切り替えることにより、前記目的を達成する。
請求項2記載の発明では、請求項1記載の発明において、前記複数の電力源の各々について使用可能であるか否かを検知し、その可否についての情報を前記充電元選択・切り替え部へ発信することが可能な電力源検知部をさらに備えたことを特徴とする。
請求項3記載の発明では、請求項2記載の発明において、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、且つ、前記電力源検知部が使用可能な電力源をも検知出来ずに、前記充電池の所定値をさらに下回る値を下回った時に、画像処理装置を安全にシャットダウンすることを特徴とする。
請求項4記載の発明では、請求項2または請求項3記載の発明において、前記複数の電力源は、AC電源または接続されているPCなどの周辺機器から供給されるバスパワーとすることを特徴とする。
請求項5記載の発明では、請求項4記載の発明において、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知すると、前記充電元選択・切り替え部により前記バスパワーで充電を行うことを特徴とする。
請求項6記載の発明では、請求項4記載の発明において、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知すると、前記電源選択・切り替え部により前記復帰要因検知部への電力供給を前記バスパワーに切り替えることを特徴とする。
請求項7記載の発明では、請求項5または請求項6記載の発明において、前記バスパワーによる充電が完了したことを前記充電池状態検知部が検知すると、前記充電元選択・切り替え部により前記充電池への充電を止め、前記電源選択・切り替え部により復帰要因検知部への電力供給を充電池からに切り替えることを特徴とする。
請求項8記載の発明では、請求項4記載の発明において、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知出来ず、前記AC電源を検知すると、前記充電元選択・切り替え部により前記AC電源で充電を行うことを特徴とする。
請求項9記載の発明では、請求項4記載の発明において、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知出来ず、前記AC電源を検知すると、前記電源選択・切り替え部により前記復帰要因検知部への電力供給を前記AC電源に切り替えることを特徴とする。
請求項10記載の発明では、請求項8または請求項9記載の発明において、前記充電池状態検知部が、前記AC電源による充電が完了したことを検知すると、前記充電元選択・切り替え部により前記充電池への充電を止め、前記電源選択・切り替え部により、前記復帰要因検知部への電力供給を充電池からに切り替えることを特徴とする。
請求項11記載の発明では、通常動作モードと、電力消費を抑制する省エネモードとを有し、省エネモードから通常動作モードへ復帰するための復帰要因を検知する復帰要因検知部と、前記復帰要因検知部へ電力供給可能な充電池と、前記充電池の状態検知が可能な充電池状態検知部と、前記復帰要因検知部への電力供給と前記充電池への充電が同時に可能である複数の電力源と、前記復帰要因検知部への電力供給源を前記充電池か前記複数の電力源のいずれかまたは両方かの選択・切り替えを行い、選択が前記複数の電力源であれば、使用可能な最も消費電力が少ない電力源を選択し切り替える電源選択・切り替え部と、前記充電池の状態が所定値を下回ったことを、前記充電池状態検知部が検知した時に、充電元として前記複数の電力源の中から電力源を選択し切り替える充電元選択・切り替え部と、を備え、前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知する第1のステップと、第1のステップで、前記充電池の状態が所定値を下回ったことが検知されたとき、前記電源選択・切り替え部が、使用可能な最も消費電力が少ない電力源を選択し切り替える第2のステップと、第1のステップで、前記充電池の状態が所定値を下回ったことが検知されたとき、前記充電元選択・切り替え部が、充電元として前記複数の使用可能な電力源の中から最も消費電力が少ない電力源を選択し切り替える第3のステップとからなることを特徴とする画像処理装置の制御方法により、前記目的を達成する。
In the first aspect of the invention, in the image processing apparatus having the normal operation mode and the energy saving mode for suppressing power consumption, a return factor detecting unit that detects a return factor for returning from the energy saving mode to the normal operation mode; A rechargeable battery capable of supplying power to the return factor detecting unit, a rechargeable battery state detecting unit capable of detecting the state of the rechargeable battery, and supplying power to the return factor detecting unit and charging the rechargeable battery simultaneously. A plurality of power sources and a power supply source to the return factor detector are selected / switched between the rechargeable battery and the plurality of power sources, or if the selection is the plurality of power sources. A power source selection / switching unit that selects and switches the power source that consumes the least amount of power that can be used, and selects and switches the power source that consumes the least amount of power from the plurality of power sources as a charging source A charging source selection / switching unit, and in the energy saving mode, power is supplied from the rechargeable battery, and when the rechargeable battery state detection unit detects that the state of the rechargeable battery falls below a predetermined value, The power source selection / switching unit selects and switches the power source to the return factor detection unit, and when the rechargeable battery state detection unit detects that the state of the rechargeable battery falls below a predetermined value, the charging source selection The switching unit achieves the object by selecting and switching the power source as a charging source for the rechargeable battery.
According to a second aspect of the invention, in the first aspect of the invention, it is detected whether or not each of the plurality of power sources can be used, and information on whether or not the power source is available is transmitted to the charging source selection / switching unit. And a power source detection unit capable of performing the above.
In the invention of claim 3, in the invention of claim 2, the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit can be used. The image processing apparatus can be safely shut down when a value below a predetermined value of the rechargeable battery is detected without detecting any power source.
According to a fourth aspect of the invention, in the second or third aspect of the invention, the plurality of power sources are AC power or bus power supplied from a peripheral device such as a connected PC. And
In the invention of claim 5, in the invention of claim 4, the rechargeable battery state detection unit detects that the state of the rechargeable battery is below a predetermined value, and the power source detection unit detects the bus power. When detected, the charging source selection / switching unit performs charging with the bus power.
In the invention of claim 6, in the invention of claim 4, the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit detects the bus power. When detected, the power supply selection / switching unit switches the power supply to the return factor detection unit to the bus power.
According to a seventh aspect of the invention, in the fifth or sixth aspect of the invention, when the rechargeable battery state detection unit detects that the charging by the bus power has been completed, the charging source selection / switching unit causes the charging source to be selected. The charging of the battery is stopped, and the power supply to the return factor detection unit is switched from the rechargeable battery by the power source selection / switching unit.
In the invention according to claim 8, in the invention according to claim 4, the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit detects the bus power. When the AC power source is detected without being detected, the charging source selection / switching unit performs charging with the AC power source.
According to a ninth aspect of the invention, in the fourth aspect of the invention, the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit detects the bus power. If the AC power source is detected without being detected, the power source selection / switching unit switches the power supply to the return factor detecting unit to the AC power source.
In the invention of claim 10, in the invention of claim 8 or claim 9, when the rechargeable battery state detection unit detects that the charging by the AC power source is completed, the charging source selection / switching unit causes the charging source selection / switching unit to The charging of the rechargeable battery is stopped, and the power supply selection / switching unit switches the power supply to the return factor detecting unit from the rechargeable battery.
The invention according to claim 11 has a return factor detector that has a normal operation mode and an energy saving mode for suppressing power consumption, and detects a return factor for returning from the energy saving mode to the normal operation mode, and the return factor. A rechargeable battery capable of supplying power to the detector, a rechargeable battery state detector capable of detecting the state of the rechargeable battery, a plurality of power supplies to the return factor detector and charging to the rechargeable battery simultaneously Select and switch the power source and the power supply source to the return factor detection unit, either the rechargeable battery or the plurality of power sources, or both, and can be used if the selection is the plurality of power sources The power source selection / switching unit that selects and switches the power source that consumes the least amount of power, and when the rechargeable battery state detection unit detects that the state of the rechargeable battery falls below a predetermined value, the plurality of charging sources Power source A charging source selection / switching unit that selects and switches a power source from the first, and the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value; In the step, when it is detected that the state of the rechargeable battery is lower than a predetermined value, the power source selection / switching unit selects and switches the power source with the least power consumption that can be used, and In the first step, when it is detected that the state of the rechargeable battery has fallen below a predetermined value, the charging source selection / switching unit uses the most power consumption among the plurality of usable power sources as a charging source. The object is achieved by a control method for an image processing apparatus, comprising a third step of selecting and switching a power source with a small amount of power.

請求項1および請求項11記載の発明では、充電池の状態が所定値を下回ったことを、充電池状態検知部が検知した時に、復帰要因検知部への電力源を選択し切り替える電源選択・切り替え部を有しているため、充電池が放電したとしても上記復帰要因検知部に途絶えることなく電力を供給するので、復帰要因を検知可能であり、確実に省エネモードから通常モードへ復帰できるので信頼性が向上する。
請求項2記載の発明では、使用可能な復帰要因検知部への電力供給源または使用可能な充電池の充電元を検知し発信することで、最適な制御を行うことが可能となる。
請求項3記載の発明では、電池切れによる突然のシステムダウンを防ぐことが出来て、画像処理装置の安全なシャットダウンを保証できる。
請求項4記載の発明では、バスパワーを用いることでAC0Wを達成でき、AC電源を用いるとAC0Wではないが、更なるバックアップ用に備えることで信頼性が向上する。
請求項5記載の発明では、AC0Wを実現したまま充電を行うことが出来、電池は充電されるので電池切れによるシステムダウンを防ぐことが出来て、信頼性が向上する。
請求項6記載の発明では、AC0Wを実現したままで充電池の充電期間でも復帰要因検知部への電力供給が確保され、システムダウンを防ぐことが出来、信頼性が向上する。
請求項7記載の発明では、充電池での復帰要因検知部への電力供給に戻すため最も省エネルギーな状態に復帰することができる。
請求項8記載の発明では、AC0Wは実現できないが、充電を行うことが出来て、電池は充電されるので電池切れによるシステムダウンを防ぐことが出来、信頼性が向上する。
請求項9記載の発明では、AC0Wは実現できないが、充電池の充電期間でも上記復帰要因検知部への電力供給が確保され、システムダウンを防ぐことが出来、信頼性が向上する。
請求項10記載の発明では、充電池での復帰要因検知部への電力供給に戻すため最も省エネルギーな状態に復帰できる。
In the first and eleventh aspects of the invention, when the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, the power source selection / switch to select and switch the power source to the return factor detection unit Because it has a switching unit, even if the rechargeable battery is discharged, power is supplied to the recovery factor detection unit without interruption, so the recovery factor can be detected, and it is possible to reliably return from the energy saving mode to the normal mode. Reliability is improved.
According to the second aspect of the invention, it is possible to perform optimal control by detecting and transmitting a power supply source to a usable return factor detection unit or a charge source of a usable rechargeable battery.
According to the third aspect of the present invention, it is possible to prevent a sudden system down due to a battery exhaustion and to guarantee a safe shutdown of the image processing apparatus.
According to the fourth aspect of the present invention, AC0W can be achieved by using bus power, and the AC power supply is not AC0W, but the reliability is improved by providing for further backup.
According to the fifth aspect of the present invention, charging can be performed while realizing AC0W, and the battery is charged, so that the system can be prevented from being down due to running out of the battery, and the reliability is improved.
According to the sixth aspect of the present invention, power supply to the return factor detection unit is ensured even during the charging period of the rechargeable battery with AC0W being realized, system down can be prevented, and reliability is improved.
According to the seventh aspect of the invention, the power can be returned to the most energy-saving state because the power is returned to the return factor detection unit in the rechargeable battery.
In the invention according to claim 8, AC0W cannot be realized, but charging can be performed and the battery is charged. Therefore, system down due to battery exhaustion can be prevented, and reliability is improved.
According to the ninth aspect of the present invention, AC0W cannot be realized, but power supply to the return factor detection unit is ensured even during the charging period of the rechargeable battery, system down can be prevented, and reliability is improved.
In the invention according to claim 10, since the electric power is supplied to the return factor detector in the rechargeable battery, it can be returned to the most energy saving state.

以下、本発明の好適な実施の形態を図1ないし図5を参照して、詳細に説明する。
図1は、第1の実施例に係る画像処理装置の構成を示したブロック図である。
本実施例に係る画像処理装置1は、復帰要因検知部2、メイン制御部3、充電池4、充電池状態検知部5、複数の電力源6、充電元選択・切り替え部7、電源選択・切り替え部8より構成されている。
次に、図2のフローチャートを参照して、第1の実施例の処理手順を説明する。
画像処理装置1が、充電池4からの電力供給で省エネモードを保っている(ステップ1)。復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知したら(ステップ2;Y)、メイン制御部3へ信号を送り、通常動作モードに復帰する(ステップ3)。その後、画像処理装置1が省エネモードに入る条件を満たしたら(ステップ4;Y)、省エネモードに再度入り(ステップ1)、条件を満たさなければ(ステップ4;N)通常動作モードを継続する(ステップ3)。
省エネモードにおいて、復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知しなければ(ステップ2;N)、省エネ状態のままである。そして、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知しなければ(ステップ5;N)、充電池4から復帰要因検知部2への電力供給で省エネ状態を保つ(ステップ2)。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a block diagram illustrating the configuration of the image processing apparatus according to the first embodiment.
The image processing apparatus 1 according to the present embodiment includes a return factor detection unit 2, a main control unit 3, a rechargeable battery 4, a rechargeable battery state detection unit 5, a plurality of power sources 6, a charging source selection / switching unit 7, a power source selection / switching unit. The switching unit 8 is configured.
Next, the processing procedure of the first embodiment will be described with reference to the flowchart of FIG.
The image processing apparatus 1 maintains the energy saving mode by supplying power from the rechargeable battery 4 (step 1). When the return factor detection unit 2 detects a return factor from the energy saving mode to the normal mode (step 2; Y), a signal is sent to the main control unit 3 to return to the normal operation mode (step 3). After that, when the condition for the image processing apparatus 1 to enter the energy saving mode is satisfied (step 4; Y), the energy saving mode is entered again (step 1). When the condition is not satisfied (step 4; N), the normal operation mode is continued ( Step 3).
In the energy saving mode, if the return factor detection unit 2 does not detect a return factor from the energy saving mode to the normal mode (step 2; N), the energy saving state remains. If the rechargeable battery state detection unit 5 does not detect that the state of the rechargeable battery 4 has fallen below a predetermined value (step 5; N), the power is supplied from the rechargeable battery 4 to the return factor detection unit 2 in an energy saving state. (Step 2).

一方、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知したら(ステップ5;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、複数の電力源6の中で最小の消費電力の電力源をオンし(ステップ6)、充電池4は、復帰要因検知部2への電力供給をオフする(ステップ7)。
そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、複数の電力源6の中で最小な消費電力の電力源をオンして(ステップ8)、充電池4を充電する(ステップ9)。
充電池4の充電が終了したことを充電池状態検知部5が検知するまで、充電池4の充電を続ける(ステップ10)。
充電池4への充電が終了したことを充電池状態検知部5が検知したら(ステップ10;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により充電池4の復帰要因検知部2への電力供給をオンし(ステップ11)、ここまで復帰要因検知部2に電力を供給していた、複数の電力源6の中で最小の消費電力の電力源をオフする(ステップ12)。
そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、これまで充電池4を充電していた、複数の電力源6の中で最小の消費電力の電力源をオフし(ステップ13)、ステップ2へ戻る。
また、ステップ6〜ステップ13の過程で復帰要因を検知した旨の割り込みがあった場合(ステップ2;Y)、必ず通常動作モードに復帰する(ステップ3)。
この実施例によれば、復帰要因検知部2に途絶えることなく供給する電力源は使用可能な最も消費電力が少ない電力源を選択して使用するため、消費電力の低減も出来る。
また、充電池4の状態が所定値を下回ったことを、充電池状態検知部5が検知した時に、充電池4への充電元として選択し切り替える充電元選択・切り替え部7を有しているため、充電池4が放電したとしても、複数の電力源6の中から使用可能な最も消費電力が少ない電力源で上記充電池を充電するので、最適な電力源6により充電池4を充電でき、消費電力を低減できる。
On the other hand, when the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 5; Y), a power source selection / switching unit that selects and switches the power source to the return factor detection unit 2 8, the power source with the minimum power consumption is turned on among the plurality of power sources 6 (step 6), and the rechargeable battery 4 turns off the power supply to the return factor detection unit 2 (step 7).
Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 turns on the power source with the minimum power consumption among the plurality of power sources 6 (step 8). Charge (step 9).
The charging of the rechargeable battery 4 is continued until the rechargeable battery state detection unit 5 detects that the charging of the rechargeable battery 4 has been completed (step 10).
When the rechargeable battery state detection unit 5 detects that charging of the rechargeable battery 4 has been completed (step 10; Y), the rechargeable battery 4 is selected by the power source selection / switching unit 8 that selects and switches the power source to the return factor detection unit 2. The power supply to the return factor detection unit 2 is turned on (step 11), and the power source with the minimum power consumption among the plurality of power sources 6 that has supplied power to the return factor detection unit 2 so far is turned off. (Step 12).
Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 turns off the power source with the minimum power consumption among the plurality of power sources 6 that has been charged so far. (Step 13), the process returns to Step 2.
If there is an interrupt indicating that a return factor has been detected in the process from step 6 to step 13 (step 2; Y), the normal operation mode is always returned (step 3).
According to this embodiment, the power source that is supplied without interruption to the recovery factor detector 2 is selected and used as the power source with the lowest power consumption, so that the power consumption can be reduced.
In addition, when the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value, the rechargeable battery 4 has a charge source selection / switching unit 7 that selects and switches the charge source to the rechargeable battery 4. Therefore, even if the rechargeable battery 4 is discharged, the rechargeable battery 4 can be charged with the optimum power source 6 because the rechargeable battery is charged with the power source with the least power consumption that can be used from among the plurality of power sources 6. , Power consumption can be reduced.

次に、第2の実施例を説明する。
図3は、実施例2に係る画像処理装置の構成を示したブロック図である。図1に示した第1の実施例と同一の構成要素については、同一の符号を付してある。この画像処理装置1は、復帰要因検知部2、メイン制御部3、充電池4、充電池状態検知部5、複数の電力源6、充電元選択・切り替え部7、電源選択・切り替え部8および電力源検知部9より構成されている。
続いて、図4のフローチャートを参照して、第2の実施例の処理手順を説明する。
画像処理装置1が、充電池4からの電力供給で省エネモードを保っている(ステップ21)。復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知したら(ステップ22;Y)、メイン制御部3へ信号を送り、通常動作モードに復帰する(ステップ23)。その後、画像処理装置1が省エネモードに入る条件を満たしたら(ステップ24;Y)、省エネモードに再度入り(ステップ21)、条件を満たさなければ(ステップ24;N)通常動作モードを継続する(ステップ23)。
省エネモードにおいて、復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知しなければ(ステップ22;N)、省エネ状態のままである。そして、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知しなければ(ステップ25;N)、充電池4から復帰要因検知部2への電力供給で省エネ状態を保つ(ステップ22)。
Next, a second embodiment will be described.
FIG. 3 is a block diagram illustrating the configuration of the image processing apparatus according to the second embodiment. The same components as those in the first embodiment shown in FIG. The image processing apparatus 1 includes a return factor detection unit 2, a main control unit 3, a rechargeable battery 4, a rechargeable battery state detection unit 5, a plurality of power sources 6, a charging source selection / switching unit 7, a power source selection / switching unit 8, and The power source detection unit 9 is configured.
Next, the processing procedure of the second embodiment will be described with reference to the flowchart of FIG.
The image processing apparatus 1 maintains the energy saving mode by supplying power from the rechargeable battery 4 (step 21). When the return factor detection unit 2 detects a return factor from the energy saving mode to the normal mode (step 22; Y), a signal is sent to the main control unit 3 to return to the normal operation mode (step 23). After that, when the condition for the image processing apparatus 1 to enter the energy saving mode is satisfied (step 24; Y), the energy saving mode is entered again (step 21). When the condition is not satisfied (step 24; N), the normal operation mode is continued (step 24). Step 23).
In the energy saving mode, if the return factor detection unit 2 does not detect the return factor from the energy saving mode to the normal mode (step 22; N), the energy saving state remains. And if the rechargeable battery state detection part 5 does not detect that the state of the rechargeable battery 4 has fallen below the predetermined value (step 25; N), it will be in an energy-saving state by the electric power supply from the rechargeable battery 4 to the return factor detection part 2 (Step 22).

一方、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知して(ステップ25;Y)、充電池4への充電と復帰要因検知部2への電力供給の切り替えが必要になったにもかかわらず、電力源検知部9が使用可能な電力源を検知できなかった時(ステップ26;N)、充電池4は充電できないので当然放電していく。そして、充電池状態検知部5が、充電池4の状態が所定の値を更に下回る値を下回ったことを検知したら(ステップ35;Y)、画像処理装置1を安全にシャットダウンする(ステップ36)。充電池状態検知部5が、充電池4の状態が所定の値を更に下回る値を下回ったことを検知しなければ(ステップ35;N)、電力源検知部9が使用可能な電力源を検知するのを待って、状態を維持する(ステップ26)。   On the other hand, the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 25; Y), and the charging of the rechargeable battery 4 and the supply of power to the return factor detection unit 2 are performed. When the power source detection unit 9 cannot detect a usable power source despite the necessity of switching (step 26; N), the rechargeable battery 4 cannot be charged and is naturally discharged. When the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 35; Y), the image processing apparatus 1 is safely shut down (step 36). . If the rechargeable battery state detection unit 5 does not detect that the state of the rechargeable battery 4 has fallen below a predetermined value (step 35; N), the power source detection unit 9 detects a usable power source. The state is maintained after waiting (step 26).

一方、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知し(ステップ25;Y)、電力源検知部9が使用可能な電力源を検知したら(ステップ26;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、複数の電力源6の中で最小の消費電力の電力源をオンし(ステップ27)、充電池4は、復帰要因検知部2への電力供給をオフする(ステップ28)。
そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、複数の電力源6の中で最小な消費電力の電力源をオンして(ステップ29)、充電池4を充電する(ステップ30)。
充電池4の充電が終了したことを充電池状態検知部5が検知するまで、充電池4の充電を続ける(ステップ31)。
On the other hand, when the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 25; Y) and the power source detection unit 9 detects a usable power source (step 26; Y) The power source selection / switching unit 8 that selects and switches the power source to the recovery factor detection unit 2 turns on the power source with the minimum power consumption among the plurality of power sources 6 (step 27), and the rechargeable battery 4 Turns off the power supply to the return factor detector 2 (step 28).
Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 turns on the power source with the minimum power consumption among the plurality of power sources 6 (step 29). Charge (step 30).
The charging of the rechargeable battery 4 is continued until the rechargeable battery state detection unit 5 detects that the charging of the rechargeable battery 4 has been completed (step 31).

充電池4への充電が終了したことを充電池状態検知部5が検知したら(ステップ31;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により充電池4の復帰要因検知部2への電力供給をオンし(ステップ32)、ここまで復帰要因検知部2に電力を供給していた、複数の電力源6の中で最小の消費電力の電力源をオフする(ステップ33)。
、そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、これまで充電池4を充電していた、複数の電力源6の中で最小の消費電力の電力源をオフし(ステップ34)、ステップ22へ戻る。
また、ステップ26〜ステップ35の過程で復帰要因を検知した旨の割り込みがあった場合(ステップ22;Y)、必ず通常動作モードに復帰する(ステップ23)。
When the rechargeable battery state detection unit 5 detects that charging of the rechargeable battery 4 has been completed (step 31; Y), the rechargeable battery 4 is selected by the power source selection / switching unit 8 that selects and switches the power source to the return factor detection unit 2. The power supply to the return factor detection unit 2 is turned on (step 32), and the power source with the minimum power consumption among the plurality of power sources 6 that has supplied power to the return factor detection unit 2 so far is turned off. (Step 33).
Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 is used to select the power source with the minimum power consumption among the plurality of power sources 6 that have been charged so far. Turn off (step 34) and return to step 22.
If there is an interrupt indicating that a return factor has been detected in the process from step 26 to step 35 (step 22; Y), the process always returns to the normal operation mode (step 23).

次に、第3の実施例を説明する。
この第3の実施例に係る画像処理装置の構成は、図3に示したものと同様である。
続いて、図5のフローチャートを参照して、第3の実施例の処理手順を説明する。
画像処理装置1が、充電池4からの電力供給で省エネモードを保っている(ステップ41)。復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知したら(ステップ42;Y)、メイン制御部3へ信号を送り、通常動作モードに復帰する(ステップ43)。その後、画像処理装置1が省エネモードに入る条件を満たしたら(ステップ44;Y)、省エネモードに再度入り(ステップ41)、条件を満たさなければ(ステップ44;N)通常動作モードを継続する(ステップ43)。
省エネモードにおいて、復帰要因検知部2が省エネモードから通常モードへの復帰要因を検知しなければ(ステップ42;N)、省エネ状態のままである。そして、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知しなければ(ステップ45;N)、充電池4から復帰要因検知部2への電力供給で省エネ状態を保つ(ステップ42)。
Next, a third embodiment will be described.
The configuration of the image processing apparatus according to the third embodiment is the same as that shown in FIG.
Next, the processing procedure of the third embodiment will be described with reference to the flowchart of FIG.
The image processing apparatus 1 maintains the energy saving mode by supplying power from the rechargeable battery 4 (step 41). When the return factor detection unit 2 detects a return factor from the energy saving mode to the normal mode (step 42; Y), a signal is sent to the main control unit 3 to return to the normal operation mode (step 43). After that, if the condition for the image processing apparatus 1 to enter the energy saving mode is satisfied (step 44; Y), the energy saving mode is entered again (step 41). If the condition is not satisfied (step 44; N), the normal operation mode is continued (step 44). Step 43).
In the energy saving mode, if the return factor detection unit 2 does not detect a return factor from the energy saving mode to the normal mode (step 42; N), the energy saving state remains. If the rechargeable battery state detection unit 5 does not detect that the state of the rechargeable battery 4 has fallen below a predetermined value (step 45; N), the power is supplied from the rechargeable battery 4 to the return factor detection unit 2 in an energy saving state. (Step 42).

充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知して(ステップ45;Y)、充電池4への充電と復帰要因検知部2への電力供給の切り替えが必要になったにもかかわらず、電力源検知部9が使用可能な電力源を検知できなかった時(ステップ46;N)、充電池4は充電できないので当然放電していく。そして、充電池状態検知部5が、充電池の状態が所定の値を更に下回る値を下回ったことを検知したら(ステップ65;Y)、画像処理装置1を安全にシャットダウンする(ステップ66)。充電池状態検知部5が、充電池4の状態が所定の値を更に下回る値を下回ったことを検知しなければ(ステップ65;N)、電力源検知部9が使用可能な電力源を検知するのを待って、状態を維持する(ステップ46)。   The rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 45; Y), and switching between charging the rechargeable battery 4 and supplying power to the return factor detection unit 2 is performed. In spite of being necessary, when the power source detection unit 9 cannot detect a usable power source (step 46; N), the rechargeable battery 4 cannot be charged and is naturally discharged. When the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery has fallen below a predetermined value (step 65; Y), the image processing apparatus 1 is safely shut down (step 66). If the rechargeable battery state detection unit 5 does not detect that the state of the rechargeable battery 4 has fallen below a predetermined value (step 65; N), the power source detection unit 9 detects a usable power source. The state is maintained after waiting (step 46).

一方、充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知して(ステップ45;Y)、電力源検知部9が使用可能な電力源を検知して(ステップ46;Y)、かつその使用可能な電力源としてバスパワーを検知した場合(ステップ47;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、複数の電力源6の中で最小の消費電力のバスパワーをオンし(ステップ48)、充電池4は、復帰要因検知部2への電力供給をオフする(ステップ49)。そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、複数の電力源6の中で最小な消費電力のバスパワーをオンして(ステップ50)、充電池4を充電する(ステップ51)。
充電池4の充電が終了したことを充電池状態検知部5が検知しなければ(ステップ52;N)、充電池4の充電を続ける(ステップ51)。
充電池4の充電が終了したことを充電池状態検知部5が検知すれば(ステップ52;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、充電池4の復帰要因検知部2への電力供給をオンし(ステップ53)、ここまで復帰要因検知部2に電力を供給していた、複数の電力源6の中で最小の消費電力のバスパワーをオフする(ステップ54)。そして、充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、これまで充電池4を充電していた、複数の電力源6の中で最小の消費電力のバスパワーをオフし(ステップ55)、ステップ42へ戻る。
On the other hand, the rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 45; Y), and the power source detection unit 9 detects a usable power source (step) 46; Y), and when the bus power is detected as the usable power source (step 47; Y), the power source selection / switching unit 8 selects and switches the power source to the return factor detection unit 2 to select a plurality of powers. The bus power with the minimum power consumption in the source 6 is turned on (step 48), and the rechargeable battery 4 turns off the power supply to the return factor detector 2 (step 49). Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 turns on the bus power with the minimum power consumption among the plurality of power sources 6 (step 50). Charge (step 51).
If the rechargeable battery state detection unit 5 does not detect that the charging of the rechargeable battery 4 has been completed (step 52; N), the rechargeable battery 4 is continuously charged (step 51).
When the rechargeable battery state detection unit 5 detects that the charging of the rechargeable battery 4 has been completed (step 52; Y), the rechargeable battery is selected by the power source selection / switching unit 8 that selects and switches the power source to the return factor detection unit 2. 4 to turn on the power supply to the return factor detection unit 2 (step 53), and to supply the power to the return factor detection unit 2 so far, the bus power of the minimum power consumption among the plurality of power sources 6 Turn off (step 54). Then, the charging source selection / switching unit 7 that selects and switches the charging source as the charging source for the rechargeable battery 4 turns off the bus power of the minimum power consumption among the plurality of power sources 6 that has been charging the rechargeable battery 4 so far. (Step 55), the process returns to step 42.

充電池4の状態が所定の値を下回ったことを充電池状態検知部5が検知して(ステップ45)、電力源検知部9が使用可能な電力源を検知して(ステップ46;Y)、かつその使用可能な電力源としてバスパワーを検知していない場合(ステップ47;N)、バスパワーは全く検知できておらず、一方で使用可能なAC電源は検知できている状態である(ステップ56)。
ここで、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、AC電源をオンし(ステップ57)、電源選択・切り替え部8により、充電池4は復帰要因検知部2への電力供給をオフする(ステップ58)。そして充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、AC電源をオンして(ステップ59)、充電池4を充電する(ステップ60)。
充電池4の充電が終了したことを充電池状態検知部5検知しなければ(ステップ61;N)、充電池4の充電を続ける(ステップ60)。
一方、充電池4の充電が終了したことを充電池状態検知部5が検知したら(ステップ61;Y)、復帰要因検知部2への電力源を選択し切り替える電源選択・切り替え部8により、充電池4の復帰要因検知部2への電力供給をオンする(ステップ62)。
そして、ここまで復帰要因検知部2に電力を供給していた、AC電源をオフし(ステップ63)、そして充電池4への充電元として選択し切り替える充電元選択・切り替え部7により、これまで充電池4を充電していた、AC電源をオフし(ステップ64)、ステップ42へ戻る。
The rechargeable battery state detection unit 5 detects that the state of the rechargeable battery 4 has fallen below a predetermined value (step 45), and the power source detection unit 9 detects a usable power source (step 46; Y). When the bus power is not detected as the usable power source (step 47; N), the bus power is not detected at all, while the usable AC power source is detected ( Step 56).
Here, the AC power source is turned on by the power source selection / switching unit 8 that selects and switches the power source to the recovery factor detection unit 2 (step 57), and the rechargeable battery 4 is restored by the power source selection / switching unit 8. The power supply to 2 is turned off (step 58). Then, the AC power source is turned on by the charging source selection / switching unit 7 that is selected and switched as a charging source for the rechargeable battery 4 (step 59), and the rechargeable battery 4 is charged (step 60).
If it is not detected that the charging of the rechargeable battery 4 has been completed (step 61; N), the charging of the rechargeable battery 4 is continued (step 60).
On the other hand, when the rechargeable battery state detection unit 5 detects that charging of the rechargeable battery 4 has been completed (step 61; Y), the power source selection / switching unit 8 selects and switches the power source to the return factor detection unit 2 to charge The power supply to the return factor detector 2 of the battery 4 is turned on (step 62).
The power source is supplied to the return factor detection unit 2 so far, the AC power is turned off (step 63), and the charging source selection / switching unit 7 selects and switches the charging source to the charging battery 4 so far. The AC power source that has been charging the rechargeable battery 4 is turned off (step 64), and the process returns to step 42.

また、ステップ46〜ステップ65の過程で復帰要因を検知した旨の割り込みがあった場合、(ステップ42;Y)、必ず通常動作モードに復帰する(ステップ43)。
ステップ48〜ステップ55、ステップ56〜ステップ64を行っている時に、複数の電力源6の中で選択・使用している電力源を電力源検知部9が検知できないという割り込みが生じた時には必ずステップ45へ戻る。
ステップ48〜ステップ55、ステップ56〜ステップ64の処理を行っている時に、選択・使用している電力源よりも消費電力が少ない新たな電力源を電力源検知部9が検知するという割り込みが生じた時には必ずステップ45へ戻る。
また、複数の電力源6としてバスパワーとAC電源を用いているが、数・種類ともこれに限定されるものではない。
If there is an interrupt indicating that the return factor has been detected in the process of step 46 to step 65 (step 42; Y), the process always returns to the normal operation mode (step 43).
When step 48 to step 55 and step 56 to step 64 are being performed, whenever an interruption occurs that the power source detection unit 9 cannot detect the power source selected / used among the plurality of power sources 6, the step is always performed. Return to 45.
During the processing of step 48 to step 55 and step 56 to step 64, an interruption occurs that the power source detection unit 9 detects a new power source that consumes less power than the power source that is selected and used. Always return to step 45.
Moreover, although bus power and AC power supply are used as the plurality of power sources 6, both the number and type are not limited thereto.

第1の実施例に係る画像処理装置の構成を示したブロック図である。1 is a block diagram illustrating a configuration of an image processing apparatus according to a first embodiment. 第1の実施例の処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the 1st Example. 第2、第3の実施例に係る画像処理装置の構成を示したブロック図である。It is the block diagram which showed the structure of the image processing apparatus which concerns on a 2nd, 3rd Example. 第2の実施例の処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the 2nd Example. 第3の実施例の処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the 3rd Example.

符号の説明Explanation of symbols

1 画像処理装置
2 復帰要因検知部
3 メイン制御部
4 充電池
5 充電池状態検知部
6 電力源(複数)
7 充電元選択・切り替え部
8 電源選択・切り替え部
9 電力源検知部
DESCRIPTION OF SYMBOLS 1 Image processing apparatus 2 Return factor detection part 3 Main control part 4 Rechargeable battery 5 Rechargeable battery state detection part 6 Power source (plurality)
7 Charging source selection / switching unit 8 Power source selection / switching unit 9 Power source detection unit

Claims (11)

通常動作モードと、電力消費を抑制する省エネモードとを有する画像処理装置において、
省エネモードから通常動作モードへ復帰するための復帰要因を検知する復帰要因検知部と、
前記復帰要因検知部へ電力供給可能な充電池と、
前記充電池の状態検知が可能な充電池状態検知部と、
前記復帰要因検知部への電力供給と前記充電池への充電が同時に可能である複数の電力源と、
前記復帰要因検知部への電力供給源を前記充電池か前記複数の電力源のいずれかまたは両方かの選択・切り替えを行い、選択が前記複数の電力源であれば使用可能な最も消費電力が少ない電力源を選択し切り替える電源選択・切り替え部と、
充電元として前記複数の電力源の中から使用可能な最も消費電力が少ない電力源を選択し切り替える充電元選択・切り替え部と、を備え、
省エネモードでは前記充電池からの電力供給を行い、
前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知した時に、前記電源選択・切り替え部が、前記復帰要因検知部への電力源を選択し切り替え、
前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知した時に、前記充電元選択・切り替え部が、充電池への充電元として電力源を選択し切り替えることを特徴とする画像処理装置。
In an image processing apparatus having a normal operation mode and an energy saving mode for suppressing power consumption,
A return factor detector for detecting a return factor for returning from the energy saving mode to the normal operation mode;
A rechargeable battery capable of supplying power to the return factor detector;
A rechargeable battery state detection unit capable of detecting the state of the rechargeable battery;
A plurality of power sources capable of simultaneously supplying power to the return factor detector and charging the rechargeable battery;
The power supply source to the return factor detection unit is selected / switched between the rechargeable battery and the plurality of power sources or both, and if the selection is the plurality of power sources, the most usable power consumption is A power source selection / switching unit that selects and switches a small power source, and
A charging source selection / switching unit that selects and switches a power source that consumes the least amount of power from among the plurality of power sources as a charging source; and
In energy saving mode, power is supplied from the rechargeable battery.
When the rechargeable battery state detection unit detects that the state of the rechargeable battery is below a predetermined value, the power source selection / switching unit selects and switches the power source to the return factor detection unit,
When the rechargeable battery state detection unit detects that the state of the rechargeable battery falls below a predetermined value, the charging source selection / switching unit selects and switches a power source as a charging source to the rechargeable battery. An image processing apparatus.
前記複数の電力源の各々について使用可能であるか否かを検知し、その可否についての情報を前記充電元選択・切り替え部へ発信することが可能な電力源検知部をさらに備えたことを特徴とする請求項1記載の画像処理装置。   A power source detection unit capable of detecting whether or not each of the plurality of power sources can be used and transmitting information about the availability to the charging source selection / switching unit; The image processing apparatus according to claim 1. 前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、且つ、前記電力源検知部が使用可能な電力源をも検知出来ずに、前記充電池の所定値をさらに下回る値を下回った時に、画像処理装置を安全にシャットダウンすることを特徴とする請求項2に記載の画像処理装置。   The rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit cannot detect a power source that can be used. The image processing apparatus according to claim 2, wherein the image processing apparatus is safely shut down when the value is further below a value lower than. 前記複数の電力源は、AC電源または接続されているPCなどの周辺機器から供給されるバスパワーとすることを特徴とする請求項2または請求項3に記載の画像処理装置。   The image processing apparatus according to claim 2, wherein the plurality of power sources are AC power or bus power supplied from a peripheral device such as a connected PC. 前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知すると、前記充電元選択・切り替え部により前記バスパワーで充電を行うことを特徴とする請求項4に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value and the power source detection unit detects the bus power, the charging source selection / switching unit charges with the bus power. The image processing apparatus according to claim 4, wherein: 前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知すると、前記電源選択・切り替え部により前記復帰要因検知部への電力供給を前記バスパワーに切り替えることを特徴とする請求項4に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the state of the rechargeable battery is below a predetermined value, and the power source detection unit detects the bus power, the power source selection / switching unit causes the return factor detection unit to The image processing apparatus according to claim 4, wherein the power supply is switched to the bus power. 前記バスパワーによる充電が完了したことを前記充電池状態検知部が検知すると、前記充電元選択・切り替え部により前記充電池への充電を止め、前記電源選択・切り替え部により復帰要因検知部への電力供給を充電池からに切り替えることを特徴とする請求項5または請求項6に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the charging by the bus power is completed, the charging source selection / switching unit stops charging the rechargeable battery, and the power source selection / switching unit supplies the return factor detection unit to The image processing apparatus according to claim 5, wherein the power supply is switched from a rechargeable battery. 前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知出来ず、前記AC電源を検知すると、前記充電元選択・切り替え部により前記AC電源で充電を行うことを特徴とする請求項4に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value and the power source detection unit cannot detect the bus power and detects the AC power source, the charging source selection / The image processing apparatus according to claim 4, wherein the switching unit performs charging with the AC power source. 前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知し、前記電力源検知部が前記バスパワーを検知出来ず、前記AC電源を検知すると、前記電源選択・切り替え部により前記復帰要因検知部への電力供給を前記AC電源に切り替えることを特徴とする請求項4に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value, and the power source detection unit cannot detect the bus power and detects the AC power supply, the power supply selection / switching is performed. The image processing apparatus according to claim 4, wherein a power supply to the return factor detection unit is switched to the AC power source by a unit. 前記充電池状態検知部が、前記AC電源による充電が完了したことを検知すると、前記充電元選択・切り替え部により前記充電池への充電を止め、前記電源選択・切り替え部により、前記復帰要因検知部への電力供給を充電池からに切り替えることを特徴とする請求項8または請求項9に記載の画像処理装置。   When the rechargeable battery state detection unit detects that the charging by the AC power source is completed, the charging source selection / switching unit stops charging the rechargeable battery, and the power source selection / switching unit detects the return factor detection. The image processing apparatus according to claim 8, wherein power supply to the unit is switched from a rechargeable battery. 通常動作モードと、電力消費を抑制する省エネモードとを有し、
省エネモードから通常動作モードへ復帰するための復帰要因を検知する復帰要因検知部と、
前記復帰要因検知部へ電力供給可能な充電池と、
前記充電池の状態検知が可能な充電池状態検知部と、
前記復帰要因検知部への電力供給と前記充電池への充電が同時に可能である複数の電力源と、
前記復帰要因検知部への電力供給源を前記充電池か前記複数の電力源のいずれかまたは両方かの選択・切り替えを行い、選択が前記複数の電力源であれば、使用可能な最も消費電力が少ない電力源を選択し切り替える電源選択・切り替え部と、
前記充電池の状態が所定値を下回ったことを、前記充電池状態検知部が検知した時に、充電元として前記複数の電力源の中から電力源を選択し切り替える充電元選択・切り替え部と、を備え、
前記充電池状態検知部が、前記充電池の状態が所定値を下回ったことを検知する第1のステップと、
第1のステップで、前記充電池の状態が所定値を下回ったことが検知されたとき、前記電源選択・切り替え部が、使用可能な最も消費電力が少ない電力源を選択し切り替える第2のステップと、
第1のステップで、前記充電池の状態が所定値を下回ったことが検知されたとき、前記充電元選択・切り替え部が、充電元として前記複数の使用可能な電力源の中から最も消費電力が少ない電力源を選択し切り替える第3のステップとからなることを特徴とする画像処理装置の制御方法。
It has a normal operation mode and an energy saving mode that suppresses power consumption,
A return factor detector for detecting a return factor for returning from the energy saving mode to the normal operation mode;
A rechargeable battery capable of supplying power to the return factor detector;
A rechargeable battery state detection unit capable of detecting the state of the rechargeable battery;
A plurality of power sources capable of simultaneously supplying power to the return factor detector and charging the rechargeable battery;
The power supply source to the return factor detection unit is selected / switched between the rechargeable battery and the plurality of power sources or both, and if the selection is the plurality of power sources, the most usable power consumption A power source selection / switching unit that selects and switches power sources with less power,
When the rechargeable battery state detection unit detects that the state of the rechargeable battery is below a predetermined value, a charging source selection / switching unit that selects and switches a power source from the plurality of power sources as a charging source, With
A first step in which the rechargeable battery state detection unit detects that the state of the rechargeable battery has fallen below a predetermined value;
In the first step, when it is detected that the state of the rechargeable battery is lower than a predetermined value, the power source selection / switching unit selects and switches the power source with the least power consumption that can be used. When,
In the first step, when it is detected that the state of the rechargeable battery has fallen below a predetermined value, the charging source selection / switching unit uses the most power consumption among the plurality of usable power sources as a charging source. And a third step of selecting and switching a power source with less power.
JP2008162415A 2008-06-20 2008-06-20 Image processing apparatus and method for controlling image processing apparatus Pending JP2010003178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162415A JP2010003178A (en) 2008-06-20 2008-06-20 Image processing apparatus and method for controlling image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162415A JP2010003178A (en) 2008-06-20 2008-06-20 Image processing apparatus and method for controlling image processing apparatus

Publications (1)

Publication Number Publication Date
JP2010003178A true JP2010003178A (en) 2010-01-07

Family

ID=41584828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162415A Pending JP2010003178A (en) 2008-06-20 2008-06-20 Image processing apparatus and method for controlling image processing apparatus

Country Status (1)

Country Link
JP (1) JP2010003178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054551A (en) * 2011-09-05 2013-03-21 Ricoh Co Ltd Image forming apparatus, power supply method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054551A (en) * 2011-09-05 2013-03-21 Ricoh Co Ltd Image forming apparatus, power supply method, and program

Similar Documents

Publication Publication Date Title
JP2007312499A (en) Power supply device and image forming apparatus
JP5169186B2 (en) Power supply
JP2012005330A (en) Charge controller for secondary battery
US20090134704A1 (en) Electric power-supply apparatus and over-discharge control method for use therewith
GB2508780A (en) Power supply device and method for controlling same
US7166989B2 (en) Power supply system for supplying power to an electronic apparatus
JP2014099799A (en) Electronic apparatus and control method of the same, and program
JP6223266B2 (en) Power switching system
JP2010286876A (en) Microcomputer system, microcomputer, method and program for controlling power supply
JP5717173B2 (en) Power supply system, power supply control method, power supply control device, and program
JP5995436B2 (en) Electronic device, control method therefor, and program
JP2010003178A (en) Image processing apparatus and method for controlling image processing apparatus
EP2557658A2 (en) Standby power system for handheld electronic device and method for supplying standby power.
JP2007209053A (en) Ups switching control system
JP2004074558A (en) Image formation apparatus
JP2007135362A (en) Mobile terminal device
JP6766597B2 (en) Data processing equipment, data processing equipment control methods, and programs
JP2014104654A (en) Image forming apparatus and control method of the same
US20140125129A1 (en) Electric-power supply device, method for operating the same and computer-readable storage medium
JP2012192702A (en) Image forming apparatus, power saving control method, power saving control program, and recording medium
JP2007288830A (en) Uninterruptible power source supply device
JP6021480B2 (en) Printing device
US20180267811A1 (en) Electronic apparatus and control method of the same
US9008532B2 (en) Image processing apparatus operable by AC power and DC power, method of controlling the apparatus, and storage medium
JP2006238676A (en) Ac adapter