JP2010000118A - Pulmonary lesion early evaluation apparatus and method therefor - Google Patents

Pulmonary lesion early evaluation apparatus and method therefor Download PDF

Info

Publication number
JP2010000118A
JP2010000118A JP2008159016A JP2008159016A JP2010000118A JP 2010000118 A JP2010000118 A JP 2010000118A JP 2008159016 A JP2008159016 A JP 2008159016A JP 2008159016 A JP2008159016 A JP 2008159016A JP 2010000118 A JP2010000118 A JP 2010000118A
Authority
JP
Japan
Prior art keywords
state
subject
oxygen saturation
blood oxygen
breathing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008159016A
Other languages
Japanese (ja)
Inventor
Hironishi Inoue
洋西 井上
Toshiaki Hogi
敏明 保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEST M I Inc
Iwate Medical University
Original Assignee
CHEST M I Inc
Iwate Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEST M I Inc, Iwate Medical University filed Critical CHEST M I Inc
Priority to JP2008159016A priority Critical patent/JP2010000118A/en
Publication of JP2010000118A publication Critical patent/JP2010000118A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a measurement during resting ventilation without efforts of a subject and to execute the measurement non-invasively. <P>SOLUTION: The subject can suck atmospheric air (gas for respiration at the first oxygen concentration equivalent to the atmospheric air) through a four-opening tube 20 and a flow sensor adapter 10, and by controlling a valve 28 to be closed and controlling a valve 36 to be opened, the subject performs the respiration by the gas for the respiration containing O2 for 15% and N2 for the rest. A computer 60 captures data SpO2 (a) relating to the blood oxygen saturation obtained in a first state wherein the subject performs the respiration by the gas for the respiration at the first oxygen concentration equivalent to the atmospheric air and data SpO2 (b) relating to the blood oxygen saturation obtained in a second state wherein the subject performs the respiration by the gas for the respiration at a second oxygen concentration equivalent to the oxygen partial pressure of a steep inclination range in an oxyhemoglobin dissociation curve, and performs the evaluation processing of a pulmonary lesion on the basis of the difference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、肺病変が修復可能な早期において異常を検出することができる肺病変評価装置及びその方法に関するものである。   The present invention relates to a lung lesion evaluation apparatus and method capable of detecting an abnormality at an early stage where a lung lesion can be repaired.

肺は体中への酸素取り込みに支障が来さぬよう、十重二十重に代償機能が保障されている。その第一は、左右に各一つの計2つの肺を有しその予備能力を確保していること、第二は、酸素ヘモグロビン解離曲線が大きくS字状を描いており、肺胞酸素分圧の低下に対しても充分なヘモグロビン飽和度が確保できるように保障されていること、第三に、肺胞での平均赤血球(ヘモグロビン)通過時間が0.6秒と長く酸素化に必要な0.2秒に比較して充分な予備能力が確保されていることである。これらの諸点は、いかに身体への酸素取り込みが生物にとって重要な課題であることを物語っている。   The lungs are guaranteed to have a compensatory function so as not to hinder the oxygen uptake into the body. The first is that there are two lungs, one on each side, and that reserve capacity is secured. The second is that the oxygen hemoglobin dissociation curve has a large S-shape, and the alveolar oxygen partial pressure It is ensured that sufficient hemoglobin saturation can be secured even for a decrease in blood flow. Third, the average red blood cell (hemoglobin) transit time in the alveoli is as long as 0.6 seconds, which is necessary for oxygenation. A sufficient reserve capacity is secured compared to 2 seconds. These points show how oxygen uptake into the body is an important issue for living organisms.

このため肺は高度に障害を受けるまで、酸素不足の危険信号、つまり呼吸困難などの危険信号を呈することは無い。つまり、患者が呼吸困難などで病院を訪れるときには、肺は回復不可能なほど障害を受けている。本発明は、肺を通常の大気環境とは異なった環境下に置くこと(軽度の低酸素負荷)により、健常肺と早期肺病変を有する肺とでその動脈血酸素飽和度に大きく差が生じることを利用し、その肺病変が修復可能な早期に異常を検出し早期に治療を行うためのものである。   Therefore, until the lungs are highly damaged, there is no danger signal for lack of oxygen, that is, a danger signal such as dyspnea. In other words, when the patient visits the hospital due to difficulty breathing, the lungs are damaged beyond repair. In the present invention, by placing the lungs in an environment different from the normal atmospheric environment (mild hypoxic load), there is a large difference in arterial oxygen saturation between healthy lungs and lungs with early lung lesions. Is used to detect abnormalities at an early stage where the lung lesions can be repaired and to treat them at an early stage.

航空機で移動する必要のある肺疾患患者では、重症ほど動脈血酸素飽和度低下のリスクは高まるという観点からのものではあるが、次に述べるような肺病変評価が行われている。即ち、上記リスクを予知するため、イギリスのある呼吸診療施設では、被実験者に口と鼻を覆うマスクを被せ、これを通じて純酸素(100%O2)を吸入させた後、そのマスク中に100%窒素を混入することによりその酸素濃度を一過性に15.1% 近くまで低下させ、耳たぶでの動脈血酸素飽和度の低下を測定する方法が報告されている。   In patients with pulmonary disease who need to travel by aircraft, the risk of lowering arterial oxygen saturation increases with increasing severity, but the following lung lesion evaluation is performed. That is, in order to predict the above risk, a respiratory clinic in the UK puts a mask on the subject's mouth and nose and inhales pure oxygen (100% O2) through this, and then puts 100 in the mask. A method has been reported in which the oxygen concentration is transiently reduced to near 15.1% by mixing% nitrogen, and the decrease in arterial oxygen saturation in the earlobe is measured.

しかし、この方法の欠点は、ガスの流量の調節によって一定濃度の混合ガスを一定時間安定して供給することは極めて困難なため、測定精度や再現性に問題が生じる。また、この測定装置の開発の目的は、既に高度の肺障害を有する患者を対象とした飛行機旅行のリスクの予知にあり、早期肺病変の検出を目的としたものではない。更に、この測定装置は、被検者の換気のモニタを行わずまた呼気終末の二酸化炭素のモニタも欠いていることから、被検者間の換気の違いによる影響を受け易く、得られた動脈血酸素飽和度の低下をもって肺自身の障害の程度として特定し難い難点がある。   However, a drawback of this method is that it is extremely difficult to stably supply a mixed gas having a constant concentration for a certain period of time by adjusting the gas flow rate. In addition, the purpose of the development of this measuring device is to predict the risk of air travel for patients who already have advanced lung disorders, and is not intended to detect early lung lesions. Furthermore, since this measuring apparatus does not monitor the ventilation of the subject and also lacks the monitoring of carbon dioxide at the end of expiration, it is easily affected by the difference in ventilation between the subjects, and the obtained arterial blood There is a difficulty that is difficult to specify as the degree of injury of the lung itself due to the decrease in oxygen saturation.

上記のような装置に対し、本願発明者らは、パルスオキシメータと呼気流量計と呼気CO2メータとをコンピュータに接続し、機能的残量位にて20秒間の呼吸停止を行わせた際のSpO2の低下をΔSpO2として、早期肺病変検出の指標とするものを案出した(特許文献1の、特に0020〜0023欄など)。   For the device as described above, the inventors of the present invention connected a pulse oximeter, an expiratory flow meter, and an expiratory CO2 meter to a computer, and stopped breathing for 20 seconds at the functional residual level. A reduction in SpO2 was set as ΔSpO2, and an index for early lung lesion detection was devised (particularly, columns 0020 to 0023 in Patent Document 1).

上記の手法は大気吸入下にて行い得るものであり、優れた手法と言えるものの、被検者が「息こらえ」する必要があり、被検者への負荷という観点からやや難点がある。
特開2005−279262号公報
Although the above method can be performed under atmospheric inhalation and can be said to be an excellent method, it is necessary for the subject to “hold the breath”, which is somewhat difficult from the viewpoint of burden on the subject.
JP 2005-279262 A

本発明は、上記のような従来の肺機能測定装置及びその方法における現状に鑑みなされたもので、その目的は、被検者の努力なしに安静換気中に測定が可能であり、測定を非侵襲的に行うことができる肺病変評価装置及びその方法を提供することである。   The present invention has been made in view of the current state of the conventional pulmonary function measuring apparatus and method as described above, and its purpose is to enable measurement during rest ventilation without the effort of the subject, An object of the present invention is to provide a lung lesion evaluation apparatus and method that can be performed invasively.

本発明に係る肺病変評価装置は、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する酸素濃度の呼吸用ガスを供給する呼吸用ガス供給手段と、前記呼吸用ガス供給手段により供給される呼吸用ガスと大気とを切替えて被検者へ供給する切替手段と、前記被検者の血中酸素飽和度に係るデータを取得する取得手段と、前記切替手段を制御して、被検者が大気による呼吸を行う第1の状態と前記呼吸用ガスによる呼吸を行う第2の状態とを実現する制御手段と、前記第1の状態において前記取得手段により取得される第1の状態の血中酸素飽和度と、前記第2の状態において前記取得手段により取得される第2の状態の血中酸素飽和度とを得て、これらの関係に基づき肺病変の評価処理を行う評価処理手段とを具備することを特徴とする。   The lung lesion evaluation apparatus according to the present invention includes a breathing gas supply means for supplying a breathing gas having an oxygen concentration corresponding to an oxygen partial pressure in a range where the slope of the oxygen hemoglobin dissociation curve is steep, and the breathing gas supply means. A switching means for switching the supplied breathing gas and the atmosphere to supply to the subject, an acquisition means for acquiring data relating to the blood oxygen saturation of the subject, and controlling the switching means, A control unit that realizes a first state in which the subject breathes by the atmosphere and a second state in which breathing by the breathing gas is performed; and a first state acquired by the acquisition unit in the first state Evaluation of obtaining blood oxygen saturation in the state and blood oxygen saturation in the second state acquired by the acquisition means in the second state, and performing an evaluation process of lung lesions based on these relationships Processing means The features.

本発明に係る肺病変評価装置は、前記被検者の呼気に含まれる二酸化炭素濃度を検出する検出手段を備え、前記評価処理手段は、この検出手段により所定の二酸化炭素濃度が安定検出されているときに第1の状態及び第2の状態の血中酸素飽和度情報を取り込むことを特徴とする。   The lung lesion evaluation apparatus according to the present invention includes a detection unit that detects a carbon dioxide concentration contained in the exhalation of the subject, and the evaluation processing unit stably detects a predetermined carbon dioxide concentration by the detection unit. The blood oxygen saturation information of the first state and the second state is taken in when the user is in the state.

本発明に係る肺病変評価装置では、呼吸用ガス供給手段は、酸素濃度が16%〜14%中の所定濃度である呼吸用ガスを供給することを特徴とする。   In the lung lesion evaluation device according to the present invention, the breathing gas supply means supplies a breathing gas having a predetermined concentration of 16% to 14% in oxygen concentration.

本発明に係る肺病変評価装置では、評価処理手段は、第1の状態の血中酸素飽和度と第2の状態の血中酸素飽和度との差分または比と、閾値とを比較して評価処理を行うことを特徴とする。   In the lung lesion evaluation apparatus according to the present invention, the evaluation processing means evaluates the difference or ratio between the blood oxygen saturation level in the first state and the blood oxygen saturation level in the second state by comparing the threshold value. It is characterized by performing processing.

本発明に係る肺病変評価方法は、大気に相当する第1の酸素濃度の呼吸用ガスによる呼吸を被検者が行った第1の状態において得られた血中酸素飽和度に係るデータと、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する第2の酸素濃度の呼吸用ガスによる呼吸を前記被検者が行った第2の状態において得られた血中酸素飽和度に係るデータとを取り込み、前記第1の状態の血中酸素飽和度のデータと前記第2の状態の血中酸素飽和度のデータの関係に基づき肺病変の評価処理を行うことを特徴とする。   The lung lesion evaluation method according to the present invention includes data relating to blood oxygen saturation obtained in a first state in which a subject has performed breathing with a breathing gas having a first oxygen concentration corresponding to the atmosphere; The blood oxygen saturation obtained in the second state in which the subject breathed with the breathing gas having the second oxygen concentration corresponding to the oxygen partial pressure in the range where the slope in the oxygen hemoglobin dissociation curve is steep is obtained. It is characterized in that such data is taken in, and lung lesion evaluation processing is performed based on the relationship between the blood oxygen saturation data in the first state and the blood oxygen saturation data in the second state.

本発明に係る肺病変評価方法は、前記被検者の呼気に含まれる二酸化炭素濃度が所定に安定しているときに第1の状態及び第2の状態の血中酸素飽和度のデータを取り込むことを特徴とする。   The lung lesion evaluation method according to the present invention captures blood oxygen saturation data in the first state and the second state when the carbon dioxide concentration contained in the exhaled breath of the subject is stable to a predetermined level. It is characterized by that.

本発明に係る肺病変評価装置と肺病変評価方法によれば、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する第2の酸素濃度の呼吸用ガスによる呼吸を被検者が行った第2の状態において得られた血中酸素飽和度に係るデータとを取り込むので、被検者は特に努力することなく、必要なデータを得ることができる。また、第2の酸素濃度の呼吸用ガスによる呼吸では、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当することから、健常者と非健常者の血中酸素飽和度に係るデータが大きく異なるようになるのに対し、大気に相当する第1の酸素濃度の呼吸用ガスによる呼吸では健常者と非健常者の血中酸素飽和度に係るデータに大きな相違がないものとなるので、第1の状態の血中酸素飽和度のデータと第2の状態の血中酸素飽和度のデータの関係により肺病変を適切に評価でき、早期肺病変を捕らえることが可能である。   According to the lung lesion evaluation apparatus and the lung lesion evaluation method according to the present invention, the subject breathes by the breathing gas having the second oxygen concentration corresponding to the oxygen partial pressure in the range where the slope of the oxygen hemoglobin dissociation curve is steep. Since the data relating to the blood oxygen saturation obtained in the second state performed is taken in, the subject can obtain necessary data without any particular effort. In addition, in breathing with a breathing gas having the second oxygen concentration, since the oxygen hemoglobin dissociation curve corresponds to an oxygen partial pressure in a steep range, data relating to blood oxygen saturation levels of healthy and non-healthy individuals However, the breathing with the breathing gas having the first oxygen concentration corresponding to the atmosphere does not make much difference in the data relating to the blood oxygen saturation of the healthy person and the non-healthy person. The lung lesion can be appropriately evaluated based on the relationship between the blood oxygen saturation data in the first state and the blood oxygen saturation data in the second state, and early lung lesions can be captured.

また、本発明に係る肺病変評価装置と肺病変評価方法によれば、被検者の呼気に含まれる二酸化炭素濃度が所定に安定しているときに第1の状態及び第2の状態の血中酸素飽和度のデータを取り込むので、安静呼吸時のデータを用いて肺病変を適切に評価することができる。   Moreover, according to the lung lesion evaluation apparatus and the lung lesion evaluation method according to the present invention, the blood in the first state and the second state when the carbon dioxide concentration contained in the exhalation of the subject is stable to a predetermined level. Since data on intermediate oxygen saturation is taken in, lung lesions can be appropriately evaluated using data during rest breathing.

本願発明者らは、パルスオキシメータと呼気流量計と呼気CO2メータとをコンピュータに接続し、15%酸素(残り85%窒素)のガスボンベを用意し、これから供給される呼吸用ガスを大気下に安静換気した際の酸素飽和度と21%の酸素を含む大気の大気圧下に一定時間安静換気した際にみられる動脈血酸素飽和度と、の大気下に一定酸素濃度の呼吸用ガスを機能的残量位にて一定時間安静換気させた際にみられるパルスオキシメータによる動脈血酸素飽和度(SpO2a)と、先の供給手段により供給されると低酸素に切り替えて機能的残気量位にてほぼ同等な換気条件で一定時間安静換気させた際にみられるパルスオキシメータによる動脈血酸素飽和度の低下(SpO2b)の差をΔSpO2(=SpO2a-SpO2b)として、早期肺病変検出の指標とするものを案出した。この2つの測定値がほぼ同等な換気条件のもとに測定されたことの保証は呼気終末二酸化炭素(PetCO2分圧)のモニタならびに一回換気量と分時換気量の恒常性より判定可能であり、結果の再現性を容易にする特徴がある。   The inventors of the present application connect a pulse oximeter, an expiratory flow meter, and an expiratory CO2 meter to a computer, prepare a gas cylinder of 15% oxygen (remaining 85% nitrogen), and put the breathing gas supplied from this into the atmosphere. Functional breathing gas with constant oxygen concentration under the atmosphere of oxygen saturation at rest ventilation and arterial blood oxygen saturation at rest for a certain period of time under atmospheric pressure containing 21% oxygen Arterial blood oxygen saturation (SpO2a) by pulse oximeter seen when resting for a certain period of time at the residual level, and when it is supplied by the previous supply means, it switches to hypoxia and at the functional residual volume level The difference in arterial blood oxygen saturation (SpO2b) by a pulse oximeter that is observed when the patient is ventilated for a certain period of time under almost equivalent ventilation conditions is ΔSpO2 (= SpO2a-SpO2b), which is used as an index for early lung lesion detection Devised. Guarantee that these two measured values were measured under almost equivalent ventilation conditions can be judged by monitoring end tidal carbon dioxide (PetCO2 partial pressure) and constancy of tidal and minute ventilation. There is a feature that facilitates reproducibility of results.

上記の手法は大気圧下にて行い得るものであり、一定濃度の低酸素供給装置を必要とするものの、従来の多くの肺機能検査のように被験者に最大吸入や最大呼出、努力性呼出を必要とせず、安静換気下に行える優れた手法と言える。   Although the above method can be performed under atmospheric pressure and requires a low-oxygen supply device with a constant concentration, the subject can receive maximum inhalation, maximum invocation, and effort invocation as in many conventional lung function tests. It can be said that it is an excellent technique that can be performed under quiet ventilation without the need.

以下、添付図面を参照して本発明に係る肺病変評価装置とその方法の実施例を説明する。図1には、本発明に係る肺病変評価装置のブロック図が示されている。この肺病変評価装置には、筒状のフローセンサアダプタ10と、十字状の流路を備える4開口チューブ20と、リザーブバッグ31とを備える。また、O2 15%・N2 残量の呼吸用ガスが入ったボンベ32が、リザーブバッグ31の供給口33に接続されている。リザーブバッグ31中の圧は大気圧と同じになっている(1気圧)。これによって、リザーブバッグ31内のO2 15%・N2 残量の呼吸用ガスについては、大気で呼吸するのと全く同じ条件で呼吸(吸気・呼気)を続けることができる。リザーブバッグ31とボンベ32は、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する酸素濃度の呼吸用ガスを供給する呼吸用ガス供給手段を構成する。   Embodiments of a lung lesion evaluation apparatus and method according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a block diagram of a lung lesion evaluation apparatus according to the present invention. This lung lesion evaluation apparatus includes a cylindrical flow sensor adapter 10, a four-opening tube 20 having a cross-shaped flow path, and a reserve bag 31. A cylinder 32 containing a breathing gas of 15% O2 and N2 is connected to the supply port 33 of the reserve bag 31. The pressure in the reserve bag 31 is the same as the atmospheric pressure (1 atm). This allows breathing (inspiration / expiration) of the breathing gas having a remaining amount of O2 of 15% and N2 in the reserve bag 31 under exactly the same conditions as breathing in the atmosphere. The reserve bag 31 and the cylinder 32 constitute a breathing gas supply means for supplying a breathing gas having an oxygen concentration corresponding to an oxygen partial pressure in a range where the slope in the oxygen hemoglobin dissociation curve is steep.

リザーブバッグ31の排出口34は、4開口チューブ20の一つの開口端21に接続され、リザーブバッグ31の供給口33と排出口34とには、それぞれガスの流路を開閉するためのバルブ35、36が設けられている。   A discharge port 34 of the reserve bag 31 is connected to one open end 21 of the four-open tube 20, and a valve 35 for opening and closing a gas flow path at the supply port 33 and the discharge port 34 of the reserve bag 31, respectively. , 36 are provided.

4開口チューブ20は、上記開口端21以外に開口端22〜24を備えている。開口端21の開口に近い側の流路におけるバルブ36よりも内側の流路には一方向弁26が設けられている。開口端21と対向する開口端22の流路には一方向弁27が設けられ、開口端24の通路にはガスの流路を開閉するためのバルブ28が設けられ、開口端24と対向する開口端23には、フローセンサアダプタ10の一端側開口部が接続されている。4開口チューブ20、バルブ28、35、36は、呼吸用ガス供給手段により供給される呼吸用ガスと大気とを切替えて被検者へ供給する切替手段を構成する。   The 4-opening tube 20 includes open ends 22 to 24 in addition to the open end 21. A one-way valve 26 is provided in the flow path on the inner side of the valve 36 in the flow path near the opening of the open end 21. A one-way valve 27 is provided in the flow path of the open end 22 facing the open end 21, and a valve 28 for opening and closing the gas flow path is provided in the passage of the open end 24, and faces the open end 24. One end side opening of the flow sensor adapter 10 is connected to the opening end 23. The four-opening tube 20 and the valves 28, 35, and 36 constitute a switching unit that switches between the breathing gas supplied from the breathing gas supply unit and the atmosphere and supplies it to the subject.

フローセンサアダプタ10には、流量センサ11とCO2センサ12とが設けられ、4開口チューブ20との接続側と異なる側の開口は被検者が口にくわえるマウスピース70となっている。マウスピース70に代えてマスクを用いることもできる。流量センサ11は、フローセンサアダプタ10内流路の2地点の圧力差の信号を取り出すセンサにより構成することができ、差圧信号がアンプ41へ送られる。CO2センサ12は、フローセンサアダプタ10内流路の1地点に設けられる発光素子と受光素子により構成することができ、受光素子の検出信号がCO2メータ42へ送られる。CO2メータ42により得られた二酸化炭素濃度のデータはディジタルデータとされて、コンピュータ60に送られる。CO2センサ12、CO2メータ42は、被検者の呼気に含まれる二酸化炭素濃度を検出する検出手段を構成する。   The flow sensor adapter 10 is provided with a flow sensor 11 and a CO2 sensor 12, and an opening on a side different from the connection side with the four-opening tube 20 is a mouthpiece 70 that is attached to the mouth of the subject. A mask may be used in place of the mouthpiece 70. The flow sensor 11 can be configured by a sensor that extracts a pressure difference signal at two points in the flow sensor adapter 10, and the differential pressure signal is sent to the amplifier 41. The CO 2 sensor 12 can be constituted by a light emitting element and a light receiving element provided at one point of the flow path in the flow sensor adapter 10, and a detection signal of the light receiving element is sent to the CO 2 meter 42. The carbon dioxide concentration data obtained by the CO2 meter 42 is converted to digital data and sent to the computer 60. The CO2 sensor 12 and the CO2 meter 42 constitute detection means for detecting the carbon dioxide concentration contained in the exhalation of the subject.

この肺病変評価装置は、血中酸素飽和度に係るデータを取得する取得手段であるパルスオキシメータ50を備えている。パルスオキシメータ50は、被検者の例えば左手第3指における指先に取り付けられるSpO2センサ51と信号変換器52により構成され、信号変換器52からはディジタル化された血中酸素飽和度に係るデータがコンピュータ60に送られる。   The lung lesion evaluation apparatus includes a pulse oximeter 50 that is an acquisition unit that acquires data relating to blood oxygen saturation. The pulse oximeter 50 is composed of an SpO2 sensor 51 attached to the fingertip of the subject, for example, the third finger of the left hand, and a signal converter 52, and the signal converter 52 digitizes blood oxygen saturation data. Is sent to the computer 60.

上述の差圧信号を受けたアンプ41では、信号が増幅されてA/D変換器45へ送られてディジタル化されて積分器46及び流速出力計47へ送られる。積分器46では、差圧信号の積分を行い、結果を流量出力計48へ送られる。流速出力計47は、差圧データに基づきガスの流速を算出して流速データをコンピュータ60へ送る。流量出力計48は、差圧の積分値に基づきガスの流量を求めて流量データをコンピュータ60へ送る。   In the amplifier 41 that has received the differential pressure signal, the signal is amplified, sent to the A / D converter 45, digitized, and sent to the integrator 46 and the flow velocity output meter 47. The integrator 46 integrates the differential pressure signal and sends the result to the flow rate output meter 48. The flow velocity output meter 47 calculates the gas flow velocity based on the differential pressure data and sends the flow velocity data to the computer 60. The flow rate output meter 48 obtains the flow rate of the gas based on the integral value of the differential pressure and sends the flow rate data to the computer 60.

バルブ28、35、36は、コンピュータ60により制御されるバルブ駆動装置80からの駆動信号により開閉を行うものである。パルスオキシメータ50におけるサンプリングレートは1/3sec程度であり、CO2メータ42におけるサンプリングレート、A/D変換器45と積分器46と流速出力計47及び流量出力計48における流速と流量のサンプリングレートは1/20sec程度である。   The valves 28, 35, and 36 are opened and closed by a drive signal from a valve drive device 80 controlled by the computer 60. The sampling rate in the pulse oximeter 50 is about 1/3 sec. The sampling rate in the CO2 meter 42, the sampling rate of the flow rate and the flow rate in the A / D converter 45, the integrator 46, the flow rate output meter 47 and the flow rate output meter 48 are as follows. It is about 1/20 sec.

以上のように構成された肺病変評価装置においては、SpO2センサ51が被検者の指先に取り付けられ、フローセンサアダプタ10の一端にあるマウスピース70を被検者が口にくわえ、鼻呼吸を停止させるために鼻がクリップにて閉塞された状態で測定が実行される。   In the lung lesion evaluation apparatus configured as described above, the SpO2 sensor 51 is attached to the fingertip of the subject, the subject holds the mouthpiece 70 at one end of the flow sensor adapter 10 in the mouth, and performs nasal breathing. The measurement is performed with the nose blocked by a clip to stop.

測定を開始する前に、コンピュータ60の制御によってバルブ駆動装置80を介してバルブ35が開放されてリザーブバッグ31にボンベ32からO2 15%・N2 残量の呼吸用ガスが、例えば所定時間貯められ、バルブ35が閉じられる。   Before starting the measurement, the valve 35 is opened via the valve driving device 80 under the control of the computer 60, and a breathing gas of 15% N2 remaining amount of O2 from the cylinder 32 is stored in the reserve bag 31 for a predetermined time, for example. The valve 35 is closed.

肺病変評価装置のコンピュータには、例えば図2に示されるようなフローチャートに対応する測定用プログラムが備えられており、これを実行するので、このフローチャートに基づき動作を説明する。測定開始の指示操作に応じてコンピュータ60は、バルブ駆動装置80を介してバルブ28を開放制御し、血中酸素飽和度情報、二酸化炭素濃度、流速データ及び流量データの取り込みを開始する(S11)。これによって、被検者は4開口チューブ20とフローセンサアダプタ10を介して大気(大気に相当する第1の酸素濃度の呼吸用ガス)を吸引可能となり、大気による呼吸を行う。このとき、呼気は4開口チューブ20の一方向弁27を介して開口22から外へ排出される。   The computer of the lung lesion evaluation apparatus is provided with a measurement program corresponding to, for example, a flowchart as shown in FIG. 2 and is executed. The operation will be described based on this flowchart. In response to the measurement start instruction operation, the computer 60 controls the opening of the valve 28 via the valve driving device 80, and starts taking blood oxygen saturation information, carbon dioxide concentration, flow rate data, and flow rate data (S11). . As a result, the subject can suck the atmosphere (the breathing gas having the first oxygen concentration corresponding to the atmosphere) through the four-opening tube 20 and the flow sensor adapter 10, and breathe in the atmosphere. At this time, exhaled air is discharged from the opening 22 through the one-way valve 27 of the four-opening tube 20.

上記呼吸の際には、例えばメトロノームを用いて1分間に18回程度の呼吸になるように被検者に指示して安静換気下にて測定を行う。コンピュータ60はCO2メータ42から送られる二酸化炭素濃度のデータと、流速出力計47から送られてくる流速デーと、流量出力計48から送られてくる流量データを用いて、呼気終末二酸化炭素分圧(PetCO2)が例えば40±2Torr程度の恒常状態(steady-state)となるのを待ち(S12)、恒常状態(steady-state)となると、バルブ28を閉成制御し、バルブ36を開放制御する(S13)。   At the time of the above breathing, the subject is instructed to breathe about 18 times per minute using a metronome, for example, and the measurement is performed under a quiet ventilation. The computer 60 uses the carbon dioxide concentration data sent from the CO2 meter 42, the flow rate data sent from the flow rate output meter 47, and the flow rate data sent from the flow rate output meter 48, and the end-tidal carbon dioxide partial pressure. Waiting for (PetCO2) to reach a steady-state of, for example, about 40 ± 2 Torr (S12). When the steady-state is reached, the valve 28 is closed and the valve 36 is opened. (S13).

これにより、被検者は大気による呼吸時と同様に、O2 15%・N2 残量の呼吸用ガスによる呼吸を行う。この間及びこの後も、血中酸素飽和度情報、二酸化炭素濃度、流速データ及び流量データの取り込みを継続する(S14)。呼吸の際には、被検者に指示して安静換気となるようにし、大気に相当する第1の酸素濃度の呼吸用ガスによる呼吸を被検者が行った第1の状態において得られた血中酸素飽和度に係るデータSpO2(a)と、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する第2の酸素濃度の呼吸用ガスによる呼吸を上記被検者が行った第2の状態において得られた血中酸素飽和度に係るデータSpO2(b)とが取り込まれるので、上記第1の状態の血中酸素飽和度のデータSpO2(a)と上記第2の状態の血中酸素飽和度のデータSpO2(b)の差に基づき閾値(例えば、3%)と比較し、肺病変の評価処理を行う(S15)。   As a result, the subject breathes with the breathing gas of 15% O2 and the remaining amount of N2 in the same manner as when breathing in the atmosphere. During and after this, the blood oxygen saturation information, carbon dioxide concentration, flow rate data, and flow rate data are continuously taken in (S14). When breathing, the subject was instructed to be at rest ventilation, and was obtained in the first state where the subject breathed with a breathing gas having a first oxygen concentration corresponding to the atmosphere. The subject performed breathing with the breathing gas having the second oxygen concentration corresponding to the oxygen partial pressure within the steep range of the data SpO2 (a) relating to the blood oxygen saturation and the oxygen hemoglobin dissociation curve. Since the data SpO2 (b) relating to the blood oxygen saturation obtained in the second state is taken in, the blood oxygen saturation data SpO2 (a) in the first state and the data in the second state Based on the difference in blood oxygen saturation data SpO2 (b), a comparison is made with a threshold value (for example, 3%), and a lung lesion evaluation process is performed (S15).

このように、コンピュータ60は、切替手段を制御して、被検者が大気による呼吸を行う第1の状態と前記呼吸用ガスによる呼吸を行う第2の状態とを実現する制御手段と、第1の状態において前記取得手段により取得される第1の状態の血中酸素飽和度と、上記第2の状態において上記取得手段により取得される第2の状態の血中酸素飽和度とを得て、これらの関係に基づき肺病変の評価処理を行う評価処理手段を構成する。   Thus, the computer 60 controls the switching means to realize a first state in which the subject performs breathing by the atmosphere and a second state in which breathing by the breathing gas is performed, Obtaining the blood oxygen saturation level of the first state acquired by the acquiring means in the first state and the blood oxygen saturation level of the second state acquired by the acquiring means in the second state Based on these relationships, an evaluation processing means for performing an evaluation process of lung lesions is configured.

図3、図4に測定したデータであり、コンピュータ60がLCD等のモニタに表示するデータを示す。図3は、47歳の男性で非喫煙、健常者であってスパイログラムよる検査では正常な、被検者のデータを示し、図4は、62歳の男性で非喫煙、普段は無症状であるが喘息素因を有する者であってスパイログラムよる検査では正常な被検者のデータを示す。   FIG. 3 and FIG. 4 show the measured data, which is displayed on the monitor such as the LCD by the computer 60. FIG. 3 shows the data of a 47-year-old male who is non-smoking, healthy and normal in a spirogram test, and FIG. 4 is a 62-year-old male who is non-smoking and usually asymptomatic. Although there is an asthma predisposition, spirogram testing shows normal subject data.

また、図3、図4のf1はパルスオキシメータ50による動脈血酸素飽和度(SpO2)を示し、f2は呼吸の流量を示し、f3は呼吸の1回換気量を示し、f4は呼気終末二酸化炭素分圧(PetCO2)を示す。また、横軸は時間(単位:秒)である。f1〜f4は、実際には色分けされてモニタに表示される。   3 and 4, f1 represents arterial oxygen saturation (SpO2) by the pulse oximeter 50, f2 represents the respiratory flow rate, f3 represents the tidal volume of breathing, and f4 represents end-tidal carbon dioxide. Partial pressure (PetCO2) is indicated. The horizontal axis is time (unit: second). In actuality, f1 to f4 are color-coded and displayed on the monitor.

上記測定結果によれば、図3の被検者は15%酸素呼吸を180秒継続した安静換気後の動脈血酸素飽和度(SpO2)は、96%から94%への僅か2%低下に留まり、早期肺病変が見られないと評価される。これに対し、図4の被検者は15%酸素呼吸を160秒継続した安静換気後の動脈血酸素飽和度(SpO2)は、96%から91%へと大きく5%低下しており、早期肺病変が見られると評価される。   According to the above measurement results, the subject of FIG. 3 had only a 2% decrease in arterial oxygen saturation (SpO2) after rest ventilation after 15% oxygen breathing for 180 seconds, from 96% to 94%. It is evaluated that there is no early lung lesion. In contrast, in the subject of FIG. 4, the arterial oxygen saturation (SpO2) after rest ventilation after 15% oxygen breathing for 160 seconds was greatly reduced by 5% from 96% to 91%. It is evaluated that a lesion is seen.

以上の通り本発明の実施例によれば、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当するO2 15%・N2 残量である酸素濃度の呼吸用ガスを用いることにより、肺病変を適切に評価でき、早期肺病変を捕らえることが可能であることが分かる。   As described above, according to the embodiment of the present invention, by using a breathing gas having an oxygen concentration corresponding to an oxygen partial pressure in a range where the slope of the oxygen hemoglobin dissociation curve is steep in an oxygen concentration of 15% O2 and N2 remaining, It can be seen that the lesion can be properly evaluated and early lung lesions can be captured.

酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当するO2 15%・N2 残量である酸素濃度の呼吸用ガスを用いる理由は次の通りである。図5に示す酸素ヘモグロビン解離曲線を参照して説明する。図5は、海面レベルにおける酸素ヘモグロビン解離曲線図を示す。横軸に酸素分圧を、単位として底辺にkPa (キロパスカル)、上方に mmHg で表したものである。縦軸にヘモグロビン(Hb)の酸素飽和度を示す。3本の実線と1本の破線として現してあるが、健常者のものは右から2番目の曲線l1である。その左の実線l2はpHがアルカリに傾いたとき、血液の温度が低下したとき、血中の2,3DPGが減少したときのもの、右の実線l3はその逆の場合の変移に対応するものを表す。破線l4は新生児の酸素ヘモグロビン解離曲線を表す。   The reason for using a breathing gas having an oxygen concentration corresponding to an oxygen partial pressure in the oxygen hemoglobin dissociation curve with a steep slope of O2 of 15% and N2 is as follows. This will be described with reference to the oxygen hemoglobin dissociation curve shown in FIG. FIG. 5 shows an oxygen hemoglobin dissociation curve diagram at the sea level. The horizontal axis represents oxygen partial pressure, and the unit is kPa (kilopascal) on the bottom and mmHg on the upper side. The vertical axis represents the oxygen saturation of hemoglobin (Hb). Although shown as three solid lines and one broken line, the healthy person is the second curve l1 from the right. The left solid line l2 corresponds to the transition when the pH is inclined to alkali, when the temperature of the blood is lowered, or 2,3DPG in the blood is decreased, and the right solid line l3 corresponds to the transition in the opposite case Represents. Dashed line l4 represents the neonatal oxygen hemoglobin dissociation curve.

1気圧 (760 mmHg) の大気下では21% の酸素濃度による酸素分圧は約160 mmHgである。健常成人の肺胞酸素分圧は37℃の飽和水蒸気圧(47 mmHg )ならびに体内から肺胞に排出される二酸化炭素を考慮に入れると約100mmHg となる。先の健常者の酸素-ヘモグロビン 解離曲線を右上方にたどると酸素分圧が100 mmHg近辺でのヘモグロビンの酸素飽和度は98%に達しており、このことは健常成人ではほぼ100%のヘモグロビンが酸素と結びついて効率よく組織へ酸素を運搬することを意味している。   In an atmosphere of 1 atm (760 mmHg), the partial pressure of oxygen with an oxygen concentration of 21% is about 160 mmHg. Taking into account the saturated water vapor pressure (47 mmHg) at 37 ° C. and carbon dioxide excreted from the body into the alveoli, the alveolar oxygen partial pressure in healthy adults is about 100 mmHg. When the oxygen-hemoglobin dissociation curve of the previous healthy person is traced to the upper right, the oxygen saturation of hemoglobin reaches 98% when the oxygen partial pressure is near 100 mmHg, which means that almost 100% of hemoglobin is present in healthy adults. It means that oxygen is efficiently transported to the tissue in combination with oxygen.

さらにこの曲線全体はS 状の曲線を描き、特に上端の平坦部分が幅広く(the flat top part of the curve) ことが特徴であり、一般に肺が障害を受けると肺胞ならびに肺毛細管内の酸素分圧は低下するが、肺の障害のために肺胞酸素分圧が20%(20 mmHg) 低下しても、ヘモグロビンの酸素飽和度は97% であり、なお充分な酸素を組織へ運べる仕組みとなっていることを示す。よって、早期の肺障害では、組織の酸素不足による息切れなどの症状がないため、本人は肺の障害を自覚しえない。   In addition, the entire curve is S-shaped, and is characterized by a particularly wide flat top part of the curve. In general, when the lungs are damaged, the oxygen content in the alveoli and lung capillaries is reduced. Although the pressure decreases, even if the alveolar oxygen partial pressure decreases by 20% (20 mmHg) due to lung injury, the oxygen saturation of hemoglobin is 97%. Indicates that Therefore, since there is no symptom such as shortness of breath due to lack of tissue oxygen in early lung disorders, the person cannot recognize lung disorders.

これに対し、1気圧の大気に変えてO2 15%・N2 残量である酸素濃度の呼吸用ガスを吸入すると、吸入気の酸素分圧は約114 mmHgとなり、換気状態が先の状態に維持される限り健常人の肺胞酸素分圧は57 mmHg となる。しかし、肺の早期障害を有する者では、このために肺胞酸素分圧が上記と同様20% (14 mmHg )低下すると、酸素飽和度は80%まで大きく低下する。これは酸素ヘモグロビン解離曲線が急峻な部分(the middle steeper part of the curve)にかかるためである。   On the other hand, if you change the atmosphere to 1 atmosphere and inhale the breathing gas with oxygen concentration of 15% O2 and N2 remaining, the oxygen partial pressure of the inhaled air will be about 114 mmHg, and the ventilation state will be maintained in the previous state As far as possible, the alveolar oxygen partial pressure in healthy individuals is 57 mmHg. However, in those with early lung injury, if the alveolar oxygen partial pressure is reduced by 20% (14 mmHg) as described above, the oxygen saturation is greatly reduced to 80%. This is because the oxygen hemoglobin dissociation curve is applied to the steep part (the middle steeper part of the curve).

以上の通り、O2 15%・N2 残量である酸素濃度の呼吸用ガスは、酸素ヘモグロビン解離曲線が急峻な部分(the middle steeper part of the curve)に相当する酸素濃度の呼吸用ガスの一例である。酸素ヘモグロビン解離曲線が急峻な部分に相当する酸素濃度の呼吸用ガスを用いるのであれば、O2 15%・N2 残量である酸素濃度の呼吸用ガスに限定されない。   As described above, the oxygen concentration breathing gas with 15% O2 remaining amount of N2 is an example of a breathing gas with an oxygen concentration corresponding to the middle steeper part of the curve. is there. If a breathing gas having an oxygen concentration corresponding to a portion where the oxygen hemoglobin dissociation curve is steep is used, the breathing gas is not limited to a breathing gas having an oxygen concentration of 15% O2 remaining amount.

本発明に係る肺病変評価装置の実施例のブロック図。The block diagram of the Example of the lung lesion evaluation apparatus which concerns on this invention. 本発明に係る肺病変評価装置の実施例の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the Example of the lung lesion evaluation apparatus which concerns on this invention. 本発明に係る肺病変評価装置の実施例を用いて健常者を被検者として、血中酸素飽和度情報、二酸化炭素濃度、流速データ及び流量データ等の測定した場合に表示される表示例を示す図。Example of Display Displayed When Measuring Healthy Oxygen Saturation Information, Carbon Dioxide Concentration, Flow Rate Data, Flow Rate Data, etc. Using a Healthy Person as a Subject Using the Example of the Lung Lesions Evaluation Apparatus According to the Present Invention FIG. 本発明に係る肺病変評価装置の実施例を用いて喘息素因を有する者を被検者として、血中酸素飽和度情報、二酸化炭素濃度、流速データ及び流量データ等の測定した場合に表示される表示例を示す図。Displayed when blood oxygen saturation information, carbon dioxide concentration, flow rate data, flow rate data, and the like are measured using a person having a predisposition to asthma using the embodiment of the lung lesion evaluation apparatus according to the present invention as a subject. The figure which shows the example of a display. 酸素ヘモグロビン解離曲線を示す図。The figure which shows an oxygen hemoglobin dissociation curve.

符号の説明Explanation of symbols

10 フローセンサアダプタ
11 流量センサ
12 CO2センサ
20 4開口チューブ
31 リザーブバッグ
32 ボンベ
41 アンプ
42 CO2メータ
45 A/D変換器
46 積分器
47 流速出力計
48 流量出力計
50 パルスオキシメータ
51 SpO2センサ
52 信号変換器
60 コンピュータ
70 マウスピース
80 バルブ駆動装置
DESCRIPTION OF SYMBOLS 10 Flow sensor adapter 11 Flow sensor 12 CO2 sensor 20 4 opening tube 31 Reserve bag 32 Cylinder 41 Amplifier 42 CO2 meter 45 A / D converter 46 Integrator 47 Flow velocity output meter 48 Flow rate output meter 50 Pulse oximeter 51 SpO2 sensor 52 Signal Converter 60 Computer 70 Mouthpiece 80 Valve drive device

Claims (6)

酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する酸素濃度の呼吸用ガスを供給する呼吸用ガス供給手段と、
前記呼吸用ガス供給手段により供給される呼吸用ガスと大気とを切替えて被検者へ供給する切替手段と、
前記被検者の血中酸素飽和度に係るデータを取得する取得手段と、
前記切替手段を制御して、被検者が大気による呼吸を行う第1の状態と前記呼吸用ガスによる呼吸を行う第2の状態とを実現する制御手段と、
前記第1の状態において前記取得手段により取得される第1の状態の血中酸素飽和度と、前記第2の状態において前記取得手段により取得される第2の状態の血中酸素飽和度とを得て、これらの関係に基づき肺病変の評価処理を行う評価処理手段と
を具備することを特徴とする肺病変評価装置。
A breathing gas supply means for supplying a breathing gas having an oxygen concentration corresponding to an oxygen partial pressure in a range where the slope in the oxygen hemoglobin dissociation curve is steep;
Switching means for switching between the breathing gas supplied by the breathing gas supply means and the atmosphere to supply to the subject;
Obtaining means for obtaining data relating to blood oxygen saturation of the subject;
Control means for controlling the switching means to realize a first state in which the subject performs breathing by the atmosphere and a second state in which breathing by the breathing gas is performed;
A blood oxygen saturation level in the first state acquired by the acquisition means in the first state and a blood oxygen saturation level in the second state acquired by the acquisition means in the second state. And a lung lesion evaluation apparatus comprising: an evaluation processing means for performing a lung lesion evaluation process based on these relationships.
前記被検者の呼気に含まれる二酸化炭素濃度を検出する検出手段を備え、
前記評価処理手段は、この検出手段により所定の二酸化炭素濃度が安定検出されているときに第1の状態及び第2の状態の血中酸素飽和度情報を取り込むことを特徴とする請求項1に記載の肺病変評価装置。
A detection means for detecting a carbon dioxide concentration contained in the exhalation of the subject,
The evaluation processing means captures blood oxygen saturation information in the first state and the second state when a predetermined carbon dioxide concentration is stably detected by the detection means. The lung lesion evaluation apparatus described.
呼吸用ガス供給手段は、酸素濃度が16%〜14%中の所定濃度である呼吸用ガスを供給することを特徴とする請求項1または2に記載の肺病変評価装置。 The pulmonary lesion evaluation apparatus according to claim 1 or 2, wherein the respiratory gas supply means supplies a respiratory gas having an oxygen concentration of a predetermined concentration of 16% to 14%. 評価処理手段は、第1の状態の血中酸素飽和度と第2の状態の血中酸素飽和度との差分または比と、閾値とを比較して評価処理を行うことを特徴とする請求項1に記載の肺病変評価装置。 The evaluation processing means compares the difference or ratio between the blood oxygen saturation level in the first state and the blood oxygen saturation level in the second state with a threshold value, and performs the evaluation processing. The lung lesion evaluation apparatus according to 1. 大気に相当する第1の酸素濃度の呼吸用ガスによる呼吸を被検者が行った第1の状態において得られた血中酸素飽和度に係るデータと、酸素ヘモグロビン解離曲線における傾きが急峻な範囲の酸素分圧に相当する第2の酸素濃度の呼吸用ガスによる呼吸を前記被検者が行った第2の状態において得られた血中酸素飽和度に係るデータとを取り込み、
前記第1の状態の血中酸素飽和度のデータと前記第2の状態の血中酸素飽和度のデータの関係に基づき肺病変の評価処理を行うことを特徴とする肺病変評価方法。
Data relating to blood oxygen saturation obtained in the first state where the subject has breathed with a breathing gas having a first oxygen concentration corresponding to the atmosphere, and a range where the slope in the oxygen hemoglobin dissociation curve is steep The blood oxygen saturation data obtained in the second state in which the subject has performed breathing with the breathing gas having the second oxygen concentration corresponding to the oxygen partial pressure of
A lung lesion evaluation method, comprising: performing lung lesion evaluation processing based on a relationship between blood oxygen saturation data in the first state and blood oxygen saturation data in the second state.
前記被検者の呼気に含まれる二酸化炭素濃度が所定に安定しているときに第1の状態及び第2の状態の血中酸素飽和度のデータを取り込むことを特徴とする請求項5に記載の肺病変評価方法。 6. The blood oxygen saturation data of the first state and the second state is captured when the carbon dioxide concentration contained in the exhalation of the subject is stabilized at a predetermined level. Of lung lesion evaluation.
JP2008159016A 2008-06-18 2008-06-18 Pulmonary lesion early evaluation apparatus and method therefor Withdrawn JP2010000118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159016A JP2010000118A (en) 2008-06-18 2008-06-18 Pulmonary lesion early evaluation apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159016A JP2010000118A (en) 2008-06-18 2008-06-18 Pulmonary lesion early evaluation apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2010000118A true JP2010000118A (en) 2010-01-07

Family

ID=41582338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159016A Withdrawn JP2010000118A (en) 2008-06-18 2008-06-18 Pulmonary lesion early evaluation apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2010000118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208215A (en) * 2012-03-30 2013-10-10 Fukuda Denshi Co Ltd Bioinformation display device, therapeutic device, and biological information measuring device
CN110520043A (en) * 2016-12-05 2019-11-29 梅迪平斯公司 The system and method for carrying out respiration measurement using breathing gas sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208215A (en) * 2012-03-30 2013-10-10 Fukuda Denshi Co Ltd Bioinformation display device, therapeutic device, and biological information measuring device
CN110520043A (en) * 2016-12-05 2019-11-29 梅迪平斯公司 The system and method for carrying out respiration measurement using breathing gas sample
CN110520043B (en) * 2016-12-05 2023-04-21 梅迪平斯公司 System and method for respiratory measurements using respiratory gas samples

Similar Documents

Publication Publication Date Title
US11179044B2 (en) Method of measuring cardiac related parameters non-invasively via the lung during spontaneous and controlled ventilation
US10532174B2 (en) Assistive capnography device
US20190076053A1 (en) Method and device for measuring a component in exhaled breath
EP1435836B1 (en) Respiratory analysis with capnography
US6413226B1 (en) Method and apparatus for determining cardiac output
US8801619B2 (en) Photoplethysmography for determining ventilation weaning readiness
US20070006878A1 (en) Capnographic-oxygenating oro-fiberscopic biteblock
US20070123792A1 (en) System and method for determining airway obstruction
US20090308393A1 (en) Medical diagnostic cart and method of use
US9532731B2 (en) Method and apparatus for measuring the concentration of a gas in exhaled air
US6517496B1 (en) Airway-based cardiac output monitor and methods for using same
US11141553B2 (en) Ventilation control system and method utilizing patient oxygen saturation
CN106659436B (en) Arterial CO2Measurement of partial pressure
US20210244900A1 (en) Method for operating a ventilator for artificial ventilation of a patient, and such a ventilator
US20180228399A1 (en) Capnography with decision support system architecture
US10821246B2 (en) Medical device and method for determining operating situations in a medical device
CN113777244A (en) Alveolar gas concentration detection device and method for separating air passage
JP2010000118A (en) Pulmonary lesion early evaluation apparatus and method therefor
US11491271B2 (en) Method for controlling a device for extracorporeal blood gas exchange, device for extracorporeal blood gas exchange, as well as control device for controlling a device for extracorporeal blood gas exchange
US20150202400A1 (en) Accelerated closed-circuit wash-in of tracer gas using bolus injection in lung function testing
KR102578530B1 (en) APPARATUS AND METHOD FOR PERFORMING BILEVEL HIGH FLOW THERAPY BASED ON SpO2
JP2786808B2 (en) Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result
JP7189011B2 (en) Exhaled gas detection device
TWI576090B (en) Human respiratory system function detecting device and method
CN114786573A (en) Hybrid venous oxygen saturation estimation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906