JP2009296801A - Oscillatory wave drive device - Google Patents

Oscillatory wave drive device Download PDF

Info

Publication number
JP2009296801A
JP2009296801A JP2008148243A JP2008148243A JP2009296801A JP 2009296801 A JP2009296801 A JP 2009296801A JP 2008148243 A JP2008148243 A JP 2008148243A JP 2008148243 A JP2008148243 A JP 2008148243A JP 2009296801 A JP2009296801 A JP 2009296801A
Authority
JP
Japan
Prior art keywords
contact spring
contact
vibrator
vibration wave
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008148243A
Other languages
Japanese (ja)
Inventor
Akira Kitajima
暁 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008148243A priority Critical patent/JP2009296801A/en
Publication of JP2009296801A publication Critical patent/JP2009296801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillatory wave drive device that obtains a stable spring performance of a frictional contact spring. <P>SOLUTION: In an oscillator composed of a contact spring having a vibrator and a beam structure, a joint of the contact spring is fusion-joined entirely by laser welding at least in one direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、振動体又は移動体と梁構造を有する接触バネによって構成される振動波駆動装置の振動子または移動子に関するものである。   The present invention relates to a vibrator or a moving element of a vibration wave driving device configured by a vibrating body or a moving body and a contact spring having a beam structure.

従来の振動波駆動装置、特にリニア用の超音波モータには、特許文献1に開示されている平板に突起を接合する形態が挙げられる。原理に関しては既に周知のものとして説明は省略する。この振動型駆動装置101の構成について図14を用いて説明する。   A conventional vibration wave driving device, particularly a linear ultrasonic motor, includes a form in which a protrusion is bonded to a flat plate disclosed in Patent Document 1. Since the principle is already well known, the description is omitted. The configuration of the vibration type driving device 101 will be described with reference to FIG.

同図において103は板状の弾性部材で、片面側に圧電素子104が接合されている。もう一方の面には摩擦部材105が接着により接合され振動子102が構成される。摩擦部材105に移動子であるリニアスライダ112を加圧接触させ相対移動させる。   In the figure, reference numeral 103 denotes a plate-like elastic member, and a piezoelectric element 104 is bonded to one side. A friction member 105 is bonded to the other surface by bonding to form the vibrator 102. The linear slider 112, which is a moving element, is brought into pressure contact with the friction member 105 and moved relative thereto.

突起部を除去加工により形成を行うのではなく、別部材として接合し形成するため、加工歪による性能の低下が抑えられ安定した高精度な振動子や振動波駆動装置が得られる。
特開平7-143771号公報
Since the protrusion is not formed by removal processing, but formed as a separate member, it is possible to obtain a stable and highly accurate vibrator or vibration wave driving device with reduced performance degradation due to processing strain.
JP-A-77-143771

振動子が矩形の平板状に形成されており、平板上の一面に摩擦部材が接合されている振動波駆動装置は、振動を発生する振動子に移動子であるリニアスライダを加圧接触させ、振動子へ給電を行い振動を発生させ、その振動を受けてリニアスライダが相対移動を行う構成である。そのため振動子の発生する振動を安定かつ効果的に移動子に伝えるため、振動子または移動子の摩擦接触部に接触バネ構造を有することと、その接触バネが強固に接合される事が望ましい。例えば接触バネが梁状に配置され、その接合にレーザー溶接を用いると金属同士が溶融接合され各部材が一体的に形成されることにより効率良く駆動力を伝えることができる。更に局部的に熱を与えることから、部品が変形を起こすことなく溶融接合が可能になる。   The vibration wave drive device in which the vibrator is formed in a rectangular flat plate shape, and the friction member is bonded to one surface on the flat plate, presses the linear slider that is a moving element against the vibrator that generates vibration, In this configuration, power is supplied to the vibrator to generate vibration, and the linear slider is moved relative to the vibration. Therefore, in order to transmit vibration generated by the vibrator to the moving element stably and effectively, it is desirable that the friction contact portion of the vibrator or moving element has a contact spring structure and that the contact spring is firmly joined. For example, when the contact spring is arranged in a beam shape and laser welding is used for the joining, the metals are melted and joined, and the members are integrally formed so that the driving force can be transmitted efficiently. Further, since heat is locally applied, melt bonding is possible without causing deformation of the parts.

また接触バネが効果的に機能し、安定した性能を発揮するためには、バネ性能にバラツキがないことが望ましい。そのためには振動子と接触バネとの接触面にバネ変形に影響を与える隙間が無いことが望ましい。しかしレーザー溶接では、その特性上2部材の接触面全面を接合することが難しく、接合部以外に微小な隙間を生じてバネ性能が不安定になってしまう。更に、接触面全面を溶融接合させようとすると溶接点数を多くすることや連続的に溶接するなど多大な溶接熱を与える必要がある。そのため部品に変形が生じ接触バネのバネ性能にバラツキが生じ、リニアスライダの相対移動が不安定になるなどの現象が発生することがある。熱影響が少ないといったレーザー溶接のメリットを生かす事ができないのである。   Further, in order for the contact spring to function effectively and to exhibit stable performance, it is desirable that the spring performance does not vary. For this purpose, it is desirable that the contact surface between the vibrator and the contact spring has no gap that affects the spring deformation. However, in laser welding, it is difficult to join the entire contact surface of the two members due to its characteristics, and a minute gap is formed in addition to the joined portion, resulting in unstable spring performance. Furthermore, if the entire contact surface is to be melt-bonded, it is necessary to apply a great amount of welding heat, such as increasing the number of welding points or continuous welding. For this reason, the parts may be deformed, the spring performance of the contact spring may vary, and phenomena such as unstable relative movement of the linear slider may occur. It is impossible to take advantage of the advantages of laser welding, such as low thermal effects.

本発明の振動波駆動装置は、振動体又は移動体と梁構造を有する接触バネによって構成される、振動波駆動装置の振動子又は移動子における、接触バネの接合部は少なくとも一方向において、少なくとも一箇所の接触部は全面においてレーザー溶接により溶融接合されていることによりバラツキが少なく安定した性能が得られる。そこで振動体または移動体と接触バネとの接触面のバネ変形に影響を与える部分に隙間を生じさせないために一方の部材又は両方の部材に凹み、または突起を形成し、溶融接合される以外の部分の接触界面をなくした。   The vibration wave driving device of the present invention includes a vibrating body or a moving body and a contact spring having a beam structure, and the vibrator or moving element of the vibration wave driving device has at least one contact spring joint in at least one direction. One contact portion is melt-bonded by laser welding over the entire surface, so that stable performance can be obtained with little variation. Therefore, in order to prevent a gap from being generated in a portion that affects the spring deformation of the contact surface between the vibrating body or the moving body and the contact spring, a recess or protrusion is formed on one member or both members, and melt bonding is performed. The contact interface of the part was eliminated.

以上、本発明の振動波駆動装置によれば、振動体又は移動体と梁構造を有する接触バネによって構成される、振動波駆動装置の振動子又は移動子における、接触バネの接合部は少なくとも一方向において、少なくとも一箇所の接触部は全面においてレーザー溶接により溶融接合されていることによりバラツキが少なく安定した性能が得られる。   As described above, according to the vibration wave driving device of the present invention, at least one junction of the contact springs in the vibrator or moving element of the vibration wave driving device, which is configured by the contact spring having the vibrating body or the moving body and the beam structure, is provided. In the direction, at least one contact portion is melt-joined by laser welding on the entire surface, so that stable performance with little variation is obtained.

次に、本発明の詳細を実施例の記述に従って説明する。   Next, details of the present invention will be described in accordance with the description of the embodiments.

図1は、本発明の第1の実施形態である振動波駆動装置1の外観斜視図、図2(a)は断面側面図、図2(b)は接触バネの変形図である(変形形状を破線で示す)。振動波駆動装置1は、振動子2及び移動子であるリニアスライダ(図示せず)によって構成されている。なお、これらの部材のほかにも、振動子2およびリニアスライダを加圧接触させるための加圧部材や、振動子2への給電を行う導通用の部材などが必要になる。これらの部材は、従来技術と同様であるため、説明を省略する。   FIG. 1 is an external perspective view of a vibration wave driving device 1 according to a first embodiment of the present invention, FIG. 2 (a) is a sectional side view, and FIG. 2 (b) is a deformation view of a contact spring (deformation shape). Is indicated by a broken line). The vibration wave driving device 1 includes a vibrator 2 and a linear slider (not shown) that is a moving element. In addition to these members, a pressure member for bringing the vibrator 2 and the linear slider into pressure contact, a conduction member for supplying power to the vibrator 2, and the like are required. Since these members are the same as those in the prior art, description thereof is omitted.

振動子2は、矩形の薄板状に形成された電気-機械変換素子である積層圧電素子4と、この積層圧電素子4の一端面に接合されて一体化される弾性部材3と、弾性部材3に接合される摩擦材として機能する接触バネ部材5により構成されている。   The vibrator 2 includes a laminated piezoelectric element 4 that is an electro-mechanical conversion element formed in a rectangular thin plate shape, an elastic member 3 that is joined and integrated with one end face of the laminated piezoelectric element 4, and an elastic member 3 The contact spring member 5 functions as a friction material to be joined to the contact spring.

本実施形態である振動波駆動装置1の振動子2は、周波数が略一致する2つの曲げ振動モードを励起し、接触バネ部材5を介してリニアスライダを相対移動させるものである。図3(a)、図3(b)に振動子の振動モードである2つのモード形状をそれぞれ模式的に示す。   The vibrator 2 of the vibration wave driving device 1 according to the present embodiment excites two bending vibration modes having substantially the same frequency, and relatively moves the linear slider via the contact spring member 5. 3 (a) and 3 (b) schematically show the two mode shapes that are the vibration modes of the vibrator.

この積層圧電素子4は、表面に電極を持つ薄板状の圧電素子膜を複数枚、積層して一体化したものである。   The laminated piezoelectric element 4 is formed by laminating and integrating a plurality of thin plate-like piezoelectric element films having electrodes on the surface.

摩擦材である接触バネ部材5は摩擦係数が高く、耐摩耗性に優れたものである必要があり、本実施形態ではステンレスに熱処理を行うことにより耐摩耗性を確保している。   The contact spring member 5, which is a friction material, needs to have a high coefficient of friction and excellent wear resistance. In this embodiment, the heat resistance is ensured by heat-treating the stainless steel.

弾性部材3の材料としては、振動特性に優れる材料であるステンレスを用いることができる。本実施形態では接触バネ部材5、弾性部材3に同種のマルテンサイト系ステンレスを用いている。レーザー溶接により局部的に熱を与え接合をしているため、摩擦接触部の耐摩耗性を低下させることなく、且つ弾性部材の振動特性も低下させず接合することが可能である。また同種の材料を用いているため容易に溶接する事が可能である。   As the material of the elastic member 3, stainless steel, which is a material excellent in vibration characteristics, can be used. In this embodiment, the same kind of martensitic stainless steel is used for the contact spring member 5 and the elastic member 3. Since the welding is performed by locally applying heat by laser welding, it is possible to join without reducing the wear resistance of the frictional contact portion and without reducing the vibration characteristics of the elastic member. Moreover, since the same kind of material is used, welding can be easily performed.

本実施形態の振動波駆動装置1は、振動を発生する振動子2にリニアスライダを加圧接触させ、振動子2へ給電を行い振動を発生させ、その振動を受けてリニアスライダが相対移動を行う構成である。そのため、振動子2が発生する振動を受けたリニアスライダが跳ねることによる異音の発生や、リニアスライダの相対移動が不安定になるなどの現象が発生することがある。そこで振動子2またはリニアスライダの摩擦接触部近傍に振動子が発生する振動をリニアスライダが効果的に受ける弾性変形部を設ける必要がある。   In the vibration wave drive device 1 of the present embodiment, the linear slider is brought into pressure contact with the vibrator 2 that generates vibration, power is supplied to the vibrator 2 to generate vibration, and the linear slider moves relative to the vibration. It is the structure to perform. For this reason, a phenomenon may occur in which abnormal noise is generated due to the linear slider bouncing the vibration generated by the vibrator 2 or the relative movement of the linear slider becomes unstable. Therefore, it is necessary to provide an elastically deforming portion that effectively receives the vibration generated by the vibrator in the vicinity of the frictional contact portion of the vibrator 2 or the linear slider.

そこで本実施形態の弾性部材3には、ハーフエッチングにより凹み6が形成されており接触バネ部材5が両持梁状に配置されることにより、バネ機能を付与させている。凹み6は切削加工により形成しても良く、プレス鍛造加工でも良い。凹み以外に貫通した穴でも良く、プレス打ち抜き加工、エッチングにより穴を形成しても良い。本実施形態では10×5mmの小型の矩形弾性部材3を用い、積層圧電素子4を接着剤により接合しており、接着面積を確保するために凹みを形成した弾性部材を用いている。   Therefore, the elastic member 3 of the present embodiment is provided with a spring function by forming a recess 6 by half-etching and arranging the contact spring member 5 in the form of a double-supported beam. The recess 6 may be formed by cutting or press forging. A hole that penetrates other than the recess may be used, and the hole may be formed by press punching or etching. In the present embodiment, a small rectangular elastic member 3 of 10 × 5 mm is used, the laminated piezoelectric element 4 is bonded with an adhesive, and an elastic member in which a recess is formed is used to secure a bonding area.

本発明では、弾性部材3のバネ機能を付与させるための凹み6の近傍に溝7を形成している。溝7により弾性部材3と接触バネ部材5が溶融接合される部分が制限され、2部材の溶融接合される以外の部分が大きく離れているため、接触バネ部材5のバネ性能が安定する。図4に弾性部材3に接触バネ部材5を配置し、レーザー溶接により接合した時の上面図を示す。破線は2部材の接触界面で、溶融接合部8は破線の円形で示す。実線の円形で示される9がレーザーが照射された部分である。レーザー溶接はその特性上レーザーを照射した面積と溶融接合する面積が異なる。本実施形態のように2部品を重ね、一方の部品側からレーザーを照射すると、接合したい位置までにレーザーの熱エネルギーが100%伝わらず、熱が拡散してしまうからである。そこで本実施形態では、凹み6や溝7により2部品の接触面積を制限しているため全面が接合される。また不要な部分を除去してあるため溶接熱が拡散しにくく、低エネルギーでの溶接が可能になるため、部品の変形を抑えることができる。本実施形態のように接触バネ部材5が両持梁状に配置される構成では、接触バネ部材5の支持位置の状態によってバネ性能が左右される。そのため2部品の接触面に隙間無く接合されていることが望ましく、特に接触バネ部材5の変形方向11に大きく影響を与える矢印10の方向(接触バネと交差する方向)に隙間が無い事が望ましい。本実施形態では凹み6と溝7により接触バネの変形方向と交差する方向10には隙間無く全面接合されている。一方で、図3(a)に示すモードに関して、曲げの方向について隙間無く接合されるため、振動子の剛性が安定する効果もある。   In the present invention, the groove 7 is formed in the vicinity of the recess 6 for imparting the spring function of the elastic member 3. The portion where the elastic member 3 and the contact spring member 5 are melt-bonded is limited by the groove 7, and the portions other than the two members that are melt-bonded are greatly separated, so that the spring performance of the contact spring member 5 is stabilized. FIG. 4 shows a top view when the contact spring member 5 is disposed on the elastic member 3 and joined by laser welding. The broken line is a contact interface between the two members, and the melt-bonded portion 8 is indicated by a broken-line circle. 9 indicated by a solid circle is a portion irradiated with the laser. Laser welding has different characteristics in terms of its laser irradiation area and fusion bonding area. This is because if two components are stacked as in the present embodiment and laser is irradiated from one component side, the thermal energy of the laser is not transmitted 100% to the position where bonding is desired, and the heat diffuses. Therefore, in this embodiment, since the contact area between the two parts is limited by the recess 6 and the groove 7, the entire surfaces are joined. In addition, since unnecessary portions are removed, welding heat hardly diffuses, and welding with low energy becomes possible, so that deformation of parts can be suppressed. In the configuration in which the contact spring member 5 is arranged like a double-supported beam as in the present embodiment, the spring performance depends on the state of the support position of the contact spring member 5. For this reason, it is desirable that there is no gap between the contact surfaces of the two parts, and in particular, there should be no gap in the direction of the arrow 10 (direction intersecting the contact spring) that greatly affects the deformation direction 11 of the contact spring member 5. . In the present embodiment, the entire surface is joined in the direction 10 intersecting the deformation direction of the contact spring by the recess 6 and the groove 7 without any gap. On the other hand, with respect to the mode shown in FIG. 3 (a), the bending is performed without any gap, so that the rigidity of the vibrator is also stabilized.

また図5に示すように接触バネ部材5の接触幅を広くする事により、リニアスライダとの接触面圧を下げ耐久性を向上することもできる。図6に前記接触幅を広くした接触バネ部材5を配置、接合した時の上面図を示す。幅を広くしているため溶接点数を増やしてあり中央の溶融接合部8は破線円形で示されるように接触バネ変形方向と交差する方向10に全面接合されている。図7に示すように複数箇所全面接合されても良いし、更に全て全面接合されても良い。図8は弾性部材3の接触バネ部材5との接触面14(四角の破線で示す)を離散的に配置しリニアスライダの移動方向と直交する方向も溶融接合部を規制している。溶接時の熱が拡散する部分を少なくしているため溶接熱を抑えることができ、未溶融部を減らすことができる。離散的に配置された接合部は円形でも良く、この場合は溶融接合部形状が円形となることから、更に溶融熱を抑え未溶融部を減らすことができる。また、これらの溝や凹みなどは接触バネ側に設けても良く、更に突起により溶融接合部を規制しても良い。それぞれ弾性部材や接触バネ部材への熱影響による変形の有無や振動波駆動装置の仕様によって調整する事ができる。   Further, as shown in FIG. 5, by increasing the contact width of the contact spring member 5, the contact surface pressure with the linear slider can be lowered and the durability can be improved. FIG. 6 shows a top view when the contact spring member 5 having a wide contact width is arranged and joined. Since the width is increased, the number of welding points is increased, and the central fusion bonded portion 8 is entirely bonded in a direction 10 intersecting with the contact spring deformation direction as indicated by a broken-line circle. As shown in FIG. 7, a plurality of locations may be joined all over, or all of them may be joined all over. In FIG. 8, the contact surface 14 (indicated by a broken square line) of the elastic member 3 with the contact spring member 5 is discretely arranged, and the direction perpendicular to the moving direction of the linear slider is also restricted. Since the part where heat at the time of welding diffuses is reduced, welding heat can be suppressed, and unmelted parts can be reduced. The joints that are discretely arranged may be circular, and in this case, the shape of the melted joint is circular, so that the heat of fusion can be further suppressed and unmelted parts can be reduced. Further, these grooves and dents may be provided on the contact spring side, and the melt-bonded portion may be regulated by a protrusion. It can be adjusted according to the presence or absence of deformation due to the thermal effect on the elastic member or the contact spring member and the specification of the vibration wave driving device.

図9は、接触バネ変形方向と交差する方向に溶接点数を増やした振動波駆動装置1の外観斜視図、図10は断面側面図である。前述のとおり本実施形態のように接触バネ部材5が両持梁状に配置される構成では、接触バネ部材5の支持状態にバネ性能が左右される。そこでバネ変形方向11と交差する方向に溶接接合部8を増やし、より安定したバネ性能が得られる。   FIG. 9 is an external perspective view of the vibration wave driving device 1 in which the number of welding points is increased in a direction intersecting the contact spring deformation direction, and FIG. 10 is a cross-sectional side view. As described above, in the configuration in which the contact spring member 5 is arranged in the form of a double-supported beam as in the present embodiment, the spring performance depends on the support state of the contact spring member 5. Therefore, the number of welded joints 8 is increased in a direction crossing the spring deformation direction 11, and more stable spring performance can be obtained.

図11に本発明の第2の実施形態である振動波駆動装置1の外観斜視図を示す。振動波駆動装置1は、第1の実施形態と同様振動子2及び移動子であるリニアスライダ12によって構成されており、本実施形態ではリニアスライダ12に接触バネ部材5を設けている。図12にはリニアスライダ12の断面図を示す。リニアスライダ12の摩擦摺動面側と両側面の下半分を被うように接触バネ部材5を配置し、両側面方向からレーザー溶接によりリニアスライダ12と接触バネ部材5を溶融接合している。本実施形態では接触バネ部材5の変形方向11と平行に溶融接合をしている。リニアスライダ12に設けられた溝7により接触バネ部材5の変形方向11に隙間無く全面溶融接合されており、安定したバネ性能を得られる。   FIG. 11 shows an external perspective view of the vibration wave driving device 1 according to the second embodiment of the present invention. As in the first embodiment, the vibration wave driving device 1 includes a vibrator 2 and a linear slider 12 that is a moving element. In this embodiment, a contact spring member 5 is provided on the linear slider 12. FIG. 12 shows a cross-sectional view of the linear slider 12. The contact spring member 5 is disposed so as to cover the friction sliding surface side of the linear slider 12 and the lower half of both side surfaces, and the linear slider 12 and the contact spring member 5 are melt-bonded by laser welding from both side surface directions. In the present embodiment, fusion bonding is performed in parallel with the deformation direction 11 of the contact spring member 5. The groove 7 provided in the linear slider 12 is melt-bonded over the entire surface in the deformation direction 11 of the contact spring member 5 without any gap, so that stable spring performance can be obtained.

図13には回転型の振動波駆動装置の移動子断面図を示す。本発明は移動子が振動子と直交する方向に相対移動する形態の振動波駆動装置のみならず、回転型の振動波駆動装置にも用いることができる。本実施形態では円形状の移動子13の側面に円筒状の接触バネ部材5を配置し、移動子13の側面方向からレーザー溶接にて接合を行っている。接触バネ部材5はプレス絞り加工により形成された円筒部の端面を摩擦摺動部として使用している。材質はステンレス材であり熱処理により硬化させ耐摩耗性を確保している。本実施形態では接触バネ部材5は片持梁状に配置されており、振動子との接触によって弧を描くように変形をするため溶融接合部の状態が非常に重要である。移動子13の側面に溝7を設ける事により、接触バネ部材5の変形する方向11と交差する方向に全面溶融接合され、安定したバネ性能を得る事ができる。   FIG. 13 shows a cross-sectional view of the moving member of the rotary vibration wave driving device. The present invention can be used not only in a vibration wave driving apparatus in which the moving element moves relative to the direction orthogonal to the vibrator, but also in a rotary vibration wave driving apparatus. In the present embodiment, a cylindrical contact spring member 5 is arranged on the side surface of the circular movable element 13 and is joined from the side surface direction of the movable element 13 by laser welding. The contact spring member 5 uses an end face of a cylindrical portion formed by press drawing as a friction sliding portion. The material is stainless steel, which is hardened by heat treatment to ensure wear resistance. In the present embodiment, the contact spring member 5 is disposed in a cantilever shape, and the state of the melt-bonded portion is very important because the contact spring member 5 is deformed so as to draw an arc by contact with the vibrator. By providing the groove 7 on the side surface of the movable element 13, the entire surface is melt-bonded in a direction intersecting with the direction 11 of deformation of the contact spring member 5, and stable spring performance can be obtained.

本発明の第1実施形態における振動波駆動装置の斜視図。The perspective view of the vibration wave drive device in 1st Embodiment of this invention. 第1実施形態における振動波駆動装置の断面側面図及び接触バネ変形図。The cross-sectional side view and contact spring deformation | transformation figure of the vibration wave drive device in 1st Embodiment. 第1実施形態における振動波駆動装置の2つの振動モードを模式的に示す斜視図。The perspective view which shows typically two vibration modes of the vibration wave drive device in 1st Embodiment. 第1実施形態における振動子の上面図。FIG. 3 is a top view of the vibrator according to the first embodiment. 第1実施形態における振動子の摩擦接触部材の摩擦摺動面積を広くした振動波駆動装置の斜視図。The perspective view of the vibration wave drive device which made the friction sliding area of the friction contact member of the vibrator | oscillator in 1st Embodiment wide. 第1実施形態における振動子の摩擦接触部材の摩擦摺動面積を広くした振動波駆動装置の上面図。FIG. 3 is a top view of the vibration wave driving device in which the frictional sliding area of the frictional contact member of the vibrator in the first embodiment is widened. 第1実施形態における振動子の摩擦接触部材の摩擦摺動面積を広くした振動波駆動装置の上面図。FIG. 3 is a top view of the vibration wave driving device in which the frictional sliding area of the frictional contact member of the vibrator in the first embodiment is widened. 第1実施形態における振動子の摩擦接触部材と弾性部材との溶融接合部を離散的に配置した振動波駆動装置の上面図。FIG. 3 is a top view of a vibration wave driving device in which fusion joint portions between a frictional contact member and an elastic member of the vibrator in the first embodiment are discretely arranged. 第1実施形態における振動子の摩擦接触部材と弾性部材との溶接点数を増やした振動波駆動装置の斜視図。The perspective view of the vibration wave drive device which increased the number of welding points of the friction contact member and elastic member of a vibrator in a 1st embodiment. 第1実施形態における振動子の摩擦接触部材と弾性部材との溶接点数を増やした振動波駆動装置の断面側面図Sectional side view of the vibration wave drive device in which the number of welding points between the frictional contact member and the elastic member of the vibrator in the first embodiment is increased. 第2実施形態における振動波駆動装置の斜視図。FIG. 6 is a perspective view of a vibration wave driving device in a second embodiment. 第2実施形態におけるリニアスライダの断面図。Sectional drawing of the linear slider in 2nd Embodiment. 第3実施形態における振動波駆動装置の移動子の断面図。Sectional drawing of the slider of the vibration wave drive device in 3rd Embodiment. 従来技術における振動波駆動装置を示す図。The figure which shows the vibration wave drive device in a prior art.

符号の説明Explanation of symbols

1、101 振動波駆動装置
2、102 振動子
3、103 弾性部材
4、104 圧電素子
5 接触バネ部材
6 凹み
7 溝
8 溶融接合部
9 レーザー照射部
10 接触バネの変形方向と交差する方向
11 接触バネ変形方向
12、112 リニアスライダ
13 移動子
14 接触面
105 摩擦接触部材
DESCRIPTION OF SYMBOLS 1,101 Vibration-wave drive device 2,102 Vibrator 3,103 Elastic member 4,104 Piezoelectric element 5 Contact spring member 6 Depression 7 Groove 8 Melt joint part 9 Laser irradiation part 10 Direction crossing the deformation direction of a contact spring 11 Contact Spring deformation direction 12, 112 Linear slider 13 Moving element 14 Contact surface 105 Friction contact member

Claims (4)

振動体又は移動体と梁構造を有する接触バネによって構成される振動波駆動装置の振動子又は移動子における接触バネの接合部は少なくとも一方向において、少なくとも一箇所の接触部は全面において溶融接合されていることを特徴とする振動波駆動装置。   The contact portion of the contact spring in the vibrator or moving element of the vibration wave driving device constituted by the vibrating body or moving body and the contact spring having a beam structure is melt-bonded in at least one direction and at least one contact portion is melt-bonded on the entire surface. The vibration wave drive device characterized by the above-mentioned. 請求項1に記載の振動波駆動装置において、前記接触部全面が溶融接合される方向が、接触バネ変形方向と交差または平行であることを特徴とする振動波駆動装置。   2. The vibration wave driving device according to claim 1, wherein a direction in which the entire contact portion is melt-bonded intersects or is parallel to a contact spring deformation direction. 請求項1、又は請求項2に記載の振動波駆動装置において、前記接触部全面が溶融接合されている接触部が複数である事を特徴とする振動波駆動装置。   3. The vibration wave driving device according to claim 1, wherein there are a plurality of contact portions in which the entire contact portion is melt-bonded. 請求項1〜請求項3のいずれかに記載の振動波駆動装置において、前記溶融接合がレーザー溶接により施されていることを特徴とする振動波駆動装置。   4. The vibration wave driving device according to claim 1, wherein the fusion bonding is performed by laser welding.
JP2008148243A 2008-06-05 2008-06-05 Oscillatory wave drive device Pending JP2009296801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148243A JP2009296801A (en) 2008-06-05 2008-06-05 Oscillatory wave drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148243A JP2009296801A (en) 2008-06-05 2008-06-05 Oscillatory wave drive device

Publications (1)

Publication Number Publication Date
JP2009296801A true JP2009296801A (en) 2009-12-17

Family

ID=41544387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148243A Pending JP2009296801A (en) 2008-06-05 2008-06-05 Oscillatory wave drive device

Country Status (1)

Country Link
JP (1) JP2009296801A (en)

Similar Documents

Publication Publication Date Title
JP4802313B2 (en) Holding device for piezoelectric vibrator
CN100566115C (en) Vibration-wave drive device and vibrator
JP5583179B2 (en) Bonding equipment
JP5627258B2 (en) Vibration type actuator and manufacturing method thereof
JP2008306907A (en) Ultrasonic motor
JP2009017735A (en) Ultrasonic motor
JP2009142014A (en) Ultrasonic motor
US20110227453A1 (en) Vibration wave driving apparatus and method of making vibrating body thereof
JP5153184B2 (en) Vibration wave drive
JP2006254627A (en) Ultrasonic motor
JP2006311790A (en) Oscillatory wave driving device
JP6324208B2 (en) Ultrasonic motor
US7687974B2 (en) Vibration type driving apparatus
JP6539037B2 (en) Drive unit
US8525388B2 (en) Vibration wave driving apparatus and manufacturing method of vibration body
JP2009296801A (en) Oscillatory wave drive device
JP2006174549A (en) Oscillatory wave drive unit
JP2007209088A (en) Ultrasonic motor
JP5701020B2 (en) Vibrating body and manufacturing method thereof in vibration type driving device, vibration type driving device and vibrator thereof
JP5677363B2 (en) Vibration wave driving device and vibrator
JP5627448B2 (en) Vibration type driving device
JP2007180333A (en) Horn unit and bonding apparatus using the same
JPH08251953A (en) Oscillation driver
JP3306211B2 (en) Ultrasonic actuator
JP5847906B2 (en) Vibrator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630