JP2009295838A - Laser resonator - Google Patents

Laser resonator Download PDF

Info

Publication number
JP2009295838A
JP2009295838A JP2008148917A JP2008148917A JP2009295838A JP 2009295838 A JP2009295838 A JP 2009295838A JP 2008148917 A JP2008148917 A JP 2008148917A JP 2008148917 A JP2008148917 A JP 2008148917A JP 2009295838 A JP2009295838 A JP 2009295838A
Authority
JP
Japan
Prior art keywords
laser
laser resonator
cylindrically symmetric
order
transverse mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008148917A
Other languages
Japanese (ja)
Other versions
JP5234457B2 (en
Inventor
Shunichi Sato
俊一 佐藤
Yuichi Ozawa
祐市 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008148917A priority Critical patent/JP5234457B2/en
Publication of JP2009295838A publication Critical patent/JP2009295838A/en
Application granted granted Critical
Publication of JP5234457B2 publication Critical patent/JP5234457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser resonator capable of stably and selectively only a specific-order transverse mode with respect to higher-order transverse modes having a plurality of ring-shaped intensity distributions of cylindrically symmetric polarized beams. <P>SOLUTION: In the laser resonator capable of oscillating a cylindrically symmetric polarized laser beam, an optical element having one or more annular loss mechanisms for cylindrically symmetric polarized transverse modes other than the specific-order transverse mode is arranged and is caused to selectively oscillate a specific-order cylindrically symmetric polarized transverse mode laser beam. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、径偏光や方位偏光を含む円筒対称な偏光分布を有するレーザー光ビームの内、高次の共振器横モードを選択的かつ単独に発生するレーザー共振器に関する。   The present invention relates to a laser resonator that selectively and independently generates a higher-order resonator transverse mode among laser light beams having a cylindrically symmetric polarization distribution including radial polarization and azimuth polarization.

レーザー光が有する偏光状態として従来良く知られているのは、直線偏光、円偏光あるいは無偏光であり、レーザー共振器から発生したレーザー光ビームの断面内における偏光分布は、ビーム全体に渡り同一である。ところが、レーザー光軸をz軸にとる円筒座標系を考えた場合には、レーザー光ビームの偏光として、直線偏光が放射状に分布する径偏光、あるいは同心円状に分布する方位偏光が存在することが知られている。これらは、偏光がビームの光軸に対して軸対称に分布しているため円筒対称偏光と呼ばれる。   Conventionally well-known polarization states of laser light are linearly polarized light, circularly polarized light or non-polarized light, and the polarization distribution in the cross section of the laser light beam generated from the laser resonator is the same throughout the beam. is there. However, in the case of a cylindrical coordinate system in which the laser optical axis is the z-axis, there may be radial polarization in which linearly polarized light is distributed radially or azimuthally polarized light in a concentric manner as the polarization of the laser light beam. Are known. These are called cylindrically symmetric polarized light because the polarized light is distributed axially symmetrically with respect to the optical axis of the beam.

レーザー光のビーム横断面における空間強度分布は横モードと呼ばれ、一定の型を有する。円筒対称偏光ビームの横モードとしては、Bessel-Gauss型、Laguerre-Gauss型、modified Bessel-Gauss型が知られているが、その基本横モードは、いずれも中心に強度を持たない円筒対称な一重のドーナツ状もしくはリング状となる。このうち、Laguerre-Gauss型を有する円筒対称偏光ビームは、高次の横モードが存在する。   The spatial intensity distribution in the beam cross section of the laser light is called a transverse mode and has a certain type. Bessel-Gauss type, Laguerre-Gauss type, and modified Bessel-Gauss type are known as transverse modes of cylindrically symmetric polarized beams, but the basic transverse modes are all cylindrically symmetric singles with no intensity at the center. It becomes a donut shape or a ring shape. Among these, the cylindrically symmetric polarized beam having the Laguerre-Gauss type has a high-order transverse mode.

高次の横モードを有する円筒対称偏光ビームは、そのビーム断面においてモード次数に応じた複数のリング状強度分布を有し、隣り合うリング間においてπラジアンの位相差を有することを特徴とする。例えば、2次の円筒対称偏光モードは、2重のリング状強度分布を有するビームとなる。複数のリングを有する高次円筒対称偏光ビームの内、高次径偏光ビームにおいては、強く集光することでGauss型強度分布を有する直線偏光、円偏光よりも小さな集光スポットを焦点に形成可能であることが知られている(例えば、非特許文献1参照)。この微小集光スポット特性は、高分解能レーザー顕微鏡や光記録分野において、応用が期待される。また、2重のリングを有する2次の径偏光ビームは、レンズの口径に対するビームの太さを適切に設定することで、焦点における電場が消滅し、その周りを電場で囲まれた微小空間を形成する(例えば、非特許文献2参照)。これは、高次の径偏光ビームにより初めて実現する特性であり、この微小空間に微粒子を3次元的に閉じ込める光ピンセットへの応用が期待される。   A cylindrically symmetric polarized beam having a high-order transverse mode has a plurality of ring-shaped intensity distributions corresponding to the mode order in the beam cross section, and has a phase difference of π radians between adjacent rings. For example, the second-order cylindrically symmetric polarization mode is a beam having a double ring intensity distribution. Among high-order cylindrically symmetric polarized beams with multiple rings, high-order polarized beams can be focused to form a focused spot that is smaller than linearly polarized light with a Gaussian intensity distribution or circularly polarized light. (For example, refer nonpatent literature 1). This fine focused spot property is expected to be applied in the high resolution laser microscope and the optical recording field. In addition, a secondary-polarized beam having a double ring appropriately sets the beam thickness with respect to the aperture of the lens so that the electric field at the focal point disappears, and a minute space surrounded by the electric field is removed. It forms (for example, refer nonpatent literature 2). This is a characteristic realized for the first time by a high-order radial polarization beam, and is expected to be applied to optical tweezers in which fine particles are three-dimensionally confined in this minute space.

円筒対称偏光レーザー光を発生する装置はいくつか開発されているが、そのほとんどはレーザー光の偏光状態のみを制御する機構により実現されており、発生したビーム断面における空間強度分布に対する選択性は有していない。そのため、従来に実現した円筒対称偏光レーザー光は、一重のドーナツ状強度分布を有する基本横モードか、複数の高次モードが同時に発振するマルチ横モードとなる(例えば、特許文献1または非特許文献3参照)。つまり、従来に開発された方法では、特定の次数を持つ高次横モードを、単独で発生させることが出来ないという欠点がある。   Several devices that generate cylindrically symmetric polarized laser light have been developed, most of which are realized by a mechanism that controls only the polarization state of the laser light, and have selectivity for the spatial intensity distribution in the generated beam cross section. Not done. Therefore, the cylindrically symmetric polarized laser beam realized in the past is a fundamental transverse mode having a single donut-shaped intensity distribution or a multi transverse mode in which a plurality of higher-order modes oscillate simultaneously (for example, Patent Document 1 or Non-Patent Document). 3). That is, the conventionally developed method has a drawback that a high-order transverse mode having a specific order cannot be generated independently.

また、高次径偏光ビームを発生させる手法の一つとして、2つの直交した高次直線偏光ビームによる干渉を用いた方法が考案されているものの、波長程度の精度において調整が必要となり、実現には至っていない(例えば、非特許文献4参照)。   In addition, although a method using interference by two orthogonal high-order linearly polarized beams has been devised as one of the methods for generating a high-order polarized beam, it is necessary to adjust the accuracy with respect to the wavelength. (For example, refer nonpatent literature 4).

Y. Kozawa and S.Sato, “Sharper focal spot formed by higher-order radially polarized laser beams”, J. Opt Soc. Am. A, 2007, 24, p.1793Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams”, J. Opt Soc. Am. A, 2007, 24, p.1793 Y. Kozawa and S.Sato, “Focusing property of a double-ring-shaped radially polarized beam”, Opt. Lett., 2006, 31, p.820Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam”, Opt. Lett., 2006, 31, p.820 T.Moser et al., “Polarization-selective grating mirrors used in the generation of radial polarization”, Appl. Phys. B, 2005, 80, p.707T.Moser et al., “Polarization-selective grating mirrors used in the generation of radial polarization”, Appl. Phys. B, 2005, 80, p.707 V. G. Niziev et al., “Generation of inhomogeneouslypolarized laser beams by use of a Sagnacinterferometer”, Appl. Opt. 2006,45, p.8393V. G. Niziev et al., “Generation of inhomogeneouslypolarized laser beams by use of a Sagnacinterferometer”, Appl. Opt. 2006,45, p.8393 特開2007−227853号公報JP 2007-227853 A

そこで、本発明は、円筒対称偏光ビームのうち、複数のリング状強度分布を有する高次横モードについて、特定次数の横モードのみを安定かつ選択的に発生することが可能なレーザー共振器の提供を目的とする。   Therefore, the present invention provides a laser resonator capable of stably and selectively generating only a specific order of transverse modes of a cylindrically symmetric polarized beam with respect to a high-order transverse mode having a plurality of ring-shaped intensity distributions. With the goal.

本発明に係るレーザー共振器は、上述した課題を解決するために、円筒対称偏光のレーザー光を発振可能なレーザー共振器内において、特定の次数以外の円筒対称偏光横モードに対する一本もしくは複数本の円環状の損失機構を有する光学素子を配置し、前記特定の次数の円筒対称偏光横モードのレーザー光を選択的に単独で発振させることを特徴としている。   In order to solve the above-described problems, the laser resonator according to the present invention includes one or a plurality of cylindrical symmetric polarized transverse modes other than a specific order in a laser resonator capable of oscillating cylindrically symmetric polarized laser light. An optical element having an annular loss mechanism is arranged, and the laser beam of the specific order cylindrically symmetric polarization transverse mode is selectively oscillated alone.

本発明によれば、円環状の損失機構とは、特定の次数を持つ高次円筒対称偏光横モード以外の横モードに対して大きな回折損失を生ずる機構であればいかなるものでもよい。具体的には、共振機を構成する反射鏡に、吸収性、散乱性の物質を円環状に塗布することや、円環状に透過率を高めた部位を形成すること等により、円環状の損失機構が得られる。   According to the present invention, the annular loss mechanism may be any mechanism that generates a large diffraction loss with respect to a transverse mode other than a high-order cylindrically symmetric polarized transverse mode having a specific order. Specifically, by applying absorptive and scattering materials in an annular shape to the reflectors that make up the resonator, or by forming a portion with increased transmittance in the annular shape, etc. A mechanism is obtained.

また、本発明に係るレーザー共振器は、構成要素である反射鏡および光学素子の少なくとも一つに、前記円環状の損失機構を有する光学素子を一本もしくは複数本有していてもよい。円環状の損失機構は、共振器の反射鏡だけでなく、光に対して透明な基板上に施してレーザー共振器内に挿入してもよく、レーザー媒質の端面やレーザー共振器内に挿入された他の光学素子上に施してもよい。これにより、レーザー共振器内で発振する円筒対称偏光モードのうち、特定の次数を持つ横モードの強度分布において、強度がゼロで節となる部分が円環状の損失部に相当することで、その特定の次数を持つ横モードのみ回折損失を受けずレーザー発振が可能となる。   The laser resonator according to the present invention may have one or a plurality of optical elements having the annular loss mechanism in at least one of a reflecting mirror and an optical element as constituent elements. The annular loss mechanism may be inserted not only into the reflector of the resonator but also onto a substrate that is transparent to light and inserted into the laser resonator, or inserted into the end face of the laser medium or into the laser resonator. Alternatively, it may be applied on another optical element. As a result, among the cylindrically symmetric polarization modes oscillating in the laser resonator, in the intensity distribution of the transverse mode having a specific order, the portion where the intensity is zero and the node corresponds to the annular loss portion. Only a transverse mode having a specific order can be oscillated without receiving diffraction loss.

また、本発明によれば、円環状の損失機構を有する光学素子を前記レーザー共振器の軸方向に稼動させることで、発振する高次円筒対称偏光モードの横モード次数を選択することができる。   In addition, according to the present invention, by operating an optical element having an annular loss mechanism in the axial direction of the laser resonator, the transverse mode order of the oscillating higher-order cylindrically symmetric polarization mode can be selected.

また、本発明に係るレーザー共振器は、円筒対称偏光でレーザー発振するための機構を有している。本発明によれば、レーザー共振器は、円筒対称偏光で選択的に発振が可能な機構を有するものであればいかなるものでもよい。例えば、径偏光もしくは方位偏光を選択的に反射可能な自己クローニング型フォトニック結晶反射型偏光子を共振器の反射鏡とすることや、複屈折性を有する一軸結晶を共振器に挿入もしくはレーザー媒質を一軸結晶としたもの等を使用することができる。   The laser resonator according to the present invention has a mechanism for laser oscillation with cylindrically symmetric polarized light. According to the present invention, any laser resonator may be used as long as it has a mechanism capable of selectively oscillating with cylindrically symmetric polarized light. For example, a self-cloning photonic crystal reflective polarizer that can selectively reflect radially polarized light or azimuthally polarized light is used as a reflector of a resonator, a uniaxial crystal having birefringence is inserted into a resonator, or a laser medium A uniaxial crystal can be used.

また、本発明によれば、レーザー発振の形態は限定されず、発振形態が、連続波あるいはパルス発振でも可能となる。   Further, according to the present invention, the form of laser oscillation is not limited, and the oscillation form can be continuous wave or pulse oscillation.

また、本発明によれば、発振波長が、可視域、赤外域、紫外域のいずれでも可能となる。   Further, according to the present invention, the oscillation wavelength can be any of the visible region, the infrared region, and the ultraviolet region.

また、本発明によれば、レーザー媒質を励起する方法が、サイドポンプあるいはエンドポンプのいずれか、あるいはこれらの併用であってもよい。   According to the present invention, the method for exciting the laser medium may be either a side pump or an end pump, or a combination thereof.

また、本発明によれば、構成要素である反射鏡の内側および外側が、平面、凹面、凸面のいずれかの形状を取ることができる。   Further, according to the present invention, the inner and outer sides of the reflecting mirror, which is a constituent element, can take any one of a flat surface, a concave surface, and a convex surface.

本発明によって、円筒対称偏光ビームのうち、複数のリング状強度分布を有する高次横モードについて、特定の次数の高次横モードを安定かつ選択的に発生することが可能となる。   According to the present invention, it is possible to stably and selectively generate a high-order transverse mode of a specific order for a high-order transverse mode having a plurality of ring-shaped intensity distributions in a cylindrically symmetric polarized beam.

本発明の実施の形態のレーザー共振器における円環状の損失機構を有する光学素子1の斜視図を、図1に示す。円筒対称偏光の一つである径偏光のみを選択的に反射可能な自己クローニング型フォトニック結晶反射型偏光子2上に、径偏光に対する反射率を大きく低下させた円環状の損失部3が設けられている。自己クローニング型フォトニック結晶反射型偏光子2は、同心円状の溝構造を有しているのに対し、円環状の損失部3は、放射状の溝構造を設けることで、フォトニック結晶構造における反射特性を変化させている。   FIG. 1 shows a perspective view of an optical element 1 having an annular loss mechanism in a laser resonator according to an embodiment of the present invention. On the self-cloning photonic crystal reflective polarizer 2 that can selectively reflect only the radially polarized light, which is one of the cylindrically symmetric polarized light, the annular loss portion 3 having a greatly reduced reflectance with respect to the radially polarized light is provided. It has been. While the self-cloning photonic crystal reflective polarizer 2 has a concentric groove structure, the annular loss portion 3 is provided with a radial groove structure, thereby reflecting in the photonic crystal structure. The characteristics are changed.

図2に、円環状の損失機構を有する光学素子1と凹面反射鏡4とからなるレーザー共振器の正面図を示す。Nd:YAG結晶5をレーザー媒質とした、一般的なレーザー共振器とすることができる。なお、レーザー媒質はNd:YAG結晶5に限らず、他のレーザー媒質を用いてもよく、共振器を構成する凹面反射鏡4は凸面でも平面でもよい。   FIG. 2 is a front view of a laser resonator including the optical element 1 having an annular loss mechanism and the concave reflecting mirror 4. A general laser resonator using the Nd: YAG crystal 5 as a laser medium can be obtained. The laser medium is not limited to the Nd: YAG crystal 5, and other laser media may be used, and the concave reflecting mirror 4 constituting the resonator may be convex or flat.

図2のレーザー共振器において、63mmのNd:YAG結晶5を使用し、凹面反射鏡4の曲率を500mmとし、共振器長を166mmとした。また、同心円状のパターンを有する自己クローニング型フォトニック結晶反射型偏光子2は、径偏光に対して90%反射、方位偏光に対して20%反射するように設計した。円環状の損失部3については、フォトニック結晶のパターンを放射状とし、径偏光が約20%反射する太さ50μmで直径550μmの円環とした。   In the laser resonator of FIG. 2, a 63 mm Nd: YAG crystal 5 was used, the curvature of the concave reflecting mirror 4 was 500 mm, and the resonator length was 166 mm. The self-cloning photonic crystal reflective polarizer 2 having a concentric pattern was designed to reflect 90% with respect to radial polarization and 20% with respect to azimuth polarization. For the annular loss portion 3, the photonic crystal pattern was a radial pattern, and a circular ring having a thickness of 50 μm and a diameter of 550 μm, which reflects about 20% of the radially polarized light.

図3に、発振したレーザー光の測定例を示す。図3(a)は、発振したビームの横断面強度分布であり、図3(b)から(d)は、直線偏光板透過後の強度分布を示している。図3中の矢印は、直線偏光板の透過偏光方向を示している。図3(a)から、発振したビームの横断面強度分布が、二重のリング状共同分布であることがわかる。また、図3(b)から(d)より、偏光方向にそって4つの楕円上強度分布が得られており、偏光板の回転に従って、この強度分布も回転していることから、径偏光の偏光分布であることがわかる。以上より、このレーザー発振が単一の2次径偏光モードであることが示される。   FIG. 3 shows a measurement example of the oscillated laser beam. 3A shows the cross-sectional intensity distribution of the oscillated beam, and FIGS. 3B to 3D show the intensity distribution after transmission through the linearly polarizing plate. The arrows in FIG. 3 indicate the transmission polarization direction of the linearly polarizing plate. FIG. 3A shows that the cross-sectional intensity distribution of the oscillated beam is a double ring-shaped joint distribution. Also, from FIGS. 3B to 3D, four elliptical intensity distributions are obtained along the polarization direction, and this intensity distribution also rotates with the rotation of the polarizing plate. It turns out that it is polarization distribution. From the above, it is shown that this laser oscillation is a single secondary diameter polarization mode.

本発明の実施の形態のレーザー共振器の偏光選択性反射型偏光子上にもうけられた円環状の損失機構を有する光学素子を示す斜視図である。It is a perspective view which shows the optical element which has the annular | circular shaped loss mechanism provided on the polarization selective reflection type polarizer of the laser resonator of embodiment of this invention. 偏光選択性反射型偏光子と凹面反射鏡とからなる本発明の実施の形態のレーザー共振器の概略正面図である。It is a schematic front view of the laser resonator of embodiment of this invention which consists of a polarization selective reflection type polarizer and a concave reflective mirror. 本発明の実施の形態のレーザー共振器の2次径偏光モード発生例を示す(a)発振したビームの横断面の強度分布、(b)第1の偏光方向の直線偏光板透過後の強度分布、(c)第2の偏光方向の直線偏光板透過後の強度分布、(b)第3の偏光方向の直線偏光板透過後の強度分布である。(A) Intensity distribution of a transverse section of an oscillated beam, (b) Intensity distribution after transmission through a linearly polarizing plate in the first polarization direction, showing an example of generation of a secondary polarization mode in a laser resonator according to an embodiment of the present invention. (C) Intensity distribution after transmission through the linearly polarizing plate in the second polarization direction, (b) Intensity distribution after transmission through the linearly polarizing plate in the third polarization direction.

符号の説明Explanation of symbols

1 円環状の損失機構を有する光学素子
2 自己クローニング型フォトニック結晶反射型偏光子
3 円環状の損失部
4 凹面反射鏡
5 Nd:YAG結晶

1 Optical element having an annular loss mechanism 2 Self-cloning photonic crystal reflective polarizer 3 Annular loss part 4 Concave reflector 5 Nd: YAG crystal

Claims (8)

円筒対称偏光のレーザー光を発振可能なレーザー共振器内において、特定の次数以外の円筒対称偏光横モードに対する一本もしくは複数本の円環状の損失機構を有する光学素子を配置し、前記特定の次数の円筒対称偏光横モードのレーザー光を選択的に単独で発振させることを特徴とするレーザー共振器。   In a laser resonator capable of oscillating cylindrically symmetric polarized laser light, an optical element having one or a plurality of annular loss mechanisms for a cylindrically symmetric polarization transverse mode other than a specific order is arranged, and the specific order A laser resonator characterized by selectively oscillating a cylindrically symmetric polarized transverse mode laser beam. 構成要素である反射鏡および光学素子の少なくとも一つに、前記円環状の損失機構を有する光学素子を一本もしくは複数本有することを特徴とする請求項1記載のレーザー共振器。   2. The laser resonator according to claim 1, wherein at least one of a reflecting mirror and an optical element which are constituent elements has one or a plurality of optical elements having the annular loss mechanism. 前記円環状の損失機構を有する光学素子を前記レーザー共振器の軸方向に稼動させることで、発振する高次円筒対称偏光モードの横モード次数を選択することを特徴とする請求項1または2記載のレーザー共振器。   3. The transverse mode order of a high-order cylindrically symmetric polarization mode that oscillates is selected by operating the optical element having the annular loss mechanism in the axial direction of the laser resonator. Laser resonator. 円筒対称偏光でレーザー発振するための機構を有することを特徴とする請求項1、2または3記載のレーザー共振器。   4. The laser resonator according to claim 1, further comprising a mechanism for laser oscillation with cylindrically symmetric polarized light. 発振形態が、連続波あるいはパルス発振であることを特徴とする請求項1、2、3または4記載のレーザー共振器。   5. The laser resonator according to claim 1, wherein the oscillation form is continuous wave or pulse oscillation. 発振波長が、可視域、赤外域、紫外域のいずれかであることを特徴とする請求項1、2、3、4または5記載のレーザー共振器。   6. The laser resonator according to claim 1, wherein the oscillation wavelength is any one of a visible region, an infrared region, and an ultraviolet region. レーザー媒質を励起する方法が、サイドポンプあるいはエンドポンプのいずれか、あるいはこれらの併用であることを特徴とする請求項1、2、3、4、5または6記載のレーザー共振器。   7. The laser resonator according to claim 1, wherein a method of exciting the laser medium is either a side pump or an end pump, or a combination thereof. 構成要素である反射鏡の内側および外側が、平面、凹面、凸面のいずれかの形状を有することを特徴とする請求項1、2、3、4、5、6または7記載のレーザー共振器。

8. The laser resonator according to claim 1, wherein an inner side and an outer side of the reflecting mirror as a constituent element have a flat, concave, or convex shape.

JP2008148917A 2008-06-06 2008-06-06 Laser resonator Expired - Fee Related JP5234457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148917A JP5234457B2 (en) 2008-06-06 2008-06-06 Laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148917A JP5234457B2 (en) 2008-06-06 2008-06-06 Laser resonator

Publications (2)

Publication Number Publication Date
JP2009295838A true JP2009295838A (en) 2009-12-17
JP5234457B2 JP5234457B2 (en) 2013-07-10

Family

ID=41543751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148917A Expired - Fee Related JP5234457B2 (en) 2008-06-06 2008-06-06 Laser resonator

Country Status (1)

Country Link
JP (1) JP5234457B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157890A (en) * 2011-03-21 2011-08-17 华中科技大学 Polarization-insensitive space folding laser resonator
JP2011204943A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator and reflective diffraction optical element
JP2011204942A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator
JP2014531777A (en) * 2011-10-07 2014-11-27 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Laser device using mode locking based on Kerr effect and its operation
US9115272B2 (en) 2007-09-20 2015-08-25 Adco Products Llc Edge sealants having balanced properties
CN108462025A (en) * 2018-05-23 2018-08-28 华中科技大学 A kind of Laser Resonator System
WO2018221083A1 (en) * 2017-05-29 2018-12-06 ソニー株式会社 Passive q-switch pulse laser device, processing apparatus, and medical apparatus
CN109073815A (en) * 2016-03-02 2018-12-21 有限会社光克隆 Optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031674B (en) * 2018-08-07 2020-09-15 上海交通大学 Method for directly generating multi-vortex light beams in cavity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827693A (en) * 1971-08-12 1973-04-12
JPH01189972A (en) * 1988-01-26 1989-07-31 Fanuc Ltd Laser oscillator
JPH09307168A (en) * 1996-05-10 1997-11-28 Nippon Steel Corp Laser oscillator
US6813286B1 (en) * 1997-05-01 2004-11-02 Yeda Research And Development Co. Ltd. Optical resonators with discontinuous phase elements
JP2007227853A (en) * 2006-02-27 2007-09-06 Tohoku Univ Cylindrically symmetric polarized laser resonator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827693A (en) * 1971-08-12 1973-04-12
JPH01189972A (en) * 1988-01-26 1989-07-31 Fanuc Ltd Laser oscillator
JPH09307168A (en) * 1996-05-10 1997-11-28 Nippon Steel Corp Laser oscillator
US6813286B1 (en) * 1997-05-01 2004-11-02 Yeda Research And Development Co. Ltd. Optical resonators with discontinuous phase elements
JP2007227853A (en) * 2006-02-27 2007-09-06 Tohoku Univ Cylindrically symmetric polarized laser resonator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC200802173006; 川上彰二郎: '積層型フォトニック結晶の産業的諸応用' 応用物理 第77巻第5号, 200805, 第508頁〜第514頁 *
JPN6012060429; 川上彰二郎: '積層型フォトニック結晶の産業的諸応用' 応用物理 第77巻第5号, 200805, 第508頁〜第514頁 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115272B2 (en) 2007-09-20 2015-08-25 Adco Products Llc Edge sealants having balanced properties
JP2011204943A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator and reflective diffraction optical element
JP2011204942A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator
CN102157890B (en) * 2011-03-21 2012-07-25 华中科技大学 Polarization-insensitive space folding laser resonator
CN102157890A (en) * 2011-03-21 2011-08-17 华中科技大学 Polarization-insensitive space folding laser resonator
JP2014531777A (en) * 2011-10-07 2014-11-27 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Laser device using mode locking based on Kerr effect and its operation
CN109073815A (en) * 2016-03-02 2018-12-21 有限会社光克隆 Optical element
CN109073815B (en) * 2016-03-02 2021-01-15 株式会社光学格子 Optical element
JPWO2018221083A1 (en) * 2017-05-29 2020-05-28 ソニー株式会社 Passive Q-switch pulse laser device, processing device and medical device
WO2018221083A1 (en) * 2017-05-29 2018-12-06 ソニー株式会社 Passive q-switch pulse laser device, processing apparatus, and medical apparatus
US11183809B2 (en) 2017-05-29 2021-11-23 Sony Corporation Passive Q-switch pulse laser device, processing apparatus, and medical apparatus
JP7140114B2 (en) 2017-05-29 2022-09-21 ソニーグループ株式会社 Passive Q-switched pulse laser device, processing device and medical device
CN108462025A (en) * 2018-05-23 2018-08-28 华中科技大学 A kind of Laser Resonator System

Also Published As

Publication number Publication date
JP5234457B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5234457B2 (en) Laser resonator
EP2965852B1 (en) Optical arrangement for laser beam shaping
JP6234105B2 (en) Super-resolution microscope
Zhang et al. All‐dielectric metasurface‐enabled multiple vortex emissions
JP5518059B2 (en) + Axisymmetric polarized beam
US8553733B2 (en) Light source device, observation device, and processing device
US6850544B2 (en) Optical resonators with orthogonally polarized modes
US20080037935A1 (en) Method and apparatus for manufacturing fiber gratings, and an optical fiber having the fiber gratings formed
JP2003035822A (en) Polariscope and microlithography projection system provided with the same
CN107085309B (en) Method for generating various high-power column vector polarized light beams based on spiral wave plate
CN103326224B (en) A kind of radial polarization beam laser
JP2008112846A (en) Laser light source device and image generator using the same
JP2008242371A (en) Light source device for illumination, and image display device
JP6097703B2 (en) Axisymmetric polarization conversion element
JP4734642B2 (en) Cylindrical Symmetric Polarized Laser Resonator
JP2009289991A (en) Laser light source
EP3583469B1 (en) Optical lithography process adapted for a sample comprising at least one fragile light emitter
JP7001251B2 (en) A device to reduce the coherence of the laser beam
WO2009145106A1 (en) Laser light source
JP5007057B2 (en) Electron beam generator
JP2009238983A (en) Laser resonator
CN101382664B (en) Polarization state non-uniform distribution light beam generating method and apparatus thereof
Dong et al. A generation method of tunable cylindrical vector ring beam
TW202002437A (en) Vortex laser generation device in degenerate cavity with spiral phase element and vortex laser generation method
JPH06104508A (en) Solid state laser oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees