JP2010002323A - Infrared sensor and carbon dioxide sensor - Google Patents

Infrared sensor and carbon dioxide sensor Download PDF

Info

Publication number
JP2010002323A
JP2010002323A JP2008161881A JP2008161881A JP2010002323A JP 2010002323 A JP2010002323 A JP 2010002323A JP 2008161881 A JP2008161881 A JP 2008161881A JP 2008161881 A JP2008161881 A JP 2008161881A JP 2010002323 A JP2010002323 A JP 2010002323A
Authority
JP
Japan
Prior art keywords
infrared
sensor
infrared sensor
carbon dioxide
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161881A
Other languages
Japanese (ja)
Other versions
JP5336114B2 (en
Inventor
Yuya Masuno
雄矢 桝野
Sei Kato
聖 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008161881A priority Critical patent/JP5336114B2/en
Publication of JP2010002323A publication Critical patent/JP2010002323A/en
Application granted granted Critical
Publication of JP5336114B2 publication Critical patent/JP5336114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To selectively detect infrared light having a specific wavelength in a simple structure in an infrared sensor for detecting infrared light having a specific wavelength and to provide a carbon dioxide sensor using the infrared sensor. <P>SOLUTION: This infrared sensor 10 is constituted by a silicon substrate 1 and a thermopile 2 formed on one side face of the silicon substrate 1. The thermopile 2 includes a plane portion 21 at a silicon substrate 1 side and a structure body layer 11 is formed on a part of the silicon substrate 1 contacting the plane portion 21. The structure body layer 11 is so constituted that a recessed portion 11a concaved to a plane portion 21 side of the thermopile 2 and a projected portion 11b convexed to the opposite side of the plane portion 21 are alternately formed. Namely, the recessed portion 11a and the projected portion 11b are formed such that a groove and a rib are alternately arranged and a cross-sectional shape of the recessed portion 11a and the projected portion 11b is formed to be like a rectangular wave. A length of one cycle of one set of the recessed portion 11a and the projected portion 11b is made to be a wavelength of the specific infrared radiation. This carbon dioxide sensor is so constituted that the infrared sensor 10 in which the one cycle of the recessed portion 11a and the projected portion 11b is made to be 4.3 μm and an infrared radiation source are accommodated in a case having a window section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特定波長の赤外線を検出する赤外線センサ及び該赤外線センサを用いた二酸化炭素センサに関する。   The present invention relates to an infrared sensor that detects infrared light having a specific wavelength, and a carbon dioxide sensor using the infrared sensor.

従来、この種の赤外線センサとして、例えば特開2006−58203号公報(特許文献1)及び特開2006−317232号公報(特許文献2)に開示されたものがある。特許文献1のものは、シリコン基板の表裏面のうち一方の面にサーモパイルなどを用いた赤外線センサ部をもうけ、この赤外線センサ部をダイヤフラム上に支持させて形成したものである。また、シリコン基板の他方の面に光学干渉多層膜からなる受光波長選択用光学フィルタを形成したものである。そして、赤外線センサと光学フィルタの一体構造とし、製造コストの削減を図るとともに、小型化を目的としたものである。   Conventionally, as this type of infrared sensor, there are those disclosed in, for example, Japanese Patent Laid-Open No. 2006-58203 (Patent Document 1) and Japanese Patent Laid-Open No. 2006-317232 (Patent Document 2). The thing of patent document 1 has formed the infrared sensor part which used the thermopile etc. in one side among the front and back of a silicon substrate, and supported this infrared sensor part on the diaphragm. In addition, a light receiving wavelength selecting optical filter made of an optical interference multilayer film is formed on the other surface of the silicon substrate. An infrared sensor and an optical filter are integrated to reduce the manufacturing cost and reduce the size.

特許文献2のものは、シリコン基板の一方の表面に赤外線センシング部を形成するとともに、この赤外線センシング部を囲んでその上部を覆うように構造体を形成したものである。また、シリコン基板の他方の面に所定波長域の光を透過する光学フィルタを設けたものである。そして、赤外線感度の向上、低コスト化及び小型化を図るものである。
特開2006−58203号公報 特開2006−317232号公報
In Patent Document 2, an infrared sensing part is formed on one surface of a silicon substrate, and a structure is formed so as to surround and cover the infrared sensing part. Further, an optical filter that transmits light in a predetermined wavelength region is provided on the other surface of the silicon substrate. Then, the infrared sensitivity is improved, the cost is reduced, and the size is reduced.
JP 2006-58203 A JP 2006-317232 A

特許文献1及び2のように、従来の赤外線センサは、特定の波長の赤外線のみを受光するために、多層膜光学バンドパスフィルタ、受光素子、受光素子上の赤外線吸収膜、及びこれらを収納するパッケージ等から構成されている。このため、構成要素が多く、センサ構造が複雑になるという問題がある。また、多層膜光学フィルタは特定の赤外線のみを透過させるためには、干渉膜を複数枚積層させる必要があり、製造工程が煩雑になるという問題がある。また、膜を積層することで成膜ばらつきが積み上げられて膜厚精度を上げるのが困難である。   As in Patent Documents 1 and 2, the conventional infrared sensor accommodates a multilayer optical bandpass filter, a light receiving element, an infrared absorbing film on the light receiving element, and these in order to receive only infrared light having a specific wavelength. It consists of a package. For this reason, there are many components and there exists a problem that a sensor structure becomes complicated. In addition, in order for the multilayer optical filter to transmit only specific infrared rays, it is necessary to stack a plurality of interference films, and there is a problem that the manufacturing process becomes complicated. In addition, it is difficult to increase the film thickness accuracy by laminating the films to accumulate film formation variations.

本発明は、簡単な構成で特定の波長の赤外線を検出できる赤外線センサを提供するとともに、この赤外線線センサを用いた二酸化炭素センサを提供することを課題とする。   It is an object of the present invention to provide an infrared sensor capable of detecting infrared rays having a specific wavelength with a simple configuration, and to provide a carbon dioxide sensor using the infrared ray sensor.

請求項1の赤外線センサは、特定波長の赤外線を検出する赤外線センサであって、当該赤外線センサの前記赤外線を受ける側に平面部を有する感温層と、該感温層の前記平面部側に形成された構造体層とを備え、前記構造体層は、前記平面と平行な方向に凹凸が周期的に形成され、該凹凸の形状が該平面部と直角な面での断面形状が矩形波状で、かつ該凹凸の1周期の長さが前記特定の赤外線の波長と同程度としたことを特徴とする。   The infrared sensor according to claim 1 is an infrared sensor that detects infrared light of a specific wavelength, and has a temperature-sensitive layer having a flat portion on the side receiving the infrared light of the infrared sensor, and on the flat-surface portion side of the temperature-sensitive layer. The structure layer is formed with irregularities periodically formed in a direction parallel to the plane, and the shape of the irregularities is a rectangular wave shape in a plane perpendicular to the plane portion. In addition, the length of one cycle of the irregularities is approximately the same as the wavelength of the specific infrared ray.

請求項2の二酸化炭素センサは、前記構造体層の前記凹凸の1周期の長さが二酸化炭素の吸収波長域(例えば4.3μm)である請求項1に記載の赤外線センサと、前記赤外線センサの前記構造体層に対して赤外線を含む光を照射する赤外線光源と、前記赤外線センサと前記赤外線光源との間に雰囲気が導入される空間を形成するケース体と、を備えたことを特徴とする。   The carbon dioxide sensor according to claim 2, wherein one cycle length of the unevenness of the structure layer is an absorption wavelength region of carbon dioxide (for example, 4.3 μm), and the infrared sensor according to claim 1. An infrared light source that irradiates the structure layer with light including infrared rays, and a case body that forms a space in which an atmosphere is introduced between the infrared sensor and the infrared light source. To do.

請求項1の赤外線センサによれば、構造体層の凹凸の1周期の長さが特定の赤外線の波長と同程度の周期とされているので、この構造体層により特定の赤外線を選択的に吸収することができ、この吸収された赤外線の量により感温層が検知する温度が変化し、特定の赤外線の強度を温度として検出することができる。したがって、感温層と構造体層という簡単構成にて特定の赤外線を検出することができる。   According to the infrared sensor of the first aspect, since the length of one cycle of the unevenness of the structure layer is set to be approximately the same as the wavelength of the specific infrared ray, the specific infrared ray is selectively transmitted by the structure layer. The temperature detected by the temperature-sensitive layer varies depending on the amount of absorbed infrared rays, and the intensity of specific infrared rays can be detected as the temperature. Therefore, specific infrared rays can be detected with a simple configuration of the temperature sensitive layer and the structure layer.

請求項2の二酸化炭素センサは、構造体層の凹凸の1周期の長さが二酸化炭素が吸収する赤外線の波長(吸収波長)となっているので、ケース内の二酸化炭素によって赤外線が吸収されると、この吸収量に相当する信号が赤外線センサの出力に現れるので、ケース内の二酸化炭素の濃度等を検出することができる。なお、赤外線光源が一定強度の赤外線を出力するものでもよいし、一定強度でない場合には、二酸化炭素が吸収しない赤外線の波長域の強度を検出し、その検出量によって前記赤外線センサの出力(吸収に応じた出力)を補償すればよい。   In the carbon dioxide sensor according to claim 2, since the length of one cycle of the unevenness of the structure layer is an infrared wavelength (absorption wavelength) absorbed by carbon dioxide, the infrared rays are absorbed by the carbon dioxide in the case. Then, since a signal corresponding to the amount of absorption appears in the output of the infrared sensor, the concentration of carbon dioxide in the case can be detected. The infrared light source may output infrared light having a constant intensity. If the infrared light source is not constant intensity, the intensity of the infrared wavelength region that carbon dioxide does not absorb is detected, and the output (absorption) of the infrared sensor is detected according to the detected amount. (Output according to the above) may be compensated.

次に、本発明の実施の形態を図面を参照して説明する。図1は本発明の実施の形態に係る赤外線センサ10の要部構成を示す断面図である。この赤外線センサ10は、一部にエッチング加工されたシリコン基板1と、このシリコン基板1の片側面に形成された「感温層」としてのサーモパイル2とを備えている。サーモパイル2のシリコン基板1側は平面部21とされ、この平面部21に接触するシリコン基板1のエッチング加工された部分の底部は、構造体層11となっている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a main configuration of an infrared sensor 10 according to an embodiment of the present invention. The infrared sensor 10 includes a silicon substrate 1 partially etched and a thermopile 2 as a “temperature-sensitive layer” formed on one side surface of the silicon substrate 1. The silicon substrate 1 side of the thermopile 2 is a flat portion 21, and the bottom of the etched portion of the silicon substrate 1 that contacts the flat portion 21 is a structure layer 11.

図2は構造体層11の一部拡大断面斜視図であり、この構造体層11はサーモパイル2の平面部21側に窪んだ凹部11aと、平面部21と反対側に出っ張った凸部11bとを交互に形成したものである。この凹部11aと凸部11bは、図1において図面と直交する方向に長手をなす溝と畝を交互に並べたものであり、この凹部11aと凸部11bは平面部21と平行な方向に周期的に形成されている。また、凹部11aと凸部11bの断面形状は矩形波状とされている。そして、一組の凹部11a及び凸部11aが1周期をなし、その1周期の長さDは、特定の赤外線の波長とされている。   FIG. 2 is a partially enlarged cross-sectional perspective view of the structure body layer 11. The structure body layer 11 includes a recess 11a that is recessed on the flat surface portion 21 side of the thermopile 2, and a convex portion 11b that protrudes on the opposite side of the flat surface portion 21. Are formed alternately. The concave portions 11a and the convex portions 11b are formed by alternately arranging grooves and ridges that are long in the direction orthogonal to the drawing in FIG. 1, and the concave portions 11a and the convex portions 11b have a period in a direction parallel to the plane portion 21. Is formed. Moreover, the cross-sectional shape of the recessed part 11a and the convex part 11b is made into the rectangular wave shape. The pair of concave portions 11a and convex portions 11a form one cycle, and the length D of the one cycle is a specific infrared wavelength.

以上の構成により、構造体層11側に赤外線が照射されると、その赤外線は構造体層11の凹部11aと凸部11bとにより一部散乱され、この周期Dの波長を有する特定の波長の赤外線が吸収されてサーモパイル2に熱伝導される。そして、その赤外線によってサーモパイル2は加熱され、このサーモパイル2から、このサーモパイル2を加熱する基となった赤外線すなわち特定の波長の赤外線の強度を示す量を、温度信号として得られる。   With the above configuration, when infrared rays are irradiated on the structure layer 11 side, the infrared rays are partially scattered by the concave portions 11a and the convex portions 11b of the structural layer 11, and have a specific wavelength having a wavelength of this period D. Infrared rays are absorbed and thermally transmitted to the thermopile 2. Then, the thermopile 2 is heated by the infrared rays, and from this thermopile 2, an amount indicating the intensity of the infrared rays that are the basis for heating the thermopile 2, that is, infrared rays of a specific wavelength, is obtained as a temperature signal.

このように、この赤外線センサ10はサーモパイル2と構造体層11という簡単な構造であるとともに、凹部11aと凸部11bの1周期の長さの波長を有する特定の波長の赤外線を検出することができる。   As described above, the infrared sensor 10 has a simple structure of the thermopile 2 and the structure layer 11, and can detect infrared light having a specific wavelength having a wavelength of one period of the concave portion 11a and the convex portion 11b. it can.

図3は赤外線センサ10の製造工程を説明する図であり、次のように製造する。まず、図3(A) のように、ある程度の厚みを有するシリコン基板1の片側平面にサーモパイル2を形成する。次に、シリコン基板1のサーモパイル2と反対側の面をエッチングして、サーモパイル2に接している薄板部1aを形成する(図3(B) )。   FIG. 3 is a diagram for explaining the manufacturing process of the infrared sensor 10 and is manufactured as follows. First, as shown in FIG. 3A, a thermopile 2 is formed on one side plane of a silicon substrate 1 having a certain thickness. Next, the surface opposite to the thermopile 2 of the silicon substrate 1 is etched to form a thin plate portion 1a in contact with the thermopile 2 (FIG. 3B).

次に、このシリコン基板1のサーモパイル2と反対側の面、すなわち薄板部1aとその周囲にマスク層形成し、そのマスク層にパターン露光処理及び現像処理を施し、この薄板部1aの部分に前記凹部11a及び凸部11bのパターン層4aを形成する(図3(C) )。次に、シリコン基板1のパターン層4a側にエッチング処理を施し、凹部11aと凸部11bを形成する(図3(D) )。そして、パターン層4aを剥離し(図3(E) )、金属成膜を行う。このように、本実施形態の赤外線センサ10は、シリコン基板の加工、エッチング等の加工という、半導体技術により簡単に製造することができる。   Next, a mask layer is formed on the surface opposite to the thermopile 2 of the silicon substrate 1, that is, the thin plate portion 1a and the periphery thereof, and pattern exposure processing and development processing are performed on the mask layer. The pattern layer 4a of the concave portion 11a and the convex portion 11b is formed (FIG. 3C). Next, an etching process is performed on the pattern layer 4a side of the silicon substrate 1 to form a concave portion 11a and a convex portion 11b (FIG. 3D). Then, the pattern layer 4a is peeled off (FIG. 3E), and a metal film is formed. As described above, the infrared sensor 10 of the present embodiment can be easily manufactured by a semiconductor technique such as processing of a silicon substrate and processing such as etching.

上記の実施の形態の構造体層11の凹部11aと凸部11bは溝と畝を交互に繰り返した周期的な構造の場合であるが、例えば図4のような構造でもよい。図4(A) は円形の縦穴形状の凹部11c、隣接する凹部11c,11cの間の部分を凸部11dとして構造体層11を構成したものである。また、図4 (B)は矩形の縦穴形状の凹部11e、隣接する凹部11e,11eの間の部分を凸部11fとして構造体層11を構成したものである。この場合も、一組の凹部11c及び凸部11dが1周期をなし、その1周期の長さDは、特定の赤外線の波長とされている。また、一組の凹部11e及び凸部11fが1周期をなし、その1周期の長さDは、特定の赤外線の波長とされている。   The concave portion 11a and the convex portion 11b of the structural body layer 11 of the above embodiment is a periodic structure in which grooves and ridges are alternately repeated. For example, a structure as shown in FIG. FIG. 4A shows the structure layer 11 with a circular vertical hole-shaped concave portion 11c and a portion between adjacent concave portions 11c and 11c as a convex portion 11d. FIG. 4B shows the structure layer 11 having a rectangular vertical hole-shaped concave portion 11e and a portion between adjacent concave portions 11e, 11e as a convex portion 11f. Also in this case, the pair of concave portions 11c and convex portions 11d form one cycle, and the length D of the one cycle is a specific infrared wavelength. Further, the pair of concave portions 11e and convex portions 11f form one cycle, and the length D of the one cycle is a specific infrared wavelength.

図5は実施の形態の二酸化炭素センサ100の要部を示す図であり、この二酸化炭素センサ100は、前記実施の形態の赤外線センサ10と、赤外線光源20と、ケース30とを有している。赤外線センサ10と赤外線光源20はケース30内に対向して配置されており、赤外線光源20からの赤外線IFが赤外線センサ10の構造体層11に向けて照射される。また、ケース30には、窓30a,30aが形成され、この窓30a,30aを介して雰囲気がケース30内に導入される。ここで、赤外線センサ10の構造体層11における前記凹部11a及び凸部11bの1周期の長さは二酸化炭素の吸収波長域の波長(例えば4.3μm)に設定されている。また、赤外線光源20は一定強度(一定スペクトル分布)の赤外線を含む光を照射するように構成されている。   FIG. 5 is a diagram illustrating a main part of the carbon dioxide sensor 100 according to the embodiment. The carbon dioxide sensor 100 includes the infrared sensor 10, the infrared light source 20, and the case 30 according to the embodiment. . The infrared sensor 10 and the infrared light source 20 are disposed opposite to each other in the case 30, and the infrared IF from the infrared light source 20 is irradiated toward the structure layer 11 of the infrared sensor 10. Further, windows 30 a and 30 a are formed in the case 30, and an atmosphere is introduced into the case 30 through the windows 30 a and 30 a. Here, the length of one cycle of the concave portion 11a and the convex portion 11b in the structure layer 11 of the infrared sensor 10 is set to a wavelength in the absorption wavelength region of carbon dioxide (for example, 4.3 μm). The infrared light source 20 is configured to irradiate light including infrared light having a constant intensity (a constant spectral distribution).

以上の構成により、二酸化炭素センサ100の赤外線センサ10は、凹部11aと凸部11bの1周期の長さが二酸化炭素の吸収波長域(例えば、4.3μm)になっていることから、構造体層11は二酸化炭素に吸収される特定の波長の赤外線を選択的に吸収する。したがって、ケース30内の二酸化炭素濃度が高いと赤外線センサ10が検出する赤外線受光量は少なくなり、二酸化炭素濃度が低いと赤外線センサ10が検出する赤外線受光量は多くなる。また、赤外線光源20は一定強度の赤外線を照射しているので、この検出される赤外線受光量に基づいてケース30内の二酸化炭素濃度を検出することができる。   With the above configuration, the infrared sensor 10 of the carbon dioxide sensor 100 has a structure in which the length of one cycle of the concave portion 11a and the convex portion 11b is in the carbon dioxide absorption wavelength region (for example, 4.3 μm). The layer 11 selectively absorbs infrared light having a specific wavelength that is absorbed by carbon dioxide. Therefore, when the carbon dioxide concentration in the case 30 is high, the amount of infrared light received by the infrared sensor 10 decreases, and when the carbon dioxide concentration is low, the amount of infrared light received by the infrared sensor 10 increases. Further, since the infrared light source 20 emits infrared light having a constant intensity, the carbon dioxide concentration in the case 30 can be detected based on the detected amount of received infrared light.

なお、本発明の赤外線センサは、二酸化炭素検出センサのみならず、一酸化炭素センサや二酸化硫黄センサにも適用できる。一酸化炭素検出センサの場合には、凹部と凸部の1周期の長さを4.7μmとし、二酸化硫黄検出センサの場合には、凹部と凸部の1周期の長さを7.4μmとすればよい。   In addition, the infrared sensor of this invention is applicable not only to a carbon dioxide detection sensor but to a carbon monoxide sensor and a sulfur dioxide sensor. In the case of a carbon monoxide detection sensor, the length of one cycle of the concave portion and the convex portion is 4.7 μm, and in the case of the sulfur dioxide detection sensor, the length of one cycle of the concave portion and the convex portion is 7.4 μm. do it.

また、凹部と凸部の周期的構造を、周期の長さ(すなわち対応する特定の波長)が異なる複数の構造体層を形成すれば、特定の波長を有する複数種類の赤外線を検出することができる。   In addition, if a plurality of structural body layers having different period lengths (that is, corresponding specific wavelengths) are formed in the periodic structure of the concave and convex portions, a plurality of types of infrared rays having specific wavelengths can be detected. it can.

発明の実施の形態に係る赤外線センサの要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the infrared sensor which concerns on embodiment of invention. 実施の形態の赤外線センサにおける構造体層の一部拡大断面斜視図である。It is a partial expanded sectional perspective view of the structure layer in the infrared sensor of an embodiment. 実施の形態の赤外線センサの製造工程を説明する図である。It is a figure explaining the manufacturing process of the infrared sensor of embodiment. 実施の形態の赤外線センサにおける構造体層の他の例を示す図である。It is a figure which shows the other example of the structure layer in the infrared sensor of embodiment. 実施の形態の二酸化炭素センサの要部を示す図である。It is a figure which shows the principal part of the carbon dioxide sensor of embodiment.

符号の説明Explanation of symbols

1 シリコン基板
11 構造体層
11a 凹部
11b 凸部
2 サーモパイル
21 平面部
10 赤外線センサ
20 赤外線光源
30 ケース
100 二酸化炭素センサ
DESCRIPTION OF SYMBOLS 1 Silicon substrate 11 Structure layer 11a Concave part 11b Convex part 2 Thermopile 21 Plane part 10 Infrared sensor 20 Infrared light source 30 Case 100 Carbon dioxide sensor

Claims (2)

特定波長の赤外線を検出する赤外線センサであって、
当該赤外線センサの前記赤外線を受ける側に平面部を有する感温層と、該感温層の前記平面部側に形成された構造体層とを備え、
前記構造体層は、前記平面と平行な方向に凹凸が周期的に形成され、該凹凸の形状が該平面部と直角な面での断面形状が矩形波状で、かつ該凹凸の1周期の長さが前記特定の赤外線の波長と同程度としたことを特徴とする赤外線センサ。
An infrared sensor that detects infrared rays of a specific wavelength,
A temperature-sensitive layer having a plane portion on the side receiving the infrared rays of the infrared sensor, and a structure layer formed on the plane portion side of the temperature-sensitive layer,
In the structure layer, irregularities are periodically formed in a direction parallel to the plane, the irregular shape has a rectangular wave shape in a plane perpendicular to the plane portion, and the length of one period of the irregularities. The infrared sensor is characterized in that the length is approximately the same as the wavelength of the specific infrared ray.
前記構造体層の前記凹凸の1周期の長さが二酸化炭素の吸収波長域である請求項1に記載の赤外線センサと、
前記赤外線センサの前記構造体層に対して赤外線を含む光を照射する赤外線光源と、
前記赤外線センサと前記赤外線光源との間に雰囲気が導入される空間を形成するケース体と、
を備えたことを特徴とする二酸化炭素センサ。
The infrared sensor according to claim 1, wherein the length of one cycle of the unevenness of the structure layer is an absorption wavelength region of carbon dioxide;
An infrared light source for irradiating the structure layer of the infrared sensor with light containing infrared;
A case body forming a space in which an atmosphere is introduced between the infrared sensor and the infrared light source;
A carbon dioxide sensor characterized by comprising:
JP2008161881A 2008-06-20 2008-06-20 Infrared sensor and carbon dioxide sensor Expired - Fee Related JP5336114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161881A JP5336114B2 (en) 2008-06-20 2008-06-20 Infrared sensor and carbon dioxide sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161881A JP5336114B2 (en) 2008-06-20 2008-06-20 Infrared sensor and carbon dioxide sensor

Publications (2)

Publication Number Publication Date
JP2010002323A true JP2010002323A (en) 2010-01-07
JP5336114B2 JP5336114B2 (en) 2013-11-06

Family

ID=41584170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161881A Expired - Fee Related JP5336114B2 (en) 2008-06-20 2008-06-20 Infrared sensor and carbon dioxide sensor

Country Status (1)

Country Link
JP (1) JP5336114B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142418A (en) * 1987-11-30 1989-06-05 Toshiba Corp Infrared-ray detecting element
JPH03216522A (en) * 1990-01-22 1991-09-24 Matsushita Electric Ind Co Ltd Infrared detector for detection of flame
JPH06221919A (en) * 1993-01-23 1994-08-12 Horiba Ltd Branching/condensing element for multielement pyroelectric detector
JPH09172227A (en) * 1995-11-21 1997-06-30 Thomson Csf Photoelectron quantum well device
JP2005283435A (en) * 2004-03-30 2005-10-13 Japan Aviation Electronics Industry Ltd Infrared sensor
JP2006047085A (en) * 2004-08-04 2006-02-16 Denso Corp Infrared sensor device and its manufacturing method
JP2006524338A (en) * 2003-04-22 2006-10-26 レイセオン カンパニー Integrated spectroscopic microbolometer with microfilter array
JP2006313164A (en) * 2005-05-04 2006-11-16 Tyco Electronics Raychem Gmbh Gas sensor apparatus and gas measuring method
JP2007312012A (en) * 2006-05-17 2007-11-29 Toshiba Corp Compact camera module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142418A (en) * 1987-11-30 1989-06-05 Toshiba Corp Infrared-ray detecting element
JPH03216522A (en) * 1990-01-22 1991-09-24 Matsushita Electric Ind Co Ltd Infrared detector for detection of flame
JPH06221919A (en) * 1993-01-23 1994-08-12 Horiba Ltd Branching/condensing element for multielement pyroelectric detector
JPH09172227A (en) * 1995-11-21 1997-06-30 Thomson Csf Photoelectron quantum well device
JP2006524338A (en) * 2003-04-22 2006-10-26 レイセオン カンパニー Integrated spectroscopic microbolometer with microfilter array
JP2005283435A (en) * 2004-03-30 2005-10-13 Japan Aviation Electronics Industry Ltd Infrared sensor
JP2006047085A (en) * 2004-08-04 2006-02-16 Denso Corp Infrared sensor device and its manufacturing method
JP2006313164A (en) * 2005-05-04 2006-11-16 Tyco Electronics Raychem Gmbh Gas sensor apparatus and gas measuring method
JP2007312012A (en) * 2006-05-17 2007-11-29 Toshiba Corp Compact camera module

Also Published As

Publication number Publication date
JP5336114B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
US7807061B2 (en) Optical gas concentration detector and method of producing structure used in the detector
CN105336809B (en) Terahertz wave detector with arrays of conductive channel structure
JP6257407B2 (en) Infrared gas sensor
JP6694503B2 (en) Substrate for temperature measurement and temperature measurement system
JP6538844B2 (en) Sample Measurement Chip, Sample Measurement Device, and Sample Measurement Method
JP2006220623A (en) Fabry-perot interferometer and infrared sensor apparatus using same
JP2009210312A (en) Fabry-perot interferometer and method of manufacturing the same
KR20180126584A (en) Waveguide sensor with nanoporous surface layer
US9612159B2 (en) Infrared sensor and infrared sensor array
JP2007201475A (en) Narrow band transmission filter for euv radiation
JP5336114B2 (en) Infrared sensor and carbon dioxide sensor
WO2016024503A1 (en) Gas measurement apparatus, multiple-device substrate, manufacturing methods therefor, and methods for manufacturing infrared light source and pyroelectric infrared sensor
JP2006275632A (en) Spectroscopic gas sensor
JP2010127892A (en) Infrared sensor
JP2019174354A (en) Light receiving and emitting device and optical concentration measuring device
JP5943882B2 (en) Toner amount detection sensor
US20190258038A1 (en) Highly-folding pendular optical cavity
US11921031B2 (en) Compact gas sensor
JP2010127891A (en) Infrared sensor and method of manufacturing same
JP2009150699A (en) System for measuring position of object to be measured
JP4207128B2 (en) Infrared light source and infrared gas analyzer
JP2009288057A (en) Profile measuring apparatus
US11592384B2 (en) Device and method for detecting particles and method for manufacturing same
JP2018054546A (en) Radiation temperature measurement unit
US10684214B2 (en) Optical cavity with strong dynamic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees