JP2010001875A - Exhaust emission control device and exhaust emission control method - Google Patents

Exhaust emission control device and exhaust emission control method Download PDF

Info

Publication number
JP2010001875A
JP2010001875A JP2008163628A JP2008163628A JP2010001875A JP 2010001875 A JP2010001875 A JP 2010001875A JP 2008163628 A JP2008163628 A JP 2008163628A JP 2008163628 A JP2008163628 A JP 2008163628A JP 2010001875 A JP2010001875 A JP 2010001875A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
upstream
downstream
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008163628A
Other languages
Japanese (ja)
Inventor
Naoki Shimazaki
直基 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008163628A priority Critical patent/JP2010001875A/en
Publication of JP2010001875A publication Critical patent/JP2010001875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose an exhaust emission control device and an exhaust emission control method, capable of miniaturizing a heat exchanger, capable of highly maintaining exhaust emission control performance by efficiently exchanging heat by this small heat exchanger, and capable of restraining an increase in a pressure loss of exhaust gas by the heat exchanger, in the exhaust emission control device having the heat exchanger for transmitting heat of downstream side exhaust gas of an exhaust gas processing unit heating in exhaust gas processing of an internal combustion engine to upstream side exhaust gas of this exhaust gas processing unit. <P>SOLUTION: This exhaust emission control device comprises an upstream side bypass passage 5 for bypassing a part of the upstream side exhaust gas G1 around the heat exchanger 2, a downstream side bypass passage 9 for bypassing a part of the downstream side exhaust gas G3 around the heat exchanger 2, an upstream side opening-closing valve 6 for opening and closing the upstream side bypass passage 5, a downstream side opening-closing valve 10 for opening and closing the downstream side bypass passage 9, and a valve control device for controlling opening-closing operation of the upstream side opening-closing valve 6 and the downstream side opening-closing valve 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関等の排気ガス通路に配置された触媒等の排気ガス処理ユニットで発生した熱を、この排気ガス処理ユニットの上流側の排気ガスに伝達する排気ガス浄化装置及び排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purifying apparatus and an exhaust gas purifying apparatus for transferring heat generated in an exhaust gas processing unit such as a catalyst disposed in an exhaust gas passage of an internal combustion engine or the like to an exhaust gas upstream of the exhaust gas processing unit. Regarding the method.

自動車搭載のディーゼルエンジン等の内燃機関においては、厳しい排気ガス規制に対応するため、排気通路に触媒等の排気ガス処理装置が取り付けられつつある。例えば、触媒付きDPF(DPD)の前段に酸化触媒を配置し、この酸化触媒の触媒作用によって排気ガス中のHC、CO等を酸化し、この反応熱で排気ガスの温度を上昇させたり、あるいは、排気管内に燃料噴射して、この燃料を排気管中、又は、酸化触媒で酸化させて、排気ガスの温度を上昇させたりして、これにより、触媒付きDPFの温度を高く維持して、この触媒付きDPFにおける浄化率を向上することが試みられている。   In an internal combustion engine such as a diesel engine mounted on an automobile, an exhaust gas processing device such as a catalyst is being attached to an exhaust passage in order to comply with strict exhaust gas regulations. For example, an oxidation catalyst is arranged in front of a DPF with catalyst (DPD), and HC, CO, etc. in the exhaust gas are oxidized by the catalytic action of this oxidation catalyst, and the temperature of the exhaust gas is increased by this reaction heat, or Injecting fuel into the exhaust pipe and oxidizing the fuel in the exhaust pipe or with an oxidation catalyst to raise the temperature of the exhaust gas, thereby maintaining the temperature of the DPF with catalyst high, Attempts have been made to improve the purification rate of the DPF with catalyst.

これらの触媒反応は触媒の温度の影響を強く受けるため、触媒が高効率で作動する温度を維持することが重要となっている。特に、ディーゼルエンジンにおいては、DPF(ディーゼルパティキュレートフィルタ)、酸化触媒(DOC)、NOx低減触媒(DeNOx)等の複数の排気ガス処理ユニットが設置されるために、下流の排気ガス処理ユニットになるほど、その温度が低下し、活性化温度以上に維持することが困難となる。   Since these catalytic reactions are strongly influenced by the temperature of the catalyst, it is important to maintain a temperature at which the catalyst operates with high efficiency. In particular, in a diesel engine, a plurality of exhaust gas processing units such as a DPF (diesel particulate filter), an oxidation catalyst (DOC), and a NOx reduction catalyst (DeNOx) are installed. The temperature decreases and it becomes difficult to maintain the temperature above the activation temperature.

一般に、排気ガス温度が低い排気ガスの浄化率を向上するためには、多量の貴金属触媒を使用するが、この場合にはコストが高くなる。また、低温での浄化率が高い触媒では、高温時の浄化率が悪化するため、幅広い温度領域で高浄化率を維持することが難しい。また、排気管内噴射やポスト噴射等による燃料の発熱を利用して排気ガスの温度を昇温することで排気ガス処理ユニットの温度を維持しようとすると、燃費の悪化が生じるという問題がある。   In general, in order to improve the purification rate of exhaust gas having a low exhaust gas temperature, a large amount of noble metal catalyst is used, but in this case, the cost becomes high. In addition, with a catalyst having a high purification rate at low temperatures, the purification rate at high temperatures deteriorates, so it is difficult to maintain a high purification rate in a wide temperature range. Further, if the temperature of the exhaust gas processing unit is maintained by raising the temperature of the exhaust gas by utilizing the heat generated by the fuel by injection in the exhaust pipe, post injection, or the like, there is a problem that fuel consumption deteriorates.

このような状況への対応策の一つとして、酸化触媒等の排気ガスが通過する際に発熱する排気ガス処理ユニットを通過した下流側の排気ガスと、この排気ガス処理ユニット触媒に流入する上流側の排気ガスとの間で熱交換させることで、排気ガス処理ユニットを高い温度に維持して、この排気ガス処理ユニットの排気ガス処理能力を高い状態に維持する方法が提案されている。つまり、排気ガスの処理時に発熱する場合においては、排気ガス浄化装置に熱交換機能を持たせることで排気ガス浄化装置における浄化率を高く維持できる。   As one of countermeasures against such a situation, downstream exhaust gas that has passed through an exhaust gas processing unit that generates heat when exhaust gas such as an oxidation catalyst passes, and upstream that flows into this exhaust gas processing unit catalyst A method has been proposed in which the exhaust gas processing unit is maintained at a high temperature by exchanging heat with the exhaust gas on the side, and the exhaust gas processing capacity of the exhaust gas processing unit is maintained at a high level. That is, when heat is generated during processing of the exhaust gas, the purification rate in the exhaust gas purification device can be maintained high by providing the exhaust gas purification device with a heat exchange function.

これに関連するものの一つとして、例えば、触媒の昇温や保温を効率的に行うために、PMフィルタの排気上流側の排気管と排気下流側の排気管との間に、排気下流側の熱を回収して蓄熱し、蓄えた熱をその排気上流側の排気ガスに伝達する熱交換器を介設した内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照)。   As one of the related items, for example, in order to efficiently raise and keep the temperature of the catalyst, between the exhaust pipe on the exhaust upstream side of the PM filter and the exhaust pipe on the exhaust downstream side, An exhaust purification device for an internal combustion engine has been proposed that includes a heat exchanger that recovers and stores heat and stores the stored heat to exhaust gas upstream of the exhaust (for example, see Patent Document 1).

この熱交換器の容量に関しては、図11に示す、高温側の流量が小さいAと中間のBと大きいCで分かるように、排気ガスの最大流量と熱交換効率に関しては、一方が大きくなると他方が小さくなるというトレードオフの関係がある。過渡状態のJE−05モード排出ガス試験法等のように、エンジンの運転状態が低負荷運転の頻度が高く、排気ガスの温度が低くなるような運転状態の場合には、熱交換器による熱交換が有用となるが、このような運転状態では排気ガス流量が少ないため、図11のAのような熱交換器を低排気ガス流量でかつ熱交換効率が高いものとする必要がある。   Regarding the capacity of this heat exchanger, as shown in FIG. 11, the maximum flow rate of the exhaust gas and the heat exchange efficiency, as shown in FIG. There is a trade-off relationship that becomes smaller. When the engine is in an operating state where the frequency of low-load operation is high and the temperature of the exhaust gas is low, such as in the transient JE-05 mode exhaust gas test method, the heat generated by the heat exchanger Although exchange is useful, since the exhaust gas flow rate is small in such an operating state, it is necessary to make the heat exchanger as shown in FIG. 11A have a low exhaust gas flow rate and high heat exchange efficiency.

一方、エンジンの運転状態は高負荷運転となることもあり、高負荷運転では排気ガスの流量が多くなるので、全量を熱交換器を通過させるように構成すると熱交換器が大型化する。この大型化した図11のCに示すような大容量の熱交換器では、排気ガスの流量が少なくなる低負荷運転で熱交換効率が著しく低下してしまう。その上、熱交換器の大型化により、排気ガス浄化システムの熱容量が増加するため、エンジン始動時の暖気性が悪化するという問題が生じる。
特開2002−38935号公報
On the other hand, the operating state of the engine may be a high-load operation, and the exhaust gas flow rate increases in the high-load operation. Therefore, if the entire amount is passed through the heat exchanger, the heat exchanger becomes large. In such a large-capacity heat exchanger as shown in FIG. 11C, the heat exchange efficiency is remarkably lowered at low load operation where the flow rate of the exhaust gas is reduced. In addition, since the heat capacity of the exhaust gas purification system increases due to the increase in the size of the heat exchanger, there arises a problem that the warm-up property at the time of starting the engine deteriorates.
JP 2002-38935 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、内燃機関の排気ガス処理中に発熱する排気ガス処理ユニットの下流側の排気ガスの熱を、この排気ガス処理ユニットの上流側の排気ガスに伝達する熱交換器を備えた排気ガス浄化装置において、熱交換器を小型化できて、この小型の熱交換器で効率よく熱交換して排気ガス浄化性能を高く維持できると共に、熱交換器による排気ガスの圧力損失の増加を抑制することができる排気ガス浄化装置及び排気ガス浄化方法を提案することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to reduce the heat of the exhaust gas downstream of the exhaust gas processing unit that generates heat during the exhaust gas processing of the internal combustion engine. In an exhaust gas purification apparatus equipped with a heat exchanger that transmits to upstream exhaust gas, the heat exchanger can be downsized, and heat exchange can be efficiently performed with this small heat exchanger to maintain high exhaust gas purification performance. A further object is to propose an exhaust gas purification device and an exhaust gas purification method capable of suppressing an increase in the pressure loss of the exhaust gas due to the heat exchanger.

上記のような目的を達成するための排気ガス浄化装置は、内燃機関の排気ガス処理中に発熱する排気ガス処理ユニットを備えると共に、この排気ガス処理ユニットの下流側の排気ガスの熱を、この排気ガス処理ユニットの上流側の排気ガスに伝達する熱交換器を備えた排気ガス浄化装置において、上流側の排気ガスの一部を前記熱交換器を迂回させる上流側バイパス通路と、下流側の排気ガスの一部を前記熱交換器を迂回させる下流側バイパス通路と、前記上流側バイパス通路を開閉する上流側開閉弁と、前記下流側バイパス通路を開閉する下流側開閉弁と、前記上流側開閉弁と前記下流側開閉弁の開閉操作を制御する弁制御装置を備えて構成される。   An exhaust gas purification apparatus for achieving the above object includes an exhaust gas processing unit that generates heat during exhaust gas processing of an internal combustion engine, and the heat of exhaust gas downstream of the exhaust gas processing unit In an exhaust gas purification apparatus having a heat exchanger that transmits heat to an exhaust gas upstream of an exhaust gas treatment unit, an upstream bypass passage that bypasses the heat exchanger for a part of the upstream exhaust gas, and a downstream A downstream bypass passage for bypassing part of the exhaust gas to the heat exchanger, an upstream opening / closing valve for opening / closing the upstream bypass passage, a downstream opening / closing valve for opening / closing the downstream bypass passage, and the upstream side A valve control device for controlling the opening / closing operation of the opening / closing valve and the downstream opening / closing valve is provided.

この構成によれば、熱交換の不要時に排気ガスの一部を上流側バイパス通路又は下流側バイパス通路又は同方のバイパス通路で熱交換器を迂回させることにより、熱交換器の容量を熱交換が必要なときの排気ガスの流量にして、必要最小限な流量にすることができるようになるので、熱交換器の容量を小さくすることができ、小型化できる。   According to this configuration, when the heat exchange is unnecessary, a part of the exhaust gas is bypassed in the upstream bypass passage, the downstream bypass passage, or the bypass passage on the same side, so that the capacity of the heat exchanger can be exchanged. Since the flow rate of the exhaust gas when necessary can be reduced to the minimum necessary flow rate, the capacity of the heat exchanger can be reduced and the size can be reduced.

これにより、小型の熱交換器で効率よく熱交換して排気ガス処理ユニットに流入する排気ガスの温度を高めて、排気ガス処理ユニットにおける排気ガス処理性能を高く維持できると共に、熱交換器を小型化したにもかかわらず、熱交換器による排気ガスの圧力損失の増加を抑制することができる。   As a result, the temperature of the exhaust gas flowing into the exhaust gas treatment unit can be increased by efficiently exchanging heat with a small heat exchanger, and the exhaust gas treatment performance in the exhaust gas treatment unit can be maintained high, and the heat exchanger can be made compact. In spite of this, increase in the pressure loss of the exhaust gas due to the heat exchanger can be suppressed.

上記の排気ガス浄化装置において、前記弁制御装置が、内燃機関の運転領域が低排気温度領域の場合には前記熱交換器に上流側の排気ガスの全量と下流側の排気ガスの全量を流し、内燃機関の運転領域が前記低排気温度領域でない場合には、上流側の排気ガスの一部又は下流側の排気ガスの一部又はこの双方を前記熱交換器を迂回させる制御を行なうように構成される。   In the exhaust gas purifying apparatus described above, when the operating region of the internal combustion engine is in a low exhaust gas temperature region, the valve control device causes the entire amount of the upstream exhaust gas and the downstream exhaust gas to flow through the heat exchanger. When the operating region of the internal combustion engine is not the low exhaust temperature region, control is performed to bypass part of the upstream side exhaust gas and / or part of the downstream side exhaust gas from the heat exchanger. Composed.

ここでいう低排気温度領域とは、内燃機関の排気マニホールドを出た排気ガスがそのまま排気ガス浄化ユニットに流入したときに、排気ガス処理ユニットの温度が活性化する温度(例えば、酸化触媒で、150℃)よりも低くなるような排気温度の排気ガスを発生するエンジン運転領域のことをいい、低負荷運転あるいは低回転数運転がこれに相当する。なお、この低排気温度領域における排気温度(ここでは排気マニホールド直後の排気ガスの温度のことをいう)はエンジンの種類や排気管と排気ガス処理ユニットの配置などにもよるが、排気温度が20℃から150℃程度の場合である。   The low exhaust temperature region referred to here is a temperature at which the temperature of the exhaust gas treatment unit is activated when the exhaust gas exiting the exhaust manifold of the internal combustion engine flows into the exhaust gas purification unit as it is (for example, an oxidation catalyst, This refers to an engine operating region that generates exhaust gas having an exhaust temperature that is lower than 150 ° C., and corresponds to low-load operation or low-speed operation. The exhaust temperature in this low exhaust temperature region (referred to here as the temperature of the exhaust gas immediately after the exhaust manifold) depends on the type of engine, the arrangement of the exhaust pipe and the exhaust gas processing unit, etc., but the exhaust temperature is 20 This is a case of about 150 ° C to 150 ° C.

この構成によれば、下流側の排気ガスと上流側の排気ガスとの間で熱交換が必要となる内燃機関の運転状態が低排気温度領域の場合には、排気ガス量が比較少ない状態であるので、排気ガスの全量を熱交換器に流して効率よく熱交換できる。また、下流側の排気ガスと上流側の排気ガスとの間における熱交換が不要となるような、内燃機関の運転状態が低排気温度領域でない場合には、排気ガス量が比較多い状態であるので、排気ガスの一部を熱交換器を迂回させて流すことにより、熱交換器の容量を低排気温度領域における排気ガスの流量としたままで、排気ガスの圧力損失の増加を抑制できるようになる。   According to this configuration, when the operating state of the internal combustion engine that requires heat exchange between the downstream exhaust gas and the upstream exhaust gas is in the low exhaust temperature region, the amount of exhaust gas is relatively small. As a result, the entire amount of exhaust gas can be passed through a heat exchanger to efficiently exchange heat. In addition, when the operating state of the internal combustion engine is not in the low exhaust temperature region so that heat exchange between the downstream exhaust gas and the upstream exhaust gas is not necessary, the exhaust gas amount is relatively large. Therefore, by flowing a part of the exhaust gas around the heat exchanger, it is possible to suppress an increase in the pressure loss of the exhaust gas while keeping the capacity of the heat exchanger at the flow rate of the exhaust gas in the low exhaust temperature region. become.

従って、熱交換器の容量と熱交換効率を、熱交換が必要となるときで、即ち、低排気温度領域で、最適になるようにすればよいので、熱交換器の容量と熱交換効率を容易に設定できるようになる。なお、内燃機関の運転状態が低排気温度領域でない場合でも、排気ガスの全量を迂回させずに、熱交換器に熱交換器の容量分の排気ガスが流すので、熱交換器が冷めてしまうのを防止できる。   Therefore, the capacity and heat exchange efficiency of the heat exchanger should be optimized when heat exchange is required, that is, in the low exhaust temperature region. Easy to set. Even when the operating state of the internal combustion engine is not in the low exhaust temperature region, exhaust gas for the capacity of the heat exchanger flows through the heat exchanger without diverting the entire amount of exhaust gas, so the heat exchanger cools down. Can be prevented.

上記の排気ガス浄化装置において、前記上流側バイパス通路の一部又は全部を前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けるか、又は、前記下流側バイパス通路の一部又は全部を、前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けて構成するか、あるいは、前記上流側バイパス通路の一部又は全部を前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けると共に、前記下流側バイパス通路の一部又は全部を前記上流側バイパス通路の周囲に設けて構成する。   In the above exhaust gas purification device, a part or all of the upstream bypass passage is provided around at least one of the heat exchanger or the exhaust gas treatment unit, or a part or all of the downstream bypass passage. Is provided around at least one of the heat exchanger or the exhaust gas treatment unit, or a part or all of the upstream bypass passage is at least one of the heat exchanger or the exhaust gas treatment unit. And a part or all of the downstream bypass passage is provided around the upstream bypass passage.

これらの構成によれば、熱交換器又は排気ガス処理ユニット又は双方を、比較的低温であるが外気温度よりは高い温度の排気ガスが通過する上流側バイパス通路で、又は、比較的高温の排気ガスが通過する下流側バイパス通路で、又は、両方のバイパス通路で囲むので、熱交換器又は排気ガス処理ユニット又は双方からの放熱量を著しく減少して保温性を高めることができる。   According to these configurations, the heat exchanger and / or the exhaust gas treatment unit or both are disposed in an upstream bypass passage through which exhaust gas having a relatively low temperature but higher than the outside air temperature passes or a relatively high temperature exhaust gas. Since it is surrounded by the downstream bypass passage through which the gas passes or by both of the bypass passages, the heat release from the heat exchanger or the exhaust gas processing unit or both can be significantly reduced, and the heat retention can be improved.

そのため、低排温度運転の頻度が多い過渡運転領域でも、熱交換器を温めたまま維持できるので、排気ガス処理ユニットを高温に維持できる。なお、低排気温度領域でない場合には排気ガスの温度も高いので、十分に熱交換しないで排気ガス処理ユニットに排気ガスを流入させても、高い排気ガス浄化性能を維持できる。   Therefore, even in a transient operation region where the frequency of low exhaust temperature operation is high, the heat exchanger can be kept warm, so that the exhaust gas treatment unit can be maintained at a high temperature. If the exhaust gas temperature is not in the low exhaust temperature region, the exhaust gas temperature is also high, so that high exhaust gas purification performance can be maintained even if the exhaust gas flows into the exhaust gas processing unit without sufficient heat exchange.

そして、上記のような目的を達成するための排気ガス浄化方法は、内燃機関の排気ガス処理中に発熱する排気ガス処理ユニットを備えると共に、この排気ガス処理ユニットでの下流側の排気ガスの熱を、この排気ガス処理ユニットの上流側の排気ガスに伝達する熱交換器を備えた排気ガス浄化装置を用いた排気ガス浄化方法において、内燃機関の運転領域が低排気温度領域の場合には前記熱交換器に上流側の排気ガスの全量と下流側の排気ガスの全量を流し、内燃機関の運転領域が前記低排気温度領域でない場合には、上流側の排気ガスの一部、又は、下流側の排気ガスの一部、又は、この双方を、前記熱交換器を迂回させることを特徴とする方法である。   An exhaust gas purification method for achieving the above object includes an exhaust gas processing unit that generates heat during exhaust gas processing of an internal combustion engine, and heat of the exhaust gas downstream of the exhaust gas processing unit. In the exhaust gas purification method using the exhaust gas purification device provided with the heat exchanger that transmits the exhaust gas to the exhaust gas upstream of the exhaust gas treatment unit, when the operating region of the internal combustion engine is a low exhaust temperature region, When the total amount of the upstream exhaust gas and the total amount of the downstream exhaust gas are allowed to flow through the heat exchanger, and the operating region of the internal combustion engine is not the low exhaust temperature region, a part of the upstream exhaust gas or the downstream A part of the exhaust gas on the side or both of them bypass the heat exchanger.

この方法によれば、下流側の排気ガスと上流側の排気ガスとの間で熱交換が必要となる内燃機関の運転状態が低排気温度領域の場合には、排気ガス量が比較少ないので、排気ガスの全量を熱交換器に流して効率よく熱交換でき、熱交換が不要となる内燃機関の運転状態が低排気温度領域でない場合には、排気ガス量が比較多いので、排気ガスの一部を熱交換器を迂回させて流すことにより、熱交換器の容量を低排気温度領域における排気ガスの流量にしたままにしておいても、排気ガスの圧力損失の増加を回避することができる。   According to this method, when the operating state of the internal combustion engine that requires heat exchange between the downstream exhaust gas and the upstream exhaust gas is in the low exhaust temperature region, the amount of exhaust gas is relatively small, When the operating state of the internal combustion engine in which the entire amount of exhaust gas can be passed through a heat exchanger to efficiently exchange heat and no heat exchange is required is not in the low exhaust temperature region, the amount of exhaust gas is relatively large, By bypassing the heat exchanger around the heat exchanger, it is possible to avoid an increase in exhaust gas pressure loss even when the capacity of the heat exchanger is kept at the flow rate of the exhaust gas in the low exhaust temperature region. .

従って、熱交換器の容量と熱交換効率を熱交換が必要となるときに最適になるようにすることで容易に設定でき、熱交換器を小型化できる。また、排気ガスの浄化に際しては、熱交換が必要な場合には、熱交換率を高く維持して高い排気ガス浄化性能で排気ガスを浄化することができ、熱交換が不要な場合には、熱交換器による圧力損失を小さくすることができる。   Therefore, the capacity and heat exchange efficiency of the heat exchanger can be easily set by optimizing when heat exchange is required, and the heat exchanger can be downsized. Also, when purifying exhaust gas, if heat exchange is required, the exhaust gas can be purified with high exhaust gas purification performance by maintaining a high heat exchange rate, and if heat exchange is unnecessary, Pressure loss due to the heat exchanger can be reduced.

上記の排気ガス処理ユニットとしては、酸化触媒装置(DOC)、選択的還元触媒装置(SCR)、NOx吸蔵還元型触媒装置(LNT)等のNOx低減触媒(DeNOx)、触媒付きフィルタ装置(CSF)、触媒を担持しないフィルタ装置(DPF)、炭化水素吸蔵触媒装置(HCトラップ)の一つ又は幾つかの組合せで形成することができる。   Examples of the exhaust gas treatment unit include an oxidation catalyst device (DOC), a selective reduction catalyst device (SCR), a NOx storage reduction catalyst device (LNT) and other NOx reduction catalysts (DeNOx), and a catalyst-equipped filter device (CSF). The filter device (DPF) which does not carry a catalyst and the hydrocarbon storage catalyst device (HC trap) can be formed by one or several combinations.

本発明に係る排気ガス浄化装置及び排気ガス浄化方法よれば、熱交換の不要時に排気ガスの一部を上流側バイパス通路又は下流側バイパス通路又は両方のバイパス通路で熱交換器を迂回させることにより、熱交換器に流れる排気ガス量の容量を熱交換が必要なときの排気ガスの流量として、熱交換器を必要最小限な容量にすることができ、小型化できる。   According to the exhaust gas purification device and the exhaust gas purification method of the present invention, when heat exchange is unnecessary, a part of the exhaust gas is bypassed in the upstream bypass passage or the downstream bypass passage or both bypass passages. The capacity of the exhaust gas flowing through the heat exchanger can be set to the minimum necessary capacity as the flow rate of the exhaust gas when heat exchange is necessary, and the size can be reduced.

これにより、小型の熱交換器で効率よく熱交換して排気ガス処理ユニットに流入する排気ガス温度を高めて排気ガス処理ユニットにおける排気ガス処理性能を高く維持できると共に、熱交換器による排気ガスの圧力損失の増加を抑制することができる。また、熱交換器の小型化に伴って排気ガス浄化システムの熱容量の増加を抑制できるため、エンジン始動時の暖気性の悪化も抑制できる。   This makes it possible to efficiently exchange heat with a small heat exchanger and increase the temperature of the exhaust gas flowing into the exhaust gas treatment unit to maintain high exhaust gas treatment performance in the exhaust gas treatment unit. An increase in pressure loss can be suppressed. Moreover, since the increase in the heat capacity of the exhaust gas purification system can be suppressed with the downsizing of the heat exchanger, it is possible to suppress the deterioration of warm-up characteristics at the time of engine start.

以下、本発明に係る実施の形態の排気ガス浄化装置及び排気ガス浄化方法について、図1〜図4の模式的な斜視図と図5〜図10の模式的な側断面図を参照しながら説明する。なお、図1〜図4においては、図面を見易くするために、図5〜図10に示した上流側開閉弁6と下流側開閉弁10を省略している。また、図1〜図4の斜線部分(ハンチング部分)は、それぞれの装置又は通路の入口部分と出口部分を示している。   Hereinafter, an exhaust gas purification apparatus and an exhaust gas purification method according to an embodiment of the present invention will be described with reference to schematic perspective views of FIGS. 1 to 4 and schematic side sectional views of FIGS. 5 to 10. To do. In FIG. 1 to FIG. 4, the upstream side open / close valve 6 and the downstream side open / close valve 10 shown in FIG. 5 to FIG. 10 are omitted for easy understanding of the drawings. Moreover, the hatched part (hunting part) of FIGS. 1-4 has shown the entrance part and exit part of each apparatus or channel | path.

図1、図2及び図5に示すように、この実施の形態の排気ガス浄化装置1は、エンジン(内燃機関)の排気ガスG1の通路に、熱交換器2と排気ガス処理中に発熱する排気ガス処理ユニット3を備えて構成される。この熱交換器2は、排気ガス処理ユニット3の下流側の排気ガスG3の熱を、この排気ガス処理ユニット3の上流側の排気ガスG2に伝達する。これにより、排気ガス処理ユニットで発生した熱を回収する。   As shown in FIGS. 1, 2, and 5, the exhaust gas purifying apparatus 1 of this embodiment generates heat in the passage of the exhaust gas G1 of the engine (internal combustion engine) during the heat exchanger 2 and the exhaust gas treatment. An exhaust gas processing unit 3 is provided. The heat exchanger 2 transfers the heat of the exhaust gas G3 downstream of the exhaust gas processing unit 3 to the exhaust gas G2 upstream of the exhaust gas processing unit 3. Thereby, the heat generated in the exhaust gas processing unit is recovered.

エンジンから流出した排気ガスG1は、入口側通路4から熱交換器2の低温側通路を通過して熱交換により昇温した排気ガスG2になり、その後、この昇温した排気ガスG2は上流側通路7を経由して排気ガス処理ユニット3に流入する。排気ガス処理ユニット3で処理時の発熱によって更に昇温した排気ガスG3は下流側通路8を経由して熱交換器2の高温側通路に流入する。この熱交換器2で熱交換して降温した排気ガスG4は、この排気ガス浄化装置1の出口側通路11から、排気ガスG5としてエンジンの図示しない排気通路に流出するように構成される。   The exhaust gas G1 flowing out from the engine passes through the low-temperature side passage of the heat exchanger 2 from the inlet-side passage 4 to become the exhaust gas G2 heated by heat exchange, and then the heated exhaust gas G2 is upstream. It flows into the exhaust gas processing unit 3 via the passage 7. The exhaust gas G3 further heated by the heat generated during processing in the exhaust gas processing unit 3 flows into the high temperature side passage of the heat exchanger 2 via the downstream side passage 8. The exhaust gas G4 cooled by heat exchange in the heat exchanger 2 is configured to flow out from the outlet side passage 11 of the exhaust gas purification device 1 to the exhaust passage (not shown) of the engine as the exhaust gas G5.

この熱交換器2には、熱交換率が高いプレート型熱交換器やチューブタイプの熱交換器等を使用することができる。これにより、触媒等の発熱性を有する排気ガス処理ユニット3から流出した排気ガスG3を再び熱交換器2の高温側通路に流入させて、排気ガス浄化装置1に流入してきた排気ガスG1に熱を与えて、昇温した排気ガスG2とするので、排気ガス処理ユニット3の入口における排気ガスG2の温度を高めることができる。この熱交換器2の容量は、エンジンの運転状態が低排気温度領域の場合における排気ガスG1、G3の流量とする。   The heat exchanger 2 may be a plate heat exchanger or a tube type heat exchanger having a high heat exchange rate. As a result, the exhaust gas G3 flowing out of the exhaust gas processing unit 3 having exothermic properties, such as a catalyst, flows again into the high-temperature side passage of the heat exchanger 2, and the exhaust gas G1 flowing into the exhaust gas purification device 1 is heated. Therefore, the temperature of the exhaust gas G2 at the inlet of the exhaust gas processing unit 3 can be increased. The capacity of the heat exchanger 2 is the flow rate of the exhaust gases G1 and G3 when the engine operating state is in the low exhaust temperature region.

なお、ここでいう低排気温度領域とは、内燃機関の排気マニホールドを出た排気ガスがそのまま排気ガス浄化ユニットに流入したときに、排気ガス処理ユニットの温度が活性化する温度(例えば、酸化触媒で、150℃)よりも低くなるような排気温度の排気ガスを発生するエンジン運転領域のことをいい、低負荷運転あるいは低回転数運転がこれに相当する。なお、この低排気温度領域における排気温度(ここでは排気マニホールド直後の排気ガスの温度のことをいう)はエンジンの種類や排気管と排気ガス処理ユニット3の配置等にもよるが、排気温度が20℃から150℃程度の場合である。   Here, the low exhaust temperature region is a temperature at which the temperature of the exhaust gas treatment unit is activated when the exhaust gas exiting the exhaust manifold of the internal combustion engine flows into the exhaust gas purification unit as it is (for example, an oxidation catalyst). The engine operating region that generates exhaust gas having an exhaust temperature lower than 150 ° C. corresponds to low-load operation or low-speed operation. The exhaust temperature in this low exhaust temperature region (referred to here as the temperature of the exhaust gas immediately after the exhaust manifold) depends on the type of engine, the arrangement of the exhaust pipe and the exhaust gas processing unit 3, and the like. This is a case of about 20 ° C to 150 ° C.

また、排気ガス処理ユニット3は、この実施の形態では、選択的還元触媒装置(SCR)3aと、触媒を担持しないフィルタ装置(DPF)3bと、酸化触媒装置(DOC)3cで構成されている。なお、排気ガス処理ユニット3はこの例示の装置に限定されるものではなく、排気ガスG2の処理中に発熱が生じて、流入する排気ガスG2の温度よりも流出する排気ガスG3の温度が高くなるものであれば良く、これらの3つの装置3a、3b、3cと、NOx吸蔵還元型触媒装置(LNT)等のNOx低減触媒(DeNOx)、触媒付きフィルタ装置(CSF)、炭化水素吸蔵触媒装置(HCトラップ)の一つ又は幾つかの組合せで形成することができる。例えば、酸化触媒(DOC)の場合は、排気ガスG1、G2中のCOやHCを酸化できるので、この酸化反応熱により、排気ガスG3の温度を上昇させて、排気ガスの浄化率の向上に寄与する。   Further, in this embodiment, the exhaust gas treatment unit 3 includes a selective reduction catalyst device (SCR) 3a, a filter device (DPF) 3b that does not carry a catalyst, and an oxidation catalyst device (DOC) 3c. . The exhaust gas processing unit 3 is not limited to the illustrated apparatus, and heat is generated during the processing of the exhaust gas G2, and the temperature of the exhaust gas G3 flowing out is higher than the temperature of the inflowing exhaust gas G2. These three devices 3a, 3b, 3c, NOx reduction catalyst (DeNOx) such as NOx occlusion reduction type catalyst device (LNT), filter device with catalyst (CSF), hydrocarbon occlusion catalyst device It can be formed of one or a combination of several (HC traps). For example, in the case of an oxidation catalyst (DOC), CO and HC in the exhaust gases G1 and G2 can be oxidized. Therefore, this oxidation reaction heat increases the temperature of the exhaust gas G3, thereby improving the exhaust gas purification rate. Contribute.

本発明においては、更に、上流側の排気ガスG1の一部を熱交換器2を迂回させる上流側バイパス通路5と、下流側の排気ガスG3の一部を熱交換器2を迂回させる下流側バイパス通路9と、上流側バイパス通路5を開閉する上流側開閉弁6と、下流側バイパス通路9を開閉する下流側開閉弁10と、上流側開閉弁6と下流側開閉弁10の開閉操作を制御する弁制御装置(図示しない)を備えて構成する。   In the present invention, further, an upstream bypass passage 5 that bypasses part of the upstream exhaust gas G1 from the heat exchanger 2 and a downstream side that bypasses the heat exchanger 2 from a part of the downstream exhaust gas G3. The bypass passage 9, the upstream opening / closing valve 6 that opens / closes the upstream bypass passage 5, the downstream opening / closing valve 10 that opens / closes the downstream bypass passage 9, and the opening / closing operation of the upstream opening / closing valve 6 and the downstream opening / closing valve 10. A valve control device (not shown) for controlling is provided.

この弁制御装置は、エンジンの運転全般を制御するECU(エンジンコントロールユニット)と呼ばれる制御装置に組み込んで、熱交換器2とその外周部への流路5、9との切り替えは、ECUなどで計算された排気ガスG1の流量から判定して、上流側開閉弁6と下流側開閉弁10の開閉操作を行う。また、コストを削減するために上流側開閉弁6と下流側開閉弁10を、リード弁などで構成し、閉弁するときのバネ等の荷重を予め決めて設定しておき、排気ガスG1、G3の圧力が予め決めた閾値を越えるときに、排気ガスG1、G3の圧力によって自動的に開弁する構造としてもよい。   This valve control device is incorporated in a control device called an ECU (engine control unit) that controls the overall operation of the engine, and switching between the heat exchanger 2 and the flow paths 5 and 9 to the outer periphery thereof is performed by an ECU or the like. Judging from the calculated flow rate of the exhaust gas G1, the opening / closing operation of the upstream opening / closing valve 6 and the downstream opening / closing valve 10 is performed. Further, in order to reduce the cost, the upstream side open / close valve 6 and the downstream side open / close valve 10 are constituted by reed valves, and a load such as a spring when closing the valve is determined and set in advance, and the exhaust gas G1, When the pressure of G3 exceeds a predetermined threshold value, the valve may be automatically opened by the pressures of the exhaust gases G1 and G3.

この実施の形態では、図3と図6に示すように、上流側バイパス通路5は、熱交換器2の周囲を囲むように配置される。また、図4と図7に示すように、下流側バイパス通路9は、上流側バイパス通路5を囲むように配置される。この構成によれば、両方のバイパス通路5、9で熱交換器2を囲むので、熱交換器2からの放熱量を著しく減少して保温性を高めることができる。そのため、低排気温度領域の頻度が多い過渡運転状態のようなエンジンの運転状態の場合であっても、排気ガス処理ユニット3の温度を高温に維持することができる。   In this embodiment, as shown in FIGS. 3 and 6, the upstream bypass passage 5 is disposed so as to surround the periphery of the heat exchanger 2. As shown in FIGS. 4 and 7, the downstream bypass passage 9 is disposed so as to surround the upstream bypass passage 5. According to this configuration, since the heat exchanger 2 is surrounded by both the bypass passages 5 and 9, it is possible to remarkably reduce the amount of heat released from the heat exchanger 2 and improve the heat retaining property. Therefore, the temperature of the exhaust gas processing unit 3 can be maintained at a high temperature even in an engine operating state such as a transient operating state where the frequency of the low exhaust temperature region is high.

なお、この実施の形態では、熱交換器2の周囲に上流側バイパス通路5を設け、この上流側バイパス通路5の周囲に下流側バイパス通路9を設けているが、下流側バイパス通路9の一部又は全部を熱交換器2の周囲に設けるか、又は、上流側バイパス通路5の一部又は全部を熱交換器2の周囲に設けて構成する場合もある。この場合には排気ガス浄化装置1を小さくすることができる。また、下流側バイパス通路9の一部又は全部を熱交換器2の周囲に設けると共に、上流側バイパス通路5の一部又は全部を下流側バイパス通路9の周囲に設けて構成してもよい。この場合には、熱交換器2を排気ガス温度が高い下流側バイパス通路9で囲み、更に、排気ガス温度が低い上流側バイパス通路5で囲むことになる。なお、バイパス通路5、9のそれぞれに関して、これらを、熱交換器2の周囲でなく、排気ガス処理ユニット3の周囲に配置してもよく、熱交換器2と排気ガス処理ユニット3の両方の周囲に配置してもよい。   In this embodiment, the upstream bypass passage 5 is provided around the heat exchanger 2 and the downstream bypass passage 9 is provided around the upstream bypass passage 5. In some cases, a part or the whole is provided around the heat exchanger 2, or a part or the whole of the upstream bypass passage 5 is provided around the heat exchanger 2. In this case, the exhaust gas purification device 1 can be made smaller. Further, a part or all of the downstream bypass passage 9 may be provided around the heat exchanger 2 and a part or all of the upstream bypass passage 5 may be provided around the downstream bypass passage 9. In this case, the heat exchanger 2 is surrounded by the downstream bypass passage 9 having a high exhaust gas temperature and further surrounded by the upstream bypass passage 5 having a low exhaust gas temperature. In addition, regarding each of the bypass passages 5 and 9, these may be disposed not around the heat exchanger 2 but around the exhaust gas treatment unit 3, and both of the heat exchanger 2 and the exhaust gas treatment unit 3 may be arranged. You may arrange | position around.

これらの構成によれば、熱交換器2又は排気ガス処理ユニット3の少なくとも一方を、比較的低温であるが外気温度よりは高い温度の排気ガスG1が通過する上流側バイパス通路5で、又は、比較的高温の排気ガスG3が通過する下流側バイパス通路9で、又は、両方のバイパス通路5、9で囲むので、熱交換器2又は排気ガス処理ユニット3の少なくとも一方からの放熱量を著しく減少して保温性を高めることができる。つまり、触熱交換器2又は排気ガス処理ユニット3の少なくとも一方の外周部に高温ガスG3が流れることで、触熱交換器2又は排気ガス処理ユニット3の少なくとも一方に対する保温効果を期待できる。これにより、高い熱交換効率を維持でき、排気ガス処理ユニット3に流入する排気ガスG2の温度を高くすることができるので、低排温度領域の頻度が多い過渡運転状態でも排気ガス処理ユニット3の温度を高温に維持することができる。   According to these configurations, at least one of the heat exchanger 2 and the exhaust gas treatment unit 3 is passed through the upstream bypass passage 5 through which the exhaust gas G1 having a relatively low temperature but higher than the outside air temperature passes, or Since it is surrounded by the downstream bypass passage 9 through which the relatively high-temperature exhaust gas G3 passes or by both bypass passages 5 and 9, the amount of heat released from at least one of the heat exchanger 2 or the exhaust gas treatment unit 3 is significantly reduced. And heat retention can be improved. That is, when the high temperature gas G3 flows through at least one outer peripheral portion of the contact heat exchanger 2 or the exhaust gas treatment unit 3, a heat retaining effect on at least one of the contact heat exchanger 2 or the exhaust gas treatment unit 3 can be expected. Accordingly, high heat exchange efficiency can be maintained, and the temperature of the exhaust gas G2 flowing into the exhaust gas processing unit 3 can be increased. Therefore, even in a transient operation state where the frequency of the low exhaust temperature region is high, the exhaust gas processing unit 3 The temperature can be maintained at a high temperature.

そして、低排気温度領域の場合で、上流側開閉弁6と下流側開閉弁10の両方を閉弁した時は、図5に示すように、排気ガスG1の全量が熱交換器2を通過し、排気ガスG2は上流側通路7を経由して、排気ガス処理ユニット3に流入する。また、排気ガス処理ユニット3から流出した排気ガスG3はその全量が熱交換器2を通過して、熱交換後の排気ガスG4は排気ガスG5として出口側通路11から、図示しない排気通路に流出する。   In the case of the low exhaust temperature region, when both the upstream side open / close valve 6 and the downstream side open / close valve 10 are closed, the entire amount of the exhaust gas G1 passes through the heat exchanger 2 as shown in FIG. The exhaust gas G2 flows into the exhaust gas processing unit 3 via the upstream passage 7. Further, the exhaust gas G3 flowing out from the exhaust gas processing unit 3 passes through the heat exchanger 2 and the exhaust gas G4 after heat exchange flows out from the outlet side passage 11 to the exhaust passage (not shown) as the exhaust gas G5. To do.

また、上流側開閉弁6を開弁したときには、図8に示すように、入口側通路4を流れる排気ガスG1の一部が、上流側バイパス通路5を通過して、熱交換器2を迂回して、排気ガス処理ユニット3に流入する。一方、下流側開閉弁10を開弁したときには、図9に示すように、下流側通路8を流れる排気ガスG3の一部が、下流側バイパス通路9を通過して、熱交換器2を迂回して出口側通路11に流れる。   Further, when the upstream side opening / closing valve 6 is opened, as shown in FIG. 8, a part of the exhaust gas G1 flowing through the inlet side passage 4 passes through the upstream side bypass passage 5 and bypasses the heat exchanger 2. Then, it flows into the exhaust gas processing unit 3. On the other hand, when the downstream opening / closing valve 10 is opened, as shown in FIG. 9, a part of the exhaust gas G3 flowing through the downstream passage 8 passes through the downstream bypass passage 9 and bypasses the heat exchanger 2. And flows to the outlet side passage 11.

更に、上流側開閉弁6と下流側開閉弁10の両方を開弁した時は、図10に示すように、入口側通路4を流れる排気ガスG1の一部が、上流側バイパス通路5を通過して、熱交換器2を迂回して、熱交換器2を通過した排気ガスG2と合流して排気ガス処理ユニット3に流入すると共に、下流側通路8を流れる排気ガスG3の一部が、下流側バイパス通路9を通過して、熱交換器2を迂回して、熱交換器2を通過した排気ガスG4と合流して、排気ガスG5として出口側通路11から流出する。   Further, when both the upstream side opening / closing valve 6 and the downstream side opening / closing valve 10 are opened, a part of the exhaust gas G1 flowing through the inlet side passage 4 passes through the upstream side bypass passage 5 as shown in FIG. Then, bypassing the heat exchanger 2 and joining the exhaust gas G2 passing through the heat exchanger 2 and flowing into the exhaust gas processing unit 3, a part of the exhaust gas G3 flowing through the downstream passage 8 is The gas passes through the downstream bypass passage 9, bypasses the heat exchanger 2, merges with the exhaust gas G4 that has passed through the heat exchanger 2, and flows out from the outlet side passage 11 as exhaust gas G5.

次に、上記の構成の排気ガス浄化装置1における排気ガス浄化方法について説明する。本発明に係る排気ガス浄化方法によれば、エンジンの運転領域が低排気温度領域の場合には、上流側開閉弁6と下流側開閉弁10を閉弁して、熱交換器2に上流側に排気ガスG1の全量と下流側の排気ガスG3の全量を流入させる。また、エンジンの運転領域が低排気温度領域でない場合には、上流側の排気ガスG1の一部、又は、下流側の排気ガスG3の一部、又は、この双方の排気ガスG1、G3を、熱交換器2を迂回させる。   Next, an exhaust gas purification method in the exhaust gas purification apparatus 1 having the above configuration will be described. According to the exhaust gas purification method of the present invention, when the engine operating region is the low exhaust temperature region, the upstream side on-off valve 6 and the downstream side on-off valve 10 are closed, and the heat exchanger 2 is connected to the upstream side. The total amount of exhaust gas G1 and the total amount of exhaust gas G3 on the downstream side are allowed to flow into. Further, when the engine operating region is not the low exhaust temperature region, a part of the exhaust gas G1 on the upstream side, a part of the exhaust gas G3 on the downstream side, or both of the exhaust gases G1, G3, The heat exchanger 2 is bypassed.

つまり、弁制御装置が、エンジンの運転領域が低排気温度領域の場合には、熱交換器2に上流側の排気ガスG1の全量と下流側の排気ガスG3の全量を流し、エンジンの運転領域が低排気温度領域でない場合には、上流側の排気ガスG1の一部又は下流側の排気ガスG3の一部又はこの双方の排気ガスG1、G3を熱交換器2を迂回させる制御を行なうように構成される。   That is, when the engine operating region is in the low exhaust temperature region, the valve control device causes the heat exchanger 2 to flow the entire upstream exhaust gas G1 and the downstream exhaust gas G3 to the engine operating region. When the exhaust gas temperature is not in the low exhaust temperature region, control is performed to bypass part of the exhaust gas G1 on the upstream side, part of the exhaust gas G3 on the downstream side, or both of the exhaust gases G1, G3 from the heat exchanger 2. Configured.

なお、通常は、弁の開閉制御の簡略化のために、同上流側開閉弁6と下流側開閉弁10を弁制御装置で同時に開閉弁操作する。しかし、排気ガスの温度によって排気ガスの体積が異なるため、通過可能な排気ガスの流量に合わせて、上流側開閉弁6と下流側開閉弁10を個別に制御してもよい。また、上流側開閉弁6と下流側開閉弁10を、リード弁等で形成して、排気ガスG1、G3の圧力によって自動的に開閉するように構成した場合には、つまり、弁制御装置をバネ等の弾性体で構成した場合等では、必ずしも同時に開閉するとは限らない。   Normally, in order to simplify the valve opening / closing control, the upstream opening / closing valve 6 and the downstream opening / closing valve 10 are simultaneously operated by the valve control device. However, since the volume of the exhaust gas varies depending on the temperature of the exhaust gas, the upstream side open / close valve 6 and the downstream side open / close valve 10 may be individually controlled in accordance with the flow rate of the exhaust gas that can pass therethrough. Further, when the upstream side open / close valve 6 and the downstream side open / close valve 10 are formed by reed valves or the like and are automatically opened and closed by the pressures of the exhaust gases G1 and G3, that is, the valve control device is In the case of an elastic body such as a spring, it does not always open and close simultaneously.

この方法によれば、下流側の排気ガスG3と上流側の排気ガスG1との間で熱交換が必要となるエンジンの運転状態が低排気温度領域の場合には、即ち、低回転運転や低負荷運転等の場合には、排気ガスG1、G3の流量が比較少ないので、排気ガスG1、G3の全量を熱交換器2に流して効率よく熱交換できる。また、熱交換が不要となるエンジンの運転状態が低排気温度領域でない場合には、排気ガスG1、G3の流量が比較多いので、排気ガスG1、G3の一部を熱交換器2を迂回させて流すことにより、熱交換器2の容量を低排気温度領域における排気ガスG1、G3の流量に合わせたままにしておいても、排気ガスG1、G3の圧力損失の増加を回避することができる。   According to this method, when the operating state of the engine that requires heat exchange between the exhaust gas G3 on the downstream side and the exhaust gas G1 on the upstream side is in a low exhaust temperature region, that is, low rotation operation or low In the case of load operation or the like, since the flow rates of the exhaust gases G1 and G3 are relatively small, the entire amount of the exhaust gases G1 and G3 can be passed through the heat exchanger 2 to efficiently exchange heat. In addition, when the engine operating state that does not require heat exchange is not in the low exhaust temperature region, the flow rates of the exhaust gases G1 and G3 are relatively large, so that a part of the exhaust gases G1 and G3 is bypassed the heat exchanger 2. Therefore, even if the capacity of the heat exchanger 2 is kept in accordance with the flow rates of the exhaust gases G1 and G3 in the low exhaust temperature region, an increase in pressure loss of the exhaust gases G1 and G3 can be avoided. .

上記の排気ガス浄化装置1及び排気ガス浄化方法によれば、排気ガス処理ユニット3の温度を高温に保つ必要があり、排気ガスG1の流量が少ない運転領域の排気ガスG2、G3の間で熱交換させ、排気ガス浄化装置1の小型化と熱容量の低減を図り、更に、排気ガス温度が高い運転時には熱交換器2とその外周部に高温ガスを流すことで、排気ガス浄化装置1全体の温度を高温に維持する。   According to the exhaust gas purification device 1 and the exhaust gas purification method described above, it is necessary to keep the temperature of the exhaust gas processing unit 3 at a high temperature, and heat is generated between the exhaust gases G2 and G3 in the operation region where the flow rate of the exhaust gas G1 is small. The exhaust gas purification device 1 is reduced in size and heat capacity is reduced. Further, when the exhaust gas temperature is high, the exhaust gas purification device 1 is made to flow by flowing a high-temperature gas through the heat exchanger 2 and its outer periphery. Keep temperature high.

従って、熱交換器2の容量と熱交換効率を熱交換が必要となるときに最適になるようにすればよいので、熱交換器の容量と熱交換効率を容易に設定できるようになり、しかも、熱交換器2を小型化できる。また、排気ガスG3の浄化に際しては、熱交換が必要な場合には、熱交換率を高く維持して、排気ガス処理ユニット3において高い排気ガス浄化性能で排気ガスG3を浄化することができ、熱交換が不要な場合には熱交換器2による圧力損失を小さくすることができる。   Accordingly, since the capacity and heat exchange efficiency of the heat exchanger 2 need only be optimized when heat exchange is required, the capacity and heat exchange efficiency of the heat exchanger can be easily set. The heat exchanger 2 can be reduced in size. In addition, when purifying the exhaust gas G3, if heat exchange is necessary, the exhaust gas G3 can be purified with high exhaust gas purification performance in the exhaust gas processing unit 3 while maintaining a high heat exchange rate. When heat exchange is unnecessary, the pressure loss due to the heat exchanger 2 can be reduced.

これにより、小型の熱交換器2で効率よく熱交換して排気ガス処理ユニット3に流入する排気ガスG2の温度を高めて、排気ガス処理ユニット3における排気ガス処理性能を高く維持できると共に、熱交換器2による排気ガスG1、G3の圧力損失の増加を抑制することができる。   As a result, the heat of the exhaust gas G2 flowing into the exhaust gas processing unit 3 by efficiently exchanging heat with the small heat exchanger 2 can be increased, and the exhaust gas processing performance in the exhaust gas processing unit 3 can be maintained high. An increase in the pressure loss of the exhaust gases G1 and G3 due to the exchanger 2 can be suppressed.

なお、排気ガスG1、G3の流量が多い低運転領域でない場合には排気ガスG1、G2の温度も高いので、熱交換しないで排気ガス処理ユニット3に排気ガスG1、G2を流入させても、高い排気ガス浄化性能を維持できる。   If the exhaust gas G1, G3 is not in a low operating region where the flow rate is large, the temperature of the exhaust gas G1, G2 is also high, so even if the exhaust gas G1, G2 flows into the exhaust gas processing unit 3 without heat exchange, High exhaust gas purification performance can be maintained.

また、上記の排気ガス浄化装置1と排気ガス浄化方法と、燃料と空気を十分に混合させた後、燃焼させることでNOxと煤を大幅に低減することができるPCI(Premixed Compression Ignition)燃焼を併用することで、比較的高濃度のCOやHCを排気ガス処理ユニット3の触媒で酸化させて、排気ガス処理ユニット3の温度を高く維持して、NOx、煤に対する低温活性を高め、エンジンの広い運転領域で排気ガス中のNOx、煤等を低減できるので、低燃費を維持したまま、大気中に排出される排気ガスの状態を良好な状態にすることができる。   In addition, the exhaust gas purification device 1 and the exhaust gas purification method described above, and the premixed compression ignition (PCI) combustion that can significantly reduce NOx and soot by thoroughly mixing fuel and air and then burning the mixture. By using in combination, relatively high concentrations of CO and HC are oxidized by the catalyst of the exhaust gas treatment unit 3, the temperature of the exhaust gas treatment unit 3 is maintained high, and the low-temperature activity for NOx and soot is increased. Since NOx, soot, etc. in the exhaust gas can be reduced in a wide operating range, the state of the exhaust gas discharged into the atmosphere can be made good while maintaining low fuel consumption.

本発明に係る実施の形態の排気ガス浄化装置の外観を模式的に示す斜視図である。1 is a perspective view schematically showing an external appearance of an exhaust gas purification apparatus according to an embodiment of the present invention. 図1の排気ガス浄化装置の熱交換器と排気ガス処理ユニットの構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the heat exchanger of the exhaust gas purification apparatus of FIG. 1, and an exhaust gas processing unit. 図1の排気ガス浄化装置の上流側バイアス通路の構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a configuration of an upstream bias passage of the exhaust gas purification device of FIG. 1. 図1の排気ガス浄化装置の下流側バイアス通路の構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a configuration of a downstream side bias passage of the exhaust gas purification device of FIG. 1. 本発明に係る実施の形態の排気ガス浄化装置の熱交換器と排気ガス処理ユニットの構成と上流側開閉弁と下流側開閉弁の両方を閉弁したときの排気ガスの流れを模式的に示す側断面図である。1 schematically shows a configuration of a heat exchanger and an exhaust gas processing unit of an exhaust gas purification apparatus according to an embodiment of the present invention, and a flow of exhaust gas when both an upstream side open / close valve and a downstream side open / close valve are closed. It is a sectional side view. 図5の排気ガス浄化装置の上流側バイパス通路の構成を模式的に示す側断面図である。FIG. 6 is a side sectional view schematically showing a configuration of an upstream bypass passage of the exhaust gas purification device of FIG. 5. 図5の排気ガス浄化装置の下流側バイパス通路の構成を模式的に示す側断面図である。FIG. 6 is a side sectional view schematically showing a configuration of a downstream bypass passage of the exhaust gas purification device of FIG. 5. 図5の排気ガス浄化装置において、上流側開閉弁を開弁し、下流側開閉弁を閉弁したときの排気ガスの流れを模式的に示す側断面図である。FIG. 6 is a side sectional view schematically showing the flow of exhaust gas when the upstream on-off valve is opened and the downstream on-off valve is closed in the exhaust gas purification apparatus of FIG. 5. 図5の排気ガス浄化装置において、上流側開閉弁を閉弁し、下流側開閉弁を開弁したときの排気ガスの流れを模式的に示す側断面図である。FIG. 6 is a side sectional view schematically showing the flow of exhaust gas when the upstream on-off valve is closed and the downstream on-off valve is opened in the exhaust gas purification apparatus of FIG. 5. 図5の排気ガス浄化装置において、上流側開閉弁と下流側開閉弁の両方を開弁したときの排気ガスの流れを模式的に示す側断面図である。FIG. 6 is a side sectional view schematically showing the flow of exhaust gas when both the upstream side opening / closing valve and the downstream side opening / closing valve are opened in the exhaust gas purification apparatus of FIG. 5. 熱交換器における高温側流量と低温側温度効率との関係を示す図である。It is a figure which shows the relationship between the high temperature side flow volume and low temperature side temperature efficiency in a heat exchanger.

符号の説明Explanation of symbols

1 排気ガス浄化装置
2 熱交換器
3 排気ガス処理ユニット
4 入口側通路
5 上流側バイパス通路
6 上流側開閉弁
7 上流側通路
8 下流側通路
9 下流側バイパス通路
10 下流側開閉弁
11 出口側通路
G1、G2、G3、G4、G5 排気ガス
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification apparatus 2 Heat exchanger 3 Exhaust gas processing unit 4 Inlet side passage 5 Upstream bypass passage 6 Upstream side on-off valve 7 Upstream side passage 8 Downstream side passage 9 Downstream side bypass passage 10 Downstream side on-off valve 11 Outlet side passage G1, G2, G3, G4, G5 Exhaust gas

Claims (5)

内燃機関の排気ガス処理中に発熱する排気ガス処理ユニットを備えると共に、この排気ガス処理ユニットの下流側の排気ガスの熱を、この排気ガス処理ユニットの上流側の排気ガスに伝達する熱交換器を備えた排気ガス浄化装置において、
上流側の排気ガスの一部を前記熱交換器を迂回させる上流側バイパス通路と、下流側の排気ガスの一部を前記熱交換器を迂回させる下流側バイパス通路と、前記上流側バイパス通路を開閉する上流側開閉弁と、前記下流側バイパス通路を開閉する下流側開閉弁と、前記上流側開閉弁と前記下流側開閉弁の開閉操作を制御する弁制御装置を備えたことを特徴とする排気ガス浄化装置。
A heat exchanger that includes an exhaust gas processing unit that generates heat during exhaust gas processing of an internal combustion engine, and that transfers heat of exhaust gas downstream of the exhaust gas processing unit to exhaust gas upstream of the exhaust gas processing unit In an exhaust gas purifying apparatus comprising:
An upstream bypass passage that bypasses the heat exchanger for a part of the exhaust gas on the upstream side, a downstream bypass passage that bypasses the heat exchanger for a part of the exhaust gas on the downstream side, and the upstream bypass passage An upstream on-off valve that opens and closes, a downstream on-off valve that opens and closes the downstream bypass passage, and a valve control device that controls opening and closing operations of the upstream on-off valve and the downstream on-off valve Exhaust gas purification device.
前記弁制御装置が、内燃機関の運転領域が低排気温度領域の場合には前記熱交換器に上流側の排気ガスの全量と下流側の排気ガスの全量を流し、内燃機関の運転領域が前記低排気温度領域でない場合には、上流側の排気ガスの一部又は下流側の排気ガスの一部又はこの双方を前記熱交換器を迂回させる制御を行なうことを特徴とする請求項1記載の排気ガス浄化装置。   When the operating range of the internal combustion engine is a low exhaust temperature range, the valve control device causes the entire amount of upstream exhaust gas and the entire amount of downstream exhaust gas to flow through the heat exchanger. 2. The control according to claim 1, wherein when the temperature is not in a low exhaust temperature range, control is performed to bypass part of the upstream side exhaust gas and / or part of the downstream side exhaust gas from the heat exchanger. Exhaust gas purification device. 前記上流側バイパス通路の一部又は全部を前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けるか、又は、前記下流側バイパス通路の一部又は全部を前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けたことを特徴とする請求項1又は2記載の排気ガス処理装置。   A part or all of the upstream bypass passage is provided around at least one of the heat exchanger or the exhaust gas treatment unit, or a part or all of the downstream bypass passage is provided to the heat exchanger or the exhaust. The exhaust gas processing apparatus according to claim 1, wherein the exhaust gas processing apparatus is provided around at least one of the gas processing units. 前記上流側バイパス通路の一部又は全部を前記熱交換器又は前記排気ガス処理ユニットの少なくとも一方の周囲に設けると共に、前記下流側バイパス通路の一部又は全部を前記上流側バイパス通路の周囲に設けたことを特徴とする請求項1又は2記載の排気ガス処理装置。   A part or all of the upstream bypass passage is provided around at least one of the heat exchanger or the exhaust gas treatment unit, and a part or all of the downstream bypass passage is provided around the upstream bypass passage. The exhaust gas processing apparatus according to claim 1 or 2, wherein 内燃機関の排気ガス処理中に発熱する排気ガス処理ユニットを備えると共に、この排気ガス処理ユニットでの下流側の排気ガスの熱をこの排気ガス処理ユニットの上流側の排気ガスに伝達する熱交換器を備えた排気ガス浄化装置を用いた排気ガス浄化方法において、内燃機関の運転領域が低排気温度領域の場合には前記熱交換器に上流側の排気ガスの全量と下流側の排気ガスの全量を流し、内燃機関の運転領域が前記低排気温度領域でない場合には、上流側の排気ガスの一部又は下流側の排気ガスの一部又はこの双方を前記熱交換器を迂回させることを特徴とする排気ガス浄化方法。   A heat exchanger that includes an exhaust gas processing unit that generates heat during exhaust gas processing of an internal combustion engine, and that transfers heat of exhaust gas downstream of the exhaust gas processing unit to exhaust gas upstream of the exhaust gas processing unit In the exhaust gas purifying method using the exhaust gas purifying apparatus, the total amount of the upstream exhaust gas and the total amount of the downstream exhaust gas in the heat exchanger when the operating region of the internal combustion engine is the low exhaust temperature region When the operating region of the internal combustion engine is not the low exhaust temperature region, a part of the upstream exhaust gas or a part of the downstream exhaust gas or both of them are bypassed from the heat exchanger. Exhaust gas purification method.
JP2008163628A 2008-06-23 2008-06-23 Exhaust emission control device and exhaust emission control method Pending JP2010001875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163628A JP2010001875A (en) 2008-06-23 2008-06-23 Exhaust emission control device and exhaust emission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163628A JP2010001875A (en) 2008-06-23 2008-06-23 Exhaust emission control device and exhaust emission control method

Publications (1)

Publication Number Publication Date
JP2010001875A true JP2010001875A (en) 2010-01-07

Family

ID=41583779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163628A Pending JP2010001875A (en) 2008-06-23 2008-06-23 Exhaust emission control device and exhaust emission control method

Country Status (1)

Country Link
JP (1) JP2010001875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208717A1 (en) * 2015-06-24 2016-12-29 三菱日立パワーシステムズ株式会社 Denitration device and denitration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208717A1 (en) * 2015-06-24 2016-12-29 三菱日立パワーシステムズ株式会社 Denitration device and denitration method
JPWO2016208717A1 (en) * 2015-06-24 2018-05-24 三菱日立パワーシステムズ株式会社 Denitration apparatus and denitration method

Similar Documents

Publication Publication Date Title
CA3016558C (en) Heater-actuated flow bypass
USRE42156E1 (en) Exhaust emission control system of an internal combustion engine
US7251932B2 (en) Exhaust system and method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
US8166752B2 (en) Apparatus and method for cooling an exhaust gas
US8938948B2 (en) Diesel engine exhaust aftertreatment system and method of operation
WO2008147492A1 (en) Exhaust system utilizing a low-temperature oxidation catalyst
WO2011011460A2 (en) Exhaust cooling module for scr catalysts
EP2434114B1 (en) Exhaust system and retrofitting method
JP2008505272A (en) Internal combustion engine exhaust system
JP2011012563A (en) Exhaust gas purification system
WO2016103417A1 (en) Exhaust purification device for engine
US20120102931A1 (en) High volume exhaust gas treatment system
JP2012102684A (en) Exhaust emission control device for engine
CN113167159B (en) Post-processing system
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP6589365B2 (en) Exhaust gas purification system
JP4982162B2 (en) Exhaust purification device
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
US10495012B2 (en) Vehicle thermal control system including active exhaust treatment management
JP2010001875A (en) Exhaust emission control device and exhaust emission control method
EP3631176B1 (en) A method for controlling the temperature of a nox controlling component and an exhaust after treatment system
KR100892538B1 (en) Exhaust gas after treatment system for improvement in no occlusion performance during dpf regeneration
JP6805948B2 (en) Exhaust purification device
WO2008085246A1 (en) Low temperature emission system having turbocharger bypass
JP5233596B2 (en) Exhaust gas purification device