JP2010002857A - Fixing device - Google Patents

Fixing device Download PDF

Info

Publication number
JP2010002857A
JP2010002857A JP2008163642A JP2008163642A JP2010002857A JP 2010002857 A JP2010002857 A JP 2010002857A JP 2008163642 A JP2008163642 A JP 2008163642A JP 2008163642 A JP2008163642 A JP 2008163642A JP 2010002857 A JP2010002857 A JP 2010002857A
Authority
JP
Japan
Prior art keywords
fixing
heater
endless film
nip portion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008163642A
Other languages
Japanese (ja)
Other versions
JP5317550B2 (en
Inventor
Akira Kato
加藤  明
Yuki Nishizawa
祐樹 西沢
Tetsuya Sano
哲也 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008163642A priority Critical patent/JP5317550B2/en
Publication of JP2010002857A publication Critical patent/JP2010002857A/en
Application granted granted Critical
Publication of JP5317550B2 publication Critical patent/JP5317550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further shorten a warm-up period of a fixing device using an endless belt. <P>SOLUTION: During the warm-up period before starting a fixing process in a fixing nip section after the start of the rotation of the endless film, a quantity of heat generated by a heater is set so that the quantity is the largest in a position downstream of the middle of the fixing nip in the rotating direction of the endless film. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電子写真技術を用いた複写機やプリンタに搭載される定着装置に関する。特に、エンドレスフィルムとエンドレスフィルムの内周面に接触するヒータとを有しエンドレスフィルムを介して記録材上の未定着トナー像を記録材に加熱定着する定着装置に関する。   The present invention relates to a fixing device mounted on a copying machine or a printer using electrophotographic technology. In particular, the present invention relates to a fixing device that includes an endless film and a heater that contacts an inner peripheral surface of the endless film, and heat-fixes an unfixed toner image on the recording material onto the recording material via the endless film.

エンドレスフィルムを用いた定着装置は、構造上、非常に低熱容量であるため、ウォームアップを開始して定着可能な温度に到達するまでの時間が短くできる。そのため、プリント指示を待つスタンバイ中の消費電力を少なくできる等、優れた性能を有している。   Since the fixing device using the endless film has a very low heat capacity due to its structure, it can shorten the time from the start of warm-up until the temperature at which fixing is possible. Therefore, it has excellent performance, such as reducing power consumption during standby waiting for a print instruction.

このような優れた性能を有する定着装置でも、近年は更なる性能アップが求められている。例えば、ウォームアップを開始して定着可能な温度に到達するまでの時間を更に短縮することもその一つである。また、トナーを紙に定着させる定着性能の更なる向上もその一つである。   Even in the fixing device having such excellent performance, in recent years, further performance improvement has been demanded. One example is to further shorten the time from the start of warm-up until the temperature at which fixing can be achieved. In addition, further improvement in fixing performance for fixing toner on paper is one of them.

特許文献1には、エンドレスフィルム内周面に接触するヒータが、複数本の発熱抵抗体を有していること、及び複数枚の記録材を連続して定着処理する場合に、徐々にヒータの発熱分布を変化させて定着性能を確保することが開示されている。
特開2002−341682号公報
In Patent Document 1, a heater that contacts an inner peripheral surface of an endless film has a plurality of heating resistors, and when a plurality of recording materials are continuously fixed, It is disclosed to secure the fixing performance by changing the heat generation distribution.
JP 2002-341682 A

特許文献1のものは、連続プリント時における記録材搬送方向のヒータの発熱ピークを徐々に搬送方向上流側へシフトさせることにより、連続プリント時の定着性を確保している。しかしながら、少ない消費電力でウォームアップ完了までの時間を短縮するものではない。   Japanese Patent Application Laid-Open No. 2005-228867 ensures the fixability during continuous printing by gradually shifting the heat generation peak of the heater in the recording material conveyance direction during continuous printing to the upstream side in the conveyance direction. However, it does not shorten the time to warm-up completion with less power consumption.

上述の課題を解決するための本発明は、エンドレスフィルムと、基板と前記基板上に設けられた複数の発熱抵抗体とを有し前記エンドレスフィルムの内周面に接触するヒータと、前記エンドレスフィルムを介して前記ヒータと共に定着ニップ部を形成するバックアップ部材と、を有し、前記定着ニップ部で未定着トナー像を担持する記録材を挟持搬送しつつ未定着トナー像を記録材に加熱定着する定着装置において、前記エンドレスフィルムが回転を開始し前記定着ニップ部で定着処理を開始する前のウォームアップ期間中、前記エンドレスフィルム回転方向における前記定着ニップ部中央より下流側の位置で前記ヒータの発熱量が最も大きくなるように設定されていることを特徴とする。   The present invention for solving the above-mentioned problems includes an endless film, a heater having a substrate and a plurality of heating resistors provided on the substrate, and being in contact with an inner peripheral surface of the endless film, and the endless film And a backup member that forms a fixing nip portion together with the heater via, and heat-fixes the unfixed toner image on the recording material while nipping and conveying the recording material carrying the unfixed toner image at the fixing nip portion. In the fixing device, during the warm-up period before the endless film starts to rotate and the fixing process is started at the fixing nip portion, the heater generates heat at a position downstream from the center of the fixing nip portion in the rotation direction of the endless film. The amount is set to be the largest.

本発明によれば、少ない消費電力でウォームアップ完了までの時間を短縮できる。   According to the present invention, it is possible to shorten the time until the warm-up is completed with less power consumption.

(実施例1)
以下、本発明の実施の一形態を添付図面について説明する。
Example 1
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図20は、本発明の定着装置を搭載した画像形成装置の一例であるレーザプリンタの概略構成を示す図である。   FIG. 20 is a diagram showing a schematic configuration of a laser printer as an example of an image forming apparatus equipped with the fixing device of the present invention.

同図において、1はドラム型の電子写真感光体(以下、感光ドラムと称す)である。この感光ドラム1は装置本体Mによって回転自在に支持されており、不図示の駆動手投によって矢印方向に所定のプロセススピードで回転駆動されるようになっている。なお、この感光ドラム1の周囲には、その回転方向に沿って順に帯電装置(帯電ローラ)2、露光装置(走査手段)3、現像装置4、転写装置(転写手段)5、クリーニング装置7が配設されている。   In the figure, reference numeral 1 denotes a drum-type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum). The photosensitive drum 1 is rotatably supported by the apparatus main body M, and is driven to rotate at a predetermined process speed in the direction of the arrow by a driving hand throw (not shown). Around the photosensitive drum 1, there are a charging device (charging roller) 2, an exposure device (scanning means) 3, a developing device 4, a transfer device (transfer means) 5, and a cleaning device 7 in this order along the rotation direction. It is arranged.

また同図において、給紙カセット8は装置本体Mの下部に配置され、シート状の記録材Pが収納されている。記録材Pは搬送経路Rに沿って不図示の搬送手段により搬送方向上流側から順に、転写装置(転写手段)5、ガイド35、定着装置(定着手段)6に搬送される。   In FIG. 2, the paper feed cassette 8 is disposed at the lower part of the apparatus main body M and stores a sheet-like recording material P. The recording material P is transported along the transport path R to a transfer device (transfer device) 5, a guide 35, and a fixing device (fixing device) 6 sequentially from the upstream side in the transport direction by a transport device (not shown).

次に、レーザプリンタにおける画像形成動作について説明する。画像形成動作が開始されると、まず駆動手段によって矢印方向に回転駆動された感光ドラム1は、帯電ローラ2によって所定の極性、所定の電位に一様に帯電される。そして、帯電ローラ2によって帯電した後の感光ドラム1の表面は、露光装置(走査手段)3によって画像情報に基づいた光Lで走査される。この結果、光Lによって走査された部分の電荷が除去されて感光ドラム1の表面に静電潜像が形成される。   Next, an image forming operation in the laser printer will be described. When the image forming operation is started, first, the photosensitive drum 1 that is rotationally driven in the direction of the arrow by the driving unit is uniformly charged to a predetermined polarity and a predetermined potential by the charging roller 2. Then, the surface of the photosensitive drum 1 charged by the charging roller 2 is scanned by the light L based on the image information by the exposure device (scanning means) 3. As a result, the portion of the electric charge scanned by the light L is removed, and an electrostatic latent image is formed on the surface of the photosensitive drum 1.

次に、この静電潜像は、トナーを収容する現像装置4によって現像され、感光ドラム上にトナー像が形成される。なお、この現像装置4は現像ローラ4aを有しており、この現像ローラ4aに現像バイアスを印加することで、感光ドラム1上の静電潜像にトナーを供給している。   Next, the electrostatic latent image is developed by the developing device 4 that contains toner, and a toner image is formed on the photosensitive drum. The developing device 4 includes a developing roller 4a, and supplies a toner to the electrostatic latent image on the photosensitive drum 1 by applying a developing bias to the developing roller 4a.

一方、このようなトナー像形成動作に並行して給紙カセット8に収納されている記録材Pは、不図示の搬送手段によって給紙、及び搬送され、感光ドラム1と転写ローラ5との間に搬送される。記録材Pが転写ニップ部に搬送されると、転写ローラ5に印加される転写バイアスにより感光ドラム上のトナー像が記録材P上の所定の位置に転写される。   On the other hand, the recording material P stored in the paper feed cassette 8 in parallel with such a toner image forming operation is fed and transported by a transport means (not shown), and between the photosensitive drum 1 and the transfer roller 5. It is conveyed to. When the recording material P is conveyed to the transfer nip portion, the toner image on the photosensitive drum is transferred to a predetermined position on the recording material P by the transfer bias applied to the transfer roller 5.

次に、未定着トナー像を担持した記録材Pは、搬送ガイド35に沿って定着装置6を構成するエンドレスフィルム33と、このエンドレスフィルム33と接触する加圧ローラ40との間に形成されている定着ニップ部Nに搬送される。この定着ニップ部で未定着トナー像が加熱及び加圧されてトナー像が記録材P表面に定着する。なお、このようにしてトナー像が定着された後の記録材Pは、装置本体M上面に設けられた排紙トレイ上に排出される。   Next, the recording material P carrying the unfixed toner image is formed between the endless film 33 constituting the fixing device 6 along the conveyance guide 35 and the pressure roller 40 in contact with the endless film 33. It is conveyed to the fixing nip N. The unfixed toner image is heated and pressurized at the fixing nip portion, and the toner image is fixed on the surface of the recording material P. The recording material P after the toner image is fixed in this way is discharged onto a paper discharge tray provided on the upper surface of the apparatus main body M.

一方、トナー像転写後の感光ドラム1は、クリーニング装置7のクリーニングブレード7aによってクリーニングされ、次の画像形成に備える。以上の動作を繰り返すことで、次々と画像形成を行うことができる。   On the other hand, the photosensitive drum 1 after the toner image transfer is cleaned by the cleaning blade 7a of the cleaning device 7 to prepare for the next image formation. By repeating the above operation, image formation can be performed one after another.

次に、本実施例に係る定着装置6の構成を図1に示す。図1(a)にヒータ31の平面図を、図1(b)に定着装置の断面図を示す。   Next, the configuration of the fixing device 6 according to the present embodiment is shown in FIG. FIG. 1A shows a plan view of the heater 31, and FIG. 1B shows a cross-sectional view of the fixing device.

ヒータ31はセラミック基板31a上に発熱抵抗体を形成したヒータである。セラミック製の基板31aは、アルミナや窒化アルミ(A1N)のような、電気絶縁性及び熱伝導性に優れた低熱容量の材質で構成されている。セラミック基板31a上には基板長手方向に沿って、銀パラジウム(Ag/Pb)、Ta2N等の発熱抵抗体20をスクリーン印刷で形成してある。符号21a及び21bは不図示のコネクタが接触する電極である。さらに発熱抵抗体20を形成した面を不図示の薄肉ガラス保護層で覆っている。このヒータ31(の発熱抵抗体20a及び20b)は商用電源から電力を供給されて発熱する。   The heater 31 is a heater in which a heating resistor is formed on the ceramic substrate 31a. The ceramic substrate 31a is made of a low heat capacity material having excellent electrical insulation and thermal conductivity, such as alumina or aluminum nitride (A1N). A heating resistor 20 such as silver palladium (Ag / Pb) or Ta2N is formed on the ceramic substrate 31a by screen printing along the longitudinal direction of the substrate. Reference numerals 21a and 21b denote electrodes that are in contact with a connector (not shown). Further, the surface on which the heating resistor 20 is formed is covered with a thin glass protective layer (not shown). The heater 31 (the heating resistors 20a and 20b) is supplied with electric power from a commercial power source and generates heat.

ヒータ31の温度は温度検知素子(以下、サーミスタと称す)34により検知されている。そして、温度検知素子34の検知温度に応じてヒータ31への通電が不図示の通電制御部によって制御されている。制御方法としては、商用電源からヒータに供給する電流(正弦波)の波数の増減を制御する波数制御方式や、商用電源からヒータに供給する電流(正弦波)の位相角を制御する位相制御方式がある。これらの制御方式によってヒータ31は所定の目標温度に温度管理される。   The temperature of the heater 31 is detected by a temperature detection element (hereinafter referred to as a thermistor) 34. The energization of the heater 31 is controlled by an energization control unit (not shown) according to the temperature detected by the temperature detection element 34. As a control method, a wave number control method for controlling the increase or decrease of the wave number of the current (sine wave) supplied from the commercial power source to the heater, or a phase control method for controlling the phase angle of the current (sine wave) supplied from the commercial power source to the heater There is. By these control methods, the temperature of the heater 31 is controlled to a predetermined target temperature.

エンドレスフィルム33は、定着ニップ部Nにおいてヒータ31と加圧ローラ40に挟まれており、加圧ローラ40から動力を受けてヒータ31に密着した状態で回転する。なお、ヒータ31のガラス保護層側がエンドレスフィルム33と接触する構成であっても、セラミック基板側がエンドレスフィルム33と接触する構成であってもかまわない。   The endless film 33 is sandwiched between the heater 31 and the pressure roller 40 in the fixing nip portion N, receives power from the pressure roller 40, and rotates while being in close contact with the heater 31. The glass protective layer side of the heater 31 may be in contact with the endless film 33, or the ceramic substrate side may be in contact with the endless film 33.

また、エンドレスフィルム33は内部のヒータ31およびヒータホルダ32に摺擦しながら回転するため、ヒータ31やヒータホルダ32と、エンドレスフィルム33と、の間の摩擦抵抗を小さく抑える必要がある。このため、ヒータ31およびヒータホルダ32の表面に耐熱性グリース等の潤滑剤を少量介在させてある。これにより、エンドレスフィルム33はスムーズに回転することが可能となる。   Further, since the endless film 33 rotates while rubbing against the internal heater 31 and the heater holder 32, it is necessary to keep the frictional resistance between the heater 31, the heater holder 32, and the endless film 33 small. For this reason, a small amount of lubricant such as heat resistant grease is interposed on the surfaces of the heater 31 and the heater holder 32. Thereby, the endless film 33 can be smoothly rotated.

ヒータ31の熱を効率よく記録材Pに与えるため、エンドレスフィルム33の厚みは、100μm以下とするのが好ましい。エンドレスフィルム33は、ポリイミド、ポリアミドイミド、PEEK、等の耐熱性の樹脂をベース層とした構成や、SUS(ステンレス)、Al、Ni、等の金属、をベース層とした構成、である。   In order to efficiently apply the heat of the heater 31 to the recording material P, the thickness of the endless film 33 is preferably 100 μm or less. The endless film 33 has a configuration in which a heat-resistant resin such as polyimide, polyamideimide, or PEEK is used as a base layer, or a configuration in which a metal such as SUS (stainless steel), Al, or Ni is used as a base layer.

また、長寿命の定着装置を構成するために充分な強度を持ち、耐久性に優れたエンドレスフィルムとして、20μm以上の厚みが必要である。よって、エンドレスフィルム33の厚みとしては20μm以上100μm以下が最適である。このエンドレスフィルム33はエンドレスフィルムベース層、プライマー層、離型層の3層構成、あるいはベース層と離型層の間にゴム層を設けた構成となっている。エンドレスフィルムベース層側がヒータ31側であり、離型層が加圧ローラ40側である。また、エンドレスフィルムベース層によってエンドレスフィルム33全体の引裂強度といった機械的強度を保っている。ベース層の外側には導電フィラーを分散した導電性プライマー層を厚み2〜6μm程度で形成されている。そして、エンドレスフィルム33のチャージアップによる静電オフセットを防止するために、フィルムを接地状態あるいは一定電位に保つように構成されている。   In addition, as an endless film having sufficient strength and excellent durability for constituting a long-life fixing device, a thickness of 20 μm or more is required. Therefore, the thickness of the endless film 33 is optimally 20 μm or more and 100 μm or less. The endless film 33 has a three-layer structure including an endless film base layer, a primer layer, and a release layer, or a rubber layer provided between the base layer and the release layer. The endless film base layer side is the heater 31 side, and the release layer is the pressure roller 40 side. Further, the endless film base layer maintains the mechanical strength such as the tear strength of the entire endless film 33. On the outside of the base layer, a conductive primer layer in which a conductive filler is dispersed is formed with a thickness of about 2 to 6 μm. And in order to prevent the electrostatic offset by the charge-up of the endless film 33, it is comprised so that a film may be kept in a ground state or a fixed electric potential.

さらに、離型層はエンドレスフィルム33に対するトナーオフセット防止や記録材Pの分離性を確保するために表層には、PFA,PTFE,FEP、シリコーン樹脂といった離型性の良好な耐熱フッ素樹脂を厚み10μm程度混合ないし単独で被覆してある。   Further, the release layer is made of a heat-resistant fluororesin having a good release property such as PFA, PTFE, FEP, or silicone resin having a thickness of 10 μm for the surface layer in order to prevent toner offset with respect to the endless film 33 and to ensure separation of the recording material P. To some extent, it is coated alone.

また、ヒータホルダ32は、例えば耐熱性プラスチック製部材(液晶ポリマー、フェノール樹脂、PPS,PEEK)により形成され、ヒータ31を保持するとともにエンドレスフィルム33の回転を案内するガイドも兼ねている。不図示のモータにより加圧ローラ40が回転すると、エンドレスフィルムは加圧ローラから駆動力を受けて図1(b)の矢印の方向に回転する。   The heater holder 32 is formed of, for example, a heat-resistant plastic member (liquid crystal polymer, phenol resin, PPS, PEEK), and also serves as a guide for holding the heater 31 and guiding the rotation of the endless film 33. When the pressure roller 40 is rotated by a motor (not shown), the endless film receives a driving force from the pressure roller and rotates in the direction of the arrow in FIG.

エンドレスフィルム33を介してヒータ31と共に定着ニップ部Nを形成する加圧ローラ(バックアップ部材)40は不図示の芯金の外側にシリコーンゴムやフッ素ゴムといった耐熱ゴムあるいはシリコーンゴムを発泡して形成された弾性層42を設けた構成であり、この弾性層42の上にはPFA,PTFE,FEPといった離型層(不図示)を形成してあってもよい。   A pressure roller (backup member) 40 that forms the fixing nip portion N together with the heater 31 via the endless film 33 is formed by foaming heat-resistant rubber or silicone rubber such as silicone rubber or fluorine rubber on the outside of the core metal (not shown). A release layer (not shown) such as PFA, PTFE, or FEP may be formed on the elastic layer 42.

図1(b)のような定着ニップ部Nを形成するために、定着装置の長手方向両端部には夫々バネが掛けられており、このバネの力によって定着ニップ部Nには圧力が掛かっている。   In order to form the fixing nip N as shown in FIG. 1B, springs are applied to both ends in the longitudinal direction of the fixing device, and pressure is applied to the fixing nip N by the force of the springs. Yes.

以上のように形成されている定着ニップ部Nで未定着トナー像tを担持する記録材Pを挟持搬送しつつ未定着トナー像tを記録材Pに加熱定着する。   The unfixed toner image t is heated and fixed to the recording material P while the recording material P carrying the unfixed toner image t is nipped and conveyed at the fixing nip portion N formed as described above.

次に、実施の形態1における定着装置の温度制御を図2に示す。図2はヒータ31の目標温度(制御温度)の推移を示している。本実施形態の定着装置は以下の3つの動作から成り立っている。
(1)装置を目標温度にまで暖める立上動作(ウォームアップ期間)
(記録材Pがニップ部Nに存在しない蓄熱動作)
(2)トナー像を記録材Pに固着させる定着動作(定着処理期間)
(記録材Pがニップ部Nに存在する加熱動作)
(3)装置を冷却する立下動作
プリンタにプリント指示が入ると、まず、(1)立上動作(以下、前回転と称す)を行う。この時、プリンタは、画像処理装置、駆動モータ、あるいは高圧回路など、様々な装置を立ち上げる必要があるため、定着装置に投入できる電力は限られる。本実施形態では、定着装置に1000W投入でき、プロセススピード300mm/sec、スループット50ppmの装置を用いており、前回転は4秒である。エンドレスフィルム33が外径φ24mm、ベース層は50μmのポリイミドを用い、エンドレスフィルムの熱伝導率はおよそ0.1W/mKである。加圧ローラ40は外径φ25mmで、シリコーンゴムを弾性層42として厚み4mm、ニップ部Nの幅が8mmとなるように加圧力を調節した。
Next, FIG. 2 shows temperature control of the fixing device in the first embodiment. FIG. 2 shows the transition of the target temperature (control temperature) of the heater 31. The fixing device according to the present embodiment includes the following three operations.
(1) Start-up operation to warm the device to the target temperature (warm-up period)
(Heat storage operation in which the recording material P does not exist in the nip N)
(2) Fixing operation for fixing the toner image to the recording material P (fixing processing period)
(Heating operation in which the recording material P exists in the nip portion N)
(3) Falling operation for cooling the apparatus When a print instruction is input to the printer, first, (1) a startup operation (hereinafter referred to as pre-rotation) is performed. At this time, since the printer needs to start up various devices such as an image processing device, a drive motor, or a high voltage circuit, the power that can be input to the fixing device is limited. In this embodiment, 1000 W can be charged into the fixing device, a device with a process speed of 300 mm / sec and a throughput of 50 ppm is used, and the pre-rotation is 4 seconds. The endless film 33 is made of polyimide having an outer diameter of φ24 mm, the base layer is 50 μm, and the thermal conductivity of the endless film is about 0.1 W / mK. The pressure roller 40 had an outer diameter of 25 mm, the pressure was adjusted so that silicone rubber was used as the elastic layer 42 and the thickness was 4 mm and the width of the nip portion N was 8 mm.

上記条件において、図1に示す上流側の発熱抵抗体20aのみに100%の電力比(即ち、商用電源から供給される正弦波を制限していない状態)で通電を行った場合(設定A)と、下流側の発熱抵抗体20bのみに100%の電力比で通電を行った場合(設定B)の定着ニップ部N内の温度分布を図3に示す。横軸がニップ部N内の位置、縦軸がニップ部内の温度である。図3の測定値は、前回転終了時(通電開始から4秒後の定着動作直前)に記録材Pの代わりに熱電対を定着ニップ部Nに通して温度測定したものである。   In the above conditions, when energizing only the upstream heating resistor 20a shown in FIG. 1 at a power ratio of 100% (that is, a state in which the sine wave supplied from the commercial power source is not limited) (setting A) FIG. 3 shows the temperature distribution in the fixing nip portion N when energizing only the downstream heating resistor 20b with a power ratio of 100% (setting B). The horizontal axis is the position in the nip N, and the vertical axis is the temperature in the nip. The measured values in FIG. 3 are obtained by measuring the temperature by passing a thermocouple through the fixing nip N instead of the recording material P at the end of the pre-rotation (just before the fixing operation 4 seconds after the start of energization).

設定Aでは、ニップ部N突入直後から熱電対の温度が上昇し、搬送方向中央付近で温度がピーク(約130℃)となるのに対して、設定Bでは熱電対がニップ部Nから出る直前に温度がピークとなり、到達温度も約150℃となっている。このように、設定Bは設定Aよりピーク温度が高く、ピークの位置も設定Bは設定Aよりもニップ部出口に近いことが判る。   In setting A, the temperature of the thermocouple increases immediately after entering the nip portion N, and the temperature reaches a peak (about 130 ° C.) near the center of the conveyance direction, whereas in setting B, the thermocouple immediately before exiting from the nip portion N. Temperature reached a peak, and the ultimate temperature was about 150 ° C. Thus, it can be seen that the setting B has a higher peak temperature than the setting A, and the position of the peak is also closer to the nip exit than the setting A.

ここで、エンドレスフィルム33表面の温度を図4に示す。図4(a)に上流100%発熱(設定A)、下流100%発熱(設定B)、さらに上流50%下流50%発熱(設定C)の、ニップ部N直後と直前のエンドレスフィルムの温度を示している。ニップ部N直後の温度とニップ部N直前の温度は、図4(b)に示した位置で温度測定したものである。   Here, the temperature of the surface of the endless film 33 is shown in FIG. FIG. 4 (a) shows the temperatures of the endless film immediately after and immediately before the nip portion N in the upstream 100% heat generation (setting A), the downstream 100% heat generation (setting B), and the upstream 50% downstream 50% heat generation (setting C). Show. The temperature immediately after the nip portion N and the temperature immediately before the nip portion N are measured at the positions shown in FIG.

ニップ部N直後のエンドレスフィルム33表面温度は、下流100%発熱したもの(設定B)が一番高い温度(130℃)となり、それに伴いニップ部N直前でも下流100%発熱したもの(設定B)が一番高い温度(80℃)となっている。   As for the surface temperature of the endless film 33 immediately after the nip portion N, the one having 100% downstream heat generation (setting B) has the highest temperature (130 ° C.), and accordingly, the one having 100% downstream heat generation immediately before the nip portion N (setting B). Is the highest temperature (80 ° C.).

このメカニズムを、図5のイメージ図を用いて説明する。上流発熱(設定A)では、発熱抵抗体20aからエンドレスフィルム33へ、エンドレスフィルム33からヒータ31や加圧ローラ40側へ熱が移動していく。ヒータへ通電開始した直後はヒータと周囲の部品との温度差が大きいため、熱はより伝わりやすい。一方、下流発熱(設定B)では、熱が発熱抵抗体20bからエンドレスフィルム33に伝熱した直後に、回転によりエンドレスフィルム33がニップ部Nから出るため空気層によって断熱される。そしてエンドレスフィルム33は、複数回ニップ部Nを通過するが、2回目以降は加圧ローラ40との温度差が小さいため、熱の逃げは起こり難く、エンドレスフィルム33内部に蓄熱される。よって、図4に示すとおり、設定Bではニップ部N直後からエンドレスフィルムの表面温度が高くなり、かつニップ部N直前のエンドレスフィルムの表面温度も高くなる。   This mechanism will be described with reference to the image diagram of FIG. In the upstream heat generation (setting A), heat is transferred from the heating resistor 20a to the endless film 33, and from the endless film 33 to the heater 31 and the pressure roller 40 side. Immediately after energization of the heater is started, heat is more easily transferred because the temperature difference between the heater and surrounding components is large. On the other hand, in the downstream heat generation (setting B), immediately after the heat is transferred from the heat generating resistor 20b to the endless film 33, the endless film 33 comes out of the nip portion N by rotation, so that it is insulated by the air layer. The endless film 33 passes through the nip portion N a plurality of times. However, since the temperature difference from the pressure roller 40 is small after the second time, heat does not easily escape and is stored in the endless film 33. Therefore, as shown in FIG. 4, in setting B, the surface temperature of the endless film immediately after the nip portion N increases, and the surface temperature of the endless film immediately before the nip portion N also increases.

上流発熱(設定A)で、ヒータ31に移動した熱はヒータ基板の下流側やヒータホルダ32へ、加圧ローラ40に与えられた熱は、1周する間に表面から内部へと浸透していく。   The heat transferred to the heater 31 due to upstream heat generation (setting A) permeates from the surface to the inside during one round, while the heat applied to the heater holder 32 downstream of the heater substrate and the pressure roller 40. .

次に、1枚目の定着動作(2)について説明する。まず、図6(a)に1枚目の定着性を示す。ここで定着後に記録材P上のトナー像を擦ることでトナーが剥がれて薄くなり、この擦り前後の濃度を測定して、濃度低下率(%)として算出している。   Next, the fixing operation (2) for the first sheet will be described. First, FIG. 6A shows the fixability of the first sheet. Here, the toner image on the recording material P is rubbed and thinned after fixing, and the density before and after the rub is measured to calculate the density reduction rate (%).

図6では、横軸に記録材Pの搬送方向における箇所を示し、縦軸に濃度低下率を示す。濃度低下率は数字が大きい程、定着性が悪いといえる。本実施例では20%を基準、すなわち擦りによって画像濃度が8割程度になるところを基準にして定着性の良し悪しを判断している。   In FIG. 6, the horizontal axis indicates the location in the conveyance direction of the recording material P, and the vertical axis indicates the density reduction rate. It can be said that the larger the number of the density decrease rate, the worse the fixing property. In this embodiment, whether the fixing property is good or bad is determined on the basis of 20%, that is, on the basis that the image density is about 80% by rubbing.

図6(a)の1枚目の定着性を示したグラフにおいて、設定Aの場合の濃度低下率が20%前後であるのに対して、設定Bの場合の濃度低下率は10%前後である。設定Bは特に記録材の搬送方向先端の定着性が良い。2本の発熱抵抗体20a及び20bを均等に発熱させた設定Cの場合、濃度低下率18%前後で、記録材P先端から後端にかけて安定した定着性となっている。   In the graph showing the fixability of the first sheet in FIG. 6A, the density reduction rate for setting A is around 20%, whereas the density reduction rate for setting B is around 10%. is there. Setting B has particularly good fixability at the leading end in the conveyance direction of the recording material. In the case of setting C in which the two heating resistors 20a and 20b are uniformly heated, the density reduction rate is around 18%, and the fixing property is stable from the front end to the rear end of the recording material P.

設定Bの定着性が良いのは、エンドレスフィルム33に蓄熱された熱量が定着動作時のニップ部N内で、記録材P先端から徐々に吐き出されるからである。   The reason why the fixing property of the setting B is good is that the amount of heat stored in the endless film 33 is gradually discharged from the front end of the recording material P in the nip portion N during the fixing operation.

エンドレスフィルム33の熱伝導率や外径などによって定着性は異なるが、プリント1枚目の画像の濃度低下率が20%となるように前回転(蓄熱動作)の時間を調整すれば、設定Bは設定Aの場合より前回転の時間を約1秒短縮することができる。つまり、設定Bのような発熱分布でウォームアップを行えば、ウォームアップ時間を短縮できることがわかる。   The fixability varies depending on the thermal conductivity and outer diameter of the endless film 33, but if the pre-rotation (heat storage operation) time is adjusted so that the density reduction rate of the first printed image is 20%, setting B Compared with the setting A, the pre-rotation time can be shortened by about 1 second. That is, it can be seen that if the warm-up is performed with the heat generation distribution as in setting B, the warm-up time can be shortened.

次に、2枚目以降の定着動作について説明する。本実施例では、図2に示すように、前回転(蓄熱動作)が終了するとヒータが目標温度180℃を維持するように温度制御して定着動作に移行する。   Next, the fixing operation for the second and subsequent sheets will be described. In this embodiment, as shown in FIG. 2, when the pre-rotation (heat storage operation) is completed, the heater controls the temperature so as to maintain the target temperature of 180 ° C. and shifts to the fixing operation.

定着動作時はサーミスタ部の温度を一定に保つ温度制御によって投入電力が絞られるため、前回転時の1000W(100%)より数十%少ない電力となる。さらに使用環境の温湿度や記録材Pの厚みによっても電力は異なる。本実施例での定着装置で消費している電力をモニターしたものを図7に示す。図7は横軸に時間、縦軸に消費電力を示している。前回転時は1000W投入されているが、温度制御が開始され、定着装置全体が暖まっていくため徐々に消費電力が減少していく。   During the fixing operation, the input power is reduced by temperature control that keeps the temperature of the thermistor constant, so that the power is tens of percent less than 1000 W (100%) during the previous rotation. Further, the power varies depending on the temperature and humidity of the usage environment and the thickness of the recording material P. FIG. 7 shows a monitor of the power consumed by the fixing device in this embodiment. FIG. 7 shows time on the horizontal axis and power consumption on the vertical axis. Although 1000 W is supplied at the time of the pre-rotation, the temperature control is started and the entire fixing device is warmed, so that the power consumption gradually decreases.

そして、この時の3枚目の定着性を図6(b)に示す。サーミスタの配置を調整することで電力を合わせており、3枚目の定着動作時の発熱100%は約700Wの投入電力となっている。図6の(a)に示した1枚目の画像の定着性とは異なり、図6(b)に示す3枚目の画像の定着性は、設定Aのほうが設定Bよりも定着性が良くなっている。これは以下の理由による。   The fixability of the third sheet at this time is shown in FIG. The electric power is adjusted by adjusting the arrangement of the thermistor, and 100% of the heat generated during the fixing operation of the third sheet is about 700 W of input power. Unlike the fixability of the first image shown in FIG. 6A, the fixability of the third image shown in FIG. 6B is better in the setting A than in the setting B. It has become. This is due to the following reason.

図3に示す温度分布において、設定Bではニップ部Nの入口から約3mmの箇所でニップ部内の温度が60℃になるのに対して、設定Aではニップ部Nの入口から約0.5mmの箇所でニップ部内の温度が60℃となっている。   In the temperature distribution shown in FIG. 3, in setting B, the temperature in the nip is 60 ° C. at a position about 3 mm from the inlet of the nip N, whereas in setting A, the temperature is about 0.5 mm from the inlet of the nip N. The temperature in the nip portion is 60 ° C. at the location.

次に定着される「トナーの弾性率の温度変化」を図8に示す。縦軸に弾性率(G’)を、横軸に温度を示している。トナーを加熱することで弾性率は低下して、60℃を超えた辺りから急激に低下する。定着動作における加熱と加圧の関係は、60℃へ達した後の加圧時間が長い方がトナーは溶けやすくなるため、図3に示すニップ部N内の温度分布により設定Aのほうが設定Bより定着性が向上している。   Next, the “temperature change in the elastic modulus of the toner” to be fixed is shown in FIG. The vertical axis represents the elastic modulus (G ′), and the horizontal axis represents the temperature. When the toner is heated, the elastic modulus is lowered and suddenly falls from around 60 ° C. Regarding the relationship between heating and pressurization in the fixing operation, the toner is more easily melted when the pressurization time after reaching 60 ° C. is longer. Therefore, the setting A is set according to the temperature distribution in the nip portion N shown in FIG. Fixability is further improved.

そして、図6(b)に示す通り、設定Aでは、3枚目の濃度低下率が10%前後となる。   And as shown in FIG.6 (b), with the setting A, the density | concentration fall rate of the 3rd sheet | seat will be about 10%.

次に、本実施例1の具体的な制御を図9に示す。図2や図7と同様に横軸に時間をとり、縦軸に上流側発熱抵抗体と下流側発熱抵抗体の発熱比率の変化を示している。前回転(蓄熱動作)時には、下流側の発熱を100%(設定B)として、積極的にエンドレスフィルム33に熱を蓄え、ヒータ基板31aや加圧ローラ40への伝熱を抑制する。そして、前回転(蓄熱動作)終了時には、発熱を上流側100%に切換え(設定A)(定着動作)、ニップ部内のピーク温度を上流側に移動させ、ニップ部N上流部でトナーに熱を与える。よって、定着動作においては、定着効率が良くなるため、低い電力でも加熱定着することが可能となる。   Next, specific control of the first embodiment is shown in FIG. Similar to FIGS. 2 and 7, the horizontal axis represents time, and the vertical axis represents the change in the heat generation ratio between the upstream side heating resistor and the downstream side heating resistor. At the time of pre-rotation (heat storage operation), the heat generation on the downstream side is set to 100% (setting B), and heat is positively stored in the endless film 33 to suppress heat transfer to the heater substrate 31a and the pressure roller 40. At the end of the pre-rotation (heat storage operation), the heat generation is switched to 100% upstream (setting A) (fixing operation), the peak temperature in the nip portion is moved upstream, and the toner is heated in the upstream portion of the nip portion N. give. Therefore, in the fixing operation, fixing efficiency is improved, so that heat fixing can be performed even with low power.

そして、本実施例1の定着性を図10に示す。横軸に枚数、縦軸に平均濃度低下率を示す。上述したように、前回転(蓄熱動作)期間と定着動作期間で発熱分布を切換えることによって、濃度低下率を10%前後に保つことができる。   The fixability of Example 1 is shown in FIG. The horizontal axis shows the number of sheets, and the vertical axis shows the average density reduction rate. As described above, the density reduction rate can be kept around 10% by switching the heat generation distribution between the pre-rotation (heat storage operation) period and the fixing operation period.

以上のように、エンドレスフィルムが回転を開始し定着ニップ部で定着処理を開始する前のウォームアップ期間中、エンドレスフィルム回転方向における定着ニップ部中央より下流側の位置でヒータの発熱量が最も大きくなるように設定することにより、少ない消費電力でウォームアップ完了までの時間を短縮できる。   As described above, during the warm-up period before the endless film starts rotating and fixing processing is started at the fixing nip, the heater generates the largest amount of heat at a position downstream from the center of the fixing nip in the endless film rotation direction. By setting so as to be, it is possible to shorten the time to warm-up completion with less power consumption.

また、記録材上の未定着トナー像を定着処理する期間は、ヒータの発熱量が最も大きくなる位置がウォームアップ期間中の位置よりもエンドレスフィルム回転方向上流側の位置に設定することにより、定着性も充分に確保できる。   Also, during the period for fixing the unfixed toner image on the recording material, the position where the heat generation amount of the heater is the largest is set at a position upstream of the position during the warm-up period in the endless film rotation direction. The property can be sufficiently secured.

(実施例2)
次に、実施例2の制御を図11を用いて説明する。なお、定着装置のメカ的な構成は実施例1と同じなので説明を割愛する。
(Example 2)
Next, the control of the second embodiment will be described with reference to FIG. Since the mechanical configuration of the fixing device is the same as that of the first embodiment, the description is omitted.

本実施例2では、発熱比率の移行時、急激な変化を防止する。特に投入電力の大きい前回転(蓄熱動作)から定着動作に移行する際に、発熱比率の移行を徐々におこなう。この時、上下流合わせて、常に100%となるように移行する。   In the second embodiment, a rapid change is prevented when the heat generation ratio is shifted. In particular, when the pre-rotation (heat storage operation) with a large input power is shifted to the fixing operation, the heat generation ratio is gradually changed. At this time, the shift is made so that the upstream and downstream are always 100%.

さらに本実施例2では、未定着トナー像を担持する複数枚の記録材を連続して定着処理する場合、定着ニップ部が先行する記録材と後続の記録材の間となっている期間(紙間)でも、定着ニップ部中央より下流側の位置でヒータの発熱量が最も大きくなるようにして、紙間においてもエンドレスフィルムへの蓄熱動作(実施例1で示した設定B)を行う。ここでいう紙間とは、例えば、1枚目と2枚目の間で、ニップ部Nに記録材Pが存在しない状態をいう。本実施例では紙間を約75mm(250msec)として、その間に下流100%発熱(設定B)に設定する。紙間において、発熱抵抗体20からヒータ基板31aや加圧ローラ40への伝熱を抑制し、エンドレスフィルム33への蓄熱をおこなう。紙間での設定Bの期間は、エンドレスフィルム1周分以上おこなうことが望ましいが、エンドレスフィルム33周方向への伝熱や内部への浸透や拡散があるため、1周分より少なくても蓄熱効果はある。   Further, in the second exemplary embodiment, when a plurality of recording materials carrying an unfixed toner image are continuously fixed, the fixing nip portion is between the preceding recording material and the succeeding recording material (paper). The heat storage operation for the endless film (setting B shown in Example 1) is also performed between the sheets so that the amount of heat generated by the heater is maximized at a position downstream from the center of the fixing nip. The term “between sheets” here refers to a state where the recording material P is not present in the nip portion N between the first sheet and the second sheet, for example. In this embodiment, the interval between sheets is set to about 75 mm (250 msec), and during that time, 100% heat generation (setting B) is set downstream. Between the sheets, heat transfer from the heating resistor 20 to the heater substrate 31a and the pressure roller 40 is suppressed, and heat is stored in the endless film 33. It is desirable that the period of the setting B between the sheets is at least one turn of the endless film. However, since there is heat transfer in the circumferential direction of the endless film 33 and penetration and diffusion into the inside, heat storage is performed even if less than one turn. There is an effect.

さらに本実施例2では、前回転期間、紙間の蓄熱動作期間、定着動作期間、以外の動作時には、上下流50%の発熱(設定C)をおこなう。これにより、ニップ部N内の温度分布変化が緩やかになるので、ヒータ31や周辺部材への熱応力によるストレスを緩和することができる。また、立下動作時は、制御温度によっては電力投入していないが、例えば、回転を停止した後に加熱する場合なども上下流均等に発熱させる。   Further, in the second embodiment, 50% heat generation (setting C) is performed at the time of operations other than the pre-rotation period, the heat storage operation period between sheets, and the fixing operation period. Thereby, since the temperature distribution change in the nip portion N becomes gentle, stress due to thermal stress on the heater 31 and the peripheral members can be relieved. Further, during the falling operation, power is not supplied depending on the control temperature, but heat is generated evenly in the upstream and downstream even when heating is performed after the rotation is stopped, for example.

また、発熱抵抗体がニップ部N外にはみ出して形成された場合であってもヒータ31の記録材搬送方向の熱不均衡による熱応力を小さく抑えることが可能になるため、ヒータ31の破損といった問題を起こりにくくすることができる。   Further, even when the heating resistor is formed so as to protrude beyond the nip portion N, the thermal stress due to the thermal imbalance in the recording material conveyance direction of the heater 31 can be suppressed to a small value. Can make problems less likely.

さらに、本実施例2では、特に紙間の制御により定着性が向上する。実施例1と比較したものを図12に示す。横軸に枚数、縦軸に濃度低下率をプロットしており、本実施例2により、2枚目、3枚目での定着性が向上している。このため複数枚の印字をおこなう場合に有効となり、定着性を揃えた(濃度低下率 約20%)場合、同様の構成でも、プロセススピードを350mm/secまで速くすることができる。   Further, in the second embodiment, the fixability is improved by the control between papers. A comparison with Example 1 is shown in FIG. The number of sheets is plotted on the horizontal axis and the density reduction rate is plotted on the vertical axis. According to the second embodiment, the fixability on the second and third sheets is improved. For this reason, it is effective when printing a plurality of sheets, and when the fixing property is uniform (density reduction rate is about 20%), the process speed can be increased to 350 mm / sec even with the same configuration.

ここで、図13にファーストセットアウトタイム(FSOT:ヒータへの通電開始から一枚目の記録紙を出力するまでに要する時間)とスループット(TP)を従来例、実施例1、実施例2で比較した表を示した。本実施例2のスペックは、均等発熱(各50%)した従来例に比べて、FSOTが1秒短縮、TPが8ppm速くなっていることがわかる。   Here, FIG. 13 shows the first set-out time (FSOT: time required from the start of energization to the heater to the output of the first recording paper) and the throughput (TP) in the conventional example, the first example, and the second example. A comparison table is shown. It can be seen that the spec of Example 2 is that FSOT is shortened by 1 second and TP is 8 ppm faster than the conventional example in which uniform heat generation (50% each) is achieved.

本実施例2及び前述の実施例1では、ヒータ基板上の発熱抵抗体を2本としているが、独立して制御が可能ならば、他にも図14に示すような複数の発熱抵抗体により構成しても効果があることは言うまでもない。   In the second embodiment and the first embodiment described above, the number of heating resistors on the heater substrate is two. However, if independent control is possible, a plurality of heating resistors as shown in FIG. Needless to say, even if configured, it is effective.

以上、上下流で発熱抵抗体をヒータ基板上に複数本形成し、状況に応じて通電加熱する抵抗層を選択的に選ぶことにより、必要な電力を抑え定着性を向上させ、FSOT短縮やスループット向上が可能な定着装置を提供することができる。   As described above, a plurality of heating resistors are formed on the heater substrate on the upstream and downstream sides, and by selectively selecting a resistance layer to be energized and heated according to the situation, fixing power can be suppressed, FSOT shortening and throughput can be reduced. A fixing device that can be improved can be provided.

このように、未定着トナー像を担持する複数枚の記録材を連続して定着処理する場合、定着ニップ部が先行する記録材と後続の記録材の間となっている期間でも定着ニップ部中央より下流側の位置でヒータの発熱量が最も大きくなるように設定すれば、少ない消費電力でウォームアップ完了までの時間を短縮できるだけでなく、連続プリント時の定着性も向上する。   As described above, when a plurality of recording materials carrying an unfixed toner image are continuously fixed, the fixing nip portion is centered even during a period in which the fixing nip portion is between the preceding recording material and the succeeding recording material. If setting is made so that the amount of heat generated by the heater is maximized at a downstream position, not only the time to warm-up can be shortened with low power consumption, but also the fixability during continuous printing is improved.

(実施例3)
ヒータ31の発熱抵抗体構成によって、温度による発熱比率を変化させることができる。本実施例3ではヒータ31の短手方向を分割して、一方を上流、一方を下流として、上下流発熱比率を最適化する。すなわち、発熱抵抗体の抵抗温度係数(TCR)によって、前回転の蓄熱動作時(発熱部が常温から約180℃)では、下流発熱量が多くなり、定着動作時(発熱部が約200℃)では、上流発熱量が多くなるよう発熱抵抗体の抵抗値設定と接続をおこなったヒータ31を提案する。
(Example 3)
Depending on the heating resistor configuration of the heater 31, the heat generation ratio due to temperature can be changed. In the third embodiment, the short direction of the heater 31 is divided so that one is upstream, and the other is downstream, and the upstream / downstream heat generation ratio is optimized. That is, due to the resistance temperature coefficient (TCR) of the heating resistor, the downstream heat generation amount increases during the pre-rotation heat storage operation (the heating part is from room temperature to about 180 ° C.), and during the fixing operation (the heating part is about 200 ° C.). Then, the heater 31 which performed the resistance value setting and connection of the heating resistor so that upstream calorific value may increase is proposed.

例えば、図15に示す発熱抵抗体20は、温度上昇に伴ない抵抗上昇するPTC(Positive Temperature Coefficient)の抵抗層で構成され、20aと20bは抵抗値(Ω)と抵抗温度係数(ppm/deg)が異なる。各々の抵抗値と温度特性を図16に示す。図15のヒータは抵抗温度係数が異なる複数種の発熱抵抗体を有している。   For example, the heating resistor 20 shown in FIG. 15 includes a PTC (Positive Temperature Coefficient) resistance layer that increases in resistance as the temperature increases, and 20a and 20b have resistance values (Ω) and resistance temperature coefficients (ppm / deg). ) Is different. Each resistance value and temperature characteristic are shown in FIG. The heater of FIG. 15 has a plurality of types of heating resistors having different resistance temperature coefficients.

横軸に発熱抵抗体の温度、縦軸に抵抗値を示しており、TCR(ppm/deg)とは1℃上昇当たりの抵抗変化率で、正(プラス)なら抵抗上昇、負(マイナス)なら抵抗減少で、数字が大きくなれば抵抗値変化も大きくなる。本実施例3では、上流側の発熱抵抗体20aが常温(約25℃)時の抵抗値が約20Ω、抵抗温度係数が約1000ppm/degである。また、下流側の発熱抵抗体20bが常温(約25℃)時の抵抗値が約22Ω、抵抗温度係数が約100ppm/degである。すなわち、前回転時の温度変化によって、発熱抵抗体抵抗値が上下流で逆転する設定となっている。   The horizontal axis shows the temperature of the heating resistor, and the vertical axis shows the resistance value. TCR (ppm / deg) is the rate of change in resistance per 1 ° C increase. If positive (plus), the resistance rises. If negative (minus), As resistance decreases, the change in resistance increases as the number increases. In the third embodiment, the upstream heating resistor 20a has a resistance value of about 20Ω at a normal temperature (about 25 ° C.) and a resistance temperature coefficient of about 1000 ppm / deg. The downstream heating resistor 20b has a resistance value of about 22Ω at a normal temperature (about 25 ° C.) and a resistance temperature coefficient of about 100 ppm / deg. That is, the resistance value of the heating resistor is set to be reversed upstream and downstream due to a temperature change during the previous rotation.

発熱抵抗体は図15に示すとおり20aと20bが直列で接続されている(電流一定)ため、発熱量はRIとなる。よって、上下流発熱抵抗体の抵抗値逆転に伴ない、発熱比率は下流大から上流大へと変化する。 Since the heating resistor is 20a and 20b as shown in FIG. 15 are connected in series (current constant), the heat generation amount becomes RI 2. Therefore, the heat generation ratio changes from the downstream large to the upstream large as the resistance values of the upstream and downstream heat generating resistors are reversed.

この時の発熱分布を図17に示す。横軸にニップ部N内位置、縦軸に温度をとり、ニップ部N内の温度分布の時間変化を示す。通電による発熱抵抗体の温度上昇に伴ない、発熱比率が変化して温度ピークが上流へとシフトしていく。この変化により、前回転の蓄熱動作時にはエンドレスフィルム33への蓄熱をおこない、定着動作時には定着効率の良い上流発熱へと移行する。   The heat generation distribution at this time is shown in FIG. The horizontal axis indicates the position in the nip N, and the vertical axis indicates the temperature. The time distribution of the temperature distribution in the nip N is shown. As the temperature of the heating resistor increases due to energization, the heat generation ratio changes and the temperature peak shifts upstream. Due to this change, heat is stored in the endless film 33 during the pre-rotation heat storage operation, and shifts to upstream heat generation with good fixing efficiency during the fixing operation.

以上、本実施例3により、電源回路や制御を必要とせず、FSOTの短縮とスループットの向上が可能となる。   As described above, according to the third embodiment, it is possible to shorten the FSOT and improve the throughput without requiring a power supply circuit or control.

また、図18に発熱抵抗体構成例として、本実施例3の構成(1)の他に、抵抗値と抵抗温度係数と接続方法を示している。例えば構成(2)の発熱抵抗体は並列に接続され、下流の抵抗値が上流より小さく、下流の抵抗温度係数が正(PTC)で上流より大きい。並列接続の電力はV/Rとなり、抵抗値が小さいほど発熱量が多くなる。よって、構成(2)においても、前回転の蓄熱動作時には下流寄りの発熱比率となり、定着動作時には上流寄りの発熱比率となる。 In addition to the configuration (1) of the third embodiment, FIG. 18 shows a resistance value, a resistance temperature coefficient, and a connection method as a configuration example of the heating resistor. For example, the heating resistors of the configuration (2) are connected in parallel, the downstream resistance value is smaller than the upstream, and the downstream resistance temperature coefficient is positive (PTC) and larger than the upstream. The parallel connection power is V 2 / R, and the smaller the resistance value, the greater the amount of heat generated. Therefore, also in the configuration (2), the heat generation ratio near the downstream is obtained during the pre-rotation heat storage operation, and the heat generation ratio near the upstream is obtained during the fixing operation.

次に構成(3)では、温度上昇に伴ない抵抗減少する負のNTC(Negative Temperature Coefficient)抵抗層を用いる。ここで用いる発熱抵抗体の温度に対する抵抗値の変化を図19(a)に示す。常温時には下流側の抵抗値が大きく、所定温度で逆転して、上流抵抗値が高くなる。構成(3)は直列接続のため RIの電力で、前回転時の下流発熱から定着動作時の上流発熱へ比率変化していく。さらに、図19(b)で示すような抵抗温度特性の異なる(正と負)発熱抵抗体を用いることで、より発熱比率変化を大きくすることも可能である。 Next, in the configuration (3), a negative NTC (Negative Temperature Coefficient) resistance layer whose resistance decreases with increasing temperature is used. FIG. 19A shows a change in resistance value with respect to the temperature of the heating resistor used here. The resistance value on the downstream side is large at room temperature and reverses at a predetermined temperature to increase the upstream resistance value. Configuration (3) is the power of the RI 2 for serial connection, continue to ratio change from the downstream heating before during rotation upstream heat generation during fixing operation. Furthermore, by using a heating resistor having different resistance temperature characteristics (positive and negative) as shown in FIG. 19B, it is possible to further increase the heat generation ratio change.

以下、同様に構成(4)も前回転時には下流発熱、定着動作時には上流発熱となり、抵抗値と抵抗温度係数、接続方法を変えることで、温度に対する発熱比率を設定することができる。発熱抵抗体の配置は他にも(5)(6)(7)(8)に示すものがあるが、この場合でも上下流に発熱抵抗体を配置し、上記条件により最適に設定することができる。   Similarly, in the configuration (4) as well, downstream heat generation occurs during the pre-rotation and upstream heat generation occurs during the fixing operation, and the heat generation ratio with respect to the temperature can be set by changing the resistance value, the resistance temperature coefficient, and the connection method. There are other heating resistor arrangements as shown in (5), (6), (7), and (8), but even in this case, heating resistors can be arranged upstream and downstream, and optimally set according to the above conditions. it can.

以上の例では、2本の発熱抵抗体で説明しているが、(9)(10)のように複数本の発熱抵抗体を用いても同様の効果がある。この場合、各発熱抵抗体の配置に応じて、それぞれ抵抗値と抵抗温度係数を設定してもよい。   In the above example, two heating resistors have been described, but the same effect can be obtained by using a plurality of heating resistors as in (9) and (10). In this case, the resistance value and the resistance temperature coefficient may be set in accordance with the arrangement of the heating resistors.

さらには、(11)(12)ように発熱抵抗体(抵抗層)と導電部を交互に配置して、上流と下流の発熱比率を設けるようにしてもよい。   Further, as shown in (11) and (12), the heat generating resistors (resistive layers) and the conductive portions may be alternately arranged to provide the upstream and downstream heat generation ratios.

以上、この実施の形態3では、装置の大型化を招くことなく、低コストで高速定着可能な定着装置を提供することができる。   As described above, in the third embodiment, it is possible to provide a fixing device capable of high-speed fixing at low cost without increasing the size of the device.

本発明に関わる加熱部材と定着装置Heating member and fixing device according to the present invention 本実施例の定着装置に関わる温度制御図Temperature control diagram related to the fixing device of this embodiment 設定Aと設定Bにおけるニップ部N内の温度分布比較図Comparison of temperature distribution in nip N between setting A and setting B 設定A、設定B、設定Cにおけるエンドレスフィルム表面の温度比較図及び温度測定位置を示した図Comparison of temperature on endless film surface in setting A, setting B, and setting C and figure showing temperature measurement position ニップ部N内の伝熱イメージ図Image of heat transfer in nip N 発熱比率の違いによる定着性比較図Comparison of fixability by difference in heat generation ratio 本実施例の電力の時間変化を示した図The figure which showed the time change of the electric power of a present Example トナー弾性率の温度変化図Change in temperature of toner elastic modulus 本実施例1の発熱比率制御図Heat generation ratio control diagram of the first embodiment 従来例と本実施例1の定着性比較図Comparison of fixability between conventional example and Example 1 本実施例2の発熱比率制御図Heat generation ratio control diagram of the second embodiment 本実施例1、2の定着性比較図Comparison of fixability between Examples 1 and 2 従来例と本実施例1、2のスペック比較図Comparison of specifications between the conventional example and Examples 1 and 2 本発明に関わる他のヒータ構成例を示した図The figure which showed the example of another heater structure concerning this invention 本実施例3に関わるヒータを示した図The figure which showed the heater in connection with this Example 3 本実施例3に関わる発熱抵抗体の抵抗温度特性を示した図The figure which showed the resistance temperature characteristic of the heat generating resistor in connection with the present Example 3 本実施例3のニップ部N内の温度分布図Temperature distribution diagram in the nip N of the third embodiment 本実施例3に関わる他のヒータ構成例を示した図The figure which showed the other heater structural example in connection with this Example 3. 本実施例3に関わる発熱抵抗体の抵抗温度特性を示した図The figure which showed the resistance temperature characteristic of the heat generating resistor in connection with the present Example 3 本実施例に関わる画像形成装置の概略断面図Schematic sectional view of an image forming apparatus according to the present embodiment

符号の説明Explanation of symbols

6 定着装置
20 通電発熱抵抗層(発熱抵抗体)
31 加熱部材(ヒータ)
32 支持体(ヒータホルダ)
33 筒状部材(エンドレスフィルム)
34 温度検知手段(サーミスタ)
40 加圧ローラ
P 記録材
N ニップ部
t トナー
6 Fixing device 20 Heating resistance layer (heating resistor)
31 Heating member (heater)
32 Support (heater holder)
33 Cylindrical member (endless film)
34 Temperature detection means (thermistor)
40 Pressure roller P Recording material N Nip part t Toner

Claims (4)

エンドレスフィルムと、基板と前記基板上に設けられた複数の発熱抵抗体とを有し前記エンドレスフィルムの内周面に接触するヒータと、前記エンドレスフィルムを介して前記ヒータと共に定着ニップ部を形成するバックアップ部材と、を有し、前記定着ニップ部で未定着トナー像を担持する記録材を挟持搬送しつつ未定着トナー像を記録材に加熱定着する定着装置において、
前記エンドレスフィルムが回転を開始し前記定着ニップ部で定着処理を開始する前のウォームアップ期間中、前記エンドレスフィルム回転方向における前記定着ニップ部中央より下流側の位置で前記ヒータの発熱量が最も大きくなるように設定されていることを特徴とする定着装置。
A heater having an endless film, a substrate, and a plurality of heating resistors provided on the substrate, which contacts an inner peripheral surface of the endless film, and a fixing nip portion are formed together with the heater via the endless film A fixing member that heats and fixes an unfixed toner image on a recording material while sandwiching and transporting a recording material carrying an unfixed toner image at the fixing nip portion.
During the warm-up period before the endless film starts rotating and fixing processing is started at the fixing nip portion, the heater generates the largest amount of heat at a position downstream from the center of the fixing nip portion in the endless film rotating direction. A fixing device that is set to be
記録材上の未定着トナー像を定着処理する期間は、前記ヒータの発熱量が最も大きくなる位置が前記ウォームアップ期間中の位置よりも前記エンドレスフィルム回転方向上流側の位置に設定されていることを特徴とする請求項1に記載の定着装置。   During the period for fixing the unfixed toner image on the recording material, the position where the amount of heat generated by the heater is the largest is set at a position upstream of the endless film rotation direction with respect to the position during the warm-up period. The fixing device according to claim 1. 未定着トナー像を担持する複数枚の記録材を連続して定着処理する場合、前記定着ニップ部が先行する記録材と後続の記録材の間となっている期間でも前記定着ニップ部中央より下流側の位置で前記ヒータの発熱量が最も大きくなるように設定されていることを特徴とする請求項1に記載の定着装置。   When continuously fixing a plurality of recording materials carrying an unfixed toner image, the fixing nip portion is downstream from the center of the fixing nip portion even during a period in which the fixing nip portion is between the preceding recording material and the succeeding recording material. The fixing device according to claim 1, wherein the heater is set so that the amount of heat generated by the heater is maximized at a side position. 前記ヒータは抵抗温度係数が異なる複数種の前記発熱抵抗体を有していることを特徴とする請求項1に記載の定着装置。   The fixing device according to claim 1, wherein the heater includes a plurality of types of the heating resistors having different resistance temperature coefficients.
JP2008163642A 2008-06-23 2008-06-23 Fixing device Expired - Fee Related JP5317550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163642A JP5317550B2 (en) 2008-06-23 2008-06-23 Fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163642A JP5317550B2 (en) 2008-06-23 2008-06-23 Fixing device

Publications (2)

Publication Number Publication Date
JP2010002857A true JP2010002857A (en) 2010-01-07
JP5317550B2 JP5317550B2 (en) 2013-10-16

Family

ID=41584612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163642A Expired - Fee Related JP5317550B2 (en) 2008-06-23 2008-06-23 Fixing device

Country Status (1)

Country Link
JP (1) JP5317550B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120867A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device having same heater
WO2012120866A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device including the same
JP2012252127A (en) * 2011-06-02 2012-12-20 Canon Inc Heating body and image heating device
US20140076878A1 (en) * 2012-09-19 2014-03-20 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US20140169845A1 (en) * 2012-12-17 2014-06-19 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
US20150289317A1 (en) * 2009-09-11 2015-10-08 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
JP2015219419A (en) * 2014-05-19 2015-12-07 株式会社東芝 Fixing device and program for controlling fixing temperature of fixing device
JP2018142000A (en) * 2018-04-25 2018-09-13 株式会社東芝 Fixing device and program for controlling fixing temperature of fixing device
EP3796098A1 (en) * 2014-03-19 2021-03-24 Canon Kabushiki Kaisha Image heating apparatus and heater for use therein
EP4123389A1 (en) * 2014-03-19 2023-01-25 Canon Kabushiki Kaisha Image heating apparatus and heater for use therein

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268698A (en) * 1997-03-24 1998-10-09 Canon Inc Heating device and image forming device
JPH10319774A (en) * 1997-05-14 1998-12-04 Canon Inc Image fixing device, its energizing method and image forming device used therewith
JPH11258940A (en) * 1998-03-13 1999-09-24 Canon Inc Heating device and image forming device
JP2001194936A (en) * 2000-01-11 2001-07-19 Canon Inc Heater, fixing device and image forming device
JP2003280442A (en) * 2002-03-20 2003-10-02 Canon Inc Image heating device
JP2006114378A (en) * 2004-10-15 2006-04-27 Canon Inc Heating device and image forming device
JP2007232819A (en) * 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp Fixing heater, heating device and image forming apparatus
JP2008140702A (en) * 2006-12-04 2008-06-19 Canon Inc Heating device, and image forming device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268698A (en) * 1997-03-24 1998-10-09 Canon Inc Heating device and image forming device
JPH10319774A (en) * 1997-05-14 1998-12-04 Canon Inc Image fixing device, its energizing method and image forming device used therewith
JPH11258940A (en) * 1998-03-13 1999-09-24 Canon Inc Heating device and image forming device
JP2001194936A (en) * 2000-01-11 2001-07-19 Canon Inc Heater, fixing device and image forming device
JP2003280442A (en) * 2002-03-20 2003-10-02 Canon Inc Image heating device
JP2006114378A (en) * 2004-10-15 2006-04-27 Canon Inc Heating device and image forming device
JP2007232819A (en) * 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp Fixing heater, heating device and image forming apparatus
JP2008140702A (en) * 2006-12-04 2008-06-19 Canon Inc Heating device, and image forming device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289317A1 (en) * 2009-09-11 2015-10-08 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
US9445457B2 (en) * 2009-09-11 2016-09-13 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
US9098033B2 (en) 2011-03-10 2015-08-04 Canon Kabushiki Kaisha Heater and image heating device having same heater
WO2012120866A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device including the same
JP2012189806A (en) * 2011-03-10 2012-10-04 Canon Inc Heater and image heating device having the heater
WO2012120867A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device having same heater
US9098034B2 (en) 2011-03-10 2015-08-04 Canon Kabushiki Kaisha Heater and image heating device including the same
JP2012252127A (en) * 2011-06-02 2012-12-20 Canon Inc Heating body and image heating device
US8841587B2 (en) 2011-06-02 2014-09-23 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
US8592726B2 (en) 2011-06-02 2013-11-26 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
US10459379B2 (en) * 2012-09-19 2019-10-29 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US20140076878A1 (en) * 2012-09-19 2014-03-20 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US9235166B2 (en) * 2012-09-19 2016-01-12 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US20160070216A1 (en) * 2012-09-19 2016-03-10 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US20150293483A1 (en) * 2012-12-17 2015-10-15 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
US9098035B2 (en) * 2012-12-17 2015-08-04 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
US9494899B2 (en) * 2012-12-17 2016-11-15 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
US20140169845A1 (en) * 2012-12-17 2014-06-19 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
EP3796098A1 (en) * 2014-03-19 2021-03-24 Canon Kabushiki Kaisha Image heating apparatus and heater for use therein
US11378902B2 (en) 2014-03-19 2022-07-05 Canon Kabushiki Kaisha Image heating apparatus and heater for use therein
EP4123389A1 (en) * 2014-03-19 2023-01-25 Canon Kabushiki Kaisha Image heating apparatus and heater for use therein
JP2015219419A (en) * 2014-05-19 2015-12-07 株式会社東芝 Fixing device and program for controlling fixing temperature of fixing device
US9996034B2 (en) 2014-05-19 2018-06-12 Kabushiki Kaisha Toshiba Fixing device and fixing temperature control method of fixing device
US10423103B2 (en) 2014-05-19 2019-09-24 Kabushiki Kaisha Toshiba Fixing device and fixing temperature control method of fixing device
JP2018142000A (en) * 2018-04-25 2018-09-13 株式会社東芝 Fixing device and program for controlling fixing temperature of fixing device

Also Published As

Publication number Publication date
JP5317550B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5317550B2 (en) Fixing device
JP4659204B2 (en) Fixing apparatus and image forming apparatus provided with the fixing apparatus
JP5943559B2 (en) Fixing device
JP6439432B2 (en) Fixing apparatus and image forming apparatus
JP2010164930A (en) Heat fixing apparatus
JP5721460B2 (en) Image heating apparatus and roller used therefor
JP2013142834A (en) Heat generator, and image forming apparatus provided with heat generator
JP2005209493A (en) Heating device and image forming device
JP5153263B2 (en) Fixing device
JP2009053507A5 (en)
JP2009223291A (en) Fixer and image forming device equipped with it
JP2006301110A (en) Image forming apparatus
JP2016212132A (en) Fixing device and image forming apparatus
JP2008020789A (en) Image heating device and image forming apparatus equipped with the same
JP3848001B2 (en) Heat fixing device and image forming apparatus
JP2003337484A (en) Heating device and image forming apparatus
JP2002311749A (en) Image forming device
JP2017122899A (en) Fixing device and image forming apparatus using the same
JP5489939B2 (en) Fixing heater, fixing device, and image forming apparatus
JP2009186752A (en) Image forming apparatus
JP2008040082A (en) Image heating apparatus
JP4387657B2 (en) Heat fixing device
JP2010145665A (en) Fixing device and image forming apparatus
JP5639488B2 (en) Image heating device
JP2010032972A (en) Fixing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R151 Written notification of patent or utility model registration

Ref document number: 5317550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees