JP2009506154A - Hydrosilylation process - Google Patents

Hydrosilylation process Download PDF

Info

Publication number
JP2009506154A
JP2009506154A JP2008527468A JP2008527468A JP2009506154A JP 2009506154 A JP2009506154 A JP 2009506154A JP 2008527468 A JP2008527468 A JP 2008527468A JP 2008527468 A JP2008527468 A JP 2008527468A JP 2009506154 A JP2009506154 A JP 2009506154A
Authority
JP
Japan
Prior art keywords
ppm
mixture
range
crosslinking method
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008527468A
Other languages
Japanese (ja)
Inventor
バリオ シャンタル
マルティ ジャン−ミッシェル
Original Assignee
ネクサンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネクサンス filed Critical ネクサンス
Publication of JP2009506154A publication Critical patent/JP2009506154A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本発明は、不飽和ベースポリマーと、シラン化合物と、ポリマーマトリックス中に固体状白金を分散させたマスター混合物から成る白金ヒドロシリル化触媒とを混合することから成るヒドロシリル化方法に関する。本発明は、得られる混合物の固体状白金の含有量を12ppm〜35ppmの範囲、好ましくは12ppm〜20ppmの範囲にすることを特徴とする。  The present invention relates to a hydrosilylation process comprising mixing an unsaturated base polymer, a silane compound, and a platinum hydrosilylation catalyst comprising a master mixture having solid platinum dispersed in a polymer matrix. The present invention is characterized in that the solid platinum content of the resulting mixture is in the range of 12 ppm to 35 ppm, preferably in the range of 12 ppm to 20 ppm.

Description

本発明は、特に架橋性ポリマー組成物を調製するためのヒドロシリル化方法に関する。   The present invention relates to a hydrosilylation process for preparing a crosslinkable polymer composition in particular.

特に有利な、しかし非網羅的な、本発明の用途は、電力及び/又は電気通信ケーブル(光ファイバーケーブルを含む)を絶縁及び/又は鎧装するための材料の分野にある。   A particularly advantageous but non-exhaustive application of the invention is in the field of materials for insulating and / or armoring power and / or telecommunications cables (including fiber optic cables).

ヒドロシリル化は、特にシリコーンを製造するために、今日広く用いられているグラフト方法である。概略において、これは潜在的に架橋可能なポリマー組成物を得る目的でシラン化合物を不飽和ポリマー上にグラフトさせることから成る。   Hydrosilylation is a grafting method that is widely used today, particularly for producing silicones. In general, this consists of grafting a silane compound onto an unsaturated polymer in order to obtain a potentially crosslinkable polymer composition.

いずれの場合においても、ヒドロシリル化は一般的に、白金をベース(即ち主体)とする触媒(白金ベース触媒と称する)の存在下で不飽和ポリマーとシラン化合物とを混合することによって実施される。実施に当たっては、前記ポリマーは一般的に固体の形で用いられ、一方、シラン化合物及び白金触媒は通常液体の形で用いられる。   In either case, hydrosilylation is generally performed by mixing an unsaturated polymer and a silane compound in the presence of a platinum-based (ie, main) catalyst (referred to as a platinum-based catalyst). In practice, the polymer is generally used in solid form, while the silane compound and platinum catalyst are usually used in liquid form.

しかしながら、このタイプの方法は、配合中に用いられる物質の大部分が液体の形にあると、ケーブル製造の分野に移行するのが困難であるという欠点を示す。ケーブル製造用の機械及び特に押出機は一般的に、純粋に固体状の材料を本質的に供給されて運転されるのに適するように作られている。   However, this type of process presents the drawback that it is difficult to move into the cable manufacturing field if the majority of the materials used during compounding are in liquid form. Machines for cable production and in particular extruders are generally made to be suitable for operation with essentially purely solid material being fed.

かかるヒドロシリル化方法はまた、主に液状白金ベース触媒の固有の価格のために、極めて費用がかかるという欠点も有する。この触媒は、少しでも均一の結果を得るためには必ず大量に用いなければならないので、ますます上記のことが当てはまる。   Such hydrosilylation processes also have the disadvantage of being very expensive, mainly due to the inherent price of liquid platinum-based catalysts. This is increasingly true since this catalyst must be used in large quantities in order to obtain even uniform results.

かくして、本発明の主題によって解決すべき技術上の課題は、不飽和ベースポリマーと、シラン化合物と、ポリマーマトリックス中に固体状白金を分散させたマスター混合物から成る白金ベースヒドロシリル化触媒とを混合することから成るヒドロシリル化方法であって、特にケーブル製造工場の生産手段との良好な適合性をもたらすことによって、実質的に費用がそれほどかかることなく従来技術の問題点を回避することを可能にする前記方法を提供することにある。   Thus, the technical problem to be solved by the present subject matter is to mix an unsaturated base polymer, a silane compound, and a platinum-based hydrosilylation catalyst comprising a master mixture having solid platinum dispersed in a polymer matrix. A hydrosilylation process comprising, in particular, a good compatibility with the production means of a cable manufacturing plant, making it possible to avoid the problems of the prior art at virtually no cost It is to provide the method.

本発明に従えば、提唱された技術上の課題の解決策は、この方法で得られる混合物の固体状白金の含有量を12ppm〜35ppmの範囲、好ましくは12ppm〜20ppmの範囲にすることから成る。   According to the invention, a solution to the proposed technical problem consists in bringing the solid platinum content of the mixture obtained by this process in the range of 12 ppm to 35 ppm, preferably in the range of 12 ppm to 20 ppm. .

ベース不飽和ポリマーは、理論上は任意の既知の種類のものであることができ、特にオレフィンであることができるものと理解されたい。同様に、シラン化合物は非常に一般的にはケイ素−水素結合Si−Hを含む任意の物質であることができる。   It should be understood that the base unsaturated polymer can theoretically be of any known type and in particular can be an olefin. Similarly, the silane compound can very generally be any material containing silicon-hydrogen bonds Si—H.

こうして規定される本発明は、現存のケーブル製造装置(特に押出機)に完全に適合するという利点を示す。一般的に液状のシラン化合物を前もって慣用の固体状不飽和ポリマーと混合すると、出発時に完全に固体の材料を用いながら、白金触媒との混合を達成することが可能である。ケーブル生産手段を直接用いて本発明を実施することができるということは、技術上及び経済上の両方で利点を構成する。   The invention thus defined shows the advantage of being perfectly compatible with existing cable manufacturing equipment (especially extruders). In general, when a liquid silane compound is previously mixed with a conventional solid unsaturated polymer, it is possible to achieve mixing with the platinum catalyst while using a completely solid material at the start. The fact that the present invention can be implemented directly using cable production means constitutes an advantage both technically and economically.

マスター混合物の形でヒドロシリル化触媒を使用することによって、混合物内の白金のより良好な分散を達成することもでき、それによって有意に大きな効果を達成することもできる。従って、有意に少ない量の触媒を用いて同等の効果を得ることができ、コスト面で有意の節約が可能である。   By using the hydrosilylation catalyst in the form of a master mixture, a better dispersion of the platinum in the mixture can also be achieved, thereby achieving a significantly greater effect. Therefore, the same effect can be obtained by using a significantly smaller amount of catalyst, and a significant cost saving can be achieved.

全混合物中の白金含有量を減らせることの別の結果として、最終的な材料の電気的特性が維持されるという点がある。この場合には、これらの特性が導電性金属が存在することによって損なわれることは殆どない。   Another result of reducing the platinum content in the total mixture is that the electrical properties of the final material are maintained. In this case, these characteristics are hardly impaired by the presence of the conductive metal.

最後に、白金をマスター混合物の形にすることによって、実際に必要な量の触媒を正確に量り分けることが可能になる。このことは、最終的な濃度はたった数ppm程度でなければならないので、本発明の範疇において根底となることであることがわかる。   Finally, platinum in the form of a master mixture makes it possible to accurately measure the amount of catalyst actually required. This proves to be fundamental in the scope of the present invention, since the final concentration must be only a few ppm.

本発明の特徴に従えば、マスター混合物のポリマーマトリックスは、ポリオレフィン、ポリオレフィンコポリマー及びこれらの成分の任意の混合物より成る群から選択される。   According to a feature of the invention, the polymer matrix of the master mixture is selected from the group consisting of polyolefins, polyolefin copolymers and any mixtures of these components.

特に有利な態様においては、マスター混合物のポリマーマトリックスを、不飽和ベースポリマーと同じ性状のものにする。この特徴は、最終材料の機械的特性、誘電特性及び老化特性を変化させることができる。   In a particularly advantageous embodiment, the polymer matrix of the master mixture has the same properties as the unsaturated base polymer. This feature can change the mechanical, dielectric and aging properties of the final material.

本発明の別の特徴に従えば、マスター混合物の固体状白金は、ヘキサクロロ白金酸から成る。   According to another characteristic of the invention, the solid platinum of the master mixture consists of hexachloroplatinic acid.

特に有利な態様においては、ヒドロシリル化触媒の含有量を、不飽和ベースポリマーの総量に対して4%〜7%の範囲とする。   In a particularly advantageous embodiment, the content of hydrosilylation catalyst is in the range from 4% to 7% with respect to the total amount of unsaturated base polymer.

本発明の別の特徴に従えば、シラン化合物はポリヒドロシロキサン、特にポリメチルシロキサンである。   According to another characteristic of the invention, the silane compound is a polyhydrosiloxane, in particular polymethylsiloxane.

本発明の別の有利な特徴に従えば、シラン化合物の含有量は、不飽和ベースポリマーの総量に対して1%〜8%の範囲、好ましくは4%〜6%の範囲とする。   According to another advantageous characteristic of the invention, the content of silane compounds is in the range from 1% to 8%, preferably in the range from 4% to 6%, based on the total amount of unsaturated base polymer.

本発明の別の特徴に従えば、架橋方法は100℃〜125℃の範囲の温度において実施する。   According to another characteristic of the invention, the crosslinking process is carried out at a temperature in the range from 100 ° C to 125 ° C.

本発明はまた、少なくとも1つの絶縁部品内に少なくとも1つの導体(心線)部品が通された任意の電力及び/又は電気通信ケーブルであって、少なくとも1つの絶縁部品が上記のヒドロシリル化方法を用いて架橋させた材料から作られたものをも提供する。   The present invention also provides any power and / or telecommunications cable having at least one conductor (core) component passed through at least one insulating component, wherein the at least one insulating component performs the hydrosilylation method described above. Also provided are those made from materials that have been cross-linked.

本発明はまた、少なくとも1つの絶縁部品内に少なくとも1つの導体(心線)部品が通された任意の電力及び/又は電気通信ケーブルであって、上記のヒドロシリル化方法によって架橋させた材料から作られた少なくとも1つの鎧装をも備えたものをも提供する。   The present invention also provides any power and / or telecommunications cable with at least one conductor (core) component passed through at least one insulating component, made from a material crosslinked by the hydrosilylation method described above. Also provided is at least one armor provided.

本発明のその他の特徴及び利点は、非限定的な例として与えた下記の説明から明らかになる。   Other features and advantages of the present invention will become apparent from the following description given by way of non-limiting example.

マスター混合物の調製Preparation of master mixture

マスター混合物を構成するポリマーマトリックスは、この例においてはエチレン−プロピレン−ノルボルネンのターポリマーから成る。   The polymer matrix constituting the master mixture consists in this example of an ethylene-propylene-norbornene terpolymer.

白金ベースヒドロシリル化触媒は、式H2PtCl6・xH2Oを有し、純粋な白金元素を41.88%含有するヘキサクロロ白金酸の形のものである。 The platinum-based hydrosilylation catalyst has the formula H 2 PtCl 6 .xH 2 O and is in the form of hexachloroplatinic acid containing 41.88% pure platinum element.

第1調製物Aは、ポリマー36g中にヘキサクロロ白金酸1gを添加することによって(即ち、触媒1重量部に対してポリマー36重量部の割合で)調製した。   First Preparation A was prepared by adding 1 g of hexachloroplatinic acid to 36 g of polymer (ie, 36 parts by weight of polymer to 1 part by weight of catalyst).

具体的には、この操作は、ポリマーマトリックス内におけるヒドロシリル化触媒の良好な分散を保証するために、密閉式混合機中で実施した。加えた温度は、エチレン−プロピレン−ノルボルネンターポリマーの溶融温度(即ち110℃)より僅かに高くした。   Specifically, this operation was performed in a closed mixer to ensure good dispersion of the hydrosilylation catalyst within the polymer matrix. The applied temperature was slightly higher than the melting temperature of the ethylene-propylene-norbornene terpolymer (ie 110 ° C.).

こうしてこの方法で得られた調製物Aは、純粋白金を1.13%含有していた。この含有率は対象とする用途にとってまだ多すぎることは明らかなので、新たな希釈操作を実施した。   The preparation A thus obtained in this way contained 1.13% pure platinum. Since it is clear that this content is still too high for the intended application, a new dilution operation was performed.

かくして、第2調製物Bは、調製物A1g及びターポリマー36gから、第1の混合物について用いたものと類似の割合、即ち調製物A1重量部に対してポリマー36重量部の割合で、調製した。   Thus, a second preparation B was prepared from 1 g of preparation A and 36 g of terpolymer in a proportion similar to that used for the first mixture, ie a ratio of 36 parts by weight of polymer to 1 part by weight of preparation A. .

この第2の操作は、上記のものと同じ条件を用いて、論理的に実施した。従って、調製物Bについては0.03%の活性白金含有率が得られた。これは有利なことに本発明に適したマスター混合物、即ちヒドロシリル化触媒として用いることができるマスター混合物を構成する。   This second operation was performed logically using the same conditions as described above. Therefore, for preparation B, an active platinum content of 0.03% was obtained. This advantageously constitutes a master mixture suitable for the present invention, i.e. a master mixture which can be used as a hydrosilylation catalyst.

絶縁材料の調製Preparation of insulating materials

110℃に保った密閉式混合機中に、最初にベースポリマー100重量部を添加した。このベースポリマーは、この例においては有利には、マスター混合物のものと同一のもの、即ちエチレン−プロピレン−ノルボルネンターポリマーだった。   First, 100 parts by weight of the base polymer was added into a closed mixer maintained at 110 ° C. The base polymer in this example was advantageously the same as that of the master mixture, ie an ethylene-propylene-norbornene terpolymer.

上記の量は、ベースポリマー100部当たりの重量部(pph)として表わされる。   The above amounts are expressed as parts by weight per 100 parts of base polymer (pph).

ポリマーが溶融したら、その中にシラン化合物を添加した。このシラン化合物は、2つの成分の混合物の形にあるものだった。従って、次のものが添加された:まず最初に、鎖中に−SiH基を有するポリメチルヒドロシロキサン(以下、Silox 1と称する)3重量部;2番目に、鎖の末端に−SiH基を有するポリメチルヒドロシロキサン(以下、Silox 2と称する)3重量部。   When the polymer melted, the silane compound was added into it. This silane compound was in the form of a mixture of two components. Accordingly, the following was added: first, 3 parts by weight of polymethylhydrosiloxane having -SiH groups in the chain (hereinafter referred to as Silox 1); second, -SiH groups at the end of the chain 3 parts by weight of polymethylhydrosiloxane (hereinafter referred to as Silox 2).

次いで、ヒドロシリル化触媒をマスター混合物の形、特に調製物Bの形で、得られる混合物中の固体状白金含有量が12ppm〜35ppmの範囲、好ましくは12ppm〜20ppmの範囲になるように、添加した。   The hydrosilylation catalyst was then added in the form of a master mixture, in particular in the form of Preparation B, so that the solid platinum content in the resulting mixture was in the range of 12 ppm to 35 ppm, preferably in the range of 12 ppm to 20 ppm. .

この混合物を以下においては「最終混合物」と称する。   This mixture is hereinafter referred to as the “final mixture”.

混合操作は、125℃の温度において2分間実施した。   The mixing operation was performed at a temperature of 125 ° C. for 2 minutes.

その後、この操作の後に、この最終混合物は周囲空気中で自然に架橋した。   Thereafter, after this operation, the final mixture spontaneously cross-linked in ambient air.

本発明に従う方法を用いることによって実際に良好な架橋が得られたことを証明するために、NF規格EN 60811-2-1に従って機械的応力下における熱クリープの測定を実施した。   In order to prove that actually good cross-linking was obtained by using the method according to the invention, the measurement of thermal creep under mechanical stress was carried out according to NF standard EN 60811-2-1.

熱クリープ試験は、ダンベルタイプの試験片の一方の端部に0.2MPaの均等応力の適用に相当する重量をかけ、全体を200±1℃に加熱されたオーブン中に15分間入れることから成る。   The thermal creep test consists of placing one end of a dumbbell-type specimen on a weight corresponding to the application of an equal stress of 0.2 MPa and placing the whole in an oven heated to 200 ± 1 ° C. for 15 minutes. .

もしも試験片が機械応力及び温度の組合せ作用下において試験中に破断したら、その場合には試験の結果は不合格と見なされる。   If the specimen breaks during the test under the combined action of mechanical stress and temperature, then the result of the test is considered as a failure.

クリープ試験は、表1に詳述した組成を有する最終組成物に対して実施した。   The creep test was performed on the final composition having the composition detailed in Table 1.

Figure 2009506154
Figure 2009506154

上記の方法を用いて、最終混合物1〜4を調製した。   Final mixtures 1-4 were prepared using the method described above.

表2に、最終混合物1〜4についての機械的応力かにおける熱クリープ結果を与える。   Table 2 gives the thermal creep results in terms of mechanical stress for the final blends 1-4.

Figure 2009506154
Figure 2009506154

「自然架橋の日数」とは、最終混合物1の試験片について観察されるように架橋が起こらない場合を除いて、試験片が破断しなくなるのに必要な最少日数に相当する。   The “days of natural crosslinking” corresponds to the minimum number of days required for the specimen to not break, except when no crosslinking occurs as observed for the specimen of the final mixture 1.

最終混合物1の試験片は、20日間の自然架橋の後に、オーブン中に15分間入れておいた間に破断したので、クリープ試験に不合格だった。   The test specimen of Final Mix 1 failed the creep test because it broke after being allowed to stand in the oven for 15 minutes after 20 days of spontaneous crosslinking.

従って、最終混合物1中に10ppmという触媒の使用量は、最終混合物が良好なクリープ特性を有することができるようにするのには不充分だった。   Therefore, the amount of catalyst used of 10 ppm in the final mixture 1 was insufficient to allow the final mixture to have good creep properties.

最終混合物1を用いて作られた試験片とは違って、最終混合物2を用いて作られた試験片及び最終混合物3を用いて作られた試験片は、7日間未満の非常に迅速な自然架橋について、機械応力下で非常に良好な熱クリープ特性を示した。   Unlike specimens made with final mixture 1, specimens made with final mixture 2 and specimens made with final mixture 3 are very quick and natural in less than 7 days. The crosslinking exhibited very good thermal creep properties under mechanical stress.

最後に、最終混合物4を用いて作られた試験片は、次の理由で、クリープ試験に付すことができなかった。つまり、不飽和ベースポリマーとシラン化合物との熱い混合物中に触媒マスター混合物(0.03%活性白金の調製物B)を添加した際に速すぎて制御できない反応速度がもたらされた。   Finally, the specimen made with the final mixture 4 could not be subjected to a creep test for the following reasons. That is, the addition of the catalyst master mixture (0.03% active platinum preparation B) into the hot mixture of unsaturated base polymer and silane compound resulted in a reaction rate that was too fast to control.

その結果として、最終混合物が変形可能なままであり続けるには、作られた結合の数が多くなりすぎた。   As a result, too many bonds were made for the final mixture to remain deformable.

従って、混合を続行すると最終混合物がその鎖の破断によって分解してしまうので、混合を続行することはできなかった。   Therefore, if mixing was continued, the final mixture was decomposed by breaking the chain, so that mixing could not be continued.

従って、固体状白金含有量が36ppm以上だと、最終混合物は使用不能になり、造形できない。   Therefore, if the solid platinum content is 36 ppm or more, the final mixture becomes unusable and cannot be shaped.

本発明は、上記の実施例に限定されるものではなく、より一般的に、本発明の説明において提供された一般指標に基づいて構想することができるすべての方法に関係するものである。   The invention is not limited to the examples described above, but more generally relates to all methods that can be envisaged based on the general indicators provided in the description of the invention.

Claims (10)

不飽和ベースポリマーと;
シラン化合物と;
ポリマーマトリックス中に固体状白金を分散させたマスター混合物から成る白金ヒドロシリル化触媒と:
を混合することから成るヒドロシリル化方法であって、得られる混合物の固体状白金の含有量を12ppm〜35ppmの範囲、好ましくは12ppm〜20ppmの範囲にすることを特徴とする、前記ヒドロシリル化方法。
An unsaturated base polymer;
A silane compound;
A platinum hydrosilylation catalyst comprising a master mixture having solid platinum dispersed in a polymer matrix:
In which the solid platinum content of the resulting mixture is in the range of 12 ppm to 35 ppm, preferably in the range of 12 ppm to 20 ppm.
前記マスター混合物のポリマーマトリックスがポリオレフィン及びそのコポリマー並びにこれらの成分の任意の混合物から選択されることを特徴とする、請求項1に記載の架橋方法。   The crosslinking method according to claim 1, characterized in that the polymer matrix of the master mixture is selected from polyolefins and copolymers thereof and any mixture of these components. 前記マスター混合物のポリマーマトリックスと不飽和ベースポリマーとが同一性状のものであることを特徴とする、請求項1又は2に記載の架橋方法。   The crosslinking method according to claim 1 or 2, wherein the polymer matrix of the master mixture and the unsaturated base polymer are identical. 前記マスター混合物の固体状白金がヘキサクロロ白金酸から成ることを特徴とする、請求項1〜3のいずれかに記載の架橋方法。   The crosslinking method according to claim 1, wherein the solid platinum of the master mixture is composed of hexachloroplatinic acid. ヒドロシリル化触媒の含有量を不飽和ベースポリマーの総量に対して4%〜7%の範囲とすることを特徴とする、請求項1〜4のいずれかに記載の架橋方法。   The crosslinking method according to any one of claims 1 to 4, wherein the content of the hydrosilylation catalyst is in the range of 4% to 7% with respect to the total amount of the unsaturated base polymer. 前記シラン化合物がポリヒドロシロキサンであることを特徴とする、請求項1〜5のいずれかに記載の架橋方法。   The crosslinking method according to claim 1, wherein the silane compound is polyhydrosiloxane. 前記シラン化合物の含有量を不飽和ベースポリマーの総量に対して1%〜8%の範囲、好ましくは4%〜6%の範囲とすることを特徴とする、請求項1〜6のいずれかに記載の架橋方法。   The content of the silane compound is in the range of 1% to 8%, preferably in the range of 4% to 6%, based on the total amount of the unsaturated base polymer. The crosslinking method as described. 100℃〜125℃の範囲の温度において実施されることを特徴とする、請求項1〜7のいずれかに記載の架橋方法。   The crosslinking method according to any one of claims 1 to 7, wherein the crosslinking method is performed at a temperature in the range of 100C to 125C. 少なくとも1つの絶縁部品内に少なくとも1つの導体部品が通されたケーブルであって、少なくとも1つの絶縁部品が請求項1〜8のいずれかに記載のヒドロシリル化方法を用いて架橋させた材料から作られたものであることを特徴とする、前記ケーブル。   A cable having at least one conductor component passed through at least one insulation component, wherein the at least one insulation component is made from a material crosslinked using the hydrosilylation method according to any of claims 1-8. The cable described above, wherein 少なくとも1つの絶縁部品内に少なくとも1つの導体部品が通されたケーブルであって、請求項1〜8のいずれかに記載のヒドロシリル化方法を用いて架橋させた材料から作られた少なくとも1つの鎧装部品をさらに含むことを特徴とする、前記ケーブル。   9. At least one armor made of a material cross-linked using the hydrosilylation method according to any of claims 1-8, wherein the cable has at least one conductor component threaded through at least one insulating component. The cable further comprising an accessory.
JP2008527468A 2005-08-25 2006-08-24 Hydrosilylation process Pending JP2009506154A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552558A FR2890075A1 (en) 2005-08-25 2005-08-25 HYDROSILYLATION PROCESS
PCT/EP2006/065653 WO2007023180A1 (en) 2005-08-25 2006-08-24 Hydrosilylation method

Publications (1)

Publication Number Publication Date
JP2009506154A true JP2009506154A (en) 2009-02-12

Family

ID=36390151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008527468A Pending JP2009506154A (en) 2005-08-25 2006-08-24 Hydrosilylation process

Country Status (7)

Country Link
EP (1) EP1919964A1 (en)
JP (1) JP2009506154A (en)
KR (1) KR20080036644A (en)
CN (1) CN101243112A (en)
CA (1) CA2618726A1 (en)
FR (1) FR2890075A1 (en)
WO (1) WO2007023180A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018006256A (en) 2015-11-25 2018-09-07 Gen Cable Technologies Corp Hydrosilylation crosslinking of polyolefin cable components.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1118327A (en) * 1965-10-15 1968-07-03 Dow Corning Elastomer stocks
DE3131734A1 (en) * 1981-08-11 1983-02-24 Bayer Ag, 5090 Leverkusen HEAT-CURABLE ORGANOPOLYSILOXANE MIXTURES
JPS6160727A (en) * 1984-09-01 1986-03-28 Sumitomo Bakelite Co Ltd Crosslinked polyolefin resin composition and its production
US4831081A (en) * 1987-09-30 1989-05-16 Union Carbide Corporation Method for crosslinking reactive polyolefins via a rhodium catalyzed hydrosilation reaction using polyorganosiloxane crosslinkers
US4803244A (en) * 1987-11-16 1989-02-07 Union Carbide Corporation Process for the preparation of thermoplastic elastomers
MX9202562A (en) * 1991-05-30 1994-03-31 Down Corning Toray Silicone Co SILICONE RUBBER COMPOSITION.
FR2829141B1 (en) * 2001-09-03 2006-12-15 Nexans METHOD FOR MANUFACTURING A CYLINDRICAL BODY AND CABLE COMPRISING A BODY OBTAINED THEREBY

Also Published As

Publication number Publication date
CA2618726A1 (en) 2007-03-01
WO2007023180A1 (en) 2007-03-01
EP1919964A1 (en) 2008-05-14
CN101243112A (en) 2008-08-13
FR2890075A1 (en) 2007-03-02
KR20080036644A (en) 2008-04-28

Similar Documents

Publication Publication Date Title
JP6523405B2 (en) Heat resistant silane crosslinkable resin composition and method for producing the same, heat resistant silane crosslinked resin molded article and method for producing the same, and heat resistant product using the heat resistant silane crosslinked resin molded article
CN109135299B (en) Bi-component flame-retardant liquid silicone rubber for insulator and preparation method thereof
EP2630187A1 (en) A semiconductive polyolefin composition which contains epoxy-groups
CN107868328B (en) Silane cross-linked semiconductive shielding material and preparation method and application thereof
CN108026348B (en) Semiconductor shielding composition
KR101185174B1 (en) Liquid silicon elastomer composition for the production of a material with a high tear strength
CN115044130A (en) Shielding material based on carbon nanofiber modification and preparation method and application thereof
JP2009506154A (en) Hydrosilylation process
CN104822744B (en) The manufacture method of the formed body of heat resistance crosslinked with silicane resin combination is used
CN112080090A (en) Preparation method of cable sleeve
WO1983000488A1 (en) Flame retardant compositions, method of preparation and wire and cable products thereof
CN105602462B (en) A kind of PVC insulating tapes of high intensity, high fire-retardance
JP7426876B2 (en) Crosslinked fluororubber composition, wiring material using the same, and manufacturing method thereof
DE2821807A1 (en) FLAME-RESISTANT COMPOUND BASED ON A HYDROCARBON POLYMER
JP2001226530A (en) Nonhalogen flame-retardant rubber composition and molded article
CN116144095B (en) Crosslinked polyethylene halogen-free flame-retardant cable and preparation method thereof
KR20040082835A (en) semi-electric-composition for high-pressure cable
KR101461994B1 (en) Liquid silicone composition for back light unit lamp holder of liquid crystal display
TWI833942B (en) Flame-retardant resin composition, manufacturing method thereof, and hydrogenated petroleum resin
TWI805586B (en) A crosslinkable composition, an article and a method of conducting electricity
WO2023053889A1 (en) Insulated wire, wire harness, and production method for insulated wire
CN114672108A (en) Rubber sleeve cable three-layer co-extrusion external shielding strippable material and preparation method thereof
CA1107024A (en) Production of extruded polyolefin products
CN114854206A (en) Silicone rubber material for high-voltage cable accessories and preparation method thereof
CN117417588A (en) Flame-retardant resin composition, and cable and wire using same