JP2009301731A - Organic light emitting device and method for manufacturing organic light emitting device - Google Patents

Organic light emitting device and method for manufacturing organic light emitting device Download PDF

Info

Publication number
JP2009301731A
JP2009301731A JP2008151525A JP2008151525A JP2009301731A JP 2009301731 A JP2009301731 A JP 2009301731A JP 2008151525 A JP2008151525 A JP 2008151525A JP 2008151525 A JP2008151525 A JP 2008151525A JP 2009301731 A JP2009301731 A JP 2009301731A
Authority
JP
Japan
Prior art keywords
light emitting
layer
organic light
film thickness
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151525A
Other languages
Japanese (ja)
Inventor
Norifumi Kawamura
憲史 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2008151525A priority Critical patent/JP2009301731A/en
Publication of JP2009301731A publication Critical patent/JP2009301731A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light emitting device for enhancing a light extraction efficiency by providing a film thickness set by a simplified optical interference design and provide a method for manufacturing the organic light emitting device. <P>SOLUTION: The organic light emitting device 30 includes a light transmitting substrate 1, a light transmitting anode layer 2 arranged on the substrate 1, a plurality of organic light emitting layers (27, 28, 29) arranged on the anode layer 2 and having at least hole transfer layers (6, 9, 12), light emitting parts (7, 10, 13) and electron transfer layers (8, 11, 14) laminated one by one from a side of the anode electrode layer 2, electric load generating layers (15, 16) interposed between the organic light emitting layers (27, 28, 29), and a cathode layer 3 arranged on the organic light emitting layer 29 located on an uppermost part in a lamination direction. Each film thickness of each layer between the anode layer 2 and the cathode layer 3 is set so that an optical path distance from a light emitting position of each of the light emitting parts (7, 10) to the cathode layer 3 may become an odd number times of a quarter of a light emitting wavelength of each of the light emitting parts (7, 10). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機発光装置及び有機発光装置の製造方法に関し、特に、複数の有機発光層を積層した構造を有する有機発光装置において、有機発光層の光学膜厚を制御し、光の取り出し効率を高めた有機発光装置及び有機発光装置の製造方法に関する。   The present invention relates to an organic light-emitting device and a method for manufacturing the organic light-emitting device, and in particular, in an organic light-emitting device having a structure in which a plurality of organic light-emitting layers are stacked, the optical film thickness of the organic light-emitting layer is controlled and the light extraction efficiency is increased. The present invention relates to an improved organic light emitting device and a method for manufacturing the organic light emitting device.

近年、有機EL(EL:Electroluminescence)素子を用いて、FPD(Flat Panel Display)のような表示装置や照明灯のような照明装置等の有機発光装置が実用化に向けて開発が進められている。この有機EL素子では、一対の対向する電極間に有機発光層を含む有機EL層を挟み、その電極間に電圧を印加し有機EL層に電流を流して発光させる。最近では、高輝度を得るために、複数の有機EL層を電荷発生層を介して積層させる、マルチフォトンエミッション(Multi Photon Emission;MPE)といわれる構造のものが提案されている(例えば、特許文献1を参照。)。   2. Description of the Related Art In recent years, organic light-emitting devices such as display devices such as FPD (Flat Panel Display) and illumination devices such as illumination lamps have been developed for practical use using organic EL (EL) elements. . In this organic EL element, an organic EL layer including an organic light emitting layer is sandwiched between a pair of opposed electrodes, and a voltage is applied between the electrodes to cause a current to flow through the organic EL layer to emit light. Recently, in order to obtain high brightness, a structure called Multi Photon Emission (MPE) in which a plurality of organic EL layers are stacked via a charge generation layer has been proposed (for example, Patent Documents). 1).

従来のMPE型有機EL素子は、図7に示すように、透明ガラスからなる基板50上に、透明電極からなる陽極51が形成される。陽極51上に正孔輸送層54、発光部55および電子輸送層56が積層された第1の有機発光層101が配置されている。そして、電子輸送層56を被覆して電荷発生層57が形成され、電荷発生層57上には正孔輸送層58、発光部59および電子輸送層60が積層された第2の有機発光層102が形成されている。更に、電荷発生層61を介して正孔輸送層62、発光部63および電子輸送層64が積層された第3の有機発光層103が配置されている。第3の有機発光層103上に陽極51に対向する陰極52が金属材料により形成されている。   In the conventional MPE type organic EL element, as shown in FIG. 7, an anode 51 made of a transparent electrode is formed on a substrate 50 made of transparent glass. A first organic light emitting layer 101 in which a hole transport layer 54, a light emitting portion 55, and an electron transport layer 56 are laminated is disposed on the anode 51. Then, a charge generation layer 57 is formed so as to cover the electron transport layer 56, and the second organic light emitting layer 102 in which the hole transport layer 58, the light emitting portion 59, and the electron transport layer 60 are laminated on the charge generation layer 57. Is formed. Further, a third organic light emitting layer 103 in which a hole transport layer 62, a light emitting unit 63, and an electron transport layer 64 are stacked is disposed via the charge generation layer 61. A cathode 52 facing the anode 51 is formed on the third organic light emitting layer 103 with a metal material.

各発光部(55,59,63)で発光した光には、直接基板50から出射される光(L7,L8,L9)、陰極52に反射した後、基板50から出射される光(L1,L2,L3)、あるいは各層での反射を繰り返した後、基板50から出射される光等があり、これらの光が干渉し合って基板50側から取り出される。   The light emitted from each light emitting section (55, 59, 63) includes light (L7, L8, L9) directly emitted from the substrate 50, and light (L1, L9) reflected from the cathode 52 and then emitted from the substrate 50. L2, L3), or after repeated reflection at each layer, there is light emitted from the substrate 50, and these lights interfere with each other and are extracted from the substrate 50 side.

したがって、MPE型有機EL素子では、各発光部(55,59,63)からの発光光の光学干渉を考慮して、より強めあった光を取り出すために、各膜厚を適正に設定する必要があった。
特開2003−045676号公報
Therefore, in the MPE type organic EL element, it is necessary to appropriately set each film thickness in order to take out more intense light in consideration of optical interference of light emitted from each light emitting section (55, 59, 63). was there.
JP 2003-045676 A

従来、この膜厚の干渉設計では、各発光部(55,59,63)で発光した光について、陰極52で反射した光(L1、L2,L3)と透明電極の陽極51で反射した光(L4、L5,L6)とが互いに打ち消し合わないよう光路計算を行い各層の膜厚を決定していた。すなわち、発光位置から陰極52間の光学距離を発光波長の4分の1の奇数倍に調整し、更に発光位置から陽極51間の光学距離を発光波長の4分の1の偶数倍に調整することで発光波長を強調して基板50側から取り出すことができる。   Conventionally, in the interference design of this film thickness, light (L1, L2, L3) reflected by the cathode 52 and light reflected by the anode 51 of the transparent electrode (with respect to the light emitted from each light emitting portion (55, 59, 63)) ( L4, L5, L6) and the optical path calculation were made so as not to cancel each other, and the film thickness of each layer was determined. That is, the optical distance between the light emission position and the cathode 52 is adjusted to an odd multiple of one quarter of the light emission wavelength, and the optical distance between the light emission position and the anode 51 is adjusted to an even multiple of one quarter of the light emission wavelength. Thus, the emission wavelength can be emphasized and extracted from the substrate 50 side.

しかしながら、有機発光層の層数が多くなると、層数の増大に伴って光路計算は煩雑となるので、光路調整が困難になるといった問題があった。   However, when the number of organic light emitting layers is increased, the optical path calculation becomes complicated as the number of layers increases, so that there is a problem that optical path adjustment becomes difficult.

本発明の目的は、簡略化した光干渉設計により設定した膜厚を有することより、光取り出し効率を高めることが可能となる有機発光装置及び有機発光装置の製造方法を提供することにある。   An object of the present invention is to provide an organic light-emitting device and a method for manufacturing the organic light-emitting device that can increase the light extraction efficiency by having a film thickness set by a simplified optical interference design.

上記目的を達成するための本発明の一態様によれば、光透過可能な基板と、前記基板上に配置された光透過可能な陽極層と、前記陽極層上に積層して配置された、前記陽極層側から少なくとも正孔輸送層、発光部及び電子輸送層が順次積層された複数の有機発光層と、前記有機発光層間に介在して配置された電荷発生層と、積層方向の最上部に配設された前記有機発光層上に配置された陰極層とを備え、前記陽極層及び前記陰極層に挟まれた各層の膜厚は、前記陽極層に接する前記有機発光層の発光位置から前記陽極層までの膜厚及び前記陰極層に接する前記有機発光層の発光位置から前記陰極層までの膜厚を所定の膜厚とし、前記各発光部の発光位置から前記陰極層までの光学距離が該各発光部の発光波長の4分の1の奇数倍となるように設定されたことを特徴とする有機発光装置が提供される。   According to one aspect of the present invention for achieving the above object, a light transmissive substrate, a light transmissive anode layer disposed on the substrate, and a stacked layer disposed on the anode layer, A plurality of organic light emitting layers in which at least a hole transport layer, a light emitting portion and an electron transport layer are sequentially laminated from the anode layer side; a charge generation layer disposed between the organic light emitting layers; and an uppermost portion in the stacking direction A cathode layer disposed on the organic light emitting layer, and the thickness of each layer sandwiched between the anode layer and the cathode layer is determined from the light emitting position of the organic light emitting layer in contact with the anode layer. The optical distance from the light emitting position of each light emitting part to the cathode layer is set to a predetermined film thickness from the light emitting position of the organic light emitting layer in contact with the cathode layer to the cathode layer. To be an odd multiple of one quarter of the emission wavelength of each light emitting section. The organic light emitting device is provided which is characterized in that it is a constant.

本発明の他の態様によれば、基板上に形成された陽極層及び陰極層間に複数の有機発光層が積層された構成を有する有機発光装置の前記有機発光層の各膜厚を、前記陽極層に接する前記有機発光層の発光位置から前記陽極層までの膜厚及び前記陰極層に接する前記有機発光層の発光位置から前記陰極層までの膜厚を所定の膜厚とし、前記各発光部の発光位置から前記陰極層までの光学距離が該各発光部の発光波長の4分の1の奇数倍となるように設定する工程と、前記基板上に前記陽極層を形成し、設定された前記膜厚で前記有機発光層を電荷発生層を介して複数形成する工程と、絶縁層を成膜した後、前記陰極層を形成する工程と、封止板をシール部材を介して、陽極端子及び陰極端子を露出するようにして前記基板に接合封止する工程とを有する有機発光装置の製造方法が提供される。   According to another aspect of the present invention, each thickness of the organic light emitting layer of an organic light emitting device having a configuration in which a plurality of organic light emitting layers are laminated between an anode layer and a cathode layer formed on a substrate, Each of the light emitting units has a predetermined film thickness from the light emitting position of the organic light emitting layer in contact with the layer to the anode layer and the light emitting position of the organic light emitting layer in contact with the cathode layer to the cathode layer. A step of setting the optical distance from the light emitting position to the cathode layer to be an odd multiple of one-fourth of the light emitting wavelength of each light emitting portion, and forming the anode layer on the substrate A step of forming a plurality of the organic light emitting layers with the film thickness through a charge generation layer, a step of forming the cathode layer after forming an insulating layer, and an anode terminal through a sealing member with a sealing plate And bonding and sealing to the substrate so that the cathode terminal is exposed; Method of manufacturing an organic light emitting device having is provided.

本発明の有機発光装置及び有機発光装置の製造方法によれば、簡略化した光干渉設計により設定した膜厚を有することより、光取り出し効率を高めることが可能となる。   According to the organic light emitting device and the method for manufacturing the organic light emitting device of the present invention, the light extraction efficiency can be increased by having the film thickness set by the simplified optical interference design.

以下、図面を参照して本発明の実施の形態による有機発光装置を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なり、また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることに留意すべきである。   Hereinafter, an organic light emitting device according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, differ from actual ones, and also include portions having different dimensional relationships and ratios between the drawings.

[第1の実施の形態]
(有機発光装置の構造)
本発明の第1の実施の形態に係る有機発光装置30は、図1及び図2に示すように、光透過可能な基板1と、基板1上に配置された光透過可能な陽極層2と、陽極層2上に積層して配置された、陽極層2側から少なくとも正孔輸送層(6,9,12)、発光部(7,10,13)及び電子輸送層(8,11,14)が順次積層された複数の有機発光層(27,28,29)と、有機発光層(27,28,29)間に介在して配置された電荷発生層(15,16)と、積層方向の最上部に配設された有機発光層29上に配置された陰極層3とを備える。
[First embodiment]
(Structure of organic light-emitting device)
As shown in FIGS. 1 and 2, the organic light emitting device 30 according to the first embodiment of the present invention includes a light transmissive substrate 1, and a light transmissive anode layer 2 disposed on the substrate 1. At least the hole transport layer (6, 9, 12), the light emitting part (7, 10, 13) and the electron transport layer (8, 11, 14) arranged on the anode layer 2 from the anode layer 2 side. ) Sequentially stacked, a plurality of organic light emitting layers (27, 28, 29), a charge generation layer (15, 16) disposed between the organic light emitting layers (27, 28, 29), and a stacking direction And the cathode layer 3 disposed on the organic light emitting layer 29 disposed on the uppermost portion.

陽極層2及び陰極層3に挟まれた各層の膜厚は、陽極層2に接する有機発光層27の発光位置から陽極層2までの膜厚及び陰極層3に接する有機発光層29の発光位置から陰極層3までの膜厚を所定の膜厚とし、各発光部(7,10)の発光位置から陰極層3までの光学距離が各発光部(7,10)の発光波長の4分の1の奇数倍となるように設定される。   The film thickness of each layer sandwiched between the anode layer 2 and the cathode layer 3 is the film thickness from the light emitting position of the organic light emitting layer 27 in contact with the anode layer 2 to the anode layer 2 and the light emitting position of the organic light emitting layer 29 in contact with the cathode layer 3. From the light emitting position of each light emitting part (7, 10) to the cathode layer 3 is a quarter of the emission wavelength of each light emitting part (7, 10). It is set to be an odd multiple of 1.

本実施の形態において、陽極層2及び陰極層3に挟まれた有機発光層(27,28,29)を構成する各層の膜厚は、下記(1)〜(5)式、
=(2i−1)λ/4 ・・・(1)
=(2l−1)λ/4 ・・・(2)
・・・
=(2m−1)λ/4 ・・・(3)
・・・
J−1=(2n−1)λJ−1/4 ・・・(4)
h=a+b+b+・・・+b+・・・bJ−1+c ・・・(5)
ただし、有機発光層(27,28,29)の位置を陽極層2側から積層順に数えることとして、s:第k番目の有機発光層で発光する光のピーク波長での第k番目の有機発光層の発光位置から陰極層3までの光学距離、λ:第k番目の有機発光層で発光する光のピーク波長、h:陽極層2の基板1に接する表面から陰極層3までの膜厚、a:第1番目の有機発光層の発光位置から陽極層2の基板1に接する表面までの所定の膜厚、b:第k番目の有機発光層の発光位置から第(k+1)番目の有機発光層の発光位置までの膜厚、c:第J番目の有機発光層の発光位置から陰極層3までの所定の膜厚、k:1〜Jの整数、J:有機発光層の総層数、i,l,m,n:1以上の整数、を満たす。
In the present embodiment, the thickness of each layer constituting the organic light emitting layer (27, 28, 29) sandwiched between the anode layer 2 and the cathode layer 3 is expressed by the following formulas (1) to (5):
s 1 = (2i-1) λ 1/4 ··· (1)
s 2 = (2l-1) λ 2/4 ··· (2)
...
s k = (2m−1) λ k / 4 (3)
...
s J-1 = (2n-1) λ J-1 / 4 (4)
h = a + b 1 + b 2 +... + b k +... b J−1 + c (5)
However, the position of the organic light emitting layer (27, 28, 29) is counted in the stacking order from the anode layer 2 side, and s k : the k th organic at the peak wavelength of the light emitted from the k th organic light emitting layer. Optical distance from the light emitting position of the light emitting layer to the cathode layer 3, λ k : peak wavelength of light emitted from the kth organic light emitting layer, h: film from the surface of the anode layer 2 in contact with the substrate 1 to the cathode layer 3 Thickness, a: predetermined film thickness from the light emitting position of the first organic light emitting layer to the surface of the anode layer 2 in contact with the substrate 1, b k : (k + 1) th light emitting position of the kth organic light emitting layer The thickness of the organic light emitting layer to the light emitting position, c: the predetermined film thickness from the light emitting position of the Jth organic light emitting layer to the cathode layer 3, k: an integer from 1 to J, J: total organic light emitting layer The number of layers, i, l, m, n: an integer of 1 or more is satisfied.

本実施の形態において、有機発光層(27,28,29)は正孔輸送層(6,9,12)、単色光を発光する発光部(7,10,13)、電子輸送層(8,11,14)を含み、有機発光層27は正孔注入層5を含んでもよい。有機発光層(27,28,29)の層数は、複数であれば特に限定されるものではなく、適宜設定することができる。   In the present embodiment, the organic light emitting layer (27, 28, 29) includes a hole transport layer (6, 9, 12), a light emitting portion (7, 10, 13) that emits monochromatic light, and an electron transport layer (8, 11, 14), and the organic light emitting layer 27 may include the hole injection layer 5. The number of the organic light emitting layers (27, 28, 29) is not particularly limited as long as it is plural, and can be appropriately set.

本実施の形態において、有機発光層(27,28,29)は、図1に示すように、電荷発生層(15,16)を介して3層を積層したものとして構成されていてもよい。以下では、有機発光層(27,28,29)を3層有し、有機発光層27が青色発光、有機発光層28が緑色発光、有機発光層29が赤色発光するものとして説明を行う。   In the present embodiment, the organic light emitting layer (27, 28, 29) may be configured as a laminate of three layers with the charge generation layer (15, 16) interposed therebetween as shown in FIG. In the following description, it is assumed that there are three organic light emitting layers (27, 28, 29), the organic light emitting layer 27 emits blue light, the organic light emitting layer 28 emits green light, and the organic light emitting layer 29 emits red light.

本実施の形態において、膜厚a及びcは後述する方法で別途設定し、有機発光層(27,28,29)の各膜厚を、第1番目の青色の発光部7と第2番目の緑色の発光部10で発光した光が陰極層3で反射した光(L1,L2)の光路計算に基づいて設定する。   In the present embodiment, the film thicknesses a and c are separately set by a method to be described later, and the film thicknesses of the organic light emitting layers (27, 28, 29) are set to the first blue light emitting part 7 and the second light emitting part 7, respectively. The light emitted from the green light emitting unit 10 is set based on the optical path calculation of the light (L1, L2) reflected by the cathode layer 3.

すなわち、各膜厚は、上記(1)〜(5)式において、有機発光層(27,28,29)の総層数J=3のときの下記(1)、(2)及び(11)式を満たすように設定される。   That is, the respective film thicknesses are the following (1), (2) and (11) when the total number J of the organic light emitting layers (27, 28, 29) is 3 in the above formulas (1) to (5). Set to satisfy the expression.

=(2i−1)λ/4 ・・・(1)
=(2l−1)λ/4 ・・・(2)
h=a+b+b+c ・・・(11)
i,lは、1以上の整数、好ましくは1〜10、更に好ましくは1〜5である。
s 1 = (2i-1) λ 1/4 ··· (1)
s 2 = (2l-1) λ 2/4 ··· (2)
h = a + b 1 + b 2 + c (11)
i and l are integers of 1 or more, preferably 1 to 10, and more preferably 1 to 5.

光学距離s及びsは、具体的には、各層の膜厚、及び各発光部(7,10)から発光される光のピーク波長に対応する各層の屈折率を用いて、(12)及び(13)式で与えられる。 Specifically, the optical distances s 1 and s 2 are obtained by using the refractive index of each layer corresponding to the film thickness of each layer and the peak wavelength of the light emitted from each light emitting section (7, 10), (12) And (13).

=d・η+d・η++d・η+d・η+d・η+d・η+d10・η+d11・η+d12・η+d13・η ・・・(12)
=d・η+d・η+d10・η+d11・η+d12・η+d13・η ・・・(13)
また、a,b,b,cは、具体的には、(14)〜(17)式で与えられる。
s 1 = d 4 · η 4 + d 5 · η 5 ++ d 6 · η 6 + d 7 · η 3 + d 8 · η 4 + d 9 · η 5 + d 10 · η 6 + d 11 · η 3 + d 12 · η 7 + d 13・ Η 5 (12)
s 2 = d 8 · η 4 + d 9 · η 5 + d 10 · η 6 + d 11 · η 3 + d 12 · η 7 + d 13 · η 5 (13)
Further, a, b 1 , b 2 and c are specifically given by the equations (14) to (17).

a=d+d+d ・・・(14)
=d+d+d+d ・・・(15)
=d+d+d10+d11 ・・・(16)
c=d12+d13 ・・・(17)
ここで、各発光部(7,10,13)での発光位置は、発光部の物質により異なるが、本実施の形態においては、図2に示すように、各発光部(7,10,13)の陽極層2側表面とした。λは青色の発光光のピーク波長であり、例えば、約430〜480nm程度、λは緑色の発光光のピーク波長であり、例えば、約530〜580nm程度である。d〜d13は各層に対応する膜厚である。ηは陽極層2の屈折率であり、例えば、約2程度、ηは正孔注入層5の屈折率であり、例えば、約1.8〜2.0程度、ηは正孔輸送層(6,9,12)の屈折率であり、例えば、約1.8〜2.0程度、ηは発光部(7,10)の屈折率であり、例えば、約1.8〜2.0程度、ηは電子輸送層(8,11,14)の屈折率であり、例えば、約1.8〜2.0程度、ηは電荷発生層(15,16)の屈折率であり、例えば、約1.8〜2.0程度、ηは発光部13の屈折率であり、例えば、約1.7〜1.9程度、である。
a = d 1 + d 2 + d 3 (14)
b 1 = d 4 + d 5 + d 6 + d 7 (15)
b 2 = d 8 + d 9 + d 10 + d 11 (16)
c = d 12 + d 13 (17)
Here, although the light emission position in each light emission part (7,10,13) changes with substances of a light emission part, in this Embodiment, as shown in FIG. 2, each light emission part (7,10,13) is shown. ) Of the anode layer 2 side surface. λ 1 is the peak wavelength of blue emitted light, for example, about 430 to 480 nm, and λ 2 is the peak wavelength of green emitted light, for example, about 530 to 580 nm. d 1 to d 13 are film thicknesses corresponding to the respective layers. η 1 is the refractive index of the anode layer 2, for example, about 2, and η 2 is the refractive index of the hole injection layer 5, for example, about 1.8 to 2.0, and η 3 is hole transport. The refractive index of the layer (6, 9, 12), for example, about 1.8 to 2.0, and η 4 is the refractive index of the light emitting part (7, 10), for example, about 1.8-2. about .0, eta 5 is the refractive index of the electron transport layer (8, 11 and 14), for example, about 1.8 to 2.0, eta 6 represents a refractive index in the charge generation layer (15, 16) For example, about 1.8 to 2.0, and η 7 is the refractive index of the light emitting portion 13, for example, about 1.7 to 1.9.

本実施の形態において、各発光位置から陰極層3までの光学距離を発光波長の4分の1の奇数倍としたときに最も高効率の発光効率を得ることができる。すなわち、屈折率の大きい領域を進む光は、屈折率の小さい領域との界面で反射されるときに位相はずれない。しかし、屈折率の小さい領域を進む光は、屈折率の大きい領域との界面で反射されるときに位相は半波長ずれる。したがって、屈折率が有機発光層(27,28,29)より大きい陰極層3で反射される光は半波長ずれるため、各発光位置で発光した光が陰極層3で反射されて元の発光位置に戻るまでの光学距離を半波長の奇数倍、つまり陰極層3までの光学距離を発光波長の4分の1の奇数倍とすることで、位相が一致し発光の光を強めあうことができる。   In the present embodiment, the highest light emission efficiency can be obtained when the optical distance from each light emission position to the cathode layer 3 is an odd multiple of one-fourth of the light emission wavelength. That is, light traveling through a region having a high refractive index does not shift in phase when reflected at the interface with the region having a low refractive index. However, the phase of light traveling through the region having a low refractive index is shifted by half a wavelength when reflected at the interface with the region having a high refractive index. Accordingly, the light reflected by the cathode layer 3 having a refractive index larger than that of the organic light emitting layer (27, 28, 29) is shifted by a half wavelength, so that the light emitted at each light emitting position is reflected by the cathode layer 3 and is the original light emitting position. By making the optical distance to return to an odd multiple of a half wavelength, that is, the optical distance to the cathode layer 3 an odd multiple of a quarter of the emission wavelength, the phases match and the emitted light can be intensified. .

本実施の形態において、膜厚a及びcは、基板1側に接する有機発光層27の発光部7より基板1側の各層、すなわち正孔輸送層6及び正孔注入層5、並びに透明電極である陽極層2についての膜厚a(=d+d+d)と陰極層3側に接する有機発光層29の発光部13を含め発光部13より陰極層3側の層、すなわち発光部13及び電子輸送層14についての膜厚c(=d12+d13)である。この膜厚a及びcは、各有機発光層(27,29)を単独の状態にして素子特性を調べ、電力効率[lm/W]が最も高くなるように、各膜厚を調整して設定する。 In the present embodiment, the film thicknesses a and c are the layers on the substrate 1 side from the light emitting portion 7 of the organic light emitting layer 27 in contact with the substrate 1 side, that is, the hole transport layer 6 and the hole injection layer 5, and the transparent electrode. A layer on the cathode layer 3 side from the light emitting portion 13 including the light emitting portion 13 of the organic light emitting layer 29 in contact with the film thickness a (= d 1 + d 2 + d 3 ) of the certain anode layer 2 and the cathode layer 3 side, that is, the light emitting portion 13. And the film thickness c (= d 12 + d 13 ) for the electron transport layer 14. The film thicknesses a and c are set by adjusting the film thicknesses so that the power efficiency [lm / W] is maximized by examining the element characteristics with each organic light emitting layer (27, 29) in a single state. To do.

図3に、膜厚を調整するための各有機発光層(27,28,29)の構成を示し、図4に膜厚を調整したときの各有機発光層(27,28,29)の素子特性の結果を示した。  FIG. 3 shows a configuration of each organic light emitting layer (27, 28, 29) for adjusting the film thickness, and FIG. 4 shows an element of each organic light emitting layer (27, 28, 29) when the film thickness is adjusted. The characteristic results are shown.

調整して得られた有機発光層27の各膜厚a(=d+d+d)は、例えば、dは約50〜300nm、dは約0〜100nm、dは約20〜100nmであり、有機発光層29の各膜厚c(=d12+d13)は、d12は約10〜60nm、d13は約10〜600nm、であった。なお、図3には、正孔注入層5を記載してあるが、陽極層2接する有機発光層27より上に積層された有機発光層(28、29)の素子特性を調べる際には、正孔注入層5を用いなくてもよい。 For example, each thickness a (= d 1 + d 2 + d 3 ) of the organic light emitting layer 27 obtained by the adjustment is about 50 to 300 nm for d 1 , about 0 to 100 nm for d 2 , and about 20 to about 3 for d 3. is 100 nm, the thickness c of the organic light-emitting layer 29 (= d 12 + d 13 ) is, d 12 is about 10 to 60 nm, d 13 was about 10 to 600 nm,. Although FIG. 3 shows the hole injection layer 5, when examining the device characteristics of the organic light emitting layer (28, 29) stacked above the organic light emitting layer 27 in contact with the anode layer 2, The hole injection layer 5 may not be used.

また、調整して得られた各有機発光層(27,28,29)の素子特性は、青色の有機発光層27については、輝度=1000[d/m]、電力効率=12[lm/W]、電流効率=16[cd/A]であり、緑色の有機発光層28については、輝度=1000[d/m]、電力効率=17[lm/W]、電流効率=23[cd/A]であり、赤色の有機発光層29については、輝度=1000[d/m]、電力効率=9[lm/W]、電流効率=11[cd/A]であった。 The device characteristics of the organic light emitting layers (27, 28, 29) obtained by the adjustment are as follows. For the blue organic light emitting layer 27, luminance = 1000 [d / m 2 ] and power efficiency = 12 [lm / W], current efficiency = 16 [cd / A], and for the green organic light emitting layer 28, luminance = 1000 [d / m 2 ], power efficiency = 17 [lm / W], current efficiency = 23 [cd] / A] and the red organic light-emitting layer 29 had luminance = 1000 [d / m 2 ], power efficiency = 9 [lm / W], and current efficiency = 11 [cd / A].

各有機発光層(27,28,29)の各膜厚d〜d11は、上記で設定された膜厚a及びcを用いて、上述の(1)及び(2)式、並びに(11)〜(17)式を用いて、数値計算により求めることができる。 The film thicknesses d 4 to d 11 of the respective organic light emitting layers (27, 28, 29) are calculated using the above-described equations (1) and (2) and (11) using the film thicknesses a and c set above. ) To (17) can be obtained by numerical calculation.

数値計算で得られた各膜厚d〜d11は、例えば、d=40nm、d=25nm、d=10nm、d=21nm、d=40nm、d=25nm、d10=10nm、d11=73nm、であった。 The film thicknesses d 4 to d 11 obtained by the numerical calculation are, for example, d 4 = 40 nm, d 5 = 25 nm, d 6 = 10 nm, d 7 = 21 nm, d 8 = 40 nm, d 9 = 25 nm, d 10 = 10 nm, d 11 = 73 nm.

このようにして設定した各膜厚を有し、後述する材料を用いた有機発光層(27,28,29)を配置した有機発光装置30について、素子特性を調べた。   The element characteristics of the organic light emitting device 30 having the respective film thicknesses set as described above and having the organic light emitting layers (27, 28, 29) using the materials described later were examined.

その結果、輝度=3000[d/m]、電力効率=12[lm/W]、電流効率=49[cd/A]、が得られた。これに対して、従来の光路計算の方法、すなわち、上述したように、透明電極の陽極51で反射した光(L4、L5,L6)も考慮した方法では、輝度=3000[d/m]、電力効率=9[lm/W]、電流効率=39[cd/A]、であった。 As a result, luminance = 3000 [d / m 2 ], power efficiency = 12 [lm / W], and current efficiency = 49 [cd / A] were obtained. On the other hand, in the conventional optical path calculation method, that is, as described above, in the method that also considers the light (L4, L5, L6) reflected by the anode 51 of the transparent electrode, the luminance = 3000 [d / m 2 ]. The power efficiency was 9 [lm / W] and the current efficiency was 39 [cd / A].

これにより、本実施の形態に係る光路計算の方法で設定した膜厚を有する有機発光装置30は、従来の光路計算の方法で設定した膜厚を有する有機発光装置に比べて、電力効率及び電流効率ともに良好な結果を示すことが明らかとなった。   As a result, the organic light emitting device 30 having the film thickness set by the optical path calculation method according to the present embodiment is more efficient than the organic light emitting device having the film thickness set by the conventional optical path calculation method. It became clear that the efficiency showed a good result.

本実施の形態において、有機発光装置30は、基板1側から光が取り出されるように構成されているので、基板1は、光を透過する透明基板が用いられる。基板1の材質として、例えば、ガラスが挙げられる。厚さは、例えば、約50〜500μm程度であるのがよい。   In the present embodiment, since the organic light emitting device 30 is configured to extract light from the substrate 1 side, the substrate 1 is a transparent substrate that transmits light. An example of the material of the substrate 1 is glass. The thickness is preferably about 50 to 500 μm, for example.

陽極層2は、基板1と同様に、光を透過可能で、厚さは、例えば、約140〜160nm程度のITO(インジウム−スズ酸化物)の透明電極からなる。陽極層2には、図1に示すように、陽極層2を延伸した陽極端子20が接続されている。   As with the substrate 1, the anode layer 2 can transmit light and has a thickness of, for example, a transparent electrode of ITO (indium-tin oxide) having a thickness of about 140 to 160 nm. As shown in FIG. 1, an anode terminal 20 obtained by extending the anode layer 2 is connected to the anode layer 2.

有機発光層(27,28,29)は、上述したように、陽極層2側から、正孔輸送層(6,9,12)、発光部(7,10,13)及び電子輸送層(8,11,14)が順次積層されている。各発光部(7,10,13)は、例えば、上述したように、発光部7が青色、発光部10が緑色、発光部13が赤色の光を発光する。各発光部(7,10,13)と発光色の組み合わせはこれに限るものでなく、シアン、マゼンタ、黄の3色等、他の組み合わせを用いてもよい。   As described above, the organic light emitting layer (27, 28, 29) is formed from the positive electrode transport layer (6, 9, 12), the light emitting part (7, 10, 13) and the electron transport layer (8) from the anode layer 2 side. , 11, 14) are sequentially laminated. In each of the light emitting units (7, 10, 13), for example, as described above, the light emitting unit 7 emits blue light, the light emitting unit 10 emits green light, and the light emitting unit 13 emits red light. The combination of each light emitting portion (7, 10, 13) and the light emission color is not limited to this, and other combinations such as three colors of cyan, magenta, and yellow may be used.

有機発光層(27,28,29)は、上記した正孔輸送層(6,9,12)及び電子輸送層(8,11,14)以外の層、例えば、正孔注入層、電子注入層等を用いて構成してもよい。   The organic light emitting layer (27, 28, 29) is a layer other than the hole transport layer (6, 9, 12) and the electron transport layer (8, 11, 14), for example, a hole injection layer, an electron injection layer. Etc. may be used.

正孔輸送層(6,9,12)は、陽極層2又は電荷発生層(15,16)から注入された正孔を円滑に有機発光層(27,28,29)に輸送するためのものであり、厚さは、例えば、約20〜80nm程度のNPB(N,N−ジ(ナフタリル)−N,N−ジフェニル−ベンジデン)からなる。   The hole transport layer (6, 9, 12) is for smoothly transporting holes injected from the anode layer 2 or the charge generation layer (15, 16) to the organic light emitting layer (27, 28, 29). The thickness is made of, for example, about 20 to 80 nm of NPB (N, N-di (naphthalyl) -N, N-diphenyl-benzidene).

電子輸送層(8,11,14)は、陰極層3又は電荷発生層(15,16)から注入された電子を円滑に発光部(7,10,13)に輸送するためのものであり、厚さは、例えば、約20〜30nm程度のAlq(アルミニウムキノリノール錯体)からなる。 The electron transport layer (8, 11, 14) is for smoothly transporting electrons injected from the cathode layer 3 or the charge generation layer (15, 16) to the light emitting section (7, 10, 13). The thickness is made of Alq 3 (aluminum quinolinol complex) having a thickness of about 20 to 30 nm, for example.

発光部(7,10,13)は、注入された正孔及び電子が再結合して発光するためのものである。   The light emitting section (7, 10, 13) is for emitting light by recombination of injected holes and electrons.

発光部7は、青色の発光種、例えば、DPVBi(4,4’−ビス(2,2’−ジフェニルビニル)−1,1’−ビフェニル)が、例えば、約1%程度ドーピングされた、厚さが、例えば、約30〜50nm程度のAlqからなる。 The light-emitting portion 7 has a thickness in which a blue light-emitting species, for example, DPVBi (4,4′-bis (2,2′-diphenylvinyl) -1,1′-biphenyl) is doped by, for example, about 1%. Is made of, for example, Alq 3 of about 30 to 50 nm.

発光部10は、緑色の発光種、例えば、ジメチルキナクリドンが、例えば、約1%程度ドーピングされた、厚さが、例えば、約30〜50nm程度のAlqからなる。 The light emitting unit 10 is made of Alq 3 having a thickness of, for example, about 30 to 50 nm doped with, for example, about 1% of a green light emitting species, for example, dimethylquinacridone.

発光部13は、赤色の発光種、例えば、ナイルレッドが、例えば、約1%程度ドーピングされた、厚さが、例えば、約30〜50nm程度のAlqからなる。 The light emitting unit 13 is made of Alq 3 having a thickness of, for example, about 30 to 50 nm doped with, for example, about 1% of a red light emitting species, for example, Nile red.

電荷発生層(15,16)は、電圧印加時において、電荷発生層(15,16)の陰極層3側に配置された発光部(10,13)に対して正孔を注入する一方、電荷発生層(15,16)の陽極層2側に配置された発光部(7,10)に対して電子を注入する役割を果たすためのものである。厚さは、例えば、約5〜20nm程度である。   The charge generation layers (15, 16) inject holes into the light emitting portions (10, 13) disposed on the cathode layer 3 side of the charge generation layers (15, 16) when a voltage is applied. This is to play a role of injecting electrons into the light emitting portions (7, 10) disposed on the anode layer 2 side of the generation layers (15, 16). The thickness is, for example, about 5 to 20 nm.

電荷発生層(15,16)の材質としては、酸化バナジウム(V25)やInZnO(インジウム亜鉛酸化物)、あるいは、これ等の酸化物と有機物の混合層等が挙げられる。 Examples of the material of the charge generation layer (15, 16) include vanadium oxide (V 2 O 5 ), InZnO (indium zinc oxide), or a mixed layer of these oxides and organic substances.

陰極層3は、厚さが、例えば、約150nm程度で、材質がアルミニウムからなる。   The cathode layer 3 has a thickness of about 150 nm, for example, and is made of aluminum.

絶縁層4は、陽極層2と陰極層3を絶縁するためのものであり、厚さが、例えば、約100〜200nm程度である。材質として、SiO,SiON、SiN,AlN,AlON,Zr,Al等が挙げられる。 The insulating layer 4 is for insulating the anode layer 2 and the cathode layer 3 and has a thickness of, for example, about 100 to 200 nm. Examples of the material include SiO 2 , SiON, SiN, AlN, AlON, Zr 2 O 3 , Al 2 O 3 and the like.

封止板17は、陽極層2、陰極層3及び発光部(7,10,13)を保護し、これらを封止するものであり、厚さは、例えば、約50〜500μm程度である。   The sealing plate 17 protects and seals the anode layer 2, the cathode layer 3, and the light emitting part (7, 10, 13), and has a thickness of about 50 to 500 μm, for example.

封止板17の材質としては、樹脂やガラス等、或いはステンレススチール(SUS)や銅等の金属が挙げられる。   Examples of the material of the sealing plate 17 include resin, glass, and the like, and metals such as stainless steel (SUS) and copper.

シール部材(18,19)は、基板1と封止板17を接合封止するためのものであり、UV硬化樹脂、エポキシ樹脂等を用いる。   The seal members (18, 19) are for bonding and sealing the substrate 1 and the sealing plate 17, and use UV curable resin, epoxy resin, or the like.

なお、封止板17と基板1間の内部空間には、不活性ガスを充填すると共に、水分を吸収するための乾燥剤等を配置してもよい。   The internal space between the sealing plate 17 and the substrate 1 may be filled with an inert gas and a desiccant or the like for absorbing moisture.

(動作原理)
本実施の形態に係る有機発光装置の動作原理は以下の通りである。
(Operating principle)
The operation principle of the organic light emitting device according to the present embodiment is as follows.

まず、外部電極(略図示)から有機発光装置30の陽極端子20及び陰極端子21を介して、陽極層2及び陰極層3の間に一定の電圧が印加される。これにより、陽極層2又は電荷発生層(15,16)から正孔輸送層(6,9,12)を介して、青、緑、赤の各色の光を発光する発光部(7,10,13)に正孔が注入されるとともに、陰極層3又は電荷発生層(15,16)から電子輸送層(8,11,14)を介して発光部(7,10,13)に電子が注入される。そして、発光部(7,10,13)に注入された正孔と電子とが再結合することによって各色の光を発光する。これらの光が重なり、基板1を介して外部に出射されて、白色光が得られる。   First, a constant voltage is applied between the anode layer 2 and the cathode layer 3 from the external electrode (illustrated) via the anode terminal 20 and the cathode terminal 21 of the organic light emitting device 30. Thus, the light emitting portions (7, 10, and 4) that emit light of each color of blue, green, and red from the anode layer 2 or the charge generation layer (15, 16) through the hole transport layer (6, 9, 12). 13) Holes are injected into the light emitting portion (7, 10, 13) from the cathode layer 3 or the charge generation layer (15, 16) through the electron transport layer (8, 11, 14). Is done. Then, the holes and electrons injected into the light emitting part (7, 10, 13) recombine to emit light of each color. These lights overlap and are emitted to the outside through the substrate 1 to obtain white light.

(製造方法)
本発明の第1の実施の形態に係る有機発光装置の製造方法は、図5及び図6に示すように、基板1上に形成された陽極層2及び陰極層3間に複数の有機発光層(27,28,29)が積層された構成を有する有機発光装置30の有機発光層(27,28,29)の各膜厚を、陽極層2に接する有機発光層27の発光位置から陽極層2までの膜厚及び陰極層3に接する有機発光層29の発光位置から陰極層3までの膜厚を所定の膜厚とし、各発光部(7,10)の発光位置から陰極層3までの光学距離が各発光部(7,10)の発光波長の4分の1の奇数倍となるように設定する工程と、基板1上に陽極層2を形成し、設定された膜厚により有機発光層(27,28,29)を電荷発生層(15,16)を介して複数形成する工程と、絶縁層4を成膜した後、陰極層3を形成する工程と、封止板17をシール部材(18,19)を介して、陽極端子20及び陰極端子21を露出するようにして基板1に接合封止する工程とを有する。
(Production method)
The method for manufacturing an organic light emitting device according to the first embodiment of the present invention includes a plurality of organic light emitting layers between an anode layer 2 and a cathode layer 3 formed on a substrate 1 as shown in FIGS. Each film thickness of the organic light emitting layer (27, 28, 29) of the organic light emitting device 30 having a configuration in which (27, 28, 29) is laminated is changed from the light emitting position of the organic light emitting layer 27 in contact with the anode layer 2 to the anode layer. The film thickness up to 2 and the film thickness from the light emitting position of the organic light emitting layer 29 in contact with the cathode layer 3 to the cathode layer 3 are set to a predetermined film thickness, and from the light emitting position of each light emitting part (7, 10) to the cathode layer 3 The step of setting the optical distance to be an odd multiple of one-fourth of the emission wavelength of each light emitting section (7, 10), and forming the anode layer 2 on the substrate 1, and the organic light emission by the set film thickness A step of forming a plurality of layers (27, 28, 29) via the charge generation layers (15, 16), and an insulating layer 4 After the film formation, the step of forming the cathode layer 3 and the sealing plate 17 are bonded and sealed to the substrate 1 through the sealing members (18, 19) so that the anode terminal 20 and the cathode terminal 21 are exposed. Process.

以下に、製造工程を詳述する。   Below, a manufacturing process is explained in full detail.

(a)まず、図1及び図2に示すように、有機発光層(27,28,29)が電荷発生層(15,16)を介して3層積層された有機発光装置30について、膜厚a及びcを上述した方法で設定した後、有機発光層(27,28,29)の各膜厚を、第1番目の青色の発光部7及び第2番目の緑色の発光部10で発光した光が陰極層3で反射した光(L1,L2)について、(1)及び(2)式、並びに(11)〜(17)式を用いて上述したのと同様の方法で、光路計算を行って設定する。 (A) First, as shown in FIGS. 1 and 2, the thickness of the organic light-emitting device 30 in which three organic light-emitting layers (27, 28, 29) are stacked via charge generation layers (15, 16) is as follows. After setting a and c by the above-described method, the first light emitting section 7 and the second green light emitting section 10 emit light with the respective film thicknesses of the organic light emitting layers (27, 28, 29). For the light (L1, L2) reflected by the cathode layer 3, the optical path is calculated in the same manner as described above using the equations (1) and (2) and equations (11) to (17). To set.

(b)次に、図5(a)に示すように、基板1上に、真空蒸着法又はスパッタリング法等により、設定された膜厚で陽極層2、正孔注入層5、正孔輸送層6、単色光を発光する発光部7、電子輸送層8、及び電荷発生層15を順次形成する。 (B) Next, as shown in FIG. 5 (a), the anode layer 2, the hole injection layer 5, and the hole transport layer are formed on the substrate 1 at a set film thickness by a vacuum deposition method or a sputtering method. 6. A light emitting portion 7 that emits monochromatic light, an electron transport layer 8, and a charge generation layer 15 are sequentially formed.

(c)次に、図5(b)に示すように、電荷発生層15上に、真空蒸着法又はスパッタリング法等により、設定された膜厚で正孔輸送層9、単色光を発光する発光部10、電子輸送層11、及び電荷発生層16を順次形成する。次いで、設定された膜厚で正孔輸送層12、単色光を発光する発光部13、電子輸送層14を順次形成する。 (C) Next, as shown in FIG. 5B, the hole transport layer 9 emits monochromatic light with a set film thickness on the charge generation layer 15 by a vacuum deposition method or a sputtering method. The part 10, the electron transport layer 11, and the charge generation layer 16 are sequentially formed. Next, the hole transport layer 12, the light emitting portion 13 that emits monochromatic light, and the electron transport layer 14 are sequentially formed with the set film thickness.

(d)次に、図5(c)に示すように、絶縁層4を成膜した後、陰極層3を形成する。なお、陽極層2及び陰極層3を形成する際、陽極層2を延伸した陽極端子20を形成し、陰極層3を延伸した陰極端子21を形成する。 (D) Next, as shown in FIG. 5C, after the insulating layer 4 is formed, the cathode layer 3 is formed. When the anode layer 2 and the cathode layer 3 are formed, the anode terminal 20 obtained by extending the anode layer 2 is formed, and the cathode terminal 21 obtained by extending the cathode layer 3 is formed.

(e)最後に、図6(d)に示すように、封止板17をシール部材(18,19)を介して、陽極端子20及び陰極端子21を露出するようにして基板1に接合封止し、図1に示す有機発光装置30が完成する。 (E) Finally, as shown in FIG. 6 (d), the sealing plate 17 is bonded and sealed to the substrate 1 through the sealing members (18, 19) so that the anode terminal 20 and the cathode terminal 21 are exposed. The organic light emitting device 30 shown in FIG. 1 is completed.

このような有機発光装置30は、従来の干渉設計で、発光部(55,59,63)で発光した光について、陰極層3で反射した光(L1、L2,L3)の光路及び陽極51で反射した光(L4、L5,L6)の光路の計算を行っていたのに対して、陽極51で反射した光(L4、L5,L6)の光路の計算を不要とするので、干渉設計を簡略化することができる。これにより有機発光層(27,28,29)の層数が増大した場合でも、効率よく膜厚の設定を行うことが可能となる。   Such an organic light emitting device 30 has a conventional interference design, and the light emitted from the light emitting portions (55, 59, 63) is reflected by the light path (L1, L2, L3) reflected by the cathode layer 3 and the anode 51. While calculating the optical path of the reflected light (L4, L5, L6), it is not necessary to calculate the optical path of the light (L4, L5, L6) reflected by the anode 51, thus simplifying the interference design. Can be Thus, even when the number of organic light emitting layers (27, 28, 29) is increased, the film thickness can be set efficiently.

また、陽極層2及び陰極層3に接する側の膜厚a及びcを、各有機発光層(27,28,29)の単独の素子特性に基づいて設定するので、これら複数の有機発光層(27,28,29)で構成されるMPE型有機発光装置30は、良好な素子特性を示すと共に、光干渉計算を一層簡略化することが可能となる。   Further, since the film thicknesses a and c on the side in contact with the anode layer 2 and the cathode layer 3 are set based on the single element characteristics of each organic light emitting layer (27, 28, 29), the plurality of organic light emitting layers ( 27, 28, 29) The MPE type organic light emitting device 30 composed of 27, 28, 29) exhibits good element characteristics and can further simplify the optical interference calculation.

本実施の形態に係る有機発光装置及び有機発光装置の製造方法によれば、簡略化した光干渉設計により設定した膜厚を有することより、光取り出し効率を高めることが可能となる。   According to the organic light emitting device and the method for manufacturing the organic light emitting device according to the present embodiment, the light extraction efficiency can be increased by having the film thickness set by the simplified optical interference design.

[その他の実施の形態]
以上、上述した第1の実施の形態によって本発明を詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した第1の実施の形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更形態として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。以下、上述した第1の実施の形態を一部変更した変更形態について説明する。
[Other embodiments]
As described above, the present invention has been described in detail according to the above-described first embodiment. However, for those skilled in the art, the present invention is not limited to the first embodiment described in this specification. Is clear. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention. Hereinafter, a modified embodiment in which the first embodiment described above is partially modified will be described.

例えば、基板1、封止板17或いは陰極層2の厚みや、有機発光層(27,28,29)を構成する材料を変更することは可能である。   For example, it is possible to change the thickness of the substrate 1, the sealing plate 17 or the cathode layer 2, and the material constituting the organic light emitting layer (27, 28, 29).

本発明の第1の実施の形態に係る有機発光装置の模式的断面構造図。1 is a schematic cross-sectional structure diagram of an organic light-emitting device according to a first embodiment of the present invention. 図1の各層に対応する膜厚及び屈折率の関係を示す模式的断面構造図。FIG. 2 is a schematic cross-sectional structure diagram showing a relationship between a film thickness and a refractive index corresponding to each layer in FIG. 1. 単独状態における有機発光層の素子特性を調べるための構成図。The block diagram for investigating the element characteristic of the organic light emitting layer in a single state. 単独状態における各有機発光層の素子特性を示す図であって、(a)電圧[V]−電流密度[mA/cm]特性図、(b)電圧[V]−輝度[cd/m]特性図、(c)電流密度[mA/cm]−電流効率[cd/A]特性図、(d)輝度[cd/m]−電力効率[lm/W]特性図。A diagram showing the device characteristics of the organic light emitting layer in a single state, (a) Voltage [V] - current density [mA / cm 2] characteristic diagram, (b) Voltage [V] - luminance [cd / m 2 ] Characteristic diagram, (c) current density [mA / cm 2 ] −current efficiency [cd / A] characteristic diagram, and (d) luminance [cd / m 2 ] −power efficiency [lm / W] characteristic diagram. 本発明の第1の実施の形態に係る有機発光装置の製造方法の説明図であって、(a)基板1上に陽極層2を形成した後、有機発光層27及び電荷発生層15を順次形成する工程図、(b)有機発光層(28,29)を電荷発生層16を介して順次形成する工程図、(c)絶縁層4を成膜した後、陰極層3を形成する工程図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the manufacturing method of the organic light-emitting device concerning the 1st Embodiment of this invention, Comprising: (a) After forming the anode layer 2 on the board | substrate 1, the organic light-emitting layer 27 and the charge generation layer 15 are sequentially formed. Steps for forming, (b) Steps for forming organic light emitting layers (28, 29) sequentially via charge generation layer 16, (c) Steps for forming cathode layer 3 after forming insulating layer 4 . 本発明の第1の実施の形態に係る有機発光装置の製造方法の説明図であって、(d)封止板17をシール部材(18,19)を介して、陽極端子20及び陰極端子21を露出するようにして基板1に接合封止する工程図。It is explanatory drawing of the manufacturing method of the organic light-emitting device which concerns on the 1st Embodiment of this invention, Comprising: (d) The anode terminal 20 and the cathode terminal 21 are put on the sealing board 17 via the sealing member (18, 19). FIG. 6 is a process diagram for bonding and sealing to the substrate 1 so as to expose the substrate. 従来の有機発光装置の積層構造を示す模式的断面構造図。The typical cross-section figure which shows the laminated structure of the conventional organic light-emitting device.

符号の説明Explanation of symbols

1・・・基板
2・・・陽極層
3・・・陰極層
4・・・絶縁層
5・・・正孔注入層
6,9,12・・・正孔輸送層
7,10,13・・・発光部
8,11,14・・・電子輸送層
15,16・・・電荷発生層
17・・・封止板
18,19・・・シール部材
20・・・陽極端子
21・・・陰極端子
27,28,29・・・有機発光層
30・・・有機発光装置
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Anode layer 3 ... Cathode layer 4 ... Insulating layer 5 ... Hole injection layer 6, 9, 12 ... Hole transport layer 7, 10, 13, ... Light emitting portions 8, 11, 14 ... electron transport layers 15, 16 ... charge generation layer 17 ... sealing plates 18, 19 ... sealing member 20 ... anode terminal 21 ... cathode terminal 27, 28, 29 ... organic light emitting layer 30 ... organic light emitting device

Claims (6)

光透過可能な基板と、
前記基板上に配置された光透過可能な陽極層と、
前記陽極層上に積層して配置された、前記陽極層側から少なくとも正孔輸送層、発光部及び電子輸送層が順次積層された複数の有機発光層と、
前記有機発光層間に介在して配置された電荷発生層と、
積層方向の最上部に配設された前記有機発光層上に配置された陰極層と
を備え、前記陽極層及び前記陰極層に挟まれた各層の膜厚は、前記陽極層に接する前記有機発光層の発光位置から前記陽極層までの膜厚及び前記陰極層に接する前記有機発光層の発光位置から前記陰極層までの膜厚を所定の膜厚とし、前記各発光部の発光位置から前記陰極層までの光学距離が該各発光部の発光波長の4分の1の奇数倍となるように設定されたことを特徴とする有機発光装置。
A light transmissive substrate;
A light transmissive anode layer disposed on the substrate;
A plurality of organic light-emitting layers arranged on the anode layer in a stacked manner, at least a hole transport layer, a light-emitting portion, and an electron transport layer from the anode layer side;
A charge generation layer disposed between the organic light emitting layers;
A cathode layer disposed on the organic light emitting layer disposed at the uppermost portion in the stacking direction, and the thickness of each layer sandwiched between the anode layer and the cathode layer is the organic light emitting layer in contact with the anode layer The film thickness from the light emitting position of the layer to the anode layer and the film thickness from the light emitting position of the organic light emitting layer in contact with the cathode layer to the cathode layer are set to predetermined thicknesses, and the light emitting position of each light emitting portion to the cathode An organic light-emitting device, wherein an optical distance to the layer is set to be an odd multiple of one-fourth of a light emission wavelength of each light-emitting portion.
前記陽極層及び前記陰極層に挟まれた各層の膜厚は、下記(1)〜(5)式、
=(2i−1)λ/4 ・・・(1)
=(2l−1)λ/4 ・・・(2)
・・・
=(2m−1)λ/4 ・・・(3)
・・・
J−1=(2n−1)λJ−1/4 ・・・(4)
h=a+b+b+・・・+b+・・・bJ−1+c ・・・(5)
ただし、前記有機発光層の位置を前記陽極層側から積層順に数えることとして、s:第k番目の有機発光層で発光する光のピーク波長での第k番目の有機発光層の発光位置から前記陰極層までの光学距離、λ:第k番目の有機発光層で発光する光のピーク波長、h:前記陽極層の前記基板に接する表面から前記陰極層までの膜厚、a:第1番目の有機発光層の発光位置から前記陽極層の前記基板に接する表面までの所定の膜厚、b:第k番目の有機発光層の発光位置から第(k+1)番目の有機発光層の発光位置までの膜厚、c:第J番目の有機発光層の発光位置から前記陰極層までの所定の膜厚、k:1〜Jの整数、J:有機発光層の総層数、i,l,m,n:1以上の整数、
を満たすことを特徴とする請求項1に記載の有機発光装置。
The thickness of each layer sandwiched between the anode layer and the cathode layer is expressed by the following formulas (1) to (5):
s 1 = (2i-1) λ 1/4 ··· (1)
s 2 = (2l-1) λ 2/4 ··· (2)
...
s k = (2m−1) λ k / 4 (3)
...
s J-1 = (2n-1) λ J-1 / 4 (4)
h = a + b 1 + b 2 +... + b k +... b J−1 + c (5)
However, supposing that the position of the organic light emitting layer is counted from the anode layer side in the stacking order, s k : from the light emission position of the kth organic light emitting layer at the peak wavelength of the light emitted from the kth organic light emitting layer Optical distance to the cathode layer, λ k : peak wavelength of light emitted from the kth organic light emitting layer, h: film thickness from the surface of the anode layer in contact with the substrate to the cathode layer, a: first A predetermined film thickness from the light emitting position of the th organic light emitting layer to the surface of the anode layer in contact with the substrate, b k : light emission of the (k + 1) th organic light emitting layer from the light emitting position of the k th organic light emitting layer Film thickness to position, c: predetermined film thickness from the light emission position of the Jth organic light emitting layer to the cathode layer, k: integer of 1 to J, J: total number of organic light emitting layers, i, l , M, n: an integer greater than or equal to 1
The organic light-emitting device according to claim 1, wherein:
前記所定の膜厚a及びcは、それぞれ前記第1番目及び第J番目の有機発光層を単独の状態にして電力効率[lm/W]が最大になるよう調整して求めた膜厚であることを特徴とする請求項2に記載の有機発光装置。   The predetermined film thicknesses a and c are film thicknesses obtained by adjusting the first and Jth organic light emitting layers in a single state to maximize power efficiency [lm / W]. The organic light-emitting device according to claim 2. 基板上に形成された陽極層及び陰極層間に複数の有機発光層が積層された構成を有する有機発光装置の前記有機発光層の各膜厚を、前記陽極層に接する前記有機発光層の発光位置から前記陽極層までの膜厚及び前記陰極層に接する前記有機発光層の発光位置から前記陰極層までの膜厚を所定の膜厚とし、前記各発光部の発光位置から前記陰極層までの光学距離が該各発光部の発光波長の4分の1の奇数倍となるように設定する工程と、
前記基板上に前記陽極層を形成し、設定された前記膜厚で前記有機発光層を電荷発生層を介して複数形成する工程と、
絶縁層を成膜した後、前記陰極層を形成する工程と、
封止板をシール部材を介して、陽極端子及び陰極端子を露出するようにして前記基板に接合封止する工程と
を有する有機発光装置の製造方法。
Each film thickness of the organic light emitting layer of the organic light emitting device having a configuration in which a plurality of organic light emitting layers are laminated between the anode layer and the cathode layer formed on the substrate, and the light emitting position of the organic light emitting layer in contact with the anode layer And a film thickness from the light emitting position of the organic light emitting layer in contact with the cathode layer to the cathode layer is set to a predetermined film thickness, and an optical from the light emitting position of each light emitting portion to the cathode layer Setting the distance to be an odd multiple of one quarter of the emission wavelength of each light emitting section;
Forming the anode layer on the substrate, and forming a plurality of the organic light emitting layers with the set film thickness through a charge generation layer;
After forming the insulating layer, forming the cathode layer;
And a step of bonding and sealing the sealing plate to the substrate through the sealing member so as to expose the anode terminal and the cathode terminal.
前記有機発光層の各膜厚は、下記(6)〜(10)式、
=(2i−1)λ/4 ・・・(6)
=(2l−1)λ/4 ・・・(7)
・・・
=(2m−1)λ/4 ・・・(8)
・・・
J−1=(2n−1)λJ−1/4 ・・・(9)
h=a+b+b+・・・+b+・・・bJ−1+c ・・・(10)
ただし、前記有機発光層の位置を前記陽極層側から積層順に数えることとして、s:第k番目の有機発光層で発光する光のピーク波長での第k番目の有機発光層の発光位置から前記陰極層までの光学距離、λ:第k番目の有機発光層で発光する光のピーク波長、h:前記陽極層の前記基板に接する表面から前記陰極層までの膜厚、a:第1番目の有機発光層の発光位置から前記陽極層の前記基板に接する表面までの所定の膜厚、b:第k番目の有機発光層の発光位置から第(k+1)番目の有機発光層の発光位置までの膜厚、c:第J番目の有機発光層の発光位置から前記陰極層までの所定の膜厚、k:1〜Jの整数、J:有機発光層の総層数、i,l,m,n:1以上の整数、
を満たすことを特徴とする請求項4に記載の有機発光装置の製造方法。
Each film thickness of the organic light emitting layer has the following formulas (6) to (10):
s 1 = (2i-1) λ 1/4 ··· (6)
s 2 = (2l-1) λ 2/4 ··· (7)
...
s k = (2m−1) λ k / 4 (8)
...
s J-1 = (2n-1) λ J-1 / 4 (9)
h = a + b 1 + b 2 +... + b k +... b J−1 + c (10)
However, supposing that the position of the organic light emitting layer is counted from the anode layer side in the stacking order, s k : from the light emission position of the kth organic light emitting layer at the peak wavelength of the light emitted from the kth organic light emitting layer Optical distance to the cathode layer, λ k : peak wavelength of light emitted from the kth organic light emitting layer, h: film thickness from the surface of the anode layer in contact with the substrate to the cathode layer, a: first A predetermined film thickness from the light emitting position of the th organic light emitting layer to the surface of the anode layer in contact with the substrate, b k : light emission of the (k + 1) th organic light emitting layer from the light emitting position of the k th organic light emitting layer Film thickness to position, c: predetermined film thickness from the light emission position of the Jth organic light emitting layer to the cathode layer, k: integer of 1 to J, J: total number of organic light emitting layers, i, l , M, n: an integer greater than or equal to 1
The method for manufacturing an organic light emitting device according to claim 4, wherein:
前記所定の膜厚a及びcは、それぞれ前記第1番目及び第J番目の有機発光層を単独の状態にして電力効率[lm/W]が最大になるよう調整して求めた膜厚であることを特徴とする請求項5に記載の有機発光装置の製造方法。   The predetermined film thicknesses a and c are film thicknesses obtained by adjusting the first and Jth organic light emitting layers in a single state to maximize power efficiency [lm / W]. The method for manufacturing an organic light-emitting device according to claim 5.
JP2008151525A 2008-06-10 2008-06-10 Organic light emitting device and method for manufacturing organic light emitting device Pending JP2009301731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151525A JP2009301731A (en) 2008-06-10 2008-06-10 Organic light emitting device and method for manufacturing organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151525A JP2009301731A (en) 2008-06-10 2008-06-10 Organic light emitting device and method for manufacturing organic light emitting device

Publications (1)

Publication Number Publication Date
JP2009301731A true JP2009301731A (en) 2009-12-24

Family

ID=41548452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151525A Pending JP2009301731A (en) 2008-06-10 2008-06-10 Organic light emitting device and method for manufacturing organic light emitting device

Country Status (1)

Country Link
JP (1) JP2009301731A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128188A1 (en) * 2011-03-23 2012-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
JP2012238589A (en) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and illumination device
KR20160083381A (en) * 2014-12-30 2016-07-12 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Having Multi-Layer Stack Structure
US9735206B2 (en) 2012-12-28 2017-08-15 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
JP2018081939A (en) * 2011-02-11 2018-05-24 株式会社半導体エネルギー研究所 Light-emitting element and light-emitting device
KR20210149000A (en) * 2014-12-17 2021-12-08 엘지디스플레이 주식회사 Organic light emitting display device
KR102660971B1 (en) 2022-05-13 2024-04-24 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Having Multi-Layer Stack Structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
JP2005285401A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Light emitting device
JP2006165271A (en) * 2004-12-07 2006-06-22 Stanley Electric Co Ltd Surface emitting device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
JP2005285401A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Light emitting device
JP2006165271A (en) * 2004-12-07 2006-06-22 Stanley Electric Co Ltd Surface emitting device and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081939A (en) * 2011-02-11 2018-05-24 株式会社半導体エネルギー研究所 Light-emitting element and light-emitting device
US9252380B2 (en) 2011-03-23 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
WO2012128188A1 (en) * 2011-03-23 2012-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
JP2012238589A (en) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and illumination device
US9559325B2 (en) 2011-04-29 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device having stacked light-emitting layers
US9735206B2 (en) 2012-12-28 2017-08-15 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US9831291B2 (en) 2012-12-28 2017-11-28 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR20220044696A (en) * 2014-12-17 2022-04-11 엘지디스플레이 주식회사 Organic light emitting display device
KR20210149000A (en) * 2014-12-17 2021-12-08 엘지디스플레이 주식회사 Organic light emitting display device
KR102523495B1 (en) * 2014-12-17 2023-04-18 엘지디스플레이 주식회사 Organic light emitting display device
KR102651677B1 (en) * 2014-12-17 2024-03-26 엘지디스플레이 주식회사 Organic light emitting display device
KR20160083381A (en) * 2014-12-30 2016-07-12 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Having Multi-Layer Stack Structure
KR102399414B1 (en) * 2014-12-30 2022-05-18 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Having Multi-Layer Stack Structure
KR102660971B1 (en) 2022-05-13 2024-04-24 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Having Multi-Layer Stack Structure

Similar Documents

Publication Publication Date Title
JP6108664B2 (en) Organic EL device
JP4441883B2 (en) Display device
JP4136185B2 (en) Organic electroluminescent multicolor display and method for manufacturing the same
US7923920B2 (en) Organic light-emitting elements of LED with light reflection layers in each spaced on opposite sides of transparent conductive layer
JP4431379B2 (en) Organic EL device and method for forming the same
US20060049419A1 (en) Light emitting diode device
JP2005243549A (en) Display element, display device and image pickup device
JPWO2011055440A1 (en) Display device
US7327081B2 (en) Stacked organic electroluminescent device and method for manufacturing thereof
JP2009026574A (en) Display apparatus
JP2011018451A (en) Light-emitting display apparatus
JP2009266524A (en) Organic el display device
JP2008218081A (en) Organic el device array and its manufacturing method
JP2010263155A (en) Organic el display
JP2009301731A (en) Organic light emitting device and method for manufacturing organic light emitting device
KR101344256B1 (en) Display apparatus
JP2008251217A (en) Organic electroluminescent element
JP2019061927A (en) Display device
KR20060050863A (en) Organic electroluminescence element and organic electroluminescence device comprising the same
JP6853420B2 (en) Organic electroluminescence device
WO2020194411A1 (en) Light-emitting element and light-emitting device
JP2006100245A (en) El element
KR102530166B1 (en) Organic light emitting device and display device having thereof
JP2006139932A (en) Organic electroluminescent element and its manufacturing method
KR101640692B1 (en) Organic el device, method for manufacturing same, and organic photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402