JP2009298750A - Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable - Google Patents

Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable Download PDF

Info

Publication number
JP2009298750A
JP2009298750A JP2008157719A JP2008157719A JP2009298750A JP 2009298750 A JP2009298750 A JP 2009298750A JP 2008157719 A JP2008157719 A JP 2008157719A JP 2008157719 A JP2008157719 A JP 2008157719A JP 2009298750 A JP2009298750 A JP 2009298750A
Authority
JP
Japan
Prior art keywords
sprout vegetable
seeds
sterilization
hot water
sprout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008157719A
Other languages
Japanese (ja)
Inventor
Shinichi Kawamoto
伸一 川本
Bari Latiful
バリ ラティフル
Tomosaburo Suzuki
友三郎 鈴木
Katsuyoshi Enomoto
克義 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisey Machinery Co Ltd
National Agriculture and Food Research Organization
Original Assignee
Daisey Machinery Co Ltd
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisey Machinery Co Ltd, National Agriculture and Food Research Organization filed Critical Daisey Machinery Co Ltd
Priority to JP2008157719A priority Critical patent/JP2009298750A/en
Publication of JP2009298750A publication Critical patent/JP2009298750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilization method that sterilizes putrefactive bacteria to cause putrefaction in cultivation of sprout vegetable, completely sterilizes food poisoning bacteria such as pathogenic Escherichia coli O157, Salmonella, Listeria etc., and produces a sprout vegetable seed for growing a sprout vegetable eatable without anxiety. <P>SOLUTION: The method for sterilizing a sprout vegetable seed comprises immersing a sprout vegetable seed in high-temperature hot water at 80-90°C for 10-50 seconds in a sterilization water tank 2, immersing the sprout vegetable seed in cold water in a cooling water tank 4 and quenching the sprout vegetable seed to carry out sterilization treatment of putrefactive bacteria, subsequently, immersing the sprout vegetable seed in an aqueous solution of hypochlorous acid having a chlorine content of ≥1,500 ppm for ≥2 hours so as to completely sterilize food poisoning bacteria. The sprout vegetable seed after the sterilization treatment is cultivated to carry out cultivation of eatable sprout vegetable seed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は黒緑豆もやし、緑豆もやし、大豆もやし、アルファルファもやし等の各種もやし、かいわれ大根、その他の芽もの野菜で近年問題となっている食中毒を防ぐ為に、育成前の原料種子に対する殺菌方法及び食中毒の恐れのない芽もの野菜の栽培方法に関する。   The present invention is a method for sterilizing raw seeds before growing, in order to prevent food poisoning, which has recently become a problem with black mung bean sprouts, mung bean sprouts, soybean sprouts, alfalfa sprouts and other bean sprouts, squid radishes and other sprout vegetables. The present invention relates to a method for cultivating sprout vegetables without fear of food poisoning.

各種もやし、かいわれ大根に代表される芽もの野菜は、その栄養価の高さから、アジアから欧米まで、世界的に広まったが、近年、サルモネラや病原性大腸菌O157による食中毒が問題となっている。アメリカ合衆国では、子供や老人などの胃腸系が弱い消費者に対して、もやし類の摂食に、注意を促している状況である。また、その対策として、アメリカFDAは、もやし生産業者に対し、種子の殺菌や、栽培途中での散水排水の微生物検査としてサルモネラと病原性大腸菌O157の検査を推奨している(U.S. Food and Drug Administration 1999, Docket Nos.99D-4488 and 99D-4489)。このような芽もの野菜による食中毒を防止するために行われる種子の殺菌方法として、有効塩素濃度20,000ppmの次亜塩素酸での殺菌を推奨しているが、この方法は、高濃度の次亜塩素酸を使用するので、作業者にとって危険な作業であるのみならず、必ずしも有効な殺菌効果が得られていない。   Various bean sprouts, sprout vegetables typified by radish have spread worldwide from Asia to Europe due to their high nutritional value, but in recent years food poisoning by Salmonella and pathogenic E. coli O157 has become a problem . In the United States, consumers are weak in the gastrointestinal system, such as children and the elderly, and are cautioning them to eat sprouts. As a countermeasure, the US FDA recommended bean sprouts producers to inspect salmonella and pathogenic E. coli O157 for sterilization of seeds and microbiological examination of sprinkling wastewater during cultivation (US Food and Drug Administration 1999, Docket Nos. 99D-4488 and 99D-4489). As a seed sterilization method for preventing food poisoning caused by such bud vegetables, sterilization with hypochlorous acid having an effective chlorine concentration of 20,000 ppm is recommended. Since chlorous acid is used, it is not only a dangerous work for an operator, but also an effective sterilizing effect is not necessarily obtained.

一方、各種もやし等、種子を発芽させて少し育てた段階で食用とする、いわゆる芽もの野菜では生育を如何に促進するかが重要である。従って、芽もの野菜は発芽と生育に適した温度と湿度のもとで栽培されるが、そのような生育環境は各種微生物や細菌にとっても繁殖に適した環境となる。一般に種子はその種皮外面はもとより、場合によっては内面が微生物によって汚染されており、そのような微生物が、栽培時において芽もの野菜が腐敗する原因となる。特に、もやしの場合は高温・多湿の環境で、かつ、給水を行いつつ発芽と成育を行わせるので微生物繁殖を抑さえることが極めて難しい状況にある。   On the other hand, it is important how to promote the growth of so-called sprout vegetables, such as various sprouts, that are edible when seeds are germinated and grown a little. Therefore, sprout vegetables are cultivated at a temperature and humidity suitable for germination and growth, but such a growth environment is also suitable for propagation for various microorganisms and bacteria. In general, seeds are contaminated not only with the outer surface of the seed coat but also with the inner surface in some cases, and such microorganisms cause spoilage of sprouts during cultivation. In particular, in the case of bean sprouts, it is extremely difficult to suppress microbial growth because germination and growth are performed in a high temperature and high humidity environment while supplying water.

このような状況のもとで本出願人は先に、芽もの野菜種子の殺菌を危険な薬剤を使わない物理的な方法として、芽もの野菜種子を70°C以上の高温水に10から30秒間浸したのち急冷することからなる、熱湯による殺菌方法を提案した(特許文献1)。この殺菌方法においては、芽もの野菜の種子を70℃以上の高温水に10から30秒間浸すことによって、種子の生物としての機能を損なうことなく所定の高温度に所定時間だけ正確に晒して効果的に殺菌させることができる。この芽もの野菜種子に対する殺菌方法によれば、芽もの野菜の種子に付着している腐敗菌を殺菌して芽もの野菜の腐敗を抑えて栽培することが可能である。   Under such circumstances, the present applicant has previously described that as a physical method that does not use dangerous drugs for sterilization of bud vegetable seeds, shoot vegetable seeds in high-temperature water at 70 ° C. or higher are 10 to 30 ° C. A sterilization method using hot water, which consists of immersing for a second and then rapidly cooling, has been proposed (Patent Document 1). In this sterilization method, the seeds of sprout vegetables are soaked in high-temperature water at 70 ° C. or higher for 10 to 30 seconds, so that they are accurately exposed to a predetermined high temperature for a predetermined time without impairing the function of the seeds as an organism. Can be sterilized. According to this sterilization method for bud vegetable seeds, it is possible to cultivate by sterilizing spoilage bacteria adhering to the seeds of bud vegetable and suppressing spoilage of the bud vegetable.

また、その後、実験室レベルでの研究として、危険な病原菌であるサルモネラ、病原性大腸菌O157に対する緑豆種子の熱湯処理による殺菌条件を提示した(Journal of Food Protection Vol. 71, No.4. 2008, Pages 830-834)。
しかしながら、実際のもやし栽培においては、より大量の原料種子を連続的に殺菌処理しなければならず、また、殺菌処理後の種子が正常にもやしなどの製品になるかは確認されていなかった。
従って、生物体としての種子の発芽、成長という生命活動を損なわずに腐敗菌のみならず病原性大腸菌O157,サルモネラ、リステリアなどを含めて食中毒の原因となる微生物を完全に死滅させ、生食して安全な芽もの野菜を栽培することができる芽もの野菜種子の殺菌方法が求められている。
特許第3225474号公報
In addition, as a research at the laboratory level after that, the sterilization conditions by hot water treatment of mung bean seeds against dangerous pathogens Salmonella and pathogenic E. coli O157 were presented (Journal of Food Protection Vol. 71, No.4. 2008, Pages 830-834).
However, in actual bean sprouts cultivation, a larger amount of raw material seeds must be sterilized continuously, and it has not been confirmed whether the seeds after the sterilization treatment are normally sprouts.
Therefore, microorganisms that cause food poisoning, including pathogenic E. coli O157, Salmonella, Listeria, etc., can be completely killed and eaten live without sacrificing the vital activity of germination and growth of seeds as organisms. There is a need for a method of sterilizing sprout vegetable seeds that can grow safe sprout vegetables.
Japanese Patent No. 3225474

本発明は、芽もの野菜の栽培で腐敗を起こす原因となる腐敗菌を殺菌するとともに、病原性大腸菌O157,サルモネラ、リステリアなどの食中毒菌をも殺菌して、安心して生食が可能な芽もの野菜を育成できる芽もの野菜種子の効果的な殺菌方法を提供することを課題としている。特に、本発明は生食に障害となるような強い濃度の化学薬品等を使用することなく腐敗菌、食中毒菌を共に死滅させることのできる芽もの野菜種子の殺菌方法を提供することを課題としている。また、本発明は微生物繁殖による腐敗の発生を押さえつつ、食中毒菌による食中毒の恐れなく生食可能な芽もの野菜を育成できる芽もの野菜の栽培方法を提供することをも課題としている。   The present invention sterilizes spoilage bacteria that cause spoilage in cultivation of sprout vegetables, and also disinfects food poisoning bacteria such as pathogenic Escherichia coli O157, Salmonella, Listeria, etc. It is an object to provide an effective method of sterilizing bud vegetable seeds that can be cultivated. In particular, an object of the present invention is to provide a method for sterilizing sprouts and vegetable seeds that can kill both spoilage bacteria and food poisoning bacteria without using strong chemicals or the like that would impede raw eating. . Another object of the present invention is to provide a method for cultivating sprout vegetables that can cultivate sprout vegetables that can be eaten raw without fear of food poisoning by food poisoning bacteria while suppressing the occurrence of spoilage due to microbial propagation.

本発明は、芽もの野菜種子の殺菌処理における前記課題を解決するため、種子の胚の生命機能を損なうことなく、種子の表面そして場合によっては種子の外傷、割れ部より侵入して種子に存在している微生物の殺菌に有効な80−90℃の高温熱水に10−50秒間浸したあと急冷することによりに正確に、適正な時間だけ接触させ、引き続いて塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸すことにより、残存した食中毒菌をも完全に殺菌することからなる芽もの野菜種子の殺菌方法を採用する。   The present invention solves the above-mentioned problems in the sterilization treatment of bud vegetable seeds, and does not impair the vital functions of seed embryos, but invades from the seed surface and, in some cases, from seed trauma or cracks, present in seeds. It is immersed in high-temperature hot water of 80-90 ° C effective for sterilization of living microorganisms for 10-50 seconds and then rapidly cooled to bring it into contact with each other accurately for an appropriate time, and subsequently hypochlorous acid having a chlorine concentration of 1500 ppm or more. A method for sterilizing sprout vegetable seeds comprising completely sterilizing remaining food poisoning bacteria by soaking in an acid aqueous solution for 2 hours or more is employed.

本発明により、芽もの野菜種子を晒す80−90℃の熱水の具体的温度と、10−50秒間の具体的時間は、対象とする芽もの野菜種子に応じて最適の値を選定する。また、種子が80−90℃の最適温度に対し、予め定めた時間、正確に晒され生命体としての種子に熱による障害が残らないよう、熱水への浸漬後は急速に冷却する。また、80−90℃の最適温度に対し、予め定めた時間、正確に芽もの野菜種子を晒すという目的から、所定の高温熱水に浸す前の種子に対し予熱処理を行うのも有効である。   According to the present invention, the specific temperature of 80-90 ° C. hot water that exposes the bud vegetable seeds and the specific time of 10-50 seconds are selected according to the target bud vegetable seeds. In addition, the seeds are rapidly exposed after being immersed in hot water so that the seeds are exposed accurately to an optimal temperature of 80-90 ° C. for a predetermined period of time, and the seeds as living organisms are not damaged by heat. It is also effective to pre-heat the seeds before soaking them in a predetermined high temperature hot water for the purpose of accurately exposing the bud vegetable seeds for a predetermined time at an optimal temperature of 80-90 ° C. .

また本発明は、芽もの野菜の栽培についての前記課題を解決するため、育成前の芽もの野菜種子を80−90℃の熱水に10−50秒間浸漬して急冷する殺菌処理のあと、引き続いて塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸漬して食中毒菌をも完全に殺菌する殺菌処理した芽もの野菜種子を栽培する方法を採用する。80−90℃の高温熱水に対する種子の浸漬のし方、及び次亜塩素酸水溶液に対する浸漬時間の設定などは、対象とする芽もの野菜種子に応じて最適のやり方を選定する。   Moreover, in order to solve the said subject about cultivation of sprout vegetables, this invention continues after the sterilization process which immerses the sprout vegetable seed before growing for 10-50 second in 80-90 degreeC hot water, and quenches rapidly. Then, a method of cultivating bud vegetable seeds that have been sterilized so as to completely sterilize food poisoning bacteria by immersing them in a hypochlorous acid aqueous solution having a chlorine concentration of 1500 ppm or more for 2 hours or more is adopted. The method of immersing seeds in high-temperature hot water at 80 to 90 ° C. and setting the soaking time in hypochlorous acid aqueous solution are selected according to the target bud vegetable seeds.

本発明の芽もの野菜種子の殺菌方法においては、前記したように芽もの野菜種子を80−90℃の高温熱水に10−50秒間浸したのち急冷することにより、生命体としての芽もの野菜種子に障害を与えることなく細菌を殺菌できる高温に晒し芽もの野菜種子に付着している細菌を殺菌し、その処理に引き続いて、塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸漬することにより、残存している食中毒菌をも完全に殺菌処理する。2段階の殺菌処理を芽もの野菜種子に対して施すことにより、微生物繁殖による腐敗を起こすことなく栽培して、食中毒菌が付着していない生食しても安全な芽もの野菜を育成することができる。また、本発明による方法では、80−90℃の高温の熱水に浸したのち急冷することにより、種子の生命活動に影響させることなく所定の高温度に所定時間だけ正確に晒して、引き続き塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸漬することにより、残存している食中毒菌をも完全に殺菌処理するという、殺菌処理の悪影響が後に残る処理を行わないので、この殺菌処理を施した種子を用いて芽もの野菜を育成すると、得られた芽もの野菜には、取り扱い上、これらの殺菌処理による問題が殆どないことはもとより、栽培したあとの芽もの野菜を生食しても安全である。このように本発明により殺菌処理した芽もの野菜種子は発芽率を低下させることなく発芽して腐敗を起こすことなく成育し、生食しても安全な芽もの野菜を得ることができる。   In the method for sterilizing sprout vegetable seeds of the present invention, as described above, the sprout vegetable seeds are immersed in high-temperature hot water at 80 to 90 ° C. for 10 to 50 seconds, and then rapidly cooled, whereby the sprout vegetable seeds as life forms are obtained. Bacteria adhering to vegetable seeds exposed to high temperatures that can sterilize bacteria without causing damage to the seeds are sterilized, and subsequently immersed in hypochlorous acid aqueous solution having a chlorine concentration of 1500 ppm or more for 2 hours or more Thus, the remaining food poisoning bacteria are completely sterilized. By applying two-stage sterilization treatment to the bud vegetable seeds, it is possible to grow without spoilage due to microbial propagation, and to cultivate bud vegetables that are safe even if eaten raw without food poisoning bacteria. it can. Further, in the method according to the present invention, by immersing in high-temperature hot water of 80 to 90 ° C. and then rapidly cooling, it is precisely exposed to a predetermined high temperature for a predetermined time without affecting the life activity of the seed, and subsequently chlorine By immersing in a hypochlorous acid aqueous solution with a concentration of 1500 ppm or more for 2 hours or more, the remaining food poisoning bacteria are completely sterilized, and the sterilization treatment does not have a negative effect. When growing sprout vegetables using the applied seeds, the resulting sprout vegetables have almost no problems due to these sterilization treatments, and even if the sprout vegetables after cultivation are eaten raw It is safe. Thus, the bud vegetable seeds sterilized by the present invention germinate without decreasing the germination rate and grow without causing spoilage, and a safe bud vegetable can be obtained even when raw.

更にまた、本発明による栽培方法で育成した芽もの野菜は微生物繁殖の少ない状態となっているので本発明によれば、日持ちのよい芽もの野菜を収穫することができる。また、本発明による芽もの野菜の栽培方法によれば80−90℃の高温の熱水に浸したあとの種子に対して、引き続き塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸漬するという食中毒菌をも完全に殺菌する処理を施した芽もの野菜種子を使って栽培するので、その2段階の漬込みにより、殺菌処理の効果が効いて、安全性の高い芽もの野菜を腐敗なく生育させて生食して安全な芽もの野菜を収穫することができる。   Furthermore, since the sprout vegetables grown by the cultivation method according to the present invention are in a state of less microbial propagation, the sprout vegetables with good shelf life can be harvested according to the present invention. Moreover, according to the cultivation method of the sprout vegetables by this invention, it immerses in the hypochlorous acid aqueous solution with a chlorine concentration of 1500 ppm or more continuously for 2 hours or more with respect to the seed after immersing in the hot water of 80-90 degreeC. Because it is cultivated using bud vegetable seeds that have been treated to completely sterilize the food poisoning bacteria, the two-stage pickling helps the sterilization effect and grows safe bud vegetables without spoilage. Let them eat raw and harvest safe bud vegetables.

本発明者は、高温熱水による芽もの野菜種子の殺菌研究を更に発展させ、食中毒菌に対する殺菌処理の効果を、実際のもやし栽培工場での実用化を考慮し探索し本発明を得たのである。危険な食中毒菌を扱った試験は、法律により特定の実験施設内(P2、P3レベル)でしか扱えないので、その実験施設で使用可能なように縮小した実機のテスト機(1/10サイズ)を製作し、殺菌条件を探した。
また、処理後の種子が、正常に発芽し、正常なもやしとして生産できる処理条件と照らし合わせ、もやし栽培において実用可能な高温熱水による浸漬処理条件についてきめ細かく探求した。本発明による高温熱水処理条件は、安全に食中毒菌が殺菌される条件からすれば、概ね80−90℃で10−50秒間である。この高温熱水による熱湯処理は、種子の発芽とその後のもやしへの生育に対する生命力を損なわないために、正確な熱湯温度により、決められた秒数の間、に行う必要がある。また、高温熱水処理後はできるだけすみやかに冷却する必要がある。また、殺菌条件としての再現性を保つ為にも、正確な処理温度と時間が繰り返される事が必要である。
The present inventor has further developed research on sterilization of vegetable seeds with high temperature hot water, and obtained the present invention by searching for the effect of sterilization treatment against food poisoning bacteria in consideration of practical application in actual bean sprouts cultivation plant. is there. Tests dealing with dangerous food poisoning bacteria can only be handled within a specific experimental facility (P2, P3 level) by law, so the actual test machine (1/10 size) reduced to be usable in that experimental facility And searched for sterilization conditions.
Moreover, the seeds after the treatment were germinated normally and compared with the treatment conditions that can be produced as normal bean sprouts. The high-temperature hot water treatment condition according to the present invention is approximately 80 to 90 ° C. and 10 to 50 seconds in terms of the condition that food poisoning bacteria can be safely sterilized. This hot water treatment with high-temperature hot water needs to be performed within a predetermined number of seconds with an accurate hot water temperature so as not to impair the vitality of seed germination and subsequent growth on bean sprouts. Moreover, it is necessary to cool as soon as possible after the high-temperature hot water treatment. Also, in order to maintain reproducibility as sterilization conditions, it is necessary to repeat accurate processing temperature and time.

以上の事から、また、大量な種子を毎日処理する事を考えると、高温熱水による殺菌は機械による処理が必要となる。本出願人は、先に発明した特許文献1記載の方法による、芽もの野菜種子の熱湯殺菌機を開発したが、その実機を縮小したテスト機により、これらの処理を行って効果を検証した。また、実際に栽培試験を行い、もやし生産において生産に支障をきたさない範囲で問題ない処理条件であることを確かめた。高温熱水による殺菌機の実機の構成を図1に、それを縮小した殺菌テスト機の構成を図2に示してある。実機は、図1に示すように、原料ホッパー1、殺菌水槽2、殺菌水槽2内で所定温度の熱湯に芽もの野菜種子を所定時間浸漬させるための網目のバスケット3、殺菌水槽2内で所定の殺菌処理を終えた芽もの野菜種子を急冷するための冷却水槽4を備えている。殺菌処理を施す定められた重量(3−5kg)の芽もの野菜種子を原料ホッパー1からバスケット3に受け入れて殺菌水槽2に浸漬して殺菌処理を終えた後の種子は、バスケット3を反転して冷却水槽4内に速やかに移されるように構成している。また、実機は殺菌水槽2の上部を覆う排気フード5と制御盤6を備えている。   From the above, and considering that a large amount of seeds are treated every day, sterilization with high-temperature hot water requires processing by a machine. The present applicant has developed a hot water sterilizer for bud vegetable seeds by the method described in Patent Document 1 previously invented, and verified the effect by performing these treatments with a test machine in which the actual machine was reduced. In addition, a cultivation test was actually conducted, and it was confirmed that the processing conditions were not problematic as long as production was not hindered in bean sprouts production. FIG. 1 shows the configuration of an actual sterilizer using high-temperature hot water, and FIG. 2 shows the configuration of a reduced sterilization tester. As shown in FIG. 1, the actual machine has a mesh basket 3 for immersing bud vegetable seeds in hot water at a predetermined temperature in a raw material hopper 1, a sterilized water tank 2, and a sterilized water tank 2 for a predetermined time in a sterilized water tank 2. The cooling water tank 4 for rapidly cooling the vegetable seeds of the sprout which finished the sterilization processing is provided. The seeds after the sterilized vegetable seeds having a predetermined weight (3-5 kg) to be sterilized are received from the raw material hopper 1 into the basket 3 and immersed in the sterilized water tank 2 to finish the sterilization, Thus, it is configured to be quickly transferred into the cooling water tank 4. The actual machine also includes an exhaust hood 5 and a control panel 6 that cover the upper part of the sterilizing water tank 2.

テスト機の構成は図2に示すように、殺菌処理を施す芽もの野菜種子(300−500g)を入れる網目のバスケット11と、このバスケット11を支持する支持部12を有し、支持部に支持されたバスケット11を殺菌水槽10に対して上下動させ、バスケット11内の芽もの野菜種子を殺菌水槽10内の高温熱水に所定時間浸漬させて引き上げるアクチュエータ13が設けられている。14は、殺菌水槽2内の水を所定の高温に加熱するヒータであり、15は殺菌水槽10内の高温熱水の温度を測定する温度計である。16は殺菌水槽10内の水を排水するドレンバルブを示している。17は制御盤を示し、18はスタートボタン、19は自動制御モニターである。   As shown in FIG. 2, the test machine has a mesh basket 11 for storing bud vegetable seeds (300-500 g) to be sterilized, and a support portion 12 that supports the basket 11, and is supported by the support portion. An actuator 13 is provided that moves the basket 11 up and down relative to the sterilized water tank 10 and immerses the bud vegetable seeds in the basket 11 in high-temperature hot water in the sterilized water tank 10 for a predetermined time. 14 is a heater that heats the water in the sterilizing water tank 2 to a predetermined high temperature, and 15 is a thermometer that measures the temperature of the hot water in the sterilizing water tank 10. Reference numeral 16 denotes a drain valve for draining the water in the sterilizing water tank 10. Reference numeral 17 denotes a control panel, 18 is a start button, and 19 is an automatic control monitor.

また、高温熱水処理による殺菌後の種子に対して行う増菌検査や、発芽処理後の検査から、高温熱水処理後に、殺菌効果のある薬剤を含む水溶液に浸漬する事が有効であることを確かめ、その処理条件として、次亜塩素酸による有効塩素濃度として1500ppm以上、2時間以上が望ましいとの知見を得た。
本発明の知見獲得の過程では、殺菌剤として次亜塩素酸ナトリウム、次亜塩素酸カルシウムの他、塩素系の殺菌剤である亜塩素酸や、塩素ガスなども利用した。また、より安全な薬剤として、電解水、オゾン水も使用して殺菌処理する事も行い殺菌効果があることを見出している。これらの薬剤による浸漬は、通常のもやし栽培における種子の漬け込み工程に組み込めば良い。また、この漬け込み工程での2次汚染の防止の点からも、安全性から考えて許容範囲の濃度での薬剤の使用が薦められる。
In addition, it is effective to immerse in an aqueous solution containing a sterilizing agent after high-temperature hydrothermal treatment from the enrichment test performed on seeds sterilized by high-temperature hydrothermal treatment or after germination. As a processing condition, it was found that the effective chlorine concentration by hypochlorous acid is preferably 1500 ppm or more and 2 hours or more.
In the process of acquiring knowledge of the present invention, chlorous acid, chlorous acid, chlorine gas, and the like were used as a sterilizing agent as well as sodium hypochlorite and calcium hypochlorite. In addition, it has been found that as a safer drug, sterilization treatment is also performed using electrolyzed water and ozone water to have a sterilizing effect. Soaking with these chemicals may be incorporated into the seed soaking process in normal bean sprouts cultivation. Also, from the viewpoint of preventing secondary contamination in the soaking process, it is recommended to use a drug at an acceptable concentration in consideration of safety.

以上のように、本発明による高温熱水への浸漬処理とそれにつづく次亜塩素酸水溶液による漬け込みにより、もやし栽培で問題となる腐敗菌と食中毒菌は、完全に殺菌され、原料から持ち込まれる食中毒菌のもやしへの汚染の恐れがなくなる。本発明は、アメリカFDAが推奨する、芽物野菜の原料種子の殺菌方法として、実用可能な有効な手段の一つとして提唱するものである。
図1、図2に示した高温熱水による処理装置による熱殺菌処理の後に行う次亜塩素酸水溶液による浸漬処理を行う水槽は、適宜の水槽でよいので、その図示を省略している。
As described above, by the immersion treatment in high-temperature hot water according to the present invention and subsequent immersion in a hypochlorous acid aqueous solution, spoilage bacteria and food poisoning bacteria that are problematic in bean sprouts are completely sterilized, and food poisoning brought from raw materials There is no risk of contamination of the bean sprouts. The present invention is proposed as one of effective means that can be used practically as a method for sterilizing raw seeds of sprout vegetables recommended by the US FDA.
Since the water tank which performs the immersion process by the hypochlorous acid aqueous solution performed after the heat sterilization process by the processing apparatus by the high temperature hot water shown in FIG. 1, FIG. 2 may be an appropriate water tank, the illustration is abbreviate | omitted.

[実験例1]
緑豆種子を、芽物野菜用種子の熱湯処理用に開発した図2に示されている実機の縮小テスト機により、表1に示す温度と時間で処理し、発芽率と正常に生育したものの割合を確かめた。水温設定(精度:±0.5℃)されたテスト機によりそれぞれの時間、自動的に熱湯処理を行った。原料種子(300g)を、機械のバスケット11に入れ、スイッチを押すことにより、自動的にバスケットが熱湯が入った殺菌水槽2に降下する。それぞれの処理時間、熱湯で種子が殺菌された後、また自動的にバスケット11が上昇するので、そのバスケット11を、すばやく、冷却槽3内の水道水に浸し、種子を冷却した。本実験の結果の一部を表1に示してある。85℃では、40秒間まで、88℃では20秒間の処理まで、ほぼ、生育に問題ない殺菌処理が行われるとの知見が得られた。
[Experiment 1]
The rate of germination rate and normal growth rate when mung bean seeds were processed at the temperature and time shown in Table 1 using the actual reduction test machine shown in Fig. 2 developed for hot water treatment of sprout vegetable seeds. I confirmed. Hot water treatment was performed automatically for each time by a test machine set with water temperature (accuracy: ± 0.5 ° C.). Raw material seeds (300 g) are put in the basket 11 of the machine, and the switch is automatically lowered to the sterilized water tank 2 containing hot water. After the seeds were sterilized with hot water for each treatment time, the basket 11 automatically rose again, so that the basket 11 was quickly immersed in tap water in the cooling tank 3 to cool the seeds. A part of the result of this experiment is shown in Table 1. It was found that sterilization treatment with almost no problem in growth was performed at 85 ° C. for up to 40 seconds and at 88 ° C. for up to 20 seconds.

[実施例1]
食中毒菌(大腸菌O157:H7)を植菌した緑豆種子(500g)を、高温熱水で処理し、さらに次亜塩素酸ナトリウムの水溶液に浸漬した。すなわち、先ず、予め大腸菌O157による植菌処理した種子を次の条件で高温熱水により殺菌し、その後、更に次亜塩素酸ナトリウム水溶液に浸漬して殺菌処理後の種子の残存大腸菌O157数を検査した。さらに、残りの種子の一部は、ペプトン水中で一晩増菌培養し、植菌した大腸菌O157の残存の有無を検査した。また、他の残りの種子を72時間室温(約20℃)で栽培した後、同じく、植菌した大腸菌O157の有無を調べた。これらのテストはすべてP2レベル以上の施設内で行った。
高温熱水による処理は、85℃で40秒間、及び88℃で20秒間とした。
水温設定(精度±0.5℃)されたテスト機によりそれぞれの時間、自動的に熱湯処理を行った。植菌処理した原料種子を、バスケット11に入れ、スイッチを押すことにより、自動的にバスケット11が殺菌水槽2内に低下し、それぞれの処理時間、高温熱水で種子を殺菌した後、また自動的にバスケット11が上昇するので、そのバスケット11を、すばやく、冷水(約0℃)の入った冷却槽3内の冷却水に浸し、種子を冷却した。
次亜塩素酸による漬け込み処理を有効塩素濃度2,000ppmで2時間(室温約20℃)、種子の倍量程度の水溶液で行った。本実験結果の一部を表2に示してある。どちらの熱湯処理後も、植菌した大腸菌O157は検出されなかったが、ペプトン水による増菌検査あるいは、72時間の発芽処理後の検査では、菌の残存が認められた。85℃40秒の高温熱水処理後、さらに塩素濃度2,000ppmの次亜塩素酸ナトリウム水溶液で2時間浸けた場合は、増菌後も、発芽処理後の検査からも、菌の残存は認められなかった。この処理では、植菌した大腸菌O157が完全に殺菌されたと判断された。
[Example 1]
Mung bean seeds (500 g) inoculated with food poisoning bacteria (E. coli O157: H7) were treated with hot hot water and further immersed in an aqueous solution of sodium hypochlorite. That is, first, seeds previously inoculated with Escherichia coli O157 are sterilized with high-temperature hot water under the following conditions, and then immersed in an aqueous sodium hypochlorite solution to inspect the number of remaining Escherichia coli O157 in the seeds after sterilization treatment. did. Further, some of the remaining seeds were enriched overnight in peptone water and examined for the presence of the inoculated E. coli O157. In addition, after the other remaining seeds were cultivated at room temperature (about 20 ° C.) for 72 hours, the presence or absence of the inoculated E. coli O157 was also examined. All of these tests were conducted in a facility of P2 level or higher.
The treatment with high-temperature hot water was performed at 85 ° C. for 40 seconds and at 88 ° C. for 20 seconds.
Hot water treatment was automatically performed for each time by a test machine set to a water temperature (accuracy ± 0.5 ° C.). By injecting the seed material that has been inoculated into the basket 11 and pressing the switch, the basket 11 is automatically lowered into the sterilizing water tank 2 and sterilized with high-temperature hot water for each treatment time. Since the basket 11 ascends, the basket 11 was quickly immersed in the cooling water in the cooling tank 3 containing cold water (about 0 ° C.) to cool the seeds.
The soaking treatment with hypochlorous acid was carried out at an effective chlorine concentration of 2,000 ppm for 2 hours (room temperature of about 20 ° C.) with an aqueous solution about twice the amount of seeds. A part of the result of this experiment is shown in Table 2. Inoculated Escherichia coli O157 was not detected after either hot water treatment, but in the test for enrichment with peptone water or the test after germination for 72 hours, the presence of the bacteria was observed. After high-temperature hydrothermal treatment at 85 ° C for 40 seconds, when immersed in an aqueous sodium hypochlorite solution with a chlorine concentration of 2,000 ppm for 2 hours, residual bacteria were observed both after enrichment and after germination. I couldn't. In this treatment, it was determined that the inoculated E. coli O157 was completely sterilized.

[実施例2]
植菌する食中毒菌として、サルモネラを用いて実施例1と同様の検査を行った。その結果を表3に示してある。サルモネラの場合も、大腸菌O157の結果と同様に、高温熱水処理後の検査では菌の出現は認められなかったが、増菌後あるいは、発芽処理後の検査では、残存が認められた。85℃40秒の熱湯処理後に、塩素濃度2,000ppmの次亜塩素酸ナトリウム水溶液で2時間、浸けた場合は、増菌後も、発芽処理後も菌の残存は認められず、完全に殺菌されたと判断された。
[Example 2]
The same test as in Example 1 was performed using Salmonella as a food poisoning inoculum. The results are shown in Table 3. In the case of Salmonella as well, as in the case of Escherichia coli O157, the appearance of bacteria was not observed in the test after the high-temperature hot water treatment, but the residual was observed in the test after the enrichment or after the germination treatment. After treatment with hot water at 85 ° C for 40 seconds, when immersed in an aqueous solution of sodium hypochlorite with a chlorine concentration of 2,000 ppm for 2 hours, no bacteria remained after the germination or germination treatment, and it was completely sterilized. It was judged that it was done.

[実施例3]
高温熱水処理による緑豆種子の発芽率の低下を調べた。植菌していない種子に対して、高温熱水処理を行い、さらに、塩素濃度2,000ppmの次亜塩素酸ナトリウム水溶液で浸けた場合の発芽率及び正常生育率は表4に記載のとおりであった。実験例1と同様に、高温熱水処理しても発芽率の低下はほとんど見られなかったが、生育率としては若干の低下が見られた。高温熱水処理後の次亜塩素酸ナトリウムによる漬け込みによる発芽率、生育率への影響はほとんど見られなかった。
[Example 3]
The decrease in germination rate of mung bean seeds by hot water treatment was investigated. Seed Table 4 shows the germination rate and normal growth rate when non-inoculated seeds are treated with high-temperature hydrothermal treatment and further immersed in an aqueous sodium hypochlorite solution having a chlorine concentration of 2,000 ppm. there were. As in Experimental Example 1, even when the hot water treatment was performed, the germination rate was hardly decreased, but the growth rate was slightly decreased. There was almost no effect on the germination rate and growth rate by soaking with sodium hypochlorite after high-temperature hydrothermal treatment.

[実施例4]
85℃の熱湯に40秒間浸漬する高温加熱処理後に行う殺菌処理に用いる次亜塩素酸ナトリウム水溶液の濃度を検討する為に、実施例1, 2と同様のテストを、次亜塩素酸ナトリウム水溶液の濃度を変えて行った。その結果を表5に示してある。有効塩素濃度1500ppm以上では、植菌した大腸菌O157とサルモネラは完全に殺菌されたと判断された。
[Example 4]
In order to examine the concentration of the sodium hypochlorite aqueous solution used in the sterilization treatment performed after high-temperature heat treatment immersed in hot water at 85 ° C. for 40 seconds, the same test as in Examples 1 and 2 was conducted for the sodium hypochlorite aqueous solution. The concentration was changed. The results are shown in Table 5. At an effective chlorine concentration of 1500 ppm or more, it was judged that the inoculated E. coli O157 and Salmonella were completely sterilized.

[実施例5]
85℃の熱湯に40秒間浸漬する高温熱水処理後に、塩素濃度2,000ppmの次亜塩素酸ナトリウム水溶液による浸漬時間を検討した。実施例1,2と同様のテストを、次亜塩素酸ナトリウム水溶液に浸け込む時間を変えて行った。その結果は表6に示してある。90分の浸漬処理では大腸菌O157は殺菌されたが、サルモネラは残存する恐れがあると思われた。120分(2時間)の浸け込み処理で、完全に殺菌されたと判断された。
[Example 5]
After the high-temperature hot water treatment of immersing in hot water at 85 ° C. for 40 seconds, the immersion time with an aqueous sodium hypochlorite solution having a chlorine concentration of 2,000 ppm was examined. Tests similar to those of Examples 1 and 2 were performed by changing the time of immersion in the aqueous sodium hypochlorite solution. The results are shown in Table 6. In the 90 minute immersion treatment, Escherichia coli O157 was sterilized, but Salmonella seemed to remain. It was judged that it was completely sterilized by the immersion treatment for 120 minutes (2 hours).

[実施例6]
実施例3と同じ処理条件で、種子の殺菌処理を行った後、もやしを通常に栽培した。熱湯処理は実機により1.5kgずつの原料種子で行った。その結果を表7に示してある。収穫後のもやしの重量及び、倍率を比較した。無処理の原料により栽培した場合に比べ、若干(約5%)の収量の低下が見られた。これは、熱湯処理による未発芽や発芽不良によるものと考えられたが、他の正常に発芽した種子は正常なもやしに生育し、製品として問題ないと考えられた。
[Example 6]
Under the same treatment conditions as in Example 3, the seeds were sterilized and then sprouts were cultivated normally. The hot water treatment was performed with 1.5 kg of raw material seeds using an actual machine. The results are shown in Table 7. The weight and magnification of sprouts after harvest were compared. A slight decrease in yield (about 5%) was observed compared to the case of cultivation with untreated raw materials. This was thought to be due to ungerminated or poorly germinated by hot water treatment, but other normally germinated seeds grew to normal sprouts and were considered to have no problem as a product.

以上の実施例に見られるように、人工的に食中毒菌により植菌させた種子でも本発明により完全に殺菌できることが示された。実際のもやし栽培においても、本発明の手法により原料種子が有効に殺菌され、もやし栽培において問題となる食中毒の危険性が極めて低く抑えられることが判る。   As seen in the above examples, it was shown that even the seeds artificially inoculated with food poisoning bacteria can be completely sterilized by the present invention. Even in actual bean sprouts cultivation, it can be seen that the raw material seeds are effectively sterilized by the method of the present invention, and the risk of food poisoning, which is a problem in bean sprouts cultivation, can be suppressed to a very low level.

芽もの野菜種子の熱湯殺菌のために開発した実機の全体構成を示す斜視図。The perspective view which shows the whole structure of the real machine developed for the hot water sterilization of the bud vegetable seed. 本発明による芽もの野菜種子の殺菌方法を検証するために使用したテスト機の構成を示す斜視図。The perspective view which shows the structure of the test machine used in order to verify the sterilization method of the sprout vegetable seed by this invention.

符号の説明Explanation of symbols

1 原料ホッパー
2 殺菌水槽
3 バスケット
4 冷却水槽
5 排気フード
6 制御盤
10 殺菌水槽
11 バスケット
12 支持部
13 アクチュエータ
14 ヒータ
15 温度計
16 ドレンバルブ
17 制御盤
18 スタートボタン
19 自動制御モニター
DESCRIPTION OF SYMBOLS 1 Raw material hopper 2 Sterilization water tank 3 Basket 4 Cooling water tank 5 Exhaust hood 6 Control panel 10 Sterilization water tank 11 Basket 12 Support part 13 Actuator 14 Heater 15 Thermometer 16 Drain valve 17 Control panel 18 Start button 19 Automatic control monitor

Claims (2)

芽もの野菜種子を80−90℃の高温熱水に10−50秒間浸したのち急冷することによる殺菌処理を行い、引き続いて、塩素濃度1500ppm以上の次亜塩素酸水溶液に2時間以上浸漬することにより、残存した食中毒菌をも完全に殺菌処理することを特徴とする芽もの野菜種子の殺菌方法。   Sterilize the bud vegetable seeds by immersing them in high-temperature hot water at 80-90 ° C. for 10-50 seconds, followed by rapid cooling, and then immersing in a hypochlorous acid aqueous solution with a chlorine concentration of 1500 ppm or more for 2 hours or more. A sterilization method for bud vegetable seeds characterized in that the remaining food poisoning bacteria are completely sterilized. 請求項1に記載の殺菌処理を行った芽もの野菜種子を栽培することを特徴とする芽もの野菜の栽培方法。   A method for cultivating sprout vegetables characterized by cultivating the sprout vegetable seeds subjected to the sterilization treatment according to claim 1.
JP2008157719A 2008-06-17 2008-06-17 Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable Pending JP2009298750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157719A JP2009298750A (en) 2008-06-17 2008-06-17 Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157719A JP2009298750A (en) 2008-06-17 2008-06-17 Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable

Publications (1)

Publication Number Publication Date
JP2009298750A true JP2009298750A (en) 2009-12-24

Family

ID=41546033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157719A Pending JP2009298750A (en) 2008-06-17 2008-06-17 Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable

Country Status (1)

Country Link
JP (1) JP2009298750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080379A (en) * 2012-10-15 2014-05-08 National Agriculture & Food Research Organization Disinfection method of seed used for sprout production
JP2014091738A (en) * 2012-11-07 2014-05-19 Dainippon Jochugiku Co Ltd Pest expellent and pest extermination method using the same
JP2014533937A (en) * 2011-10-18 2014-12-18 インスティテュート フォー エンバイロメンタル ヘルス, インコーポレイテッド Improved method and apparatus for sprout growth
CN109121542A (en) * 2018-08-13 2019-01-04 句容市东进林场 A kind of method for culturing seedlings of hardship sweet oak

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533937A (en) * 2011-10-18 2014-12-18 インスティテュート フォー エンバイロメンタル ヘルス, インコーポレイテッド Improved method and apparatus for sprout growth
JP2014080379A (en) * 2012-10-15 2014-05-08 National Agriculture & Food Research Organization Disinfection method of seed used for sprout production
JP2014091738A (en) * 2012-11-07 2014-05-19 Dainippon Jochugiku Co Ltd Pest expellent and pest extermination method using the same
CN109121542A (en) * 2018-08-13 2019-01-04 句容市东进林场 A kind of method for culturing seedlings of hardship sweet oak

Similar Documents

Publication Publication Date Title
JP2005508826A (en) Adduct having acidic solution of poorly soluble Group IIA complex
Sapers et al. Vapor‐phase decontamination of apples inoculated with Escherichia coli
JP2009298750A (en) Method for sterilizing sprout vegetable seed and method for cultivating sprout vegetable
JP4455879B2 (en) Preservation of fruits and vegetables
Fett Interventions to ensure the microbial safety of sprouts
EP0622085B1 (en) Sprouted vegetable seeds sterilizing method, and sprouted vegetables cultivating method
EP3468374B1 (en) Advanced oxidative process and system for microbial reduction
JP4426663B2 (en) Sterilization of alfalfa seed
Khaleghi et al. Effect of hot water treatment and surface disinfection with NaCl on storage life and reducing decay of tomato fruit
JP2007252369A (en) Spice sterilizing method
JP2009225696A (en) Method for enhancing seed stress tolerance, and method of disinfection treatment
JP3990691B2 (en) Disease control method of rice
JP2005160398A (en) Method for disinfecting raw vegetable
KR101465409B1 (en) Method of producing sterile plant seed using chlorine dioxide gas
US5839225A (en) Methods and apparatus for preventing contamination of seeds
TW201102012A (en) A method of fresh-keeping and disinfection
JP2911111B2 (en) Plant cultivation method and radish cultivation method
KR101350202B1 (en) Processing method of root vegetables having improved microorganism removal effect
KR100843975B1 (en) Packing method of peel garlic
JP6343117B2 (en) Method for producing sealed food
KR100753806B1 (en) Manufacturing method of the dry green onion where the toxin of staphylococcus aureusis is removed
JP2017055776A (en) Method for producing sealed food product
Yao Effect of dry heat treatment on inactivation of salmonella and germination of alfalfa, mung bean, radish, and red clover seeds
JP4464569B2 (en) How to prevent spoilage of vegetable seeds
JP2007332069A (en) Method for sterilizing xanthomonas campestris pv. campestris in seed of plant of family brassicaceae using ozone gas