JP2009298101A - Optical polyethylene-2,6-naphthalate film and its manufacturing method - Google Patents

Optical polyethylene-2,6-naphthalate film and its manufacturing method Download PDF

Info

Publication number
JP2009298101A
JP2009298101A JP2008157770A JP2008157770A JP2009298101A JP 2009298101 A JP2009298101 A JP 2009298101A JP 2008157770 A JP2008157770 A JP 2008157770A JP 2008157770 A JP2008157770 A JP 2008157770A JP 2009298101 A JP2009298101 A JP 2009298101A
Authority
JP
Japan
Prior art keywords
film
naphthalate
polyethylene
stretching
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008157770A
Other languages
Japanese (ja)
Inventor
Hodaka Yokomizo
穂高 横溝
Tomokiyo Doi
智清 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2008157770A priority Critical patent/JP2009298101A/en
Publication of JP2009298101A publication Critical patent/JP2009298101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyethylene-2,6-naphthalate film formed by stretching and orientating polyethylene-2,6-naphthalate, small in the angle of a slow phase axis, excellent in appearance such as hue and transparency, and useful for optical application. <P>SOLUTION: The optical polyethylene-2,6-naphthalate film is formed by biaxially orienting an aromatic polyester in which polyethylene-2,6-naphthalate units occupy at least 80% of all of the repeating units, and its retardation value is 1,200 nm or larger and the angle of the slow phase axis is ±2 degrees to the film width direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はポリエチレン−2,6−ナフタレートを用いて製膜された光学用フィルムに関する。さらに詳しくは、重縮合触媒としてアンチモン化合物を使用した結晶化度が抑制され、色相、透明性に優れる、高固有粘度のポリエチレン−2,6−ナフタレートを使用して、延伸配向させた遅相軸の角度が小さい高耐熱性の光学用フィルムに関する。特に光学用途の基材フィルムとして使用されるフィルムに関するものである。   The present invention relates to an optical film formed using polyethylene-2,6-naphthalate. More specifically, a slow axis obtained by stretching and orienting using polyethylene-2,6-naphthalate having a high intrinsic viscosity, which is suppressed in crystallinity using an antimony compound as a polycondensation catalyst, and has excellent hue and transparency. The present invention relates to a highly heat-resistant optical film having a small angle. In particular, the present invention relates to a film used as a base film for optical applications.

ポリエチレン−2,6−ナフタレートフィルムはポリエチレンテレフタレートフィルムと比較して耐熱性、耐薬品性等の基本的特性に優れている点から耐熱性のフィルム材料等に使用されつつあり、特に耐熱性を要する光学分野で注目されている。中でも光学用途について、商品価値の点から色相、透明性等外観の優れた品質が強く要求されている。   Polyethylene-2,6-naphthalate film is being used for heat-resistant film materials because it has excellent basic characteristics such as heat resistance and chemical resistance compared to polyethylene terephthalate film. Attracted attention in the field of optics. In particular, for optical applications, quality with excellent appearance such as hue and transparency is strongly required from the viewpoint of commercial value.

ポリエチレン−2,6−ナフタレートはポリエチレンテレフタレートと同様な触媒で反応させて得ることができ、重縮合触媒としてゲルマニウム化合物を用いると色相、透明性の点で優れるものの、コストが高く、また重合活性が低い等の問題点もある。一方重縮合触媒としてアンチモン化合物を用いた場合、コスト、重合活性の点では問題ないものの、金属アンチモンの析出およびその核剤効果により、得られたポリマーをシートなどに成形した際、透明性等の外観が低下したり、金属アンチモンの析出によるポリマーの黒色化等色相の点で劣るという問題がある。このようにポリエチレン−2,6−ナフタレートおよびそれを成形してなるフィルムは強度および色相、透明性等の外観に関しては必ずしも十分とはいえなかった。   Polyethylene-2,6-naphthalate can be obtained by reacting with a catalyst similar to polyethylene terephthalate. When a germanium compound is used as a polycondensation catalyst, it is excellent in terms of hue and transparency, but cost is high and polymerization activity is high. There is also a problem such as low. On the other hand, when an antimony compound is used as a polycondensation catalyst, there is no problem in terms of cost and polymerization activity. However, when the obtained polymer is formed into a sheet or the like due to precipitation of metal antimony and its nucleating agent effect, transparency, etc. There is a problem that the appearance is deteriorated or the color is inferior such as blackening of the polymer due to precipitation of metal antimony. As described above, polyethylene-2,6-naphthalate and a film obtained by molding the polyethylene-2,6-naphthalate are not necessarily sufficient in terms of appearance such as strength, hue and transparency.

関連する公知文献として、次の技術が提案されている。ポリエチレン−2,6−ナフタレートをボトル用途とする出願として特許文献1が、二軸延伸ポリエチレン−2,6−ナフタレートフィルムまたはシートを光拡散用途や検査用離型フィルムとして用いる技術が特許文献2や特許文献3に開示されている。   The following techniques have been proposed as related public literatures. Patent Document 1 discloses an application in which polyethylene-2,6-naphthalate is used as a bottle, and Patent Document 2 discloses a technique in which a biaxially stretched polyethylene-2,6-naphthalate film or sheet is used as a light diffusion application or a release film for inspection. And Patent Document 3.

特開2000−026586号公報JP 2000-026586 A 特開2002−080621号公報JP 2002-080621 A 特開平07−101026号公報Japanese Patent Application Laid-Open No. 07-101026

本発明の第一の目的は、ポリエチレン−2,6−ナフタレートを延伸配向させた、遅相軸の角度が小さく、色相、透明性などの外観に優れる光学用途に有用なポリエチレン−2,6−ナフタレートフィルムを提供することにある。   The first object of the invention is polyethylene-2,6-naphthalate stretched and oriented, polyethylene-2,6-useful for optical applications with a small slow axis angle and excellent appearance such as hue and transparency. It is to provide a naphthalate film.

本発明の第二の目的は、高い固有粘度を有するとともに色相、透明性などの外観に優れる光学用途に有用なポリエチレン−2,6−ナフタレートフィルム、殊に光学基材検査用離型フィルムを提供することにある。   The second object of the present invention is to provide a polyethylene-2,6-naphthalate film, particularly a release film for optical substrate inspection, useful for optical applications having high intrinsic viscosity and excellent appearance such as hue and transparency. It is to provide.

本発明者は、上記課題を達成せんとして鋭意検討を重ねた結果、アンチモン化合物を重縮合触媒として、結晶化度や固有粘度を特定することにより得られたポリエチレン−2,6−ナフタレートを、特定の方法で二軸延伸し、熱固定することにより、高強度で、色相、透明性に優れ、レターデーションが高く、遅相軸の角度が小さい光学用ポリエチレン−2,6−ナフタレートフィルムが得られることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor specified polyethylene-2,6-naphthalate obtained by specifying the degree of crystallinity and intrinsic viscosity using an antimony compound as a polycondensation catalyst. By biaxially stretching and heat-fixing by this method, an optical polyethylene-2,6-naphthalate film for optical use with high strength, excellent hue and transparency, high retardation, and a small slow axis angle is obtained. The present invention has been reached.

すなわち、本発明によれば、
(1)エチレン−2,6−ナフタレート単位が全繰返し単位の少なくとも80モル%を占める芳香族ポリエステルを二軸配向させたフィルムであり、そのレターデーション値が1200nm以上、遅相軸の角度がフィルム幅方向に対して±2度であることを特徴とする光学用ポリエチレン−2,6−ナフタレートフィルム、
(2)芳香族ポリエステルは、アンチモン化合物を重合触媒として、固相重合法によって得られた、固有粘度(IV)が0.40〜0.80dl/gの範囲である前項(1)記載の光学用ポリエチレン−2,6−ナフタレートフィルム、
(3)未延伸のエチレン−2,6−ナフタレート単位が全繰返し単位の少なくとも80モル%を占める芳香族ポリエステルフィルムを、縦横共に延伸倍率を3.0〜5.0倍とし、且つ縦延伸倍率と横延伸倍率との延伸比率(横延伸倍率/縦延伸倍率)が1.2〜1.5となるように縦・横逐次二軸延伸する工程、および二軸延伸後のフィルムを熱固定する工程を含むことを特徴とする前項(1)記載の光学用ポリエチレン−2,6−ナフタレートフィルムの製造方法、および
(4)前項(1)または(2)に記載のフィルムから形成された光学基材検査用離型フィルム、
が提供される。
That is, according to the present invention,
(1) A film in which an aromatic polyester in which ethylene-2,6-naphthalate unit occupies at least 80 mol% of all repeating units is biaxially oriented, has a retardation value of 1200 nm or more, and a slow axis angle of the film. An optical polyethylene-2,6-naphthalate film characterized by being ± 2 degrees with respect to the width direction;
(2) The aromatic polyester is obtained by a solid phase polymerization method using an antimony compound as a polymerization catalyst, and has an intrinsic viscosity (IV) in the range of 0.40 to 0.80 dl / g. Polyethylene-2,6-naphthalate film for
(3) An aromatic polyester film in which unstretched ethylene-2,6-naphthalate units occupy at least 80 mol% of all repeating units has a stretching ratio of 3.0 to 5.0 times in both the longitudinal and lateral directions, and a longitudinal stretching ratio. The film is stretched biaxially and horizontally so that the stretch ratio of the film and the transverse stretch ratio (transverse stretch ratio / longitudinal stretch ratio) is 1.2 to 1.5, and the film after biaxial stretching is heat-set. A process for producing an optical polyethylene-2,6-naphthalate film as described in (1) above, and (4) an optical film formed from the film as described in (1) or (2) above. Release film for substrate inspection,
Is provided.

以下、本発明について詳細に説明する。
(ポリマーの作成)
本発明のポリエチレン−2,6−ナフタレートはナフタレンジカルボン酸を主たる酸成分とし、エチレングリコールを主たるジオール成分とする。
Hereinafter, the present invention will be described in detail.
(Creation of polymer)
The polyethylene-2,6-naphthalate of the present invention has naphthalenedicarboxylic acid as the main acid component and ethylene glycol as the main diol component.

本発明における主たる酸成分としてのナフタレンジカルボン酸とは、2,6−ナフタレンジカルボン酸およびその低級アルキルエステル誘導体である。「主たる」とは全ジカルボン酸成分の80モル%以上であり、好ましくは95モル%以上である。   The naphthalenedicarboxylic acid as the main acid component in the present invention is 2,6-naphthalenedicarboxylic acid and its lower alkyl ester derivative. “Main” means 80 mol% or more, preferably 95 mol% or more of the total dicarboxylic acid component.

20モル%以下の範囲で共重合可能な成分としては、シュウ酸、マロン酸、コハク酸、イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルフォンジカルボン酸,ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸等の脂環族ジカルボン酸、グリコール酸、p−オキシ安息香酸等のオキシ酸等が挙げられる。   Components that can be copolymerized within a range of 20 mol% or less include aromatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonedicarboxylic acid, and diphenyletherdicarboxylic acid. Examples thereof include alicyclic dicarboxylic acids such as acid, cyclohexanedicarboxylic acid and decalin dicarboxylic acid, oxyacids such as glycolic acid and p-oxybenzoic acid.

本発明における主たるジオール成分は80モル%以上、好ましくは95モル%以上がエチレングリコールで構成される。20モル%以下の範囲でトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、トリエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、ビスフェノールA等が共重合されていてもよい。   The main diol component in the present invention is composed of 80 mol% or more, preferably 95 mol% or more of ethylene glycol. Trimethylene glycol, tetramethylene glycol, hexamethylene glycol, triethylene glycol, neopentyl glycol, cyclohexanedimethanol, bisphenol A and the like may be copolymerized within a range of 20 mol% or less.

酸成分およびグリコール成分が20モル%を超えて共重合される場合、ポリエチレン−2,6−ナフタレート本来の物性、例えば耐熱性やガスバリアー性が劣る。本発明においてポリマー中に共重合成分として存在するジオール成分として、ジエチレングリコールがあるが、その共重合量はポリマー全量の3.0重量%以下であることが好ましい。ポリエステル中にジオール成分が3.0重量%を超えて共重合される場合、得られるポリエステルの耐熱性、機械強度等の低下が顕著になることや、押出し成形時に厚み斑を生じ易く成形条件の幅が狭くなるので好ましくない。   When the acid component and the glycol component are copolymerized in excess of 20 mol%, the original properties of polyethylene-2,6-naphthalate, such as heat resistance and gas barrier properties, are poor. In the present invention, diethylene glycol is an example of a diol component present as a copolymer component in the polymer. The amount of copolymerization is preferably 3.0% by weight or less of the total amount of the polymer. When the diol component is copolymerized in an amount of more than 3.0% by weight in the polyester, the resulting polyester has a remarkable decrease in heat resistance, mechanical strength, etc. Since the width is narrow, it is not preferable.

本発明において、重縮合触媒としてアンチモン化合物が用いられることが好ましい。アンチモン化合物としては酸化アンチモン、酢酸アンチモン、アンチモン酸グリコレート等が挙げられるが、中でも三酸化アンチモンが好ましく用いられる。   In the present invention, an antimony compound is preferably used as the polycondensation catalyst. Examples of the antimony compound include antimony oxide, antimony acetate, antimonic acid glycolate, etc. Among them, antimony trioxide is preferably used.

アンチモン化合物の添加量としては、三酸化アンチモンに換算して全酸成分に対して5〜20ミリモル%の範囲であることが好ましい。アンチモン化合物の添加量が5ミリモル%未満の場合、重合活性が低く、重縮合時間が長くなり生産性の低下等の経済面で好ましくないばかりでなく、重縮合時間の増加による副反応生成物の増加および色相の悪化等の品質面でも劣るものとなるため好ましくない。アンチモン化合物の添加量が20ミリモル%を超える場合、析出した金属アンチモンによる結晶核剤効果により結晶化度が上昇し、得られるポリエステルフィルムの外観を損なうことや、製膜時の再溶融時に分解反応を促進することによりアセトアルデヒド等の好ましくない副反応生成物が増加するため好ましくない。   The addition amount of the antimony compound is preferably in the range of 5 to 20 mmol% with respect to the total acid component in terms of antimony trioxide. When the addition amount of the antimony compound is less than 5 mmol%, not only is the polymerization activity low, the polycondensation time becomes long, and it is not preferable from an economic viewpoint such as a decrease in productivity, but also the side reaction product due to an increase in the polycondensation time. This is not preferable because quality is inferior, such as an increase and deterioration of hue. When the added amount of the antimony compound exceeds 20 mmol%, the crystallinity increases due to the crystal nucleating agent effect of the precipitated metal antimony, the appearance of the resulting polyester film is impaired, and the decomposition reaction occurs at the time of remelting during film formation. Accelerating is undesirable because undesirable side reaction products such as acetaldehyde increase.

ポリエチレン−2,6−ナフタレートは、上記アンチモン化合物を触媒として重縮合反応を行なう前段階として、エステル交換法あるいは直接エステル化法を行うことが好ましい。   Polyethylene-2,6-naphthalate is preferably subjected to a transesterification method or a direct esterification method as a pre-stage for performing a polycondensation reaction using the antimony compound as a catalyst.

エステル交換法にて製造する場合にはエステル交換反応触媒を必要とする。エステル交換触媒としては特に限定されず、一般にポリエチレンテレフタレートのエステル交換触媒として広く用いられているマンガン化合物、カルシウム化合物、マグネシウム化合物、チタン化合物、亜鉛化合物、ナトリウム化合物、カリウム化合物、セリウム化合物、リチウム化合物等が挙げられる。また整色剤としても作用するエステル交換反応触媒としてコバルト化合物が含有されていてもよい。   In the case of producing by the transesterification method, a transesterification reaction catalyst is required. The transesterification catalyst is not particularly limited, and manganese compounds, calcium compounds, magnesium compounds, titanium compounds, zinc compounds, sodium compounds, potassium compounds, cerium compounds, lithium compounds, etc. that are generally widely used as transesterification catalysts for polyethylene terephthalate Is mentioned. Further, a cobalt compound may be contained as a transesterification reaction catalyst that also acts as a color adjusting agent.

エステル交換法および/または直接エステル化法によって製造されたポリエチレン−2,6−ナフタレートには安定剤としてリン化合物が含有されることが好ましい。リン化合物としては正リン酸、亜リン酸、リン酸エステルまたはリン酸トリエステル等から選ばれる少なくとも1種を用いることができるが、中でも透明性の点から正リン酸、亜リン酸が好ましく用いられる。リン化合物の添加量は製造方法によっても異なるが下記の残存量となるように添加することが好ましい。   The polyethylene-2,6-naphthalate produced by the transesterification method and / or direct esterification method preferably contains a phosphorus compound as a stabilizer. As the phosphorous compound, at least one selected from orthophosphoric acid, phosphorous acid, phosphoric acid ester, phosphoric acid triester and the like can be used. Among them, normal phosphoric acid and phosphorous acid are preferably used from the viewpoint of transparency. It is done. Although the addition amount of a phosphorus compound changes with manufacturing methods, it is preferable to add so that it may become the following residual amount.

ポリエチレン−2,6−ナフタレートをエステル交換法によって製造する場合、リン化合物の残存量がエステル交換反応触媒に対して0.7〜2.0モル倍となるように添加することが好ましい。リン化合物の含有量が0.7モル倍未満の場合、エステル交換反応触媒を十分に失活することができず、得られるポリエチレン−2,6−ナフタレートの熱安定性、色相の点で劣るため好ましくない。また、リン化合物の含有量が2.0モル倍を超える場合において熱安定性、色相の点で劣るため好ましくない。   When polyethylene-2,6-naphthalate is produced by a transesterification method, it is preferable to add such that the residual amount of the phosphorus compound is 0.7 to 2.0 mol times the transesterification reaction catalyst. When the content of the phosphorus compound is less than 0.7 mol times, the transesterification reaction catalyst cannot be sufficiently deactivated, and the obtained polyethylene-2,6-naphthalate is inferior in terms of thermal stability and hue. It is not preferable. Further, when the content of the phosphorus compound exceeds 2.0 mol times, it is not preferable because of poor heat stability and hue.

一方、ポリエチレン−2,6−ナフタレートを直接エステル化法によって製造する場合、上記エステル交換法の場合のようにエステル交換反応触媒を使用しないため、触媒を失活させる必要はないものの、安定剤としての該リン化合物の残存量が全酸成分に対して5〜100ミリモル%の範囲となるよう添加することが好ましい。リン化合物の含有量が全酸成分に対して5ミリモル%未満あるいは100ミリモル%を超えて含有される場合、得られるポリエチレン−2,6−ナフタレートの熱安定性、色相が劣るという点で好ましくない。   On the other hand, when polyethylene-2,6-naphthalate is produced by a direct esterification method, a transesterification catalyst is not used as in the case of the above-described transesterification method. It is preferable to add so that the residual amount of the phosphorus compound is in the range of 5 to 100 mmol% with respect to the total acid component. When the content of the phosphorus compound is less than 5 mmol% or more than 100 mmol% with respect to the total acid component, it is not preferable in terms of poor thermal stability and hue of the obtained polyethylene-2,6-naphthalate. .

(ポリマーの固有粘度(IV))
本発明でフィルム化の原料として使用されるポリエチレン−2,6−ナフタレート樹脂は、溶融重合によりプレポリマーを得た後、固相重合して製造することが好ましい。上述した縮合反応後の溶融樹脂をチップ化(ペレット化)し、加熱減圧下または窒素などの不活性気流中において固相重合することが好ましい。固相重合処理が済んだペレットは蒸留水で洗浄する(固相重合後に水、水蒸気または水蒸気含有ガスと接触させて得られる)。この洗浄によって微細な粉状、ひげ状の樹脂を取り除く。一般にはこのような粉状、ひげ状のものはフィルム化する場合の溶融押し出し、溶融樹脂の濾過工程において、取除くことが難しいのでフィルム中に入って、内部異物として品質欠点となることがある。固相重合によれば、ポリエチレン−2,6−ナフタレート樹脂に含まれるオリゴマーも減少させることができるため、製膜したフィルム面に存在するオリゴマー起因の表面欠点をさらに減少させることができる。
(Intrinsic viscosity of polymer (IV))
The polyethylene-2,6-naphthalate resin used as a raw material for film formation in the present invention is preferably produced by solid phase polymerization after obtaining a prepolymer by melt polymerization. It is preferable that the molten resin after the condensation reaction described above is chipped (pelletized) and subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen. The pellet after the solid phase polymerization treatment is washed with distilled water (obtained by contacting with water, water vapor or water vapor-containing gas after solid phase polymerization). This washing removes fine powder and whiskers. In general, such powder and whiskers are difficult to remove in the melt extrusion and melt resin filtration process when forming into a film, so they may enter the film and become a quality defect as an internal foreign matter. . According to the solid phase polymerization, oligomers contained in the polyethylene-2,6-naphthalate resin can also be reduced, so that surface defects due to the oligomers existing on the film-formed film surface can be further reduced.

本発明で使用されるポリエチレン−2,6−ナフタレート樹脂の固有粘度は0.40〜0.80dl/gであることが好ましい。より好ましくは0.52〜0.75dl/g、特に好ましくは0.55〜0.70dl/gである。   The intrinsic viscosity of the polyethylene-2,6-naphthalate resin used in the present invention is preferably 0.40 to 0.80 dl / g. More preferably, it is 0.52-0.75 dl / g, Most preferably, it is 0.55-0.70 dl / g.

固有粘度が0.40dl/g未満の場合、溶融押し出し後のフィルムが脆くなり、延伸時に破断が生じ易くなるという問題がある。また、所定の延伸倍率の条件を採ることができないため好ましくない。一方、ポリエチレン−2,6−ナフタレート樹脂の固有粘度が0.80dl/gを超えると、通常の合成手法では重合に長時間を要し、生産性が悪くなる。また、重合時の着色や副反応生成物の増加が顕著になるばかりでなく、フィルムに成形する場合に溶融粘度が高いことに起因する、シエア発熱によりポリマーの劣化が促進されるため好ましくない。   When the intrinsic viscosity is less than 0.40 dl / g, there is a problem that the film after melt extrusion becomes brittle and breaks easily during stretching. Moreover, since the conditions of a predetermined draw ratio cannot be taken, it is not preferable. On the other hand, when the intrinsic viscosity of the polyethylene-2,6-naphthalate resin exceeds 0.80 dl / g, the normal synthesis method requires a long time for polymerization, and the productivity is deteriorated. Further, not only is the coloration during polymerization and an increase in side reaction products become remarkable, but also deterioration of the polymer is promoted by shear heat generation resulting from high melt viscosity when formed into a film, which is not preferable.

本発明で使用されるポリエチレン−2,6−ナフタレート樹脂は、ペレットを熱風乾燥してから溶融押出しするのが普通である。乾燥の条件は熱風の温度170〜175℃で3時間以上とする。こうしてペレットの含有水分量を減らして溶融押し出し時の加水分解による固有粘度の低下をある程度まで防ぐことができる。   The polyethylene-2,6-naphthalate resin used in the present invention is usually melt-extruded after drying the pellets with hot air. The drying conditions are a hot air temperature of 170 to 175 ° C. and 3 hours or longer. In this way, the moisture content of the pellets can be reduced to prevent a decrease in intrinsic viscosity due to hydrolysis during melt extrusion.

(添加剤)
本発明において、ポリエチレン−2,6−ナフタレートには必要に応じて安定剤、抗酸化剤、不活性微粒子、紫外線吸収剤、帯電防止剤、滑剤、難燃剤、染料、顔料等の各種添加剤が含有されていてもよい。フィルムに滑り性を付与するために、不活性粒子を少量割合含有させることは好ましいことである。
(Additive)
In the present invention, polyethylene-2,6-naphthalate contains various additives such as a stabilizer, an antioxidant, an inert fine particle, an ultraviolet absorber, an antistatic agent, a lubricant, a flame retardant, a dye, and a pigment as necessary. It may be contained. In order to impart slipperiness to the film, it is preferable to contain a small amount of inert particles.

不活性微粒子としては、球状シリカ粒子が好ましく、平均粒径が0.05〜5.0μmの範囲が好ましく、0.1〜3.0μmの範囲がより好まし。また、粒径比(長径/短径)が1.0〜1.2の球状シリカ微粒子が好ましい。   As the inert fine particles, spherical silica particles are preferable, the average particle size is preferably in the range of 0.05 to 5.0 μm, and more preferably in the range of 0.1 to 3.0 μm. Further, spherical silica fine particles having a particle size ratio (major axis / minor axis) of 1.0 to 1.2 are preferable.

この球状シリカ微粒子は個々の微粒子の形状が極めて真球に近い球状であって、粗大粒子が殆どなく、従来から滑剤として知られているシリカ微粒子(10nm程度の超微細な塊状粒子か、またはこれらが凝集して0.5μm程度の凝集物(凝集粒子)を形成しているもの)とは著しく異なる。   The spherical silica fine particles have a spherical shape very close to a true sphere, and have almost no coarse particles. Conventionally, silica fine particles (ultrafine particles of about 10 nm, or these Are aggregated to form aggregates (aggregated particles) of about 0.5 μm).

球状シリカ微粒子の平均粒径が5.0μmより大きくなると、球状シリカ微粒子による突起の周りの重合体フィルムにボイド(空隙など)が生じやすく、ヘーズ値が増加しやすくなるため好ましくない。また、0.05μmより小さいと、滑り性が劣りハンドリングしにくいフィルムとなる。   If the average particle size of the spherical silica fine particles is larger than 5.0 μm, voids (voids, etc.) are likely to be generated in the polymer film around the protrusions due to the spherical silica fine particles, and the haze value is likely to increase. On the other hand, if the thickness is smaller than 0.05 μm, the film is inferior in slipperiness and difficult to handle.

不活性微粒子の含有量は0.001〜1.0重量%であることが好ましく、0.03〜0.5重量%であることがさらに好ましい。含有量が1.0重量%より多いと、滑り性は十分であるが、ボイドの総数が増加して、ヘーズ値が増加する傾向が見られるため好ましくない。含有量が0.001重量%より少ないと、滑り性が劣ってハンドリングしにくいフィルムとなる。   The content of the inert fine particles is preferably 0.001 to 1.0% by weight, and more preferably 0.03 to 0.5% by weight. If the content is more than 1.0% by weight, the slipperiness is sufficient, but the total number of voids increases and the haze value tends to increase, which is not preferable. When the content is less than 0.001% by weight, the film is inferior in slipperiness and difficult to handle.

また、不活性微粒子の添加時期は、ポリエチレン−2,6−ナフタレートを製膜するまでの段階であれば特に制限は無く、例えば重合段階で添加しても良く、また製膜の際に添加しても良い。   The inert fine particles may be added at any stage until polyethylene-2,6-naphthalate is formed. For example, the inert fine particles may be added at the polymerization stage or added during film formation. May be.

(溶融押出しフィルムの作成)
本発明のポリエチレン−2,6−ナフタレートポリマーの結晶化度は40%以下が好ましい(ここで、結晶化度はポリマーの密度から計算した値である)。
ポリマーの結晶化度が40%を超える場合、ポリマー溶融のため押出し温度を高くする必要があり、色相の悪化、アセトアルデヒド等の好ましくない副生成物の増加が顕著になり、樹脂の溶融押出しの部屋の環境を汚す原因となる。また、押出し温度を上げることなく成形する場合には、未溶融ポリマーによるフィルムの外観の悪化および核剤効果による結晶化促進によって、得られるフィルムの透明性が損なわれる。
(Create melt-extruded film)
The crystallinity of the polyethylene-2,6-naphthalate polymer of the present invention is preferably 40% or less (here, the crystallinity is a value calculated from the density of the polymer).
When the degree of crystallinity of the polymer exceeds 40%, it is necessary to increase the extrusion temperature for melting the polymer, the deterioration of the hue and the increase of undesirable by-products such as acetaldehyde become remarkable, and the room for melt extrusion of the resin Cause environmental pollution. Moreover, when shape | molding without raising extrusion temperature, the transparency of the film obtained is impaired by the deterioration of the external appearance of the film by an unmelted polymer, and the crystallization promotion by a nucleating agent effect.

本発明で使用される未延伸ポリエチレン−2,6−ナフタレートフィルムは、樹脂を溶融押出し機にて、加熱溶融して、均一に混練して押出す。押出し時の溶融樹脂の温度は290〜310℃の範囲が好ましく、295℃〜305℃の範囲がより好ましい。加熱溶融した樹脂をポリマーフィルターにより濾過して、各種の異物を取り除く。フィルターのエレメントとしては焼結金属製のものや金属細線を押し固めて作成したものを用いることができる。これらは目開きや耐圧性を変えた各種のものが市販されているので好適なものを選択する。溶融ポリマーを輸送するポリマー導管内に、樹脂の温度分布を均一にするための混練用ミキサーを用いるのが好ましい。ミキサーは押出される樹脂の温度斑、粘度斑を減少させてフィルムの厚み斑を小さくする働きをする。次いで溶融樹脂を例えばIダイまたはTダイから溶融シート状に押出し、冷却ドラム上で急冷して未延伸フィルムとする。   In the unstretched polyethylene-2,6-naphthalate film used in the present invention, the resin is heated and melted in a melt extruder and uniformly kneaded and extruded. The temperature of the molten resin during extrusion is preferably in the range of 290 to 310 ° C, and more preferably in the range of 295 to 305 ° C. The resin melted by heating is filtered through a polymer filter to remove various foreign substances. As the filter element, one made of sintered metal or one made by pressing and thinning a fine metal wire can be used. Since various types with different openings and pressure resistance are commercially available, these are preferably selected. It is preferable to use a mixer for kneading to make the temperature distribution of the resin uniform in the polymer conduit for transporting the molten polymer. The mixer serves to reduce the temperature spots and viscosity spots of the resin to be extruded and to reduce the thickness spots of the film. Next, the molten resin is extruded into a molten sheet from, for example, an I die or a T die, and rapidly cooled on a cooling drum to form an unstretched film.

得られたポリエチレン−2,6−ナフタレートをフィルムに成形した際、ヘーズが3%以下であることが好ましい。ヘーズが3%を超える場合、透明性が低下し、商品としての外観が劣るため好ましくない。   When the obtained polyethylene-2,6-naphthalate is formed into a film, the haze is preferably 3% or less. When the haze exceeds 3%, the transparency is lowered and the appearance as a product is inferior, which is not preferable.

(縦・横逐次延伸)
本発明においては、上記未延伸(実質的に無配向)のフィルムを二軸延伸して熱固定する。好ましくは、該未延伸フィルムを縦・横逐次二軸延伸して熱固定することで製造することができる。
(Sequential stretching in length and width)
In the present invention, the unstretched (substantially unoriented) film is biaxially stretched and heat-set. Preferably, the unstretched film can be produced by biaxially stretching in the longitudinal and lateral directions and heat-setting.

例えば、二軸延伸し熱固定したフィルムを製造する場合、未延伸フィルムをTg〜(Tg+60)℃の温度で縦方向、横方向に倍率3.0〜5.0倍で二軸延伸し、(Tg+50)〜(Tg+140)℃で1〜100秒間熱固定する。延伸は一般に用いられる方法、例えばロールによる方法で縦方向延伸や、テンターを用いる方法で横方向延伸を行うことができ、縦方向、横方向に逐次延伸する。   For example, when producing a biaxially stretched and heat-set film, the unstretched film is biaxially stretched at a temperature of Tg to (Tg + 60) ° C. in the machine direction and in the transverse direction at a magnification of 3.0 to 5.0 times. Heat-fix at 1 to 100 seconds at Tg + 50) to (Tg + 140) ° C. Stretching can be performed in a longitudinal direction by a generally used method, for example, a method using a roll or a lateral direction by a method using a tenter, and the stretching is sequentially performed in the longitudinal direction and the lateral direction.

縦方向、横方向の延伸倍率が3.0倍に満たない場合、ポリエチレン−2,6−ナフタレートフィルムとしての充分な耐熱性と強度・伸度特性を発揮できないため好ましくない。また、縦方向、横方向の延伸倍率が5.0倍を越える場合フィルムの破断が起こりやすくなるので好ましくない。   When the draw ratio in the machine direction and the transverse direction is less than 3.0, it is not preferable because sufficient heat resistance and strength / elongation characteristics as a polyethylene-2,6-naphthalate film cannot be exhibited. Further, when the draw ratio in the longitudinal direction and the transverse direction exceeds 5.0 times, the film is liable to break, which is not preferable.

また、この際の縦方向と横方向の延伸倍率については、延伸の比率(横延伸倍率/縦延伸倍率)として1.2〜1.5となるようにする(すなわち、横方向延伸の倍率が縦方向よりも高くなるようにする)ことが好ましい。延伸の比率が1.0とは、得られるフィルムの特性が縦方向、横方向でほぼ等しくなる比率、1.5は横方向の配向が大きく勝っている場合を示す。   Further, the stretching ratio in the machine direction and the transverse direction at this time is set to 1.2 to 1.5 as the ratio of stretching (transverse stretching ratio / longitudinal stretching ratio) (that is, the transverse stretching ratio is It is preferable that the height be higher than that in the vertical direction. A stretching ratio of 1.0 indicates a ratio in which the characteristics of the obtained film are substantially equal in the machine direction and the transverse direction, and 1.5 indicates a case where the orientation in the transverse direction is greatly superior.

延伸の比率が1.2未満の場合、フィルム横方向で遅相軸の角度のバラツキが大きくなり、本発明のフィルム特性を満足することができない。延伸の比率が1.5を超える場合、横延伸時においてフィルムの破断が生じ易くなるので好ましくない。   When the stretch ratio is less than 1.2, the variation in the angle of the slow axis in the transverse direction of the film becomes large, and the film characteristics of the present invention cannot be satisfied. When the stretching ratio exceeds 1.5, the film is easily broken during transverse stretching, which is not preferable.

本発明において得られたポリエチレン−2,6−ナフタレートフィルムは、そのレターデーション値が1200nm以上であり、1220nm以上が好ましい。また、上限は制限されないが1650nm以下で十分な特性を有する。レターデーション値が1200nm未満では、直交ニコルに於ける光干渉の濃度が急激に増加するので好ましくない。   The polyethylene-2,6-naphthalate film obtained in the present invention has a retardation value of 1200 nm or more, preferably 1220 nm or more. Moreover, although an upper limit is not restrict | limited, 1650 nm or less has sufficient characteristics. If the retardation value is less than 1200 nm, the concentration of light interference in crossed Nicols increases rapidly, which is not preferable.

また、本発明において得られたポリエチレン−2,6−ナフタレートフィルムは、その遅相軸の角度がフィルム幅方向に対して±2度であり、好ましくは±1.9度であり、より好ましくは±1.8度である。遅相軸の角度がフィルム幅方向に対して±2度を超えると、直交ニコルに於ける軸むらによる干渉むらが雲状に出やすいので好ましくない。
本発明のフィルムは特に光学基材検査用離型フィルムとして有用である。
In addition, the polyethylene-2,6-naphthalate film obtained in the present invention has a slow axis angle of ± 2 degrees with respect to the film width direction, preferably ± 1.9 degrees, and more preferably. Is ± 1.8 degrees. If the angle of the slow axis exceeds ± 2 degrees with respect to the film width direction, the interference unevenness due to the axial unevenness in the crossed Nicols tends to appear as a cloud, which is not preferable.
The film of the present invention is particularly useful as a release film for optical substrate inspection.

(巻き取り)
本発明のフィルムをロール巻きとして光学用途分野に供給する場合、特に表面突起が無いかまたは表面突起の密度が小さい場合や滑剤を添加しない場合は、フィルム幅の両端部にのみに凹凸をつけて巻く、いわゆるナーリング巻きや、スペイサーを両端部のみに重ねて巻く方法などのロール巻上げ方法を採ることができる。滑剤を添加しない場合、インラインコーテイングなどによって易滑性をフィルム表面に付与し、巻き取る方法等も採用することができる。
(Winding)
When supplying the film of the present invention to the optical application field as a roll, particularly when there is no surface protrusion or the density of the surface protrusion is small or when no lubricant is added, unevenness is provided only at both ends of the film width. A so-called knurling winding or a roll winding method such as a method in which a spacer is wound only on both ends can be adopted. When a lubricant is not added, a method of imparting easy slipperiness to the film surface by in-line coating or the like and winding it up can also be employed.

本発明の配向ポリエチレン−2,6−ナフタレートフィルムは、高耐熱、高透明であるため、光学分野の各種基材フィルムとして使用できる。特に、本発明によれば偏光板、位相差偏光板や位相差板と積層した時クロスニコルでの光干渉色が実質的に生ぜず、目視異物検査を容易にし、大画面のLCD用においても異物検査の精度を高めて不良品の発生を防止する離型フィルムおよびこれをラミネートし偏光特性の改善された積層体を提供することができる。   Since the oriented polyethylene-2,6-naphthalate film of the present invention is highly heat resistant and highly transparent, it can be used as various substrate films in the optical field. In particular, according to the present invention, light interference color in crossed Nicols is not substantially produced when laminated with a polarizing plate, a retardation polarizing plate, or a retardation plate, facilitating visual foreign matter inspection, and even for large-screen LCDs. It is possible to provide a release film that improves the accuracy of foreign matter inspection and prevents the generation of defective products, and a laminate having improved polarization characteristics by laminating the release film.

以下実施例により本発明をさらに詳細に説明する。本発明はこれらの実施例に限定されるものではない。なお、実施例に記載した種々の特性値は、次に示す方法により測定したものである。また、フィルムの縦方向とはフィルムの製造における押し出し方向を、横方向とはフィルム面内の縦方向と直交する方向を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples. Various characteristic values described in the examples are measured by the following methods. The longitudinal direction of the film means the extrusion direction in the production of the film, and the lateral direction means a direction orthogonal to the longitudinal direction in the film plane.

(固有粘度 IV)
テトラクロロエタン:フェノール=4:6の混合溶媒を用いて、35℃で測定した溶液粘度から算出した。
(Intrinsic viscosity IV)
It calculated from the solution viscosity measured at 35 degreeC using the mixed solvent of tetrachloroethane: phenol = 4: 6.

(レターデーション値、遅相軸の角度の測定)
王子計測(株)製の自動複屈折測定器 KOBRA−21SDHを用いて測定した。
フィルムサンプルは,幅方向全幅、長さ方向を1000mmサンプリングし測定の間隔5mmで測定した。なお、フィルムの長さ方向はフィルム幅方向の中央部とフィルム幅方向の両端から100mm内側からサンプルを採って測定に供した。レターデーションと同時に遅相軸角度も測定して解析した。
(Measurement of retardation value and angle of slow axis)
The measurement was performed using an automatic birefringence measuring device KOBRA-21SDH manufactured by Oji Scientific Co., Ltd.
The film sample was measured at a measurement interval of 5 mm by sampling 1000 mm in the full width and length directions. In addition, the length direction of the film took the sample from 100 mm inside from the center part of the film width direction and the both ends of the film width direction, and used for the measurement. Simultaneously with retardation, the slow axis angle was also measured and analyzed.

(複屈折)
複屈折Δnは、KOBRA−21SDHから求めたレターデーションReから計算して求めた。計算式はRe=Δn*d、ここでdはレターデーションReを測った場所のフィルムの厚みを用いた。
(Birefringence)
The birefringence Δn was calculated from the retardation Re determined from KOBRA-21SDH. The calculation formula is Re = Δn * d, where d is the thickness of the film where the retardation Re was measured.

(ガラス転移温度 Tg)
セイコー電子工業(株)製 DSC(示差走査熱量計)220を用いて測定した。DSCの測定条件は次の通りである。試料フィルム10mgをDSC装置にセットし、昇温速度20℃/分で加熱し、300℃の温度で溶融した後、液体窒素中に急冷した。この急冷試料を10℃/分で昇温し、ガラス転移点を検知した。
(Glass transition temperature Tg)
The measurement was performed using a DSC (differential scanning calorimeter) 220 manufactured by Seiko Denshi Kogyo Co., Ltd. The DSC measurement conditions are as follows. 10 mg of a sample film was set in a DSC apparatus, heated at a temperature rising rate of 20 ° C./min, melted at a temperature of 300 ° C., and then rapidly cooled in liquid nitrogen. The rapidly cooled sample was heated at 10 ° C./min, and the glass transition point was detected.

(屈折率)
アッベ式屈折計を用いて、フィルム面内の一方向の屈折率nx(例えばフィルム縦方向の屈折率nMD)と、それに直交する方向の屈折率ny(例えばフィルム横方向の屈折率nTD)をナトリウムD線(589nm)を用い、マウント液にはヨウ化メチレンもしくはヨウ化メチレンと硫黄の混合体を用いて、23℃、65%RHにて測定した。
(Refractive index)
Using an Abbe refractometer, the refractive index nx in one direction in the film plane (for example, the refractive index nMD in the longitudinal direction of the film) and the refractive index ny in the direction orthogonal thereto (for example, the refractive index nTD in the lateral direction of the film) are Measurement was performed at 23 ° C. and 65% RH by using D-line (589 nm) and using methylene iodide or a mixture of methylene iodide and sulfur as the mounting solution.

(密度)
硝酸カルシューム水溶液を用いた密度勾配管を用いて、25℃で浮沈法により測定した。
(density)
Using a density gradient tube using a calcium nitrate aqueous solution, the measurement was carried out at 25 ° C. by the flotation method.

(結晶化度)
ポリマーの密度を測定することにより求めた。
(Crystallinity)
It was determined by measuring the density of the polymer.

(厚み)
厚み:アンリツ株式会社製の電子マイクロメーター(K−312A型)を用いて、針圧30gにてフィルム厚みを測定した。
(Thickness)
Thickness: Using an electronic micrometer (K-312A type) manufactured by Anritsu Corporation, the film thickness was measured at a needle pressure of 30 g.

(目視検査状況(クロスニコル下での光干渉の影響))
特開平07−101026号公報の実施例1および実施例4の記載に従い、フィルムを評価テストした。上記の公報に記載された構成と方法で目視検査を行い、光干渉の発生状況を次の基準で評価した。
良好:目視検査で光干渉発生なし
やや不良:目視検査で光干渉発生あるが検査は可能
不良:目視検査で光干渉発生あり検査不可能
(Visual inspection status (effect of light interference under crossed Nicols))
The film was evaluated and tested according to the description in Example 1 and Example 4 of JP-A-07-101026. Visual inspection was performed with the configuration and method described in the above publication, and the occurrence of optical interference was evaluated according to the following criteria.
Good: No optical interference generated by visual inspection Slightly poor: Optical interference generated by visual inspection but inspection possible Poor: Optical interference generated by visual inspection not possible

(MOR値)
神崎製紙(株)製のマイクロ波分子配向計を用い、透過マイクロ波強度のパターンからMOR値を求めた。なお、MOR値とは、透過型分子配向計で測定された透過マイクロ波強度の最大値と最小値の比(最大値/最小値)である。
(MOR value)
Using a microwave molecular orientation meter manufactured by Kanzaki Paper Co., Ltd., the MOR value was determined from the transmission microwave intensity pattern. The MOR value is a ratio (maximum value / minimum value) between the maximum value and the minimum value of transmitted microwave intensity measured by a transmission type molecular orientation meter.

実施例1
(ポリマーの作成)
2,6−ナフタレンジカルボン酸ジメチルエステル100重量部とエチレングリコール51重量部を酢酸マンガン四水和物0.030重量部(30ミリモル%)の存在下、定法によりエステル交換反応を行い、メタノール溜出20分後に三酸化アンチモン0.012(10ミリモル%)を添加し、エステル交換反応終了前に正リン酸0.020重量部(50ミリモル%)を添加した。次いで295℃、1.3×10PaHg以下の高真空下で重縮合反応を行い固有粘度0.47dl/gのポリエチレン−2,6−ナフタレートポリマーを得た。さらにこのプレポリマーを用いて定法により固相重合を行い、固有粘度0.65dl/g、結晶化度38%のポリマーを得た。なお、樹脂中には滑剤として平均粒径0.3μmのほぼ球状のシリカ粒子を0.2重量%含有させた。
Example 1
(Creation of polymer)
Transesterification of 100 parts by weight of 2,6-naphthalenedicarboxylic acid dimethyl ester and 51 parts by weight of ethylene glycol in the presence of 0.030 parts by weight (30 mmol%) of manganese acetate tetrahydrate was carried out by a conventional method to distill off methanol. After 20 minutes, 0.012 (10 mmol%) of antimony trioxide was added, and 0.020 part by weight (50 mmol%) of orthophosphoric acid was added before the end of the transesterification reaction. Subsequently, a polycondensation reaction was performed at 295 ° C. under a high vacuum of 1.3 × 10 2 PaHg or less to obtain a polyethylene-2,6-naphthalate polymer having an intrinsic viscosity of 0.47 dl / g. Furthermore, solid phase polymerization was performed by a conventional method using this prepolymer to obtain a polymer having an intrinsic viscosity of 0.65 dl / g and a crystallinity of 38%. The resin contained 0.2% by weight of substantially spherical silica particles having an average particle size of 0.3 μm as a lubricant.

(未延伸フィルムの作成)
上記のポリエチレン−2,6−ナフタレート樹脂を175℃で5時間熱風乾燥させてから溶融押出し機にて300℃で溶融し、Iダイより60℃の冷却ドラム上に押出して、静電密着法にて冷却固化して未延伸フィルムを得た。得られた未延伸フィルムの特性は、固有粘度IVが0.62dl/g、複屈折Δnが0.003、3軸方向の屈折率が1.645、密度が1.330g/cm、ガラス転移温度Tgが125℃であった。フィルムは均質透明であった。
(Create unstretched film)
The polyethylene-2,6-naphthalate resin is dried with hot air at 175 ° C. for 5 hours, then melted at 300 ° C. with a melt extruder, extruded from a die onto a cooling drum at 60 ° C. And solidified by cooling to obtain an unstretched film. The properties of the obtained unstretched film are: intrinsic viscosity IV is 0.62 dl / g, birefringence Δn is 0.003, triaxial refractive index is 1.645, density is 1.330 g / cm 3 , glass transition The temperature Tg was 125 ° C. The film was homogeneous and transparent.

(検査用シートの作成および評価)
上記の未延伸フィルムを、縦方向延伸を延伸倍率3.1倍、横方向延伸を倍率4.1倍で逐次延伸した。次いで熱固定を3つのゾーンで行い、熱固定を210℃、230℃、180℃で10秒間ずつ行った。得られた二軸延伸熱固定フィルムの厚みは38μm、フィルム幅は730mm(730mm幅ロールを親フィルムロールから3本採ったため親ロール幅は2190mmであった)。
このフィルムに、さらに特開平07−101026号公報の実施例4に従い、シリコーン塗布を行い、ポリエチレン−2,6−ナフタレートを基板とする離型フィルムを得た。
(Creation and evaluation of inspection sheet)
The unstretched film was sequentially stretched at a stretching ratio of 3.1 times in the machine direction and at a magnification of 4.1 times in the transverse direction. Next, heat setting was performed in three zones, and heat setting was performed at 210 ° C., 230 ° C., and 180 ° C. for 10 seconds each. The obtained biaxially stretched heat-setting film had a thickness of 38 μm and a film width of 730 mm (the parent roll width was 2190 mm because three 730 mm-wide rolls were taken from the parent film roll).
This film was further coated with silicone in accordance with Example 4 of JP-A-07-101026 to obtain a release film having polyethylene-2,6-naphthalate as a substrate.

フィルムを幅方向に便宜上B,C,Fに分けて評価した結果、縦および横方向の熱収縮率110℃×30分がいずれも0%であった。また、MOR値はB,C,Fの順に1.5,1.5、1.5であり、その範囲(最大値−最小値)はB,C,Fとも0.1であった。目視検査状態(クロスニコル下での光干渉の影響)は、B,C,Fとも良好であった。なお親ロールフィルム全幅(2190mm)の遅相軸の角度の範囲はフィルム横方向に対して±1.8度であった。また、フィルムのレターデーションは1240〜1260nmであった。   As a result of evaluating the film by dividing it into B, C, and F for convenience in the width direction, the thermal shrinkage in the vertical and horizontal directions was 110 ° C. × 30 minutes, both 0%. The MOR values were 1.5, 1.5, and 1.5 in the order of B, C, and F, and the range (maximum value-minimum value) was 0.1 for both B, C, and F. The visual inspection state (influence of light interference under crossed Nicols) was good for B, C, and F. The range of the slow axis angle of the entire width of the parent roll film (2190 mm) was ± 1.8 degrees with respect to the lateral direction of the film. The retardation of the film was 1240 to 1260 nm.

また、符号B、C、Fは製膜フィルムの全幅(2190mm)を3等分(730mm)にスリットしたB:製膜フィルム巻取り位置からみて左側のフィルム部分(ブランク側)、C:製膜フィルム巻取り位置からみて中央のフィルム部分(中央部)、F:製膜フィルム巻取り位置からみて右側のフィルム部分(フィード(駆動)側)を示す。   Reference characters B, C, and F are slits of the entire width (2190 mm) of the film-forming film into three equal parts (730 mm). B: film portion on the left side (blank side) when viewed from the film-forming film winding position, C: film-forming A central film portion (center portion) as viewed from the film winding position, and F: a right film portion (feed (drive) side) as viewed from the film-forming film winding position.

実施例2
実施例1で得た未延伸フィルムを、縦方向を延伸倍率3.1倍、横方向を延伸倍率4.5倍で逐次延伸した。次いで熱固定を3つのゾーンで210℃、230℃、180℃で10秒間ずつ行った。実施例1と同様の方法で得られたシリコーン塗布後のフィルム特性は以下の通りであった。幅方向で採った3本のロールフィルム(いずれも730mm幅)において、MOR値は全ロールで1.4、目視検査状態(クロスニコル下での光干渉の影響)は良好で、熱収縮率110℃×30分は縦、横方向ともに0〜0.1%であった。なお親フィルムロールの全幅の遅相軸の角度は、フィルム幅方向に対して±1.5度であった。また、フィルムのレターデーションは1350〜1400nmであった。
Example 2
The unstretched film obtained in Example 1 was sequentially stretched at a stretch ratio of 3.1 times in the machine direction and at a stretch ratio of 4.5 times in the transverse direction. Next, heat setting was performed at 210 ° C., 230 ° C., and 180 ° C. for 10 seconds in three zones. The film characteristics after silicone coating obtained by the same method as in Example 1 were as follows. In three roll films taken in the width direction (all 730 mm width), the MOR value is 1.4 for all rolls, the visual inspection state (effect of light interference under crossed Nicols) is good, and the heat shrinkage rate is 110. The temperature at 30 ° C. for 30 minutes was 0 to 0.1% in both the vertical and horizontal directions. The angle of the slow axis of the entire width of the parent film roll was ± 1.5 degrees with respect to the film width direction. Moreover, the retardation of the film was 1350-1400 nm.

比較例1
実施例1で得た未延伸フィルムを、縦方向を延伸倍率3.1倍、横方向を延伸倍率3.4倍で逐次延伸した。次いで熱固定を3つのゾーンで210℃、230℃、180℃で10秒間ずつ行った。実施例1と同様の方法で得られたシリコーン塗布後のフィルム特性は以下の通りであった。幅方向で採った3本のロールフィルム(いずれも730mm幅)の内、目視検査状態(クロスニコル下での光干渉の影響)は幅方向中央部の1本のみが良好で他の2本は不良であった。MOR値は幅方向中央部の1本のみが1.5であった。他の2ロールは1.7、2.0であった。熱収縮率110℃×30分は縦、横方向ともに0〜0.1%であった。なお親フィルムロールの全幅(2190mm)の遅相軸の角度は、フィルム幅方向に対して±35度であった。また、フィルムのレターデーションは680〜750nmであった。
Comparative Example 1
The unstretched film obtained in Example 1 was sequentially stretched at a stretch ratio of 3.1 times in the machine direction and at a stretch ratio of 3.4 times in the transverse direction. Next, heat setting was performed at 210 ° C., 230 ° C., and 180 ° C. for 10 seconds in three zones. The film characteristics after silicone coating obtained by the same method as in Example 1 were as follows. Of the three roll films taken in the width direction (all 730 mm wide), the visual inspection state (influence of light interference under crossed Nicols) is good only in the center in the width direction, and the other two are It was bad. The MOR value was 1.5 at only one central portion in the width direction. The other two rolls were 1.7 and 2.0. The heat shrinkage rate of 110 ° C. × 30 minutes was 0 to 0.1% in both the vertical and horizontal directions. The angle of the slow axis of the entire width (2190 mm) of the parent film roll was ± 35 degrees with respect to the film width direction. The retardation of the film was 680 to 750 nm.

Claims (4)

エチレン−2,6−ナフタレート単位が全繰返し単位の少なくとも80モル%を占める芳香族ポリエステルを二軸配向させたフィルムであり、そのレターデーション値が1200nm以上、遅相軸の角度がフィルム幅方向に対して±2度であることを特徴とする光学用ポリエチレン−2,6−ナフタレートフィルム。   It is a film in which an aromatic polyester in which ethylene-2,6-naphthalate units occupy at least 80 mol% of all repeating units is biaxially oriented, its retardation value is 1200 nm or more, and the slow axis angle is in the film width direction. An optical polyethylene-2,6-naphthalate film, which is ± 2 degrees with respect to the film. 芳香族ポリエステルは、アンチモン化合物を重合触媒として、固相重合法によって得られた、固有粘度(IV)が0.40〜0.80dl/gの範囲である請求項1記載の光学用ポリエチレン−2,6−ナフタレートフィルム。   2. The optical polyethylene-2 according to claim 1, wherein the aromatic polyester has an intrinsic viscosity (IV) in the range of 0.40 to 0.80 dl / g, obtained by solid phase polymerization using an antimony compound as a polymerization catalyst. , 6-Naphthalate film. 未延伸のエチレン−2,6−ナフタレート単位が全繰返し単位の少なくとも80モル%を占める芳香族ポリエステルフィルムを、縦横共に延伸倍率を3.0〜5.0倍とし、且つ縦延伸倍率と横延伸倍率との延伸比率(横延伸倍率/縦延伸倍率)が1.2〜1.5となるように縦・横逐次二軸延伸する工程、および二軸延伸後のフィルムを熱固定する工程を含むことを特徴とする請求項1記載の光学用ポリエチレン−2,6−ナフタレートフィルムの製造方法。   An aromatic polyester film in which unstretched ethylene-2,6-naphthalate units occupy at least 80 mol% of all repeating units is stretched in the longitudinal and lateral directions at a stretching ratio of 3.0 to 5.0, and the longitudinal stretching ratio and the lateral stretching. Including a step of successively biaxially stretching in the longitudinal and transverse directions so that a ratio of stretching to the magnification (lateral stretching ratio / longitudinal stretching ratio) is 1.2 to 1.5, and a step of heat-setting the film after biaxial stretching. The method for producing an optical polyethylene-2,6-naphthalate film according to claim 1. 請求項1または2に記載のフィルムから形成された光学基材検査用離型フィルム。   A release film for optical substrate inspection formed from the film according to claim 1.
JP2008157770A 2008-06-17 2008-06-17 Optical polyethylene-2,6-naphthalate film and its manufacturing method Pending JP2009298101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157770A JP2009298101A (en) 2008-06-17 2008-06-17 Optical polyethylene-2,6-naphthalate film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157770A JP2009298101A (en) 2008-06-17 2008-06-17 Optical polyethylene-2,6-naphthalate film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009298101A true JP2009298101A (en) 2009-12-24

Family

ID=41545489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157770A Pending JP2009298101A (en) 2008-06-17 2008-06-17 Optical polyethylene-2,6-naphthalate film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009298101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242733A (en) * 2010-05-21 2011-12-01 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258393A (en) * 1994-03-25 1995-10-09 Toray Ind Inc Polyester low in content of oligomer and content of foreign matter
JPH08294988A (en) * 1995-04-26 1996-11-12 Teijin Ltd Release film
JP2000062122A (en) * 1998-06-10 2000-02-29 Mitsubishi Kagaku Polyester Film Kk Mold release film
JP2001353775A (en) * 2000-06-13 2001-12-25 Toray Ind Inc Method for producing polyester film
JP2002182037A (en) * 2001-07-23 2002-06-26 Teijin Ltd Method for manufacturing mold release film
JP2003231214A (en) * 2002-10-22 2003-08-19 Teijin Ltd Release film
JP2005014545A (en) * 2003-06-30 2005-01-20 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2008003541A (en) * 2006-01-27 2008-01-10 Fujifilm Corp Polarizer protective film, and polarizer and liquid crystal display using the same
JP2009014886A (en) * 2007-07-03 2009-01-22 Fujifilm Corp Polarizing plate protection film, polarizing plate and liquid crystal display apparatus using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258393A (en) * 1994-03-25 1995-10-09 Toray Ind Inc Polyester low in content of oligomer and content of foreign matter
JPH08294988A (en) * 1995-04-26 1996-11-12 Teijin Ltd Release film
JP2000062122A (en) * 1998-06-10 2000-02-29 Mitsubishi Kagaku Polyester Film Kk Mold release film
JP2001353775A (en) * 2000-06-13 2001-12-25 Toray Ind Inc Method for producing polyester film
JP2002182037A (en) * 2001-07-23 2002-06-26 Teijin Ltd Method for manufacturing mold release film
JP2003231214A (en) * 2002-10-22 2003-08-19 Teijin Ltd Release film
JP2005014545A (en) * 2003-06-30 2005-01-20 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2008003541A (en) * 2006-01-27 2008-01-10 Fujifilm Corp Polarizer protective film, and polarizer and liquid crystal display using the same
JP2009014886A (en) * 2007-07-03 2009-01-22 Fujifilm Corp Polarizing plate protection film, polarizing plate and liquid crystal display apparatus using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242733A (en) * 2010-05-21 2011-12-01 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate

Similar Documents

Publication Publication Date Title
KR102245388B1 (en) Biaxially oriented polyester film
US20090068401A1 (en) Optical Biaxially Oriented Polyester Film
JP5346495B2 (en) Method for producing optical film having optical anisotropy
JP5640488B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
EP1898238A1 (en) Retardation film and polyester resin for optical use
JP5130620B2 (en) Polyester film for display
JPS62135338A (en) Monoaxially high-orientated film of polyethylene-naphthalate for liquid crystal panel substrate
JP2008248135A (en) Polyester film for masking tape of photomask
JP5651960B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP2007031496A (en) Optical polyester film
KR102131627B1 (en) Durable polyester film, method for producing same, film for sealing solar cell which is produced using same, and solar cell
JP6135301B2 (en) Durable polyester film, method for producing the same, and solar cell sealing film using the same
JP2016117178A (en) Biaxially oriented polyester film
JP2017105985A (en) Polyester film for manufacturing optical film
JP2012171329A (en) Biaxially-oriented polyethylene film roll and method for forming the same
JP2012107080A (en) Biaxially oriented polyester film
JP2009298101A (en) Optical polyethylene-2,6-naphthalate film and its manufacturing method
JP6210244B2 (en) Biaxially stretched polyethylene terephthalate film
JPH0466002B2 (en)
JP2010013569A (en) Longitudinally monoaxially oriented polyethylene naphthalate film and method for producing the same
JP2017052857A (en) Biaxially-oriented polyester film for display member
JP2005349726A (en) Biaxially oriented film
JP2011184617A (en) Biaxially oriented polyester film
KR100989856B1 (en) Preparation Method for Polyester
JP2002121273A (en) Polyester resin composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611