JP2010002356A - Method, apparatus and program for measuring difference in acting force - Google Patents

Method, apparatus and program for measuring difference in acting force Download PDF

Info

Publication number
JP2010002356A
JP2010002356A JP2008162727A JP2008162727A JP2010002356A JP 2010002356 A JP2010002356 A JP 2010002356A JP 2008162727 A JP2008162727 A JP 2008162727A JP 2008162727 A JP2008162727 A JP 2008162727A JP 2010002356 A JP2010002356 A JP 2010002356A
Authority
JP
Japan
Prior art keywords
difference
resistance
force
measuring
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162727A
Other languages
Japanese (ja)
Other versions
JP2010002356A5 (en
JP5648774B2 (en
Inventor
Hidemiki Kawashima
英幹 川島
Masahiko Makino
雅彦 牧野
Toshifumi Hori
利文 掘
Munehiko Hinatsu
宗彦 日夏
Yoshiaki Kodama
良明 児玉
Shunya Takeko
春弥 竹子
Tetsuya Senda
哲也 千田
Hirotomo Ando
裕友 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2008162727A priority Critical patent/JP5648774B2/en
Publication of JP2010002356A publication Critical patent/JP2010002356A/en
Publication of JP2010002356A5 publication Critical patent/JP2010002356A5/ja
Application granted granted Critical
Publication of JP5648774B2 publication Critical patent/JP5648774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method, an apparatus and a program for measuring a difference in acting force for correctly evaluating, for example, a difference in frictional resistance depending on a type of a coating film in the water, a difference in frictional resistance of different surface states or the like as a minute difference by using two objects with a very small difference in acting force when activated. <P>SOLUTION: The apparatus accurately measures a difference in resistance by measuring the resistance of two testing plates placed in parallel, moment between the testing plates and resistance force. In concrete, the method for measuring the difference in resistance force is characterized by that it includes steps of driving the two objects under test simultaneously under the same conditions, measuring a change including the moment and/or resistance force occurring on the two objects, and evaluating at least the difference in the resistance force. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえば作用力測定方法及び作用力測定装置並びに作用力差測定プログラムに関する。   The present invention relates to, for example, an acting force measurement method, an acting force measurement device, and an acting force difference measurement program.

たとえば船舶の海水摩擦抵抗を低減する船舶用塗料の研究にあたっては、一般塗料との差が僅少であるため、通常の計測方法では誤差に埋もれてしまい、計測が困難で優劣がはっきりとしなかった。   For example, in research on marine paints that reduce marine frictional resistance of ships, the difference from ordinary paints is very small.

一方、特許の分野においては、例えば、特許文献1に示すような技術的思想が開示されている。しかしながら、この技術思想によっては、上記の計測困難性を解決するには遠い。
特開2004−212135号公報
On the other hand, in the field of patents, for example, a technical idea as disclosed in Patent Document 1 is disclosed. However, this technical idea is far from solving the above measurement difficulty.
JP 2004-212135 A

本発明は、上記の従来技術の問題点を解決するもので、作動させた時の作用力の差が僅少の被試験物を二つ使い、例えば、水中における塗膜の種類による摩擦抵抗の差や相違する表面状態の摩擦抵抗の差等を、微小な差として正しく評価できる作用力差測定方法及び作用力差測定装置並びに作用力差測定プログラムを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and uses two specimens having a small difference in acting force when operated, for example, a difference in frictional resistance depending on the type of coating film in water. Another object of the present invention is to provide an acting force difference measuring method, an acting force difference measuring apparatus, and an acting force difference measuring program capable of correctly evaluating a difference in frictional resistance between different surface states as a minute difference.

かかる目的を達成するために、本願発明では、二つの被試験物を同時に同一条件で作動させ、例えば平行に設置した2枚の試験用平板の抵抗と試験平板間のモーメントを計測することで、精度良く抵抗の差を計測する等、作用力差を評価して実現する。
具体的に、本発明の請求項1に対応した作用力差測定方法は、 二つの被試験物を同時に同一条件で作動させ、該二つの被試験物に生じるモーメント及び/または作用力を含む変化を計測し、少なくとも作用力差を評価したことを特徴とする。
In order to achieve such an object, in the present invention, two test objects are simultaneously operated under the same conditions, for example, by measuring the resistance between two test plates installed in parallel and the moment between the test plates, This is achieved by evaluating the difference in acting force, such as measuring the difference in resistance with high accuracy.
Specifically, the method for measuring a difference in acting force according to claim 1 of the present invention is a method in which two test objects are simultaneously operated under the same conditions, and a change including a moment and / or an action force generated in the two test objects is performed. And at least the difference in acting force is evaluated.

本発明の請求項2に対応した作用力差測定方法は、二つの被試験物を同時に同一条件で駆動し、該二つの被試験物に生ずるモーメント及び/または抵抗力を含む変化を計測し、少なくとも抵抗力差を評価したことを特徴とする。 In the method for measuring a difference in acting force according to claim 2 of the present invention, two test objects are simultaneously driven under the same condition, and a change including moment and / or resistance force generated in the two test objects is measured. It is characterized by evaluating at least the resistance difference.

また、本発明の請求項3に対応した作用力差測定方法は、二つの被試験物を同時に同一条件で駆動したときに、駆動によって差の生じる他の物理量も同時に計測したことを特徴とする請求項2記載の抵抗力差測定方法として構成するものである。   Further, the acting force difference measuring method corresponding to claim 3 of the present invention is characterized in that, when two test objects are simultaneously driven under the same conditions, other physical quantities that cause a difference by driving are also measured simultaneously. The resistance force difference measuring method according to claim 2 is configured.

さらに、本発明の請求項4に対応した作用力差測定装置は、二つの被試験物を係止する係止機構と、該係止機構に作用するモーメント及び/または抵抗力を計測するモーメント計測手段及び/または抵抗力計測手段と、少なくとも前記係止機構を介して前記二つの被試験物を駆動する駆動手段と、該駆動手段による前記二つの被試験物の駆動時に前記モーメント計測手段及び/または抵抗力計測手段でモーメント及び/または抵抗力計測を行ったことを特徴とする。   Furthermore, an acting force difference measuring device corresponding to claim 4 of the present invention is a locking mechanism for locking two test objects, and a moment measurement for measuring a moment and / or a resistance force acting on the locking mechanism. Means and / or resistance force measuring means, driving means for driving the two test objects through at least the locking mechanism, and the moment measuring means and / or when the two test objects are driven by the driving means Alternatively, the moment and / or resistance force is measured by the resistance force measuring means.

また、本発明の請求項5に対応した作用力差測定装置は、二つの被試験物を同時に同一条件で駆動したときに、駆動によって差の生じる他の物理量も同時に計測する関連物理量検出手段を更に設けたことを特徴とする請求項4記載の作用力差測定装置として構成するものである。   Further, the working force difference measuring device corresponding to claim 5 of the present invention includes a related physical quantity detecting means for simultaneously measuring other physical quantities that are caused by driving when two test objects are driven simultaneously under the same conditions. Furthermore, it is comprised as an action force difference measuring apparatus of Claim 4 characterized by the above-mentioned.

また、本発明の請求項6に対応した作用力差測定装置は、前記二つの被試験物は水中で駆動され、前記モーメント計測手段及び/または抵抗力計測手段は、前記二つの被試験物に作用する流体抵抗の差をモーメント及び/または抵抗力として検出したことを特徴とする請求項4記載の作用力差測定装置として構成するものである。   In the acting force difference measuring device corresponding to claim 6 of the present invention, the two test objects are driven in water, and the moment measuring means and / or the resistance force measuring means are connected to the two test objects. 5. The acting force difference measuring device according to claim 4, wherein a difference in acting fluid resistance is detected as a moment and / or a resistance force.

本発明の請求項7に対応した作用力差測定装置は、水中に臨む二つの平板を係止する係止機構部と、該係止機構に変位に応じた応力を付与するばね手段と、前記該係止機構に作用するモーメント及び/または抵抗力を計測するモーメント計測用検力計及び/または検力計と、少なくとも前記係止機構を介して前記二つの被試験物を駆動する駆動手段と、該駆動手段による前記二つの平板の駆動時に前記モーメント計測用検力計及び/または検力計でモーメント計測及び/または抵抗力計測を行ったことを特徴とする。   The acting force difference measuring device corresponding to claim 7 of the present invention is a locking mechanism portion for locking two flat plates facing underwater, a spring means for applying a stress corresponding to displacement to the locking mechanism, A moment measurement galvanometer and / or galvanometer for measuring the moment and / or resistance force acting on the locking mechanism, and a driving means for driving the two test objects through at least the locking mechanism; The moment measurement and / or the force measurement is performed by the moment measuring force meter and / or the force meter when the two flat plates are driven by the driving means.

本発明の請求項8に対応した作用力差測定プログラムは、コンピータを、二つの被試験物を同時に同一条件で駆動し、該二つの被試験物に生ずるモーメント及び/または抵抗力を含む変化の計測を指示する計測指示手段と、計測結果を取込むデータ取込み手段と、複数回取込んだデータを処理するデータ処理手段と、このデータ処理手段の処理結果から前記二つの被試験物の抵抗力の差を算出する抵抗力差算出手段と、該抵抗力差算出手段及び/または前記データ処理手段の結果を出力する出力手段として機能させるための作用力差測定プログラムとして構成するものである。   The acting force difference measurement program corresponding to claim 8 of the present invention drives a computer under the same conditions at the same time for two DUTs, and changes in changes including moments and / or resistance forces generated in the two DUTs. Measurement instruction means for instructing measurement, data acquisition means for acquiring measurement results, data processing means for processing data acquired a plurality of times, and resistance of the two test objects from the processing results of the data processing means And a resistance force difference calculating means for calculating the difference between the resistance force difference and the output means for outputting the result of the resistance difference calculating means and / or the data processing means.

上記のように構成されることで、二つの被試験物を同時に同一条件で作動させることにより、個別に評価する場合に比べて誤差要因が非常に少なくなる。   By being configured as described above, by operating the two DUTs simultaneously under the same conditions, the error factor is greatly reduced as compared with the case of individually evaluating.

例えば、曳航水槽では、残流、レール高さ、水温の分布、静振等が誤差の要因となる。そこで、試験対象となる2枚の平板を同時に試験することで、誤差要因がかなり緩和されることとなる。   For example, in a towed water tank, residual flow, rail height, water temperature distribution, static vibration, and the like cause errors. Therefore, by simultaneously testing two flat plates to be tested, the error factor is considerably reduced.

より具体的には、一般塗料と摩擦抵抗低減塗料を塗った2枚の平板をばねで支持して吊り下げ、同時に同じ条件下で水槽内を移動させます。摩擦抵抗として生じる抵抗力の差が、2枚の平板を係止されたアーム(トルクロッド)で拡大しモーメントとしてモーメント計測装置で計測を行う。このため、わずかな摩擦抵抗の差が容易にモーメントとして検出できる。   More specifically, two flat plates coated with general paint and friction resistance-reducing paint are supported by springs and suspended, and at the same time, moved in the water tank under the same conditions. The difference in resistance generated as a frictional resistance is enlarged by an arm (torque rod) that holds two flat plates and measured as a moment by a moment measuring device. For this reason, a slight difference in frictional resistance can be easily detected as a moment.

また、この考え方は水中の用途のみならず、風洞などの空気中、またタイヤの転がり抵抗などの路上など多くの抵抗を生じる用途は無論、プロペラの推進力の差や噴射口の噴射力の差、車輪の駆動力の差等、作用力差が僅少なあらゆる対象に対して、被測定物に対して使えるものと考えられる。   Of course, this concept is not only used in water, but also in air such as wind tunnels, and on roads such as rolling resistance of tires. Of course, there is a difference in propeller propulsion and injection port difference. It can be considered that it can be used for the object to be measured with respect to any object with a slight difference in the acting force such as a difference in driving force of the wheel.

更に、抵抗差の計測と同時に、騒音とか温度とか差を生じる他のあらゆる物理量も計測することまで拡げることが可能である。更に、摩擦抵抗の差を計測するとともに、各々の板の摩擦力も検出するように、すなわち作用力そのものを計測するようにしてもよい。また、摩擦抵抗の差の結果として表れる2枚の平板の位置の変化を画像として捉え、少なくとも作用力差を評価してもよい。こうした技術的思想は、方法、装置、プログラムとして実現されることができる。   Furthermore, it is possible to extend the measurement to any other physical quantity that causes a difference in noise or temperature at the same time as measuring the resistance difference. Furthermore, the frictional resistance difference may be measured, and the frictional force of each plate may be detected, that is, the acting force itself may be measured. Further, a change in the position of the two flat plates appearing as a result of the difference in frictional resistance may be captured as an image, and at least the difference in acting force may be evaluated. Such a technical idea can be realized as a method, an apparatus, and a program.

二つの被試験物を同時に同一条件で作動させることにより、タイミングや時間経過等による影響、試験に関係したあらゆる物理条件の違い等、試験条件の差が僅少にでき、従来は誤差に埋もれてしまって判別が付かなかった作用力の差が測定出来る。
また、二つの被試験物に生じるモーメント及び/または作用力を含む変化を計測し、少なくとも作用力差を評価しているため、例えば、平板にトルクロッドで結ぶことで、抵抗値の差をモーメントとして増幅して取り出すことができるため、小さな差を正確に計測することが可能である。また、作用力そのものを計測することにより、絶対値としての作用力差が評価できる。また、計測結果を通じて作用力差として評価することにより、直ちに二つの被試験物の違いが分かる。また、装置として実現することにより、計測の準備に時間がかからず、専門家でなくても容易に計測が可能となる。さらに、プログラムとして実現することにより、取り込んだデータを容易に処理することができ、結果を出力手段により容易に確認できる。
By operating two DUTs under the same conditions at the same time, differences in test conditions, such as the effects of timing and time, etc., and differences in all physical conditions related to the test, can be minimized. The difference in acting force that could not be discriminated can be measured.
In addition, since the change including the moment and / or acting force generated in the two DUTs is measured and at least the acting force difference is evaluated, for example, by connecting the flat plate with a torque rod, the difference in resistance value is obtained by the moment. Therefore, it is possible to accurately measure a small difference. Further, by measuring the acting force itself, the acting force difference as an absolute value can be evaluated. Further, by evaluating the difference in acting force through the measurement result, the difference between the two test objects can be immediately understood. Moreover, by realizing as an apparatus, it does not take time to prepare for measurement, and measurement can be easily performed without being an expert. Furthermore, by realizing as a program, the captured data can be easily processed, and the result can be easily confirmed by the output means.

本発明の一実施形態として、水中での平板の摩擦抵抗の差を計測する装置を例にとり、以下に説明する。 As an embodiment of the present invention, an apparatus for measuring the difference in frictional resistance of a flat plate in water will be described below as an example.

装置の概要を図1乃至6に示すとともに、下記に記述する。
・試験用平板を取り付けた装置は、曳航水槽の曳航台車に設置される。曳航台車の走行に伴い、試験用平板は下部を水面に浸水しつつ進行し、このとき試験用平板にかかる抵抗と左右の平板の抵抗の差から生じるモーメントを計測する。
・2枚の試験用平板は、板バネあるいはブランコでつり下げられた台に固定されることで、横方向の相対運動を拘束している。
・2枚の試験用平板のそれぞれの抵抗を測る方法では、それぞれの試験用平板に対応する2台の検力計で計測する。
・2枚の試験用平板の抵抗の差を測る方法では、2枚の試験平板を結んだトルクロッドにかかるモーメントを検力計(モーメント計測用)により計測する。
・2枚の試験用平板は、その大きさ、試験速度から考えられる、お互いの平板が発生する波、流れの相互干渉の影響を無視できる程度の間隔で設置する。
・それぞれの平板には取り付け部付近に歪みゲージを設置しており、横力を計測することができる。計測された横力を用いて、試験用平板の取り付け精度を検証できる。(もちろん横力が小さい方が良い。)また、横力を見ながらのアライメント調整も可能である。
・乱流装置を取り付けることで、乱流境界層での試験が可能。
・乱流促進を取り外せば、層流から乱流への遷移の影響の評価が可能。

本技術思想を抵抗差の計測に応用した応用例を下記に示す。
・水着素材の評価
・乱流促進装置の評価
・平板以外への利用(船舶模型、水着を着せた人体模型)
・回流水槽での利用(船舶模型、水着を着せた人体模型)
・風洞での利用(翼型、航空機、自動車、自転車、鉄道車両)
・牽引(実海域、水中、空中)
・タイヤの転がり抵抗の試験
・軸受けの転がり抵抗の試験
また、駆動によって差の生じる他の物理量の同時計測例を以下に示す。
・流体中物体の揚力の測定

流体中物体の流線の計測

流体中物体の振動の計測

・流体中物体のタフトやトレーサーによる画像撮影

・タイヤの走行音の計測

パンタグラフの風切り音の計測
すなわち、被試験物としての物体が、周囲条件としての各種物質、材料の液相、気相中、あるいは固相上を運動することにより、これらの各相から受けるあらゆる抵抗とその差、また同時にそれに伴う物理量変化が測定でき、評価できるものであ
ある。
また、本技術思想は、抵抗差としての応用だけでなく、広く作用力の差といった概念にまで、拡大できるものであり、その例としては下記に示すような応用例が挙げられる。
・プロペラ、スクリューの推進力
・ノズルの噴射力
・車輪の駆動力
・ブレーキの制動力
・材料の摩擦力
・物体の運動に伴う磁力
すなわち、二つの被試験物を作動させた場合に変化を生じる各種計測に展開できるものである。
The outline of the apparatus is shown in FIGS. 1 to 6 and described below.
・ The equipment with the test plate is installed on the towing cart of the towing tank. As the tow truck travels, the test flat plate advances while the lower surface is immersed in the water surface. At this time, the moment generated from the difference between the resistance applied to the test flat plate and the resistance of the left and right flat plates is measured.
・ Two test flat plates are fixed on a base suspended by a leaf spring or a swing to restrain the relative movement in the lateral direction.
-In the method of measuring the resistance of each of the two test flat plates, measurement is performed with two dynamometers corresponding to the respective test flat plates.
In the method of measuring the difference in resistance between two test plates, the moment applied to the torque rod connecting the two test plates is measured with a galvanometer (for moment measurement).
• Install two test flat plates at an interval that allows the influence of mutual interference between waves and flows generated by the flat plates to be considered from the size and test speed.
・ Each flat plate has a strain gauge in the vicinity of the mounting part, and can measure lateral force. Using the measured lateral force, the mounting accuracy of the test flat plate can be verified. (Of course, it is better that the lateral force is small.) Also, the alignment can be adjusted while looking at the lateral force.
-A turbulent boundary layer test is possible by installing a turbulent flow device.
・ If the turbulence enhancement is removed, the effect of the transition from laminar to turbulent flow can be evaluated.

An example of application of this technical idea to resistance difference measurement is shown below.
・ Evaluation of swimsuit material ・ Evaluation of turbulence promoting device ・ Use other than flat plate (ship model, human model with swimsuit)
・ Use in circulating water tank (ship model, human model with swimsuit)
・ Use in wind tunnel (airfoil, aircraft, automobile, bicycle, railway vehicle)
-Towing (actual sea area, underwater, air)
・ Tire rolling resistance test ・ Bearing rolling resistance test In addition, examples of simultaneous measurement of other physical quantities that cause a difference due to driving are shown below.
・ Measurement of lift of objects in fluid ・
Measurement of streamlines of objects in fluid
Measurement of vibration of objects in fluid
・ Image shooting with tufts and tracers of objects in the fluid ・
・ Measurement of tire running noise ・
Measurement of wind noise of pantograph In other words, any resistance received from each of these phases when an object under test moves in the liquid phase, gas phase, or on the solid phase of various substances, materials, and so on. It is possible to measure and evaluate the difference between them and the change in physical quantity accompanying them.
Moreover, this technical idea can be expanded not only as a resistance difference but also to a concept such as a difference in action force, and examples thereof include the following application examples.
・ Propeller and screw propulsion force ・ Nozzle injection force ・ Wheel drive force ・ Brake braking force ・ Friction force of material ・ Magnetic force accompanying the movement of the object, that is, changes when two specimens are operated It can be developed for various measurements.

平行平板を用いた高精度塗膜摩擦計測法の開発
1.はじめに
航行する船舶の全抵抗に対する海水と船体表面の摩擦抵抗の割合は50〜80%程度を占める。そのため、海水と船体の塗装表面の間で生じる摩擦抵抗を低減することは、船舶の推進抵抗を低減し省エネルギーを達成する有力な手段である。そこで海上技術安全研究所では、現存の舶用塗料と比較して、水流に対する摩擦抵抗を低減させることが可能な塗料を開発するため、「海水摩擦抵抗を低減する船舶用塗料の基礎技術の研究開発」を行っている。
このような塗料の開発及び評価を行うためには、外部流れにおいて1%程度の摩擦抵抗の差を評価したいが、従来の曳航水槽における水槽試験では、摩擦抵抗以外の抵抗成分の影響や、水槽内の外乱の影響などがあり、1%の摩擦抵抗の差を評価することは、極めて困難であった。そこで、2枚の平板を平行に曳航する方法を用いて、摩擦抵抗を精度良く評価できる計測法の開発を行うこととした。
2.計測法及び装置の概要
曳航水槽における抵抗計測では、造波抵抗や形状抵抗等、他の抵抗成分の影響や、水槽内の残流、静振、温度勾配の影響などが誤差要因となり、計測精度に大きな影響を与えている。そこで、同形状の2枚の平板を平行に並べて曳航し、その抵抗の差を計測することで、これら誤差要因の影響を極力排除し、被試験体の水との摩擦抵抗の差を精度良く評価できるような計測法を考案し、その計測装置として高精度摩擦抵抗計測装置を製作した。
高精度摩擦抵抗計測装置は、装置下部に平行につり下げられた2枚の平板の抵抗を同時に計測する装置である。平板は、前後の板バネを介してブランコ式につり下げられ、横方向の相対運動が拘束される。試験用平板は、厚さ10mm のアルミニウム板を用い、その前端、後端には、円弧翼断面形状の整流覆いをつけることで、造波抵抗成分及び圧力抵抗成分を小さくすることに努めた。前部の整流覆いにはスタッド式の乱流促進装置を取り付けている。左右の平板は、互いの流体力学的な干渉を避けるために、2m
の間隔で取り付けられている。各平板にかかる抵抗は、平板をつり下げる2枚の板バネの間に設置した検力計により計測する。また左右の平板をロッドで接続し、そこにかかるモーメントをモーメント計測用検力計により計測することで、両平板の抵抗の差をモーメントとして計測する機能を持たせている。装置の外観を図7に、要目を表1に示す。
Development of high precision coating film friction measurement method using parallel plates The ratio of the frictional resistance between seawater and the hull surface to the total resistance of the ship that sails first is about 50-80%. Therefore, reducing the frictional resistance generated between the seawater and the painted surface of the hull is an effective means for reducing the propulsion resistance of the ship and achieving energy saving. Therefore, in order to develop a paint that can reduce the frictional resistance against water flow compared to the existing marine paints, the National Maritime Research Institute “R & D of basic technology for marine paints that reduces seawater frictional resistance” "It is carried out.
In order to develop and evaluate such paints, we would like to evaluate the difference in frictional resistance of about 1% in the external flow. In the conventional tank test in a towing tank, the effects of resistance components other than frictional resistance, It was extremely difficult to evaluate the difference in friction resistance of 1% due to the influence of internal disturbance. Therefore, we decided to develop a measurement method that can accurately evaluate frictional resistance using a method of towing two flat plates in parallel.
2. Outline of measurement method and equipment In resistance measurement in towing tanks, the effects of other resistance components such as wave resistance and shape resistance, residual current in the tank, the effects of static vibration, temperature gradients, etc. cause error factors, resulting in measurement accuracy. It has a great influence on. Therefore, two flat plates of the same shape are arranged in parallel and towed, and the difference in resistance is measured to eliminate the influence of these error factors as much as possible, and the difference in frictional resistance with water of the DUT is accurately measured. A measuring method that can be evaluated was devised, and a high-precision frictional resistance measuring device was manufactured as the measuring device.
The high-precision frictional resistance measuring device is a device that simultaneously measures the resistance of two flat plates suspended in parallel to the lower part of the device. The flat plate is suspended in a swing manner via front and rear leaf springs, and the relative movement in the lateral direction is restricted. The test plate was an aluminum plate with a thickness of 10 mm, and the front end and rear end were provided with a rectifying cover having a cross-sectional shape of the arc blade, thereby reducing the wave-making resistance component and the pressure resistance component. A stud type turbulence promoting device is attached to the front rectifying cover. The left and right plates are 2m away from each other to avoid hydrodynamic interference
Are attached at intervals. The resistance applied to each flat plate is measured by a force meter installed between two leaf springs that suspend the flat plate. In addition, the right and left flat plates are connected with rods, and the moment applied to them is measured with a force meter for moment measurement, thereby providing the function of measuring the difference in resistance between the two flat plates as a moment. The external appearance of the device is shown in FIG.

3.検証試験
高精度摩擦抵抗計測法の検証試験を、海上技術安全研究所の第三船舶試験水槽において行った。検証試験では、乱流促進の効果の確認、左右の平板の抵抗の差の再現性の確認を行った。試験速度範囲は、0.5m/s〜4.5m/s で、0.5m/s 毎に速度を変更した。試験に用いた平板は、左右両方とも同一仕様のもので、表面をアルマイト加工した無塗装のアルミニウム板である。抵抗試験の期間は、深さ方向の水温の温度勾配が大きく、初日の実験開始時には、水深5cm
と70cm で3.6℃の温度差があった。曳航台車に設置した状態の装置の写真を図8に示す。
3. Verification test A verification test of the high-precision frictional resistance measurement method was conducted in the third vessel test tank of the National Maritime Research Institute. In the verification test, the effect of promoting turbulence was confirmed, and the reproducibility of the difference in resistance between the left and right plates was confirmed. The test speed range was 0.5m / s to 4.5m / s, and the speed was changed every 0.5m / s. The flat plate used for the test is the same specification on both the left and right sides, and is an unpainted aluminum plate whose surface is anodized. During the resistance test, the temperature gradient of the water temperature in the depth direction is large, and at the start of the experiment on the first day, the water depth is 5 cm.
There was a temperature difference of 3.6 ° C between 70 cm and 70 cm 2. A photograph of the device installed on the towing cart is shown in FIG.

抵抗計測結果とSchoenherr の式で求められる摩擦抵抗係数を比較したものを図9に示す。計測結果から平板上の境界層が乱流状態となっていることがわかる。   FIG. 9 shows a comparison of the resistance measurement result and the frictional resistance coefficient obtained by the Schoenherr equation. The measurement results show that the boundary layer on the flat plate is in a turbulent state.

続いて左右平板の抵抗の差の左右の平板の全抵抗の平均したものとの比を図10に示す。
4
左右平板の抵抗値の差
左右の平板と整流覆いは、同一仕様、同一形状であるので、本来であれば抵抗の差は無いはずであるが、平板及び整流覆いの製作及び組み立て精度、乱流促進装置の取り付け状態、平板の装置への取り付け精度等から生じた差と考えられる。4.0m/s で繰り返し試験を行った際の左右の平板の抵抗の差の左右の平板の全抵抗の平均との比の変化を図11に示す。
Subsequently, the ratio of the difference in resistance between the left and right flat plates to the average of the total resistance of the left and right flat plates is shown in FIG.
Four
Difference in resistance between the right and left plates The right and left plates and the rectifying cover have the same specifications and shape, so there should be no difference in resistance. This is considered to be a difference caused by the mounting state of the accelerating device and the mounting accuracy of the flat plate to the device. FIG. 11 shows the change in the ratio of the difference between the resistances of the left and right flat plates to the average of the total resistance of the left and right flat plates when the test is repeated at 4.0 m / s.

9 回の繰り返し試験の結果、抵抗の差は、0.1%程度の範囲に分布した。
4.おわりに
平板を平行して曳航することで、塗装の種類など表面性状に起因する微小な抵抗差を評価可能にする高精度摩擦抵抗計測装置を製作しその検証試験を行った。その結果、温度勾配が大きく水槽内の条件はかなり悪かったにもかかわらず、左右平板の抵抗差の再現性は非常に高いことが確認できた。今後は、平板に塗装を施し、塗膜の性状による抵抗の差を評価していく予定である。
なお、これらの計測においては、パソコンを利用し、計測の指示を行い、モーメント測定用検力計また、検力計のデータを複数回取り込み、取り込んだデータを処理し、抵抗力と、抵抗力差を算出し、これを用途による選択に応じ、パソコンの画面に画面出力している。
一連の動作は、パソコンのプログラムとして構築されているが、各種端末上で操作を行い、情報処理機能を実現するプログラム、ソフトウェア、かかるソフトを実行可能形式にして記録媒体に搭載したもの、ROM(リード・オンリ・メモリ)、アルゴリズムを電子回路化したもの等を含んで実現され得る。
As a result of nine repeated tests, the resistance difference was distributed in the range of about 0.1%.
4). Finally, a high-accuracy frictional resistance measuring device that enables evaluation of minute resistance differences caused by surface properties such as the type of coating by towing the flat plates in parallel was produced and verified. As a result, it was confirmed that the reproducibility of the resistance difference between the left and right plates was very high even though the temperature gradient was large and the conditions in the water tank were quite bad. In the future, we plan to paint the flat plate and evaluate the difference in resistance due to the properties of the coating film.
In these measurements, a personal computer is used to instruct the measurement, the force meter for moment measurement or the force meter data is captured multiple times, the captured data is processed, and the resistance force and resistance force The difference is calculated and output to the screen of the personal computer according to the selection according to the application.
The series of operations is constructed as a personal computer program, but is operated on various terminals to implement information processing functions, software, such software that can be executed on a recording medium, ROM ( Read-only memory), an algorithmized electronic circuit, and the like.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

また、上述した実施例は、本発明に係る技術思想を具現化するための実施形態の一例を示したにすぎないものであり、他の実施形態でも本発明に係る技術思想を適用することが可能である。   Further, the above-described examples are merely examples of embodiments for realizing the technical idea according to the present invention, and the technical ideas according to the present invention can be applied to other embodiments. Is possible.

本発明によれば、一般塗料と摩擦抵抗低減塗料を塗った2枚の平板をばねで支持して吊り下げ、同時に同じ条件下で水槽内を移動させます。摩擦抵抗として生じる抵抗力の差が、2枚の平板を係止されたアーム(トルクロッド)で拡大しモーメントとしてモーメント計測装置で計測を行う。このため、わずかな摩擦抵抗の差が容易にモーメントとして検出できる。例えば、最近話題のスピード社の水着と他社の水着の比較などにも応用できるものと考えられる。   According to the present invention, two flat plates coated with general paint and friction resistance-reducing paint are supported by springs and suspended, and at the same time, moved in the water tank under the same conditions. The difference in resistance generated as a frictional resistance is enlarged by an arm (torque rod) that holds two flat plates and measured as a moment by a moment measuring device. For this reason, a slight difference in frictional resistance can be easily detected as a moment. For example, it can be applied to the comparison between the recently-known Speed Company swimsuits and other companies' swimsuits.

また、この考え方は水中の用途のみならず、風洞などの空気中、またタイヤの転がり抵抗などの路上など多くの抵抗を生じる用途に使えるものと考えられる。したがって、船舶のみならず、物体が各種物質、材料の液相、気相中、あるいは固相上を運動することによる、これらの各相から受けるあらゆる抵抗とその差の計測に利用ができる。
さらに、抵抗や抵抗差としての応用だけでなく、物体の作動に伴う作用力、作用力の差の評価といった概念にまで、拡大できるものであり、各種産業上利用可能性が高い。
Further, this concept is considered to be applicable not only to underwater applications but also to applications that generate a lot of resistance such as in the air such as wind tunnels and on roads such as rolling resistance of tires. Therefore, not only a ship but also an object can be used for measurement of all resistances and their differences received from each phase by moving various substances, materials in the liquid phase, in the gas phase, or on the solid phase.
Furthermore, it can be expanded not only to application as resistance and resistance difference, but also to the concept of evaluation of action force and action force difference associated with the operation of an object, and is highly applicable to various industries.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention.

Claims (8)

二つの被試験物を同時に同一条件で作動させ、該二つの被試験物に生じるモーメント及び/または作用力を含む変化を計測し、少なくとも作用力差を評価したことを特徴とする作用力差測定方法。   Working force difference measurement characterized in that two specimens are operated simultaneously under the same conditions, changes including moments and / or acting forces generated in the two specimens are measured, and at least the acting force difference is evaluated. Method. 二つの被試験物を同時に同一条件で駆動し、該二つの被試験物に生ずるモーメント及び/または抵抗力を含む変化を計測し、少なくとも抵抗力差を評価したことを特徴とする作用力差測定方法。   Actuation force difference measurement characterized in that two specimens are driven simultaneously under the same conditions, changes including moments and / or resistance forces generated in the two specimens are measured, and at least the resistance difference is evaluated. Method. 二つの被試験物を同時に同一条件で駆動したときに、駆動によって差の生じる他の物理量も同時に計測したことを特徴とする請求項2記載の作用力差測定方法。   3. The method of measuring a difference in acting force according to claim 2, wherein when two test objects are simultaneously driven under the same conditions, other physical quantities that are different due to the drive are also measured simultaneously. 二つの被試験物を係止する係止機構と、該係止機構に作用するモーメント及び/または抵抗力を計測するモーメント計測手段及び/または抵抗力計測手段と、少なくとも前記係止機構を介して前記二つの被試験物を駆動する駆動手段と、該駆動手段による前記二つの被試験物の駆動時に前記モーメント計測手段及び/または抵抗力計測手段でモーメント及び/または抵抗力計測を行ったことを特徴とする作用力差測定装置。   A locking mechanism for locking the two test objects, a moment measuring means and / or a resistance measuring means for measuring a moment and / or a resistance force acting on the locking mechanism, and at least via the locking mechanism A driving means for driving the two DUTs, and a moment and / or resistance force measurement by the moment measuring means and / or the resistance measuring means when the two DUTs are driven by the driving means; A device for measuring difference in acting force. 二つの被試験物を同時に同一条件で駆動したときに、駆動によって差の生じる他の物理量も同時に計測する関連物理量検出手段を更に設けたことを特徴とする請求項4記載の作用力差測定装置。 5. The differential force measuring apparatus according to claim 4, further comprising a related physical quantity detecting means for simultaneously measuring other physical quantities that are caused to be different by driving when two test objects are driven simultaneously under the same conditions. . 前記二つの被試験物は水中で駆動され、前記モーメント計測手段及び/または抵抗力計測手段は、前記二つの被試験物に作用する流体抵抗の差をモーメント及び/または抵抗力として検出したことを特徴とする請求項4記載の作用力差測定装置。   The two test objects are driven in water, and the moment measuring means and / or the resistance force measuring means detects a difference in fluid resistance acting on the two test objects as a moment and / or a resistance force. 5. The acting force difference measuring device according to claim 4, 水中に臨む二つの平板を係止する係止機構部と、該係止機構に変位に応じた応力を付与するばね手段と、前記該係止機構に作用するモーメント及び/または抵抗力を計測するモーメント計測用検力計及び/または検力計と、少なくとも前記係止機構を介して前記二つの被試験物を駆動する駆動手段と、該駆動手段による前記二つの平板の駆動時に前記モーメント計測用検力計及び/または検力計でモーメント計測及び/または抵抗力計測を行ったことを特徴とする作用力差測定装置。   A locking mechanism portion for locking two flat plates facing underwater, a spring means for applying a stress corresponding to displacement to the locking mechanism, and a moment and / or a resistance force acting on the locking mechanism are measured. Moment measuring force meter and / or force meter, driving means for driving the two test objects through at least the locking mechanism, and for driving the two flat plates by the driving means A working force difference measuring device characterized by performing moment measurement and / or resistance force measurement with a galvanometer and / or galvanometer. コンピータを、
二つの被試験物を同時に同一条件で駆動し、該二つの被試験物に生ずるモーメント及び/または抵抗力を含む変化の計測を指示する計測指示手段と、計測結果を取込むデータ取込み手段と、複数回取込んだデータを処理するデータ処理手段と、このデータ処理手段の処理結果から前記二つの被試験物の抵抗力の差を算出する抵抗力差算出手段と、該抵抗力差算出手段及び/または前記データ処理手段の結果を出力する出力手段と
として機能させるための作用力差測定プログラム。
The computer,
A measurement instructing means for instructing measurement of changes including moments and / or resistance forces generated in the two DUTs simultaneously under the same conditions, and data fetching means for taking in the measurement results; Data processing means for processing data taken a plurality of times, resistance force difference calculating means for calculating a difference in resistance force between the two test objects from the processing result of the data processing means, the resistance force difference calculating means, An acting force difference measurement program for functioning as output means for outputting the result of the data processing means.
JP2008162727A 2008-06-23 2008-06-23 Acting force difference measuring method, acting force difference measuring apparatus, and acting force difference measuring program Expired - Fee Related JP5648774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162727A JP5648774B2 (en) 2008-06-23 2008-06-23 Acting force difference measuring method, acting force difference measuring apparatus, and acting force difference measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162727A JP5648774B2 (en) 2008-06-23 2008-06-23 Acting force difference measuring method, acting force difference measuring apparatus, and acting force difference measuring program

Publications (3)

Publication Number Publication Date
JP2010002356A true JP2010002356A (en) 2010-01-07
JP2010002356A5 JP2010002356A5 (en) 2010-03-11
JP5648774B2 JP5648774B2 (en) 2015-01-07

Family

ID=41584200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162727A Expired - Fee Related JP5648774B2 (en) 2008-06-23 2008-06-23 Acting force difference measuring method, acting force difference measuring apparatus, and acting force difference measuring program

Country Status (1)

Country Link
JP (1) JP5648774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024736A1 (en) 2009-08-26 2011-03-03 ダイハツ工業株式会社 Plasma actuator
CN106525307A (en) * 2016-08-04 2017-03-22 浙江工业大学 Bionic non-smooth surface friction resistance testing device based on underwater

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888635A (en) * 1981-11-24 1983-05-26 Mitsubishi Heavy Ind Ltd Deciding method for superiority or inferiority of ship resistance performance
JPH01175871A (en) * 1987-12-30 1989-07-12 Yokohama Rubber Co Ltd:The Quality testing method for golf ball
JPH0522814B2 (en) * 1984-12-29 1993-03-30 Toho Gas Kk
JPH0666676A (en) * 1992-08-14 1994-03-11 Mitsubishi Heavy Ind Ltd Ice ocean water tank test facility and sample model therefor
JPH06160246A (en) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd Model test equipment for land mobile
JPH08166318A (en) * 1994-12-13 1996-06-25 Mitsubishi Heavy Ind Ltd Swiveling-aerodynamic-characteristic measuring apparatus
JPH10281941A (en) * 1997-04-02 1998-10-23 Haradakuni:Kk Inspection device for differential device
JP2001305156A (en) * 2000-04-26 2001-10-31 Matsushita Electric Ind Co Ltd Characteristics measuring device for accelerating sensor and characteristics screening method for accelerating sensor using the same
JP2002122490A (en) * 2000-10-12 2002-04-26 Suncall Corp Load measuring device for compression spring
JP2005127827A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Apparatus for measuring oil content

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888635A (en) * 1981-11-24 1983-05-26 Mitsubishi Heavy Ind Ltd Deciding method for superiority or inferiority of ship resistance performance
JPH0522814B2 (en) * 1984-12-29 1993-03-30 Toho Gas Kk
JPH01175871A (en) * 1987-12-30 1989-07-12 Yokohama Rubber Co Ltd:The Quality testing method for golf ball
JPH0666676A (en) * 1992-08-14 1994-03-11 Mitsubishi Heavy Ind Ltd Ice ocean water tank test facility and sample model therefor
JPH06160246A (en) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd Model test equipment for land mobile
JPH08166318A (en) * 1994-12-13 1996-06-25 Mitsubishi Heavy Ind Ltd Swiveling-aerodynamic-characteristic measuring apparatus
JPH10281941A (en) * 1997-04-02 1998-10-23 Haradakuni:Kk Inspection device for differential device
JP2001305156A (en) * 2000-04-26 2001-10-31 Matsushita Electric Ind Co Ltd Characteristics measuring device for accelerating sensor and characteristics screening method for accelerating sensor using the same
JP2002122490A (en) * 2000-10-12 2002-04-26 Suncall Corp Load measuring device for compression spring
JP2005127827A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Apparatus for measuring oil content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024736A1 (en) 2009-08-26 2011-03-03 ダイハツ工業株式会社 Plasma actuator
CN106525307A (en) * 2016-08-04 2017-03-22 浙江工业大学 Bionic non-smooth surface friction resistance testing device based on underwater

Also Published As

Publication number Publication date
JP5648774B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
Gui et al. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512
Suryanarayana et al. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel
Seo et al. Turbulent wake field reconstruction of VLCC models using two-dimensional towed underwater PIV measurements
Kume et al. Measurements of hydrodynamic forces, surface pressure, and wake for obliquely towed tanker model and uncertainty analysis for CFD validation
Pauley The fluid dynamics and heat transfer effects of streamwise vortices embedded in a turbulent boundary layer
CN106290987B (en) Method for assessing water speed measurement precision by Doppler log
JP2010002356A (en) Method, apparatus and program for measuring difference in acting force
Wilhelmi et al. Simulation of transient on-road conditions in a closed test section wind tunnel using a wing system with active flaps
JP2010002356A5 (en)
Liu et al. A fast and transparent method for setting powering margins in ship design
Di Napoli et al. Design and benchmarking of a low-cost shape sensing spar for in situ measurement of deflections in slender lifting surfaces in complex multiphase flows
Zeng et al. A benchmark test of ship resistance in extremely shallow water
Butler et al. Benchmarking the AMC cavitation tunnel for hydrodynamic measurements on submarine model with CFD determined blockage corrections
KR20150046633A (en) Method for measuring local ice resistance of model ship
Guillot et al. Unsteady analysis of the air wake over the lpd-17
Shapiro et al. The Effect of Surface Roughness on Hydrodynamic Drag and Turbulence
Van Randwijck et al. Results of experiments with a segmented model to investigate the distribution of the hydrodynamic forces and moments on a streamlined body of revolution at an angle of attack or with a pitching angular velocity
McQuilling et al. Experimental investigation of a high-lift low-pressure turbine suction surface
Klaka et al. Hydrodynamic tests on a plate in forced oscillation
Zafiryadis et al. Measurement of turbulent skin friction drag coefficients produced by distributed surface roughness of pristine marine coatings
Jaiswal et al. Detection of ships moving in a straight line and turning with implications for wide area surveillance
Bertetta et al. Numerical and experimental characterization of a CP propeller unsteady cavitation at different pitch settings
Quist et al. Validation of a full scale CFD simulation of a self-propelled ship with measured hull roughness and effect of welding seams on hull resistance
Brandner et al. Experimental modelling of steady hydrofoil fluid-structure interaction
Obreja Experimental techniques in the wind tunnel of naval architecture faculty

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5648774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees