JP2009526512A - Method and apparatus for determining torque of power equipment - Google Patents

Method and apparatus for determining torque of power equipment Download PDF

Info

Publication number
JP2009526512A
JP2009526512A JP2008553718A JP2008553718A JP2009526512A JP 2009526512 A JP2009526512 A JP 2009526512A JP 2008553718 A JP2008553718 A JP 2008553718A JP 2008553718 A JP2008553718 A JP 2008553718A JP 2009526512 A JP2009526512 A JP 2009526512A
Authority
JP
Japan
Prior art keywords
torque
power device
ind
electric power
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008553718A
Other languages
Japanese (ja)
Inventor
アイゼンハルト マルティン
ブリント シュテファン
ゲッティング グンター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009526512A publication Critical patent/JP2009526512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/912Pulse or frequency counter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本発明は特に永久励磁型の電力機器(1)のトルク(M)を求める方法に関する。トルク(M)は、電力機器(1)の相電圧(Uind)と回転数(nないしω)を測定し、これらからトルク(M)を計算することによって、特に簡単かつ正確に求めることができる。The present invention particularly relates to a method for determining the torque (M) of a permanent-excitation power device (1). The torque (M) can be obtained particularly easily and accurately by measuring the phase voltage (U ind ) and the rotational speed (n to ω) of the electric power device (1) and calculating the torque (M) therefrom. it can.

Description

本発明は、請求項1の上位概念に従った電力機器、特に永久励磁型の電力機器のトルクを求める方法と、請求項5の上位概念に従った相応する装置とに関する。   The invention relates to a method for determining the torque of a power device according to the superordinate concept of claim 1, in particular a permanent excitation type power device, and a corresponding device according to the superordinate concept of claim 5.

現代のハイブリッド車では、通常、永久励磁型の同期機が電気駆動として使用される。永久励磁同期機は磁束を発生させるマグネットが中に配置されたロータとステータ巻線付きのステータとを含んでいる。電力機器はトルクを発生させるが、このトルクは特に相電流と機器内の磁束とに依存する。発生したトルクは車両の加速特性ないし走行特性を決定するので、求めるべき重要な値である。   In modern hybrid vehicles, a permanent excitation type synchronous machine is usually used as an electric drive. The permanent excitation synchronous machine includes a rotor having a magnet for generating magnetic flux disposed therein and a stator with stator windings. Power equipment generates torque, which depends in particular on the phase current and the magnetic flux in the equipment. The generated torque is an important value to be obtained because it determines the acceleration characteristic or running characteristic of the vehicle.

従来の車両では、電力機器のトルクはふつう数学的モデルを用いて計算される。リラクタンストルクが生じないと仮定すれば、トルクMに関して次式が成り立つ。
M = K * I * Ψ,
ここで、
K:機器定数
:機器内の横流(ベクトル制御)
Ψ:機器内の磁束
In conventional vehicles, the torque of the power equipment is usually calculated using a mathematical model. Assuming that reluctance torque does not occur, the following equation holds for torque M:
M = K * Iq * Ψ,
here,
K: Equipment constant I q : Cross current in equipment (vector control)
Ψ: Magnetic flux in equipment

しかし、このトルクMの計算は比較的不正確である。というのも、磁束Ψは一定でなく、特に温度に依存して変動するからである。このことから比較的大きな誤差が幾重にも生じる。   However, this calculation of torque M is relatively inaccurate. This is because the magnetic flux Ψ is not constant and varies depending on the temperature. This results in several relatively large errors.

それゆえ、本発明の課題は、電力機器のトルクを格段に正確に求めることのできる方法および相応する装置を提供することである。   The object of the present invention is therefore to provide a method and a corresponding device which can determine the torque of a power device much more accurately.

本発明によれば、この課題は請求項1および請求項5に示されている特徴により解決される。本発明の他の実施形態は従属請求項の対象である。   According to the invention, this problem is solved by the features indicated in claims 1 and 5. Other embodiments of the invention are the subject of the dependent claims.

本発明の1つの重要な側面は、相電圧と電力機器の回転数を測定し、これらからトルクを計算することにある。「回転数」という表現は、例えば角周波数のような比例量を意味するものと理解されなければならない。これにより、電力機器のトルクMを求める際に特に温度の影響を考慮することができ、トルクMがより正確に求められるという重要な利点が得られる。   One important aspect of the present invention is to measure the phase voltage and the number of revolutions of the power equipment and calculate the torque from them. The expression “number of revolutions” should be understood as meaning a proportional quantity, for example an angular frequency. Thereby, when determining the torque M of the power equipment, the influence of temperature can be taken into consideration, and an important advantage is obtained that the torque M is determined more accurately.

トルクは有利には下記の数学的モデルに従って計算される。
M = K* I * Ψ
しかしここで、磁束Ψは測定された相電圧Uindと電力機器の回転数ないし角周波数とから計算される。磁束Ψについては次式が成り立つ。
Ψ = Uind/ω
ここで、
ind:誘導電圧
ω:角周波数
The torque is preferably calculated according to the following mathematical model.
M = K * Iq * Ψ
Here, however, the magnetic flux Ψ is calculated from the measured phase voltage U ind and the rotational speed or angular frequency of the power equipment. The following equation holds for the magnetic flux Ψ.
Ψ = U ind / ω
here,
U ind : induced voltage ω: angular frequency

相電圧Uindは有利には電力機器1の無負荷時に測定される。この状態では、電力機器に接続されたパルス幅変調インバータの全スイッチが開いており、相電圧は実質的に正弦波状の波形を示す。したがって、相電圧を正確に測定することが可能である。トルクMの計算には、相電圧Uindのピーク値を参照すると有利である。 The phase voltage U ind is preferably measured when the power device 1 is unloaded. In this state, all the switches of the pulse width modulation inverter connected to the power device are open, and the phase voltage substantially exhibits a sinusoidal waveform. Therefore, it is possible to accurately measure the phase voltage. For the calculation of the torque M, it is advantageous to refer to the peak value of the phase voltage Uind .

電力機器のトルク、特に永久励磁電力機器のトルクを求める本発明による装置は、トルクMを求めるためのアルゴリズムを備えた制御ユニットを含んでいる。この制御ユニットには相電圧信号Uindと回転数信号が供給され、アルゴリズムがこれらの値に基づいてトルクMを計算する。 The device according to the invention for determining the torque of a power device, in particular the torque of a permanent excitation power device, includes a control unit with an algorithm for determining the torque M. The control unit is supplied with a phase voltage signal U ind and a rotational speed signal, and the algorithm calculates the torque M based on these values.

制御ユニットがパルス幅変調インバータ(PWR)を制御するための出力信号を生成し、このパルス幅変調インバータを用いて特に電力機器の出力を変化させるようにすると有利である。   It is advantageous if the control unit generates an output signal for controlling a pulse width modulation inverter (PWR) and uses this pulse width modulation inverter in particular to change the output of the power equipment.

以下に、添付図面に基づいて本発明の実施例をより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1には、三相電力機器1とこれに接続されたパルス幅変調インバータ2が概略的に示されている。パルス幅変調インバータ(PWR)2は電力機器1の個々の位相U,V,Wに接続された遮断器6a−6fを含んでおり、位相U,V,Wは高い供給電位(中間回路電圧U)または低い基準電位(アース)のいずれかに接続する。高い供給電位Uに接続されたスイッチ6a−6cは「ハイサイドスイッチ」とも呼ばれ、アースに接続されたスイッチ6d−6fは「ローサイドスイッチ」と呼ばれる。パルス幅変調インバータ2はさらに複数のフリーホイールダイオード7a−7fを含んでおり、これらフリーホイールダイオード7a−7fはそれぞれスイッチ6a−6fのうちの1つに並列して配置されている。 FIG. 1 schematically shows a three-phase power device 1 and a pulse width modulation inverter 2 connected thereto. The pulse width modulation inverter (PWR) 2 includes circuit breakers 6a-6f connected to the individual phases U, V, W of the power equipment 1, where the phases U, V, W are high supply potentials (intermediate circuit voltage U). z ) or connected to either a low reference potential (earth). Switch 6a-6c that is connected to a high supply potential U z is also called "high-side switch", the switch 6d-6f connected to ground are referred to as "low-side switch". The pulse width modulation inverter 2 further includes a plurality of freewheel diodes 7a-7f, which are arranged in parallel with one of the switches 6a-6f, respectively.

PWR2は電力機器1の出力と動作モードを決定するものであり、制御ユニット12により相応に制御される。そのため、電力機器1は選択的に電動機モードまたは発電機モードで動作することができる。   The PWR 2 determines the output and operation mode of the power device 1 and is controlled accordingly by the control unit 12. Therefore, the electric power device 1 can selectively operate in the electric motor mode or the generator mode.

パルス幅変調インバータ2はさらにいわゆる中間回路キャパシタ8を含んでいる。この中間回路キャパシタ8は主にバッテリ電圧の安定化に使用される。バッテリ9を備えた車載電源が中間回路キャパシタ8に並列接続されている。   The pulse width modulation inverter 2 further includes a so-called intermediate circuit capacitor 8. This intermediate circuit capacitor 8 is mainly used to stabilize the battery voltage. An in-vehicle power supply including a battery 9 is connected in parallel to the intermediate circuit capacitor 8.

電力機器1はここでは三相として実施されており、3つの素線3a−3cを有するステータと複数の永久磁石11を有するロータを含んでいる。素線3a−3cのオーム性抵抗は素子10a−10cで表されている。   The electric power device 1 is implemented here as a three-phase, and includes a stator having three strands 3 a to 3 c and a rotor having a plurality of permanent magnets 11. The ohmic resistance of the strands 3a-3c is represented by elements 10a-10c.

電力機器1はトルクMを発生させるが、このトルクMはとりわけ相電流I,I,Iないし横流I(ベクトル制御)と電力機器1内の磁束Ψとに依存する。電力機器のその時々のトルクMは制御ユニット12が装備している数学的モデルを用いて計算される。このモデルないしアルゴリズムは次の関係式に従ってトルクMを計算する。
M = K* I * Ψ
ここで、磁束Ψは下式のように電磁誘導の原理を経由して求められる。
ind = ω * Ψ または Ψ = Uind/ω
ここで、
ind:無負荷時の機器の誘導電圧
ω:電気角周波数
The electric power device 1 generates a torque M, which depends on the phase currents I U , I V , I W or cross current I q (vector control) and the magnetic flux Ψ in the electric power device 1. The current torque M of the power device is calculated using a mathematical model that the control unit 12 is equipped with. This model or algorithm calculates the torque M according to the following relation:
M = K * Iq * Ψ
Here, the magnetic flux Ψ is obtained via the principle of electromagnetic induction as shown in the following equation.
U ind = ω * Ψ or Ψ = U ind / ω
here,
U ind : Equipment induced voltage ω at no load: Electrical angular frequency

電力機器1の角周波数ωはここでは回転数センサ5で測定される。ステータ巻線3a−3cの誘導電圧Uindは電圧源4a−4cにより概略的に示されており、簡単な電圧センサで測定することができる。誘導電圧Uindとして、例えば、前記位相のうちの2つ、例えばUとVの間の電圧、または、位相U,V,Wのうちの1つと基準電位の間の電圧を測定してよい。この電圧Uindは電力機器1の無負荷時には正弦波状であるので、この状態のときに測定すると有利である。(無負荷時には、パルス幅変調インバータ2の6つの遮断器6a−6fが開いている。) Here, the angular frequency ω of the electric power device 1 is measured by the rotation speed sensor 5. The induced voltage Uind of the stator windings 3a-3c is schematically indicated by the voltage sources 4a-4c and can be measured with a simple voltage sensor. As the induced voltage U ind , for example, a voltage between two of the phases, for example, a voltage between U and V, or a voltage between one of the phases U, V, and W and a reference potential may be measured. Since this voltage U ind is sinusoidal when the power device 1 is not loaded, it is advantageous to measure in this state. (When there is no load, the six circuit breakers 6a-6f of the pulse width modulation inverter 2 are open.)

電力機器1の回転数は測定時には十分に大きくなければならないが、他方では最大回転数を超えてはならない。ここで、最大回転数とは、それを超えると、フリーホイールダイオード7a−7fは整流器ブリッジとして機能することになる回転数である。上記が満たされない場合には、相電圧U,V,Wは歪み、もはや正弦波状ではなくなってしまう。   The rotational speed of the power device 1 must be sufficiently large during the measurement, but on the other hand it must not exceed the maximum rotational speed. Here, the maximum number of rotations is the number of rotations beyond which the freewheeling diodes 7a-7f will function as a rectifier bridge. If the above is not met, the phase voltages U, V, W are distorted and no longer sinusoidal.

電圧信号Uind、回転数信号nは制御ユニット12の入力側に供給される。電圧信号からはピーク値が計算される。これは前に述べた誘導電圧Uindに相当する。制御ユニット12に格納されているアルゴリズムがこれらの値を処理し、電力機器1のその時々のトルクMを求める。 The voltage signal U ind and the rotation speed signal n are supplied to the input side of the control unit 12. A peak value is calculated from the voltage signal. This corresponds to the previously described induced voltage Uind . The algorithm stored in the control unit 12 processes these values to determine the current torque M of the power device 1.

トルクMの計算するための数学的モデルは解析的に制御ユニット12に格納しておいてもよいし、特性マップとして制御ユニット12に格納しておいてもよい。このようにして、トルクMは特に正確かつ簡単に求められる。   The mathematical model for calculating the torque M may be analytically stored in the control unit 12 or may be stored in the control unit 12 as a characteristic map. In this way, the torque M is determined particularly accurately and simply.

三相電力機器1とこれに接続されたパルス幅変調インバータ2を示す。A three-phase power device 1 and a pulse width modulation inverter 2 connected thereto are shown.

Claims (7)

とりわけ永久励磁型の電力機器(1)のトルク(M)を求める方法であって、前記電力機器(1)の相電圧(Uind)と回転数(n,ω)を測定し、これら相電圧と回転数からトルク(M)を計算することを特徴とする、電力機器(1)のトルク(M)を求める方法。 In particular, it is a method for obtaining the torque (M) of the permanent excitation type electric power device (1), which measures the phase voltage (U ind ) and the rotational speed (n, ω) of the electric power device (1), and these phase voltages. And calculating the torque (M) of the electric power device (1), wherein the torque (M) is calculated from the rotational speed. 相電圧(Uind)を前記電力機器(1)の無負荷時に測定する、請求項1記載の方法。 The method according to claim 1, wherein a phase voltage (U ind ) is measured when the power device (1) is unloaded. 相電圧(Uind)のピーク値を求める、請求項1または2記載の方法。 The method according to claim 1, wherein a peak value of the phase voltage (U ind ) is obtained. 関数M=f(K,I,Uind,ωないしn)によりトルク(M)を計算する、請求項1から3のいずれか1項記載の方法。 The method according to claim 1, wherein the torque (M) is calculated by the function M = f (K, I q , U ind , ω to n). とりわけ永久励磁型の電力機器(1)のトルク(M)を求める装置であって、トルク(M)を求めるためのアルゴリズムを備えた制御ユニット(12)を有しており、前記アルゴリズムを用いて、前記制御ユニット(12)に供給された相電圧信号(Uind)と回転数信号(n,ω)から前記電力機器(1)のトルク(M)が計算されることを特徴とする、電力機器(1)のトルク(M)を求める装置。 In particular, it is a device for obtaining the torque (M) of the permanent excitation type electric power device (1), and has a control unit (12) having an algorithm for obtaining the torque (M). The torque (M) of the electric power device (1) is calculated from the phase voltage signal (U ind ) and the rotation speed signal (n, ω) supplied to the control unit (12). Device for obtaining torque (M) of device (1). 前記制御ユニット(12)はパルス幅変調インバータ(2)を制御するための出力信号(A)を生成する、請求項5記載の装置。   6. The device according to claim 5, wherein the control unit (12) generates an output signal (A) for controlling the pulse width modulation inverter (2). 前記アルゴリズムは関数M=f(K,I,Uind,ωないしn)によりトルク(M)を計算する、請求項5または6記載の方法。 The method according to claim 5 or 6, wherein the algorithm calculates the torque (M) by the function M = f (K, Iq , Uind , ω to n).
JP2008553718A 2006-02-09 2007-01-30 Method and apparatus for determining torque of power equipment Pending JP2009526512A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005854A DE102006005854A1 (en) 2006-02-09 2006-02-09 Method and device for determining the torque of an electrical machine
PCT/EP2007/050869 WO2007090760A2 (en) 2006-02-09 2007-01-30 Method and device for determining the torque of an electric machine

Publications (1)

Publication Number Publication Date
JP2009526512A true JP2009526512A (en) 2009-07-16

Family

ID=38288582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008553718A Pending JP2009526512A (en) 2006-02-09 2007-01-30 Method and apparatus for determining torque of power equipment

Country Status (7)

Country Link
US (1) US7688012B2 (en)
EP (1) EP1985006A2 (en)
JP (1) JP2009526512A (en)
KR (1) KR101056572B1 (en)
CN (1) CN101379690A (en)
DE (1) DE102006005854A1 (en)
WO (1) WO2007090760A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020068A1 (en) * 2007-04-27 2008-10-30 Kaltenbach & Voigt Gmbh Method and device for determining the motor constant of an electric motor
DE102009046583A1 (en) 2009-11-10 2011-05-12 Robert Bosch Gmbh Method for plausibilizing the torque of an electrical machine and machine controller for controlling an electrical machine and for carrying out the method
DE102011075387A1 (en) * 2011-05-06 2012-11-08 Robert Bosch Gmbh Method and device for monitoring a torque of an electric motor
US10336212B2 (en) * 2013-11-27 2019-07-02 Ford Global Technologies, Llc Torque monitoring system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128161A (en) * 1993-11-05 1995-05-19 Toei Denki Kk Method and apparatus for measurement of torque and torque control device using them
JP2003510002A (en) * 1999-09-17 2003-03-11 デルファイ・テクノロジーズ・インコーポレーテッド Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
JP2003244990A (en) * 2002-02-18 2003-08-29 Nissan Motor Co Ltd Motor control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573745B2 (en) * 2001-05-04 2003-06-03 Ford Global Technologies, Inc. Permanent magnet degradation monitoring for hybrid and electric vehicles
JP4103608B2 (en) * 2003-01-29 2008-06-18 株式会社デンソー Torque calculation device for vehicle generator
JP2004312825A (en) * 2003-04-03 2004-11-04 Koyo Seiko Co Ltd Motor controller
US6894455B2 (en) * 2003-04-30 2005-05-17 Remy Inc. Performance improvement of integrated starter alternator by changing stator winding connection
US7821217B2 (en) * 2006-05-22 2010-10-26 Black & Decker Inc. Electronically commutated motor and control system employing phase angle control of phase current

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128161A (en) * 1993-11-05 1995-05-19 Toei Denki Kk Method and apparatus for measurement of torque and torque control device using them
JP2003510002A (en) * 1999-09-17 2003-03-11 デルファイ・テクノロジーズ・インコーポレーテッド Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
JP2003244990A (en) * 2002-02-18 2003-08-29 Nissan Motor Co Ltd Motor control device

Also Published As

Publication number Publication date
KR20080108083A (en) 2008-12-11
WO2007090760A3 (en) 2007-12-13
US20090167222A1 (en) 2009-07-02
CN101379690A (en) 2009-03-04
DE102006005854A1 (en) 2007-08-23
WO2007090760A2 (en) 2007-08-16
US7688012B2 (en) 2010-03-30
EP1985006A2 (en) 2008-10-29
KR101056572B1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
US8222844B2 (en) Method for determining the magnet temperature in synchronous machines
JP4624619B2 (en) Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
US10295414B2 (en) Method for determining a coil temperature of an electric machine
KR101982880B1 (en) Electric device comprising an alternating current electric motor and a control inverter and a method for measuring the electromotive force of this device
KR20150034276A (en) Method for determining the rotor position of an electronically-commuted multi-phase direct current motor
JP2016518105A (en) Method for estimating the angular position of a rotor of a multiphase rotating electrical machine and its application to the control of a multiphase inverter for such a machine
KR20150127094A (en) Control system for a synchronous machine and method for operating a synchronous machine
KR100934041B1 (en) Permanent Magnet Electric Motor Potato Detection Device and Method of Hybrid Electric Vehicle
US20040124806A1 (en) System and method for inductance based position encoding sensorless srm drives
JP2009526512A (en) Method and apparatus for determining torque of power equipment
JP4051833B2 (en) Vector controller for permanent magnet synchronous motor
JP6990085B2 (en) Rotation speed calculation device
US7043395B2 (en) Method for detecting the magnetic flux the rotor position and/or the rotational speed
JP2002034281A (en) Motor-controlling device and air conditioner
JP3468459B2 (en) Control device for permanent magnet type synchronous motor
Won et al. Position sensorless control method of IPMSM applying three shunt sensing PWM inverter using predictive current
JP5148789B2 (en) Identification method of flux linkage and electrical time constant of permanent magnet synchronous motor
CN111034013A (en) Control device for three-phase synchronous motor and electric power steering device using same
US20230268864A1 (en) A Method For Controlling A Rotary Electric Machine And A System Thereof
CN111740677B (en) Automatic software tool for adjusting motor control parameters
RU2773000C1 (en) Method for regulating a multiphase electric machine and a system of a multiphase electric machine for such a method
JP2001037284A (en) Method and apparatus for measuring electrical angle
KR100692127B1 (en) The generation capacity control method of hybrid electric vehicle
Inoue et al. A novel method of maximum torque per ampere control for a direct torque-controlled PMSM in a stator flux-linkage synchronous frame
KR100327380B1 (en) apparatus for detecting rotor position of BLDC motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110713