JP2009296845A - Compensation method of unbalanced current in microgrid electric power system and controlling method using the same - Google Patents

Compensation method of unbalanced current in microgrid electric power system and controlling method using the same Download PDF

Info

Publication number
JP2009296845A
JP2009296845A JP2008150622A JP2008150622A JP2009296845A JP 2009296845 A JP2009296845 A JP 2009296845A JP 2008150622 A JP2008150622 A JP 2008150622A JP 2008150622 A JP2008150622 A JP 2008150622A JP 2009296845 A JP2009296845 A JP 2009296845A
Authority
JP
Japan
Prior art keywords
current
distribution line
unbalance
compensation
unbalanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008150622A
Other languages
Japanese (ja)
Other versions
JP5164678B2 (en
Inventor
Kazunari Maki
一成 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008150622A priority Critical patent/JP5164678B2/en
Publication of JP2009296845A publication Critical patent/JP2009296845A/en
Application granted granted Critical
Publication of JP5164678B2 publication Critical patent/JP5164678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for appropriately compensating unbalanced currents and maintaining balance in each of phases. <P>SOLUTION: A microgrid power system 2 includes a three-phase three-wire distribution line 5, and a generating unit 10 and users'loads 50 connected to the distribution line 5. In the system, a measuring unit 20 and an imbalance-countermeasuring device 30 for compensating the imbalanced current are connected to the distribution line 5. A controller 40 is provided for controlling the compensating current supplied or consumed by the imbalance-countermeasuring device 30. Both a first current output and supplied from the generating unit 10 and a real-time second current coming from the measuring unit 20 and flowing through the distribution line 5 are obtained to control the compensating current, so as to change the second current to the first current. The imbalance-countermeasuring device 30 is constituted by an AC/DC converter and a variable resistor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクログリッド電力系統における不平衡電流の補償方法、及びこの方法に用いる制御装置に関し、とくに配電線に生じる不平衡電流を補償し、マイクログリッド電力系統を構成する三相3線式の配電線を流れる電流の各相のバランスを保つ技術に関する。   The present invention relates to a method for compensating unbalanced current in a microgrid power system, and a control device used in the method, and more particularly to a three-phase three-wire system that compensates for unbalanced current generated in distribution lines and constitutes a microgrid power system. The present invention relates to a technique for maintaining the balance of each phase of current flowing through a distribution line.

一般に電力系統の多くは三相3線式で送配電されるが、接続される負荷は単相接続であることが多く、3線のうちのいずれか2線に接続される。このため、3相電流に不平衡が生じ、発電機等の損傷に繋がるおそれがある。   In general, most of the electric power system is transmitted and distributed in a three-phase three-wire system, but the load to be connected is often a single-phase connection, and is connected to any two of the three wires. For this reason, an imbalance occurs in the three-phase current, which may lead to damage to the generator or the like.

このような不平衡電流を補償する仕組みとして、例えば特許文献1には、発電機の各相電流から逆相電流の大きさが最も小さい値を示す発電機出力端子電圧になるように、電圧設定器の設定電圧をマニュアルまたは自動的に変更する逆相電流抑止制御装置が開示されている。
特開2000−92897号公報
As a mechanism for compensating for such an unbalanced current, for example, Patent Document 1 discloses a voltage setting so that the generator output terminal voltage indicates the smallest value of the reverse phase current from each phase current of the generator. A negative-phase current suppression control device that changes the set voltage of the detector manually or automatically is disclosed.
JP 2000-92897 A

昨今、自然エネルギーを利用した電源(風力発電、太陽光発電等)や需要場所の近くに設置される小型発電機(燃料電池、マイクロガスタービン等)が急速に普及しつつある。また、次世代電力供給システムとして、それらの電源や小型発電機を用いて電力の地域自給を目指す小規模電力供給網(以下、マイクログリッドという)が注目され始めている。   In recent years, power sources (wind power generation, solar power generation, etc.) using natural energy and small generators (fuel cells, micro gas turbines, etc.) installed near demand places are rapidly spreading. In addition, as a next-generation power supply system, a small-scale power supply network (hereinafter referred to as a microgrid) that aims at local self-sufficiency of electric power using such a power source and a small generator is beginning to attract attention.

しかしマイクログリッドは、大規模系統に比べて負荷数が少ないことから、不平衡電流が生じやすく、生じた不平衡電流によって発電機等が損傷するおそれがある。このため、マイクログリッドの実現に際しては、不平衡電流を確実に補償するための仕組みが必須となる。   However, since the microgrid has a smaller number of loads than a large-scale system, an unbalanced current is likely to be generated, and the generator or the like may be damaged by the generated unbalanced current. For this reason, in order to realize a microgrid, a mechanism for reliably compensating for the unbalanced current is essential.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、不平衡電流を補償し、マイクログリッド電力系統を構成する三相3線式の配電線を流れる電流の各相のバランスを保つことが可能な、マイクログリッド電力系統における不平衡電流の補償方法、及びこの方法に用いる制御装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and its main object is to balance unbalanced current and balance each phase of current flowing through a three-phase three-wire distribution line constituting a microgrid power system. It is an object of the present invention to provide a method for compensating for an unbalanced current in a microgrid power system and a control device used in this method.

上記課題を解決するために、本発明は、三相3線式の配電線と、前記配電線に接続する、発電装置及び需要家負荷とを含んで構成されるマイクログリッド電力系統における不平衡電流の補償方法であって、前記配電線に、前記配電線の各相を流れる電流を計測する計測装置、及び前記配電線に生じる不平衡電流を補償する不平衡対策装置を接続し、前記発電装置及び前記計測装置と通信可能に接続し、前記不平衡対策装置によって供給又は消費される電流である補償電流を制御する制御装置を設け、前記制御装置が、前記発電装置から送られてくる、前記発電装置から出力されるリアルタイムな第1の電流と、前記計測装置から送られてくる前記配電線を流れるリアルタイムな第2の電流とを取得し、前記第2の電流が前記第1の電流となるように、前記補償電流を制御することとする。
これによれば、不平衡電流が補償され、マイクログリッド電力系統を構成する三相3線式の配電線を流れる電流のバランスを保つことができる。
In order to solve the above-described problems, the present invention provides an unbalanced current in a microgrid power system configured to include a three-phase three-wire distribution line and a power generation device and a consumer load connected to the distribution line. A measuring device for measuring a current flowing through each phase of the distribution line, and an unbalance countermeasure device for compensating for an unbalanced current generated in the distribution line, and connecting the distribution line to the power generation device. And a control device that is communicably connected to the measurement device and controls a compensation current that is a current supplied or consumed by the unbalance countermeasure device, and the control device is sent from the power generation device, A real-time first current output from the power generation device and a real-time second current flowing through the distribution line sent from the measurement device are acquired, and the second current is the first current. Become Sea urchin, and to control the compensation current.
According to this, the unbalanced current is compensated, and the balance of the current flowing through the three-phase three-wire distribution line constituting the microgrid power system can be maintained.

また本発明のうちの他の一つは、上記不平衡電流の補償方法であって、前記不平衡対策装置は交直変換器であり、前記制御装置は、前記第2の電流が前記第1の電流となるように、前記補償電流の大きさ及び位相を制御することとする。
このように、不平衡対策装置を交直変換器とした場合には、配電線を流れる電流が第1の電流となるように、補償電流の大きさ及び位相が制御される。このため、配電線に生じる不平衡電流をリアルタイムかつ確実に補償することができる。
Another aspect of the present invention is a method for compensating for an unbalanced current, wherein the unbalance countermeasure device is an AC / DC converter, and the control device is configured such that the second current is the first current. The magnitude and phase of the compensation current are controlled so as to obtain a current.
Thus, when the unbalance countermeasure device is an AC / DC converter, the magnitude and phase of the compensation current are controlled so that the current flowing through the distribution line becomes the first current. For this reason, the unbalanced electric current which arises in a distribution line can be compensated reliably in real time.

また本発明のうちの他の一つは、上記不平衡電流の補償方法であって、前記不平衡対策装置は可変抵抗であり、前記制御装置は、前記第2の電流が前記第1の電流となるように、前記補償電流の大きさを制御することとする。
このように、不平衡対策装置を可変抵抗によって構成した場合には、配電線を流れる電流が第1の電流に近づくように、補償電流の大きさが制御される。このため、配電線に生じる不平衡電流をリアルタイムに補償することができる。
Another aspect of the present invention is a method for compensating for an unbalanced current, wherein the unbalance countermeasure device is a variable resistor, and the control device is configured such that the second current is the first current. Thus, the magnitude of the compensation current is controlled.
Thus, when the unbalance countermeasure device is configured by a variable resistor, the magnitude of the compensation current is controlled so that the current flowing through the distribution line approaches the first current. For this reason, the unbalanced current generated in the distribution line can be compensated in real time.

また本発明のうちの他の一つは、上記不平衡電流の補償方法であって、前記可変抵抗において消費される電力を、温水器の熱源として用いることとする。
このように、不平衡対策装置を可変抵抗によって構成した場合には、この可変抵抗によって消費される電力を温水器等の熱源として有効に活用することができる。
Another aspect of the present invention is a method for compensating for the unbalanced current, wherein the power consumed in the variable resistor is used as a heat source for a water heater.
Thus, when the unbalance countermeasure device is configured with a variable resistor, the power consumed by the variable resistor can be effectively used as a heat source for a water heater or the like.

また本発明のうちの他の一つは、三相3線式の配電線と、前記配電線に接続する、発電装置及び需要家負荷と、前記配電線に接続され、前記配電線の各相を流れる電流を計測する計測装置と、前記配電線に接続され、前記配電線に生じる不平衡電流を補償する電流である補償電流を供給又は消費する不平衡対策装置と、を含んで構成されるマイクログリッド電力系統における不平衡電流の補償に用いられる制御装置であって、前記発電装置及び前記計測装置と通信可能に接続し、前記発電装置から送られてくる、前記発電装置から出力されるリアルタイムな第1の電流と、前記計測装置から送られてくる前記配電線を流れるリアルタイムな第2の電流とを取得する電流取得部と、前記第2の電流が前記第1の電流となるように、前記補償電流を制御する制御部とを備えることとする。   Another one of the present invention is a three-phase three-wire distribution line, a power generation device and a consumer load connected to the distribution line, and each phase of the distribution line connected to the distribution line. A measuring device that measures a current flowing through the distribution line, and an unbalance countermeasure device that supplies or consumes a compensation current that is connected to the distribution line and compensates for the unbalanced current generated in the distribution line. A control device used for compensation of unbalanced current in a microgrid power system, which is communicably connected to the power generation device and the measurement device, and is sent from the power generation device and is output from the power generation device. A current acquisition unit that acquires the first current and the real-time second current flowing through the distribution line sent from the measuring device, and the second current becomes the first current. , The compensation current And further comprising a control unit for controlling.

その他、本願が開示する課題及びその解決方法は、発明を実施するための最良の形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed in the present application and the solutions thereof will be clarified by the column of the best mode for carrying out the invention and the drawings.

本発明によれば、三相3線式の配電線に接続する発電装置及び需要家負荷を含んで構成される電力系統において、不平衡電流を補償し、各相のバランスを保つことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the electric power system comprised including the electric power generating apparatus connected to a three-phase three-wire type distribution line and a consumer load, an unbalance current can be compensated and the balance of each phase can be maintained.

以下、図面を参照しながら、本発明を実施するための最良の形態を説明する。図1に実施形態として説明する電力供給システム1を示している。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows a power supply system 1 described as an embodiment.

同図に示すように、この電力供給システム1は、マイクログリッド電力系統2と、このマイクログリッド電力系統2が連携する上位電力系統3とを含んで構成されている。尚、同図には1つのマイクログリッド電力系統2のみを示しているが、上位電力系統3に複数のマイクログリッド電力系統2が接続されていてもよい。   As shown in the figure, the power supply system 1 includes a microgrid power system 2 and an upper power system 3 with which the microgrid power system 2 cooperates. Although only one microgrid power system 2 is shown in the figure, a plurality of microgrid power systems 2 may be connected to the upper power system 3.

マイクログリッド電力系統2は、需要地において複数の発電装置や電力貯蔵システムを組み合わせ、分散型電源たる発電装置10の発電量を需要量に併せて制御することにより、電力の地域自給を可能とする、比較的小規模な電力供給網である。マイクログリッド電力系統2が接続する上位電力系統3は、大規模発電所から送電線、変電所、配電線を経由する電力供給網である。上位電力系統3は、マイクログリッド電力系統2における自給電力の不足分をマイクログリッド電力系統2に供給する。   The microgrid power system 2 enables local power self-sufficiency by combining a plurality of power generation devices and power storage systems in a demand area and controlling the power generation amount of the power generation device 10 as a distributed power source in accordance with the demand amount. A relatively small power supply network. The upper power system 3 to which the microgrid power system 2 is connected is a power supply network from a large-scale power plant via a transmission line, a substation, and a distribution line. The upper power system 3 supplies the microgrid power system 2 with a shortage of self-supplied power in the microgrid power system 2.

図1に示しているように、マイクログリッド電力系統2は、三相3線式の配電線5、配電線5に接続する発電装置10(分散型電源)、計測装置20、不平衡対策装置30、不平衡対策装置30を制御する制御装置40、及び配電線5に接続する需要家負荷50を含んで構成されている。図2にマイクログリッド電力系統2の詳細な接続状態を示している。同図に示すように、需要家負荷50は、夫々、三相3線式の配電線5の3相(a相、b相、c相)のうちのいずれかの相に接続している。   As shown in FIG. 1, the microgrid power system 2 includes a three-phase three-wire distribution line 5, a power generation device 10 (distributed power source) connected to the distribution line 5, a measurement device 20, and an unbalance countermeasure device 30. The control device 40 that controls the unbalance countermeasure device 30 and the customer load 50 that is connected to the distribution line 5 are configured. FIG. 2 shows a detailed connection state of the microgrid power system 2. As shown in the figure, the customer load 50 is connected to any one of the three phases (a phase, b phase, c phase) of the three-phase three-wire distribution line 5.

発電装置10は、例えば、燃料電池、マイクロガスタービン等の発電機、自然エネルギーを利用する風力発電機や太陽光発電機等の発電機である。需要家負荷50は、発電装置10が供給する電力を消費する設備であり、例えば、一戸建ての個人住宅、マンションやアパート等の集合住宅、企業や店舗が入ったビル、工場等である。   The power generation device 10 is, for example, a power generator such as a fuel cell or a micro gas turbine, or a power generator such as a wind power generator or a solar power generator that uses natural energy. The customer load 50 is a facility that consumes the power supplied by the power generation apparatus 10, and is, for example, a single-family house, a housing complex such as a condominium or an apartment, a building or a factory containing a company or a store.

計測装置20は、配電線5の各相のリアルタイムな電圧及び電流を測定する。不平衡対策装置30は、配電線5に生じる不平衡電流を補償する補償電流を供給又は消費する。後述するように、不平衡対策装置30は、補償電流の大きさ及び位相の双方を制御可能な交直変換器(例えばサイリスタ位相制御方式のコンバータ)、補償電流の大きさのみを制御可能な可変抵抗等である。   The measuring device 20 measures the real-time voltage and current of each phase of the distribution line 5. The unbalance countermeasure device 30 supplies or consumes a compensation current that compensates for the unbalance current generated in the distribution line 5. As will be described later, the unbalance countermeasure device 30 includes an AC / DC converter (for example, a thyristor phase control type converter) capable of controlling both the magnitude and phase of the compensation current, and a variable resistor capable of controlling only the magnitude of the compensation current. Etc.

制御装置40は、情報処理装置(コンピュータ)であって、発電装置10から送られてくる発電装置10のリアルタイムな電流である第1の電流と、計測装置20から送られてくる配電線5の各相のリアルタイムな電流である第2の電流とに基づいて、不平衡対策装置30によって供給又は消費される電流を制御する。   The control device 40 is an information processing device (computer), and includes a first current that is a real-time current of the power generation device 10 sent from the power generation device 10 and a distribution line 5 sent from the measurement device 20. Based on the second current, which is a real-time current of each phase, the current supplied or consumed by the imbalance countermeasure device 30 is controlled.

制御装置40のハードウエア構成の一例を図3に示す。同図に示すように、この制御装置40は、CPU41、メモリ42、及び通信装置43を有している。CPU41は、メモリ42に格納されているプログラムを読み出して実行する。メモリ42にはプログラムやデータが格納される。通信装置43は、発電装置10、計測装置20、及び不平衡対策装置30と通信する。   An example of the hardware configuration of the control device 40 is shown in FIG. As shown in the figure, the control device 40 includes a CPU 41, a memory 42, and a communication device 43. The CPU 41 reads out and executes a program stored in the memory 42. The memory 42 stores programs and data. The communication device 43 communicates with the power generation device 10, the measurement device 20, and the imbalance countermeasure device 30.

図4に制御装置40の機能を示している。同図に示す制御装置40の機能は、制御装置40のハードウエア自体が備える機能によって、もしくは、CPU41がメモリ42に格納されているプログラムを実行することによって実現される。同図において、電流取得部45は、発電装置10から送られてくる第1の電流と、計測装置20から送られてくる第2の電流とを受信して、これらを記憶部47に格納する。   FIG. 4 shows functions of the control device 40. The functions of the control device 40 shown in the figure are realized by the functions of the hardware of the control device 40 or by the CPU 41 executing a program stored in the memory 42. In the figure, the current acquisition unit 45 receives the first current sent from the power generation device 10 and the second current sent from the measurement device 20 and stores them in the storage unit 47. .

制御値生成部46は、記憶部47に格納されている、第1の電流及び第2の電流に基づいて、後述する方法により、前述した補償電流を制御するための制御値を生成する。制御部48は、制御値生成部46によって生成された制御値に基づいて補償電流を制御する。   Based on the first current and the second current stored in the storage unit 47, the control value generation unit 46 generates a control value for controlling the above-described compensation current by a method described later. The controller 48 controls the compensation current based on the control value generated by the control value generator 46.

例えば、不平衡対策装置30を交直変換器によって構成した場合、制御値生成部46は次のようにして上記制御値を生成する。即ち、例えば発電装置10から第1の電流として例えば図5Aに示す電流を受信し、計測装置20から第2の電流として、例えば、図5Bに示す電流を受信した場合には、制御値生成部46は、図5Bに示す第2の電流にベクトル加算されることにより配電線5を流れる電流が図5Aに示す第1の電流となるような補償電流(例えば図5Cに示すベクトル)を不平衡対策装置30たる交直変換器が供給するように制御値を生成する。図5Eに、図5Cに示す補償電流を図5Bに合成した後の電流を示す。   For example, when the unbalance countermeasure device 30 is configured by an AC / DC converter, the control value generation unit 46 generates the control value as follows. That is, for example, when the current shown in FIG. 5A is received as the first current from the power generation device 10 and the current shown in FIG. 5B is received as the second current from the measuring device 20, for example, the control value generator 46 is an unbalanced compensation current (for example, the vector shown in FIG. 5C) such that the current flowing through the distribution line 5 becomes the first current shown in FIG. 5A by vector addition to the second current shown in FIG. 5B. A control value is generated so as to be supplied by the AC / DC converter as the countermeasure device 30. FIG. 5E shows the current after the compensation current shown in FIG. 5C is synthesized in FIG. 5B.

このように、不平衡対策装置30を交直変換器によって構成した場合には、配電線5を流れる電流が第1の電流となるようにその大きさ及び位相が調節された補償電流が配電線5に供給される。このため、配電線5に生じる不平衡電流をリアルタイムに確実に補償することができる。   Thus, when the imbalance countermeasure device 30 is configured by an AC / DC converter, a compensation current whose magnitude and phase are adjusted so that the current flowing through the distribution line 5 becomes the first current is the distribution line 5. To be supplied. For this reason, the unbalanced current generated in the distribution line 5 can be reliably compensated in real time.

一方、例えば、不平衡対策装置30を可変抵抗によって構成した場合には、制御値生成部46は上記制御値を次のようにして生成する。即ち、例えば発電装置10から第1の電流として例えば図5Aに示す電流を受信し、計測装置20から第2の電流として、例えば、図5Bに示す電流を受信した場合には、制御値生成部46は、図5Bに示す第2の電流にベクトル加算されることにより配電線5を流れる電流を図5Aに示す第1の電流に近づけるような補償電流(例えば、図5Dに示すベクトル)を、不平衡対策装置30たる可変抵抗が消費するように制御値を生成する。図5Fに、図5Dに示す補償電流を図5Bに合成した後の電流を示す。   On the other hand, for example, when the imbalance countermeasure device 30 is configured by a variable resistor, the control value generation unit 46 generates the control value as follows. That is, for example, when the current shown in FIG. 5A is received as the first current from the power generation device 10 and the current shown in FIG. 5B is received as the second current from the measuring device 20, for example, the control value generator 46 is a compensation current (for example, the vector shown in FIG. 5D) that brings the current flowing through the distribution line 5 closer to the first current shown in FIG. 5A by vector addition to the second current shown in FIG. 5B. The control value is generated so that the variable resistance as the unbalance countermeasure device 30 is consumed. FIG. 5F shows the current after the compensation current shown in FIG. 5D is synthesized in FIG. 5B.

このように、不平衡対策装置30を可変抵抗によって構成した場合には、配電線5を流れる電流を第1の電流に近づけるようにその大きさが調節された補償電流が不平衡対策装置30によって消費される。このため、配電線5に生じる不平衡電流をリアルタイムに補償することができる。   As described above, when the unbalance countermeasure device 30 is configured by a variable resistor, the compensation current whose magnitude is adjusted so that the current flowing through the distribution line 5 approaches the first current is supplied by the unbalance countermeasure device 30. Is consumed. For this reason, the unbalanced current generated in the distribution line 5 can be compensated in real time.

尚、不平衡対策装置30を可変抵抗によって構成した場合には、以下に示すように、可変抵抗において消費される電力を温水器等の熱源として利用することができる。   In addition, when the imbalance countermeasure device 30 is configured by a variable resistor, as shown below, the power consumed by the variable resistor can be used as a heat source such as a water heater.

図6は不平衡対策装置30として用いる可変抵抗を熱源として温水を供給する温水器60の一例である。同図に示すように、この温水器60は、取水管61、給湯管62、貯槽63、及びヒータ64を備える。貯槽63は、水を溜めるタンクである。取水管61は、水道等の給水設備65から、貯槽63へ水を取り込む配管である。給湯管62は、貯槽63から暖房設備や台所、浴室、プール等の受湯設備66へ湯を供給する配管である。   FIG. 6 shows an example of a water heater 60 that supplies hot water using a variable resistor used as the unbalance countermeasure device 30 as a heat source. As shown in the figure, the water heater 60 includes a water intake pipe 61, a hot water supply pipe 62, a storage tank 63, and a heater 64. The storage tank 63 is a tank that stores water. The intake pipe 61 is a pipe that takes water into the storage tank 63 from a water supply facility 65 such as a water supply. The hot water supply pipe 62 is a pipe that supplies hot water from the storage tank 63 to a hot water receiving facility 66 such as a heating facility, a kitchen, a bathroom, or a pool.

同図に示すように、ヒータ64には、配電線5の各相に対応する可変抵抗(不平衡対策装置30)として機能する電熱線64a,64b,64cが内蔵され、これら電熱線64a,64b,64cに補償電流が流れることにより貯槽63に溜まった水が加熱される。このように、不平衡対策装置30としての可変抵抗において消費される電力は温水器等の熱源として有効に利用することができる。   As shown in the figure, the heater 64 includes heating wires 64a, 64b, and 64c that function as variable resistors (unbalance countermeasure device 30) corresponding to each phase of the distribution line 5, and these heating wires 64a and 64b. , 64c, the water accumulated in the storage tank 63 is heated. Thus, the electric power consumed in the variable resistance as the unbalance countermeasure device 30 can be effectively used as a heat source such as a water heater.

以上、本発明を実施するための最良の形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   Although the best mode for carrying out the present invention has been described above, the above embodiment is intended to facilitate understanding of the present invention and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

例えば、以上の説明では、補償電流を、発電装置10からの第1の電流と計測装置20からの第2の電流とに基づいて生成しているが、例えば、制御装置40が計測装置20から取得した第2の電流やその変化の履歴に基づいて、補償電流を生成するようにしてもよい。また第2の電流と補償電流との関係を予め制御装置40に記憶しておき、この関係に基づいて補償電流を生成するようにしてもよい。   For example, in the above description, the compensation current is generated based on the first current from the power generation device 10 and the second current from the measurement device 20. A compensation current may be generated based on the acquired second current or a history of changes. Further, the relationship between the second current and the compensation current may be stored in the control device 40 in advance, and the compensation current may be generated based on this relationship.

電力供給システム1の構成を示す図である。1 is a diagram illustrating a configuration of a power supply system 1. FIG. マイクログリッド電力系統2の詳細な接続状態を示す図である。It is a figure which shows the detailed connection state of the microgrid electric power system. 制御装置40のハードウエア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a control device 40. FIG. 制御装置40の機能を示す図である。3 is a diagram illustrating functions of a control device 40. FIG. 発電装置10から送信される第1の電流の一例を示す図である。FIG. 3 is a diagram illustrating an example of a first current transmitted from the power generation device 10. 計測装置20から送信される第2の電流の一例を示す図である。It is a figure which shows an example of the 2nd electric current transmitted from the measuring apparatus. 不平衡対策装置30に流す電流の一例を示す図である。FIG. 3 is a diagram illustrating an example of a current that flows through the unbalance countermeasure device 30. 不平衡対策装置30に流す電流の一例を示す図である。FIG. 3 is a diagram illustrating an example of a current that flows through the unbalance countermeasure device 30. 図5Cに示す補償電流を図5Bに合成した後の電流を示す図である。It is a figure which shows the electric current after synthesize | combining the compensation current shown to FIG. 5C to FIG. 5B. 図5Dに示す補償電流を図5Bに合成した後の電流を示す図である。It is a figure which shows the electric current after synthesize | combining the compensation current shown to FIG. 5D to FIG. 5B. 不平衡対策装置30として用いる可変抵抗を熱源として温水を供給する温水器60の一例である。It is an example of the water heater 60 which supplies warm water using the variable resistance used as the unbalance countermeasure apparatus 30 as a heat source.

符号の説明Explanation of symbols

1 電力供給システム
2 マイクログリッド電力系統
3 上位電力系統
5 配電線
10 発電装置
20 計測装置
30 不平衡対策装置
40 制御装置
45 電流取得部
46 制御値生成部
48 制御部
50 需要家負荷
60 温水器
61 取水管
62 給湯管
63 貯槽
64 ヒータ
65 給水設備
66 受湯設備
DESCRIPTION OF SYMBOLS 1 Electric power supply system 2 Micro grid electric power system 3 Upper power system 5 Distribution line 10 Electric power generating apparatus 20 Measuring apparatus 30 Unbalance countermeasure apparatus 40 Control apparatus 45 Current acquisition part 46 Control value generation part 48 Control part 50 Consumer load 60 Water heater 61 Water intake pipe 62 Hot water supply pipe 63 Storage tank 64 Heater 65 Water supply equipment 66 Hot water reception equipment

Claims (5)

三相3線式の配電線と、前記配電線に接続する、発電装置及び需要家負荷とを含んで構成されるマイクログリッド電力系統における不平衡電流の補償方法であって、
前記配電線に、前記配電線の各相を流れる電流を計測する計測装置、及び前記配電線に生じる不平衡電流を補償するための装置である不平衡対策装置を接続し、
前記発電装置及び前記計測装置と通信可能に接続し、前記不平衡対策装置によって供給又は消費される電流である補償電流を制御する制御装置を設け、
前記制御装置が、前記発電装置から送られてくる、前記発電装置から出力されるリアルタイムな第1の電流と、前記計測装置から送られてくる前記配電線を流れるリアルタイムな第2の電流とを取得し、前記第2の電流が前記第1の電流となるように、前記補償電流を制御すること
を特徴とする不平衡電流の補償方法。
A method of compensating for an unbalanced current in a microgrid power system including a three-phase three-wire distribution line and a power generation device and a consumer load connected to the distribution line,
Connected to the distribution line is a measurement device that measures the current flowing through each phase of the distribution line, and an unbalance countermeasure device that is a device for compensating for the unbalanced current generated in the distribution line,
A control device is provided that is communicably connected to the power generation device and the measurement device, and controls a compensation current that is a current supplied or consumed by the unbalance countermeasure device,
The control device includes a real-time first current output from the power generation device sent from the power generation device, and a real-time second current flowing through the distribution line sent from the measurement device. An unbalanced current compensation method comprising: acquiring and controlling the compensation current such that the second current becomes the first current.
請求項1に記載の不平衡電流の補償方法であって、
前記不平衡対策装置は交直変換器であり、
前記制御装置は、前記第2の電流が前記第1の電流となるように、前記補償電流の大きさ及び位相を制御すること
を特徴とする不平衡電流の補償方法。
The unbalanced current compensation method according to claim 1,
The unbalance countermeasure device is an AC / DC converter,
The control device controls the magnitude and phase of the compensation current so that the second current becomes the first current.
請求項1に記載の不平衡電流の補償方法であって、
前記不平衡対策装置は可変抵抗であり、
前記制御装置は、前記第2の電流が前記第1の電流となるように、前記補償電流の大きさを制御すること
を特徴とする不平衡電流の補償方法。
The unbalanced current compensation method according to claim 1,
The unbalance countermeasure device is a variable resistor,
The control device controls the magnitude of the compensation current so that the second current becomes the first current.
請求項3に記載の不平衡電流の補償方法であって、
前記可変抵抗において消費される電力を、温水器の熱源として用いること
を特徴とする不平衡電流の補償方法。
The unbalanced current compensation method according to claim 3,
A method of compensating for an unbalanced current, wherein the power consumed in the variable resistor is used as a heat source for a water heater.
三相3線式の配電線と、
前記配電線に接続する、発電装置及び需要家負荷と、
前記配電線に接続され、前記配電線の各相を流れる電流を計測する計測装置と、
前記配電線に接続され、前記配電線に生じる不平衡電流を補償する電流である補償電流を供給又は消費する不平衡対策装置と、
を含んで構成されるマイクログリッド電力系統における不平衡電流の補償に用いられる制御装置であって、
前記発電装置及び前記計測装置と通信可能に接続し、
前記発電装置から送られてくる、前記発電装置から出力されるリアルタイムな第1の電流と、前記計測装置から送られてくる前記配電線を流れるリアルタイムな第2の電流とを取得する電流取得部と、
前記第2の電流が前記第1の電流となるように、前記不平衡対策装置によって供給又は消費される前記補償電流を制御する制御部と
を備えることを特徴とする制御装置。
Three-phase three-wire distribution line,
A power generator and a consumer load connected to the distribution line;
A measuring device connected to the distribution line and measuring a current flowing through each phase of the distribution line;
An unbalance countermeasure device that is connected to the distribution line and supplies or consumes a compensation current that is a current for compensating for the unbalance current generated in the distribution line;
A control device used to compensate for an unbalanced current in a microgrid power system comprising:
Communicatively connected to the power generation device and the measurement device,
A current acquisition unit for acquiring a real-time first current output from the power generation device and sent from the power generation device and a real-time second current flowing through the distribution line sent from the measurement device. When,
And a control unit that controls the compensation current supplied or consumed by the unbalance countermeasure device so that the second current becomes the first current.
JP2008150622A 2008-06-09 2008-06-09 Compensation method for unbalanced current in microgrid power system and control device used in this method Expired - Fee Related JP5164678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150622A JP5164678B2 (en) 2008-06-09 2008-06-09 Compensation method for unbalanced current in microgrid power system and control device used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150622A JP5164678B2 (en) 2008-06-09 2008-06-09 Compensation method for unbalanced current in microgrid power system and control device used in this method

Publications (2)

Publication Number Publication Date
JP2009296845A true JP2009296845A (en) 2009-12-17
JP5164678B2 JP5164678B2 (en) 2013-03-21

Family

ID=41544427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150622A Expired - Fee Related JP5164678B2 (en) 2008-06-09 2008-06-09 Compensation method for unbalanced current in microgrid power system and control device used in this method

Country Status (1)

Country Link
JP (1) JP5164678B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624014A (en) * 2012-03-30 2012-08-01 胡继炜 System and method for balancing and controlling active power load
WO2014162617A1 (en) * 2013-04-05 2014-10-09 Hitachi, Ltd. Gas turbine generation system
CN104280624A (en) * 2013-07-10 2015-01-14 北京中电建投微电网科技有限公司 Multifunctional intelligent micro-grid application platform
JP2015503891A (en) * 2011-12-22 2015-02-02 ゼネラル・エレクトリック・カンパニイ Power converter and method for controlling power converter
JP2016158374A (en) * 2015-02-24 2016-09-01 日本電気株式会社 Management device for power consumption, management method for power consumption, and management program for power consumption
CN109861254A (en) * 2018-12-25 2019-06-07 国网北京市电力公司 The implementation method and device of load access micro-capacitance sensor
JP2019154202A (en) * 2018-03-06 2019-09-12 Necプラットフォームズ株式会社 Three-phase ac power supply system and control method of three-phase ac power supply system
JP2019176543A (en) * 2018-03-27 2019-10-10 東京電力ホールディングス株式会社 Method for monitoring and suppressing voltage imbalance of distribution lines, and device thereof
CN111600318A (en) * 2019-08-09 2020-08-28 青岛鼎信通讯股份有限公司 Current detection method for realizing target three-phase unbalance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932699B (en) * 2016-06-08 2018-06-08 江苏盐开电气有限公司 The control method of power distribution network three-phase load

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198700A (en) * 1989-12-26 1991-08-29 Mitsubishi Heavy Ind Ltd Three-phase balanced power regulating device
JPH05292671A (en) * 1992-04-06 1993-11-05 Kazumori Ide Three-phase constant-voltage power balancing device by reference set-value follow-up control
JPH05308780A (en) * 1992-04-30 1993-11-19 Toshiba Corp Distributed power system
JPH0638383A (en) * 1992-07-14 1994-02-10 Meidensha Corp Lighting/power generator with unbalance compensation
JP2004166405A (en) * 2002-11-13 2004-06-10 Toshiba Corp Output adjusting device for power generation facility
JP2007244068A (en) * 2006-03-07 2007-09-20 Kawasaki Heavy Ind Ltd Power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198700A (en) * 1989-12-26 1991-08-29 Mitsubishi Heavy Ind Ltd Three-phase balanced power regulating device
JPH05292671A (en) * 1992-04-06 1993-11-05 Kazumori Ide Three-phase constant-voltage power balancing device by reference set-value follow-up control
JPH05308780A (en) * 1992-04-30 1993-11-19 Toshiba Corp Distributed power system
JPH0638383A (en) * 1992-07-14 1994-02-10 Meidensha Corp Lighting/power generator with unbalance compensation
JP2004166405A (en) * 2002-11-13 2004-06-10 Toshiba Corp Output adjusting device for power generation facility
JP2007244068A (en) * 2006-03-07 2007-09-20 Kawasaki Heavy Ind Ltd Power converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503891A (en) * 2011-12-22 2015-02-02 ゼネラル・エレクトリック・カンパニイ Power converter and method for controlling power converter
CN102624014A (en) * 2012-03-30 2012-08-01 胡继炜 System and method for balancing and controlling active power load
WO2014162617A1 (en) * 2013-04-05 2014-10-09 Hitachi, Ltd. Gas turbine generation system
JP2016517255A (en) * 2013-04-05 2016-06-09 株式会社日立製作所 Gas turbine power generation system
CN104280624A (en) * 2013-07-10 2015-01-14 北京中电建投微电网科技有限公司 Multifunctional intelligent micro-grid application platform
JP2016158374A (en) * 2015-02-24 2016-09-01 日本電気株式会社 Management device for power consumption, management method for power consumption, and management program for power consumption
JP2019154202A (en) * 2018-03-06 2019-09-12 Necプラットフォームズ株式会社 Three-phase ac power supply system and control method of three-phase ac power supply system
JP7136568B2 (en) 2018-03-06 2022-09-13 Necプラットフォームズ株式会社 Three-phase AC power supply system, control method for three-phase AC power supply system, and control program for three-phase AC power supply system
JP2019176543A (en) * 2018-03-27 2019-10-10 東京電力ホールディングス株式会社 Method for monitoring and suppressing voltage imbalance of distribution lines, and device thereof
CN109861254A (en) * 2018-12-25 2019-06-07 国网北京市电力公司 The implementation method and device of load access micro-capacitance sensor
CN111600318A (en) * 2019-08-09 2020-08-28 青岛鼎信通讯股份有限公司 Current detection method for realizing target three-phase unbalance
CN111600318B (en) * 2019-08-09 2023-03-31 青岛鼎信通讯股份有限公司 Current detection method for realizing target three-phase unbalance

Also Published As

Publication number Publication date
JP5164678B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5164678B2 (en) Compensation method for unbalanced current in microgrid power system and control device used in this method
Sandhu et al. Issues, challenges, causes, impacts and utilization of renewable energy sources-grid integration
Chaurasia et al. A meta-heuristic firefly algorithm based smart control strategy and analysis of a grid connected hybrid photovoltaic/wind distributed generation system
US9829899B2 (en) Apparatuses including utility meter, power electronics, and communications circuitry, and related methods of operation
AU2015287786B2 (en) Electric water heater systems for power grids with distributed generation
KR20170027829A (en) Hierarchical and distributed power grid control
Parida et al. Stand‐alone AC‐DC microgrid‐based wind‐solar hybrid generation scheme with autonomous energy exchange topologies suitable for remote rural area power supply
JP6592381B2 (en) Indicator calculation method
Thomsen et al. Faroe islands wind-powered space heating microgrid using self-excited 220-kW induction generator
JP4749375B2 (en) Control device for adjusting power supply and demand in microgrids
US20220094170A1 (en) Generation load control
Kou et al. A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems
Roodsari et al. The distributed electronic load controller: a new concept for voltage regulation in microhydro systems with transfer of excess power to households
Tiwari et al. Design and control of autonomous wind-solar energy system with DFIG feeding 3-phase 4-wire network
EP2986022A1 (en) Control device and control method
Dalmau et al. Decentralized voltage control coordination of on-load tap changer transformers, distributed generation units and flexible loads
Tugay et al. Energy efficiency of microgrid implementation with solar photovoltaic power plants
Goel et al. Modeling and control of isolated hybrid system using wind driven DFIG and hydro driven SCIG
Kato et al. An experimental study on dual Pf droop control of photovoltaic power generation for supporting grid frequency regulation
Parida et al. Remote area power supply through suitable solar PV augmented micro‐hydro generation: A case study
Kumar et al. A cost‐effective DC microgrid system for resilient power supply to grid‐connected societies
JP2019030149A (en) Voltage controller, voltage control method, and voltage control program
Janssen et al. Improved frequency regulation on hybrid wind-diesel microgrids using self-sensing electric thermal storage devices
Limouchi et al. Active generators power dispatching control in smart grid
Saraf Fault analysis of an unbalanced distribution system with distributed generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees