JP2009295514A - Lithium ion secondary battery and method of manufacturing the same - Google Patents

Lithium ion secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2009295514A
JP2009295514A JP2008149798A JP2008149798A JP2009295514A JP 2009295514 A JP2009295514 A JP 2009295514A JP 2008149798 A JP2008149798 A JP 2008149798A JP 2008149798 A JP2008149798 A JP 2008149798A JP 2009295514 A JP2009295514 A JP 2009295514A
Authority
JP
Japan
Prior art keywords
substrate
plane
licoo
single crystal
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008149798A
Other languages
Japanese (ja)
Other versions
JP5195049B2 (en
Inventor
Eikan Oki
栄幹 大木
Ryoji Sugano
了次 菅野
Masaaki Hirayama
雅章 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008149798A priority Critical patent/JP5195049B2/en
Publication of JP2009295514A publication Critical patent/JP2009295514A/en
Application granted granted Critical
Publication of JP5195049B2 publication Critical patent/JP5195049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of having high power by orienting a specific crystal face of a LiCoO<SB>2</SB>as a positive electrode active material to a substrate, and to provide a method of manufacturing the same. <P>SOLUTION: The lithium ion secondary battery includes a positive electrode made of a thin film of a LiCoO<SB>2</SB>single crystal epitaxially growing by vertically orienting a (003) face on the surface of a metal single crystal substrate. It is desirable that the metal single crystal substrate is made of Au or Pt, and the surface of the substrate is a (110) face of the Au or the Pt. A method of manufacturing a lithium ion secondary battery is characterized in that the positive electrode is formed with epitaxial growing by vertically orienting the (003) face of the LiCoO<SB>2</SB>on the surface of the metal single crystal substrate. It is desirable that the substrate made of the Au or the Pt, wherein the (110) face becomes the surface of a substrate as the metal single crystal substrate is used, and the epitaxial growing is carried out by a pulse laser deposition method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池、特に正極物質としてLiCoO2を用いたリチウムイオン二次電池およびその製造方法に関する。   The present invention relates to a lithium ion secondary battery, in particular, a lithium ion secondary battery using LiCoO 2 as a positive electrode material and a method for manufacturing the same.

リチウムイオン二次電池は、ニカド(Ni−Cd)電池やニッケル水素(Ni−MH)電池に比べて、(1)エネルギー密度が高いため軽量化(重量1/2程度)および小型化(体積で20〜50%程度)が可能であり、(2)作動電圧が高いため電池搭載本数の低減により機器の軽量化・小型化が可能であり、(3)メモリ効果がないため継ぎ足し充電が可能である、といった優れた特徴を有するため、ノートパソコンや携帯電話に代表される携帯機器に広く用いられている。   Lithium ion secondary batteries are (1) lighter in weight (about 1/2 the weight) and smaller in size (by volume) than NiCad (Ni-Cd) and nickel metal hydride (Ni-MH) batteries. (2) Since the operating voltage is high, the number of installed batteries can be reduced to reduce the weight and size of the equipment. (3) Since there is no memory effect, additional charging is possible. Since it has excellent features such as certain, it is widely used in portable devices such as notebook computers and mobile phones.

しかし、これら応用機器の高機能化に伴って、リチウムイオン二次電池を更に高出力化する要請が高い。   However, as these application devices become more functional, there is a high demand for further increasing the output of lithium ion secondary batteries.

特許文献1には、c軸が基板の法線に対して60°以上傾いているLiCoOから成る正極を用いた固体リチウムイオン二次電池と、気相成膜法によりソース材料を特定の入射角度で供給して上記の正極を製造する方法とが開示されている。正極活物質であるLiCoOと電解質間の抵抗が下がることで高出力化できる。 In Patent Document 1, a solid lithium ion secondary battery using a positive electrode made of LiCoO 2 whose c-axis is inclined by 60 ° or more with respect to the normal line of the substrate, and a source material with a specific incidence by a vapor deposition method A method of manufacturing the positive electrode by supplying at an angle is disclosed. The output between LiCoO 2 that is the positive electrode active material and the electrolyte is lowered, so that the output can be increased.

しかし特許文献1の方法では、c軸が基板に対して垂直であるLiCoOから成る正極を製造することは困難であり、高出力化に限界があった。 However, in the method of Patent Document 1, it is difficult to manufacture a positive electrode made of LiCoO 2 whose c-axis is perpendicular to the substrate, and there is a limit to increasing the output.

特許文献2には、単結晶ニ酸化マンガン粒子のc軸方向が集電体に対して垂直に配向している電池用正極が開示されており、特許文献3には、RFスパッタリング法により製膜し、その後の加熱処理により五酸化ニオブの高配向性薄膜を得る方法が開示されており、特許文献4には、パルスレーザー・デポジション法を用いた薄膜形成方法によりスパッタリング法に比べて高い配向性が得られることが開示されている。   Patent Document 2 discloses a positive electrode for a battery in which the c-axis direction of single-crystal manganese dioxide particles is oriented perpendicular to the current collector, and Patent Document 3 forms a film by RF sputtering. In addition, a method for obtaining a highly oriented thin film of niobium pentoxide by subsequent heat treatment is disclosed. Patent Document 4 discloses a method of forming a thin film using a pulse laser deposition method, which has a higher orientation than the sputtering method. It is disclosed that the property can be obtained.

しかし、上記いずれにも、リチウムイオン二次電池の高出力化を可能とする正極およびその製造方法については何ら示唆がない。   However, in any of the above, there is no suggestion about a positive electrode capable of increasing the output of a lithium ion secondary battery and a manufacturing method thereof.

また、非特許文献1には、半導体単結晶基板上にLiCoOを基板に対して(003)面が垂直に完全配向させたことが報告されているが、半導体接合の影響により不可避的に電圧が低下するため電池の正極として用いることは不適当である。 Non-Patent Document 1 reports that LiCoO 2 is perfectly oriented on a semiconductor single crystal substrate so that the (003) plane is perpendicular to the substrate. Therefore, it is inappropriate to use as a positive electrode of a battery.

特開2003−132887号公報JP 2003-132877 A 特開2007−5281号公報JP 2007-5281 A 特開平7−142054号公報Japanese Patent Laid-Open No. 7-142054 特開平9−59762号公報JP-A-9-59762 M. Hirayama et al., Journal of Power Sources 168, 493 (2007)M. Hirayama et al., Journal of Power Sources 168, 493 (2007)

本発明は、基板に対して正極活物質であるLiCoOの特定結晶面を配向させたことにより高出力化を可能としたリチウムイオン二次電池およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a lithium ion secondary battery and a method for manufacturing the same, which can increase the output by orienting a specific crystal plane of LiCoO 2 that is a positive electrode active material with respect to a substrate.

上記の目的を達成するために、本発明のリチウムイオン二次電池は、金属単結晶基板面に(003)面を垂直に配向させてエピタキシャル成長したLiCoO単結晶の薄膜から成る正極を有することを特徴とする。 In order to achieve the above object, the lithium ion secondary battery of the present invention has a positive electrode made of a thin film of LiCoO 2 single crystal epitaxially grown with the (003) plane vertically oriented on the surface of the metal single crystal substrate. Features.

上記本発明のリチウムイオン二次電池を製造する方法は、本発明によれば、金属単結晶基板面上にLiCoOの(003)面を垂直に配向させてエピタキシャル成長させることにより正極を形成することを特徴とする。 According to the present invention, the method of manufacturing a lithium ion secondary battery according to the present invention forms a positive electrode by epitaxially growing a (003) plane of LiCoO 2 vertically on a metal single crystal substrate surface. It is characterized by.

LiCoOは、CoO層(O/Co/Oの3層領域)と、Li層とが交互に積層した岩塩型結晶構造を有し、CoO層で構成される(003)面の間をLiイオンが出入りすることによりリチウムイオン二次電池の充放電が行なわれる。 LiCoO 2 is, CoO 2 layer (the third layer region of the O / Co / O), has a rock-salt crystal structure in which a Li layer alternately laminated, between the configured (003) plane in CoO 2 layers Lithium ion secondary batteries are charged and discharged when Li ions enter and exit.

本発明においては、基板面にLiCoOをエピタキシャル成長させることにより(003)面を基板面に対して垂直配向させたことにより、Liイオンの出入りが容易になり、リチウムイオン二次電池の高出力化が可能になる。 In the present invention, by allowing LiCoO 2 to grow epitaxially on the substrate surface, the (003) surface is oriented perpendicularly to the substrate surface, thereby making it easier for Li ions to enter and exit, and to increase the output of the lithium ion secondary battery. Is possible.

従来は、基板面に対して(003)面を垂直に配向させることができなかった。   Conventionally, the (003) plane could not be oriented perpendicular to the substrate surface.

図1に、本発明のリチウムイオン二次電池の正極構造を模式的に示す。   FIG. 1 schematically shows a positive electrode structure of a lithium ion secondary battery of the present invention.

正極10は、金属単結晶基板12の基板面12Sに(003)面を垂直に配向させてエピタキシャル成長したLiCoO単結晶の薄膜14から成る。LiCoO単結晶14は、CoO層16とLi層18とが交互に〔001〕方向に積層した岩塩形結晶構造である。充電時にはLiイオン18がCoO層16間から矢印Cで示すように放出され、放電時には矢印Dで示すようにLiイオン18がCoO層16間に戻る。CoO層16も、Li層18も、それぞれ(003)面を規定しており、CoO層16とLi層18の両方で規定する面は(006)面である。(006)面の面間隔は(003)面の面間隔の1/2である。LiCoO14の(003)面が基板面12Sに垂直であることにより、Liイオン18の出入りが最も効率的に行なわれ、高出力化ができる。 The positive electrode 10 is composed of a thin film 14 of LiCoO 2 single crystal epitaxially grown with the (003) plane oriented perpendicularly to the substrate surface 12S of the metal single crystal substrate 12. The LiCoO 2 single crystal 14 has a rock salt crystal structure in which CoO 2 layers 16 and Li layers 18 are alternately stacked in the [001] direction. At the time of charging, Li ions 18 are emitted from between the CoO 2 layers 16 as indicated by an arrow C, and at the time of discharging, Li ions 18 return between the CoO 2 layers 16 as indicated by an arrow D. Both the CoO 2 layer 16 and the Li layer 18 define the (003) plane, and the plane defined by both the CoO 2 layer 16 and the Li layer 18 is the (006) plane. The (006) plane spacing is ½ of the (003) spacing. Since the (003) plane of LiCoO 2 14 is perpendicular to the substrate surface 12S, the Li ions 18 can enter and exit most efficiently, and the output can be increased.

金属単結晶基板12としては、(110)を基板面12SとするAu基板またはPt基板を用いることができる。金属単結晶基板面12SにLiCoO14の(003)面を垂直に配向させてエピタキシャル成長を可能とするためには、基板面12Sに垂直な基板格子面間隔と、基板面12に垂直なLiCoO14の格子面間隔とが、十分に近いことが必要である。十分に近いかどうかは、一義的に決定すべきものではなく、エピタキシャル成長できるか否かによる。すなわち、用いた製膜技術によってエピタキシャル成長できればよい。本発明は、エピタキシャル成長を利用することにより、基板に対して(003)面が垂直に配向したLiCoO薄膜を得ることを可能とした点に特徴がある。 As the metal single crystal substrate 12, an Au substrate or a Pt substrate having (110) as the substrate surface 12S can be used. In order to enable epitaxial growth by orienting the (003) plane of LiCoO 2 14 perpendicularly to the metal single crystal substrate surface 12S, the substrate lattice plane spacing perpendicular to the substrate surface 12S and the LiCoO 2 perpendicular to the substrate surface 12 are possible. It is necessary that the lattice spacing of 14 is sufficiently close. Whether it is sufficiently close or not should not be determined uniquely, but depends on whether or not epitaxial growth is possible. That is, it suffices if epitaxial growth can be performed by the film forming technique used. The present invention is characterized in that it is possible to obtain a LiCoO 2 thin film in which the (003) plane is oriented perpendicularly to the substrate by using epitaxial growth.

基板面に垂直なLiCoO14のCoO面16と、2つのCoO面16間の中央に挟まれているLi面18との面間隔は(003)面の面間隔の半分すなわち(006)面の面間隔であり、2.34Åである。 And CoO 2 surface 16 of LiCoO 2 14 perpendicular to the substrate surface, the surface distance between the Li surface 18 sandwiched in the center between the two CoO 2 plane 16 i.e. half the spacing of (003) plane (006) The distance between the surfaces is 2.34 mm.

(110)面を基板面12SとするAu基板12は、基板面12Sに垂直な面は(−111)面または(1−11)面であり、面間隔は2.35Åである。LiCoO(006)面の面間隔2.34Åとのミスフィットは(2.35−2.34)/2.34=0.004=0.4%である。 In the Au substrate 12 having the (110) plane as the substrate plane 12S, the plane perpendicular to the substrate plane 12S is the (−111) plane or the (1-11) plane, and the plane spacing is 2.35 mm. The misfit of the LiCoO 2 (006) plane with a spacing of 2.34 mm is (2.35−2.34) /2.34=0.004=0.4%.

(110)面を基板面12SとするPt基板12は、基板面12Sに垂直な面は(−111)面または(1−11)面であり、面間隔は2.29Åである。LiCoO(006)面の面間隔2.34Åとのミスフィットは(2.29−2.34)/2.34=−0.02=−2%である。 In the Pt substrate 12 having the (110) plane as the substrate plane 12S, the plane perpendicular to the substrate plane 12S is the (−111) plane or the (1-11) plane, and the plane spacing is 2.29 mm. The misfit of the LiCoO 2 (006) plane with a spacing of 2.34 mm is (2.29-2.34) /2.34=−0.02=−2%.

Au基板またはPt基板の(110)基板面12Sに、LiCoO(110)面が接した形で、LiCoO〔110〕方向Rに沿ってエピタキシャル成長する。これにより(110)基板面12Sに対してLiCoO(003)面が垂直な方向に成長する。AuまたはPtの(110)基板面12Sに垂直な(−111)面または(1−11)面の面間隔と、LiCoOの(006)面の面間隔とが、上記の程度のミスフィットである(十分に近い)ことによって、上記のエピタキシャル成長が可能となっている。 Epitaxial growth is performed along the LiCoO 2 [110] direction R with the LiCoO 2 (110) surface in contact with the (110) substrate surface 12S of the Au substrate or Pt substrate. As a result, the LiCoO 2 (003) plane grows in a direction perpendicular to the (110) substrate surface 12S. The gap between the (−111) plane or the (1-11) plane perpendicular to the (110) substrate plane 12S of Au or Pt and the plane spacing of the (006) plane of LiCoO 2 are the above-mentioned misfit. By being (close enough), the above epitaxial growth is possible.

〔実施例1〕
本発明のリチウムイオン二次電池正極を構成するLiCoO薄膜を下記の方法により製造した。
[Example 1]
A LiCoO 2 thin film constituting the positive electrode of the lithium ion secondary battery of the present invention was produced by the following method.

<作製手法>
PLD(Pulse Laser Deposition:パルスレーザー・デポジション法)
真空チャンバー内で、薄膜の材料となるターゲットにパルスレーザーを照射することでプラズマ化させ、ターゲットの対角上に設置した基板に堆積することで薄膜を作成する。
<Production method>
PLD (Pulse Laser Deposition)
In a vacuum chamber, a target, which is a material of the thin film, is irradiated with a pulsed laser to be turned into plasma, and deposited on a substrate placed on the diagonal of the target to form a thin film.

<装置>
真空チャンバー:AOV(株)社製
KrFエキシマレーザー(248nm):Coherent GmbH社製
<成膜条件>
レーザー出力:150mJ、10Hz
成膜時間:1h
酸素分圧:0.025torr
基板:単結晶Au(110)基板
(750℃×12h 加熱処理してから使用)
基板温度:600℃
基板回転速度:30rpm
ターゲット:LiCoO焼結体(φ20mm×5mm)
ターゲット回転速度:60rpm
基板−ターゲット距離:7.5cm
〔実施例2〕
本発明のリチウムイオン二次電池正極を構成するLiCoO薄膜を実施例1と同じ条件で製造した。ただし、基板として単結晶Pt(110)基板を用いた。
<Device>
Vacuum chamber: AOV Co., Ltd. KrF excimer laser (248 nm): Coherent GmbH <Film formation conditions>
Laser power: 150mJ, 10Hz
Deposition time: 1h
Oxygen partial pressure: 0.025 torr
Substrate: Single crystal Au (110) substrate
(Used after heat treatment at 750 ° C x 12h)
Substrate temperature: 600 ° C
Substrate rotation speed: 30 rpm
Target: LiCoO 2 sintered body (φ20mm × 5mm)
Target rotation speed: 60rpm
Substrate-target distance: 7.5cm
[Example 2]
The LiCoO 2 thin film constituting the lithium ion secondary battery positive electrode of the present invention was produced under the same conditions as in Example 1. However, a single crystal Pt (110) substrate was used as the substrate.

実施例1および実施例2により、それぞれAu(110)基板上およびPt(110)基板上に成膜されたLiCoO薄膜について、CuKα線によりX線回折を行った。out of plane測定およびin plane測定による測定結果をまとめて表1に示す。out of plane測定(一般的な測定)では基板法線方向に配向した結晶面のピークが現われ、in plane測定では基板に対して垂直な面のピークが現われる。 According to Example 1 and Example 2, the LiCoO 2 thin film formed on the Au (110) substrate and the Pt (110) substrate, respectively, was subjected to X-ray diffraction using CuKα rays. Table 1 summarizes the measurement results of out-of-plane measurement and in-plane measurement. In out-of-plane measurement (general measurement), the peak of the crystal plane oriented in the normal direction of the substrate appears. In in-plane measurement, the peak of the plane perpendicular to the substrate appears.

Figure 2009295514
Figure 2009295514

表1には、(003)〔2θ≒18.9°〕、(101)〔2θ≒37.4°〕、(104)〔2θ≒45.2°〕、(110)〔2θ≒66.4°〕の回折ピークの有無を示した。表1に示したように、out of plane測定では(003)面と直角の関係にある(110)面のみが観測され、in plane測定では(003)面のみが観測された。   Table 1 shows (003) [2θ≈18.9 °], (101) [2θ≈37.4 °], (104) [2θ≈45.2 °], (110) [2θ≈66.4. The presence or absence of a diffraction peak of [°]. As shown in Table 1, only the (110) plane perpendicular to the (003) plane was observed in the out of plane measurement, and only the (003) plane was observed in the in plane measurement.

この結果から、実施例1(単結晶Au(110)基板使用)、実施例2(単結晶Pt(110)基板使用)のいずれの場合にも、基板面に対して(003)面が完全に垂直に配向しているLiCoO薄膜が得られたことが分かる。 From this result, in both cases of Example 1 (using a single crystal Au (110) substrate) and Example 2 (using a single crystal Pt (110) substrate), the (003) plane is completely relative to the substrate surface. It can be seen that a vertically oriented LiCoO 2 thin film was obtained.

<従来例との比較>
表2に、前述の特許文献1に開示されているc軸が基板法線に対して75°傾いているLiCoO薄膜についてのout of plane測定による配向度を、実施例1と比較して示す。
<Comparison with conventional example>
Table 2 shows the degree of orientation by out-of-plane measurement of the LiCoO 2 thin film in which the c-axis disclosed in the above-mentioned Patent Document 1 is inclined by 75 ° with respect to the substrate normal, as compared with Example 1. .

Figure 2009295514
Figure 2009295514

配向度を(003)面による回折強度に対する強度比で比較する。   The degree of orientation is compared by the intensity ratio to the diffraction intensity by the (003) plane.

本発明の実施例1では、表1に示したようにout of plane測定では(003)面と直角の関係にある(110)面のみが観測されたのに対応して、表2において(003)面、(101)面、(104)面の強度比はいずれも0であり、基板面に対して(003)が垂直に配向していることが明瞭に示されている。   In Example 1 of the present invention, as shown in Table 1, in the out of plane measurement, only the (110) plane perpendicular to the (003) plane was observed. ) Plane, (101) plane, and (104) plane are all 0, and it is clearly shown that (003) is oriented perpendicular to the substrate plane.

これに対して、特許文献1の従来例では(003)面、(101)面、(104)面が大きな強度比で観測されており、基板面に対する特定方位の配向は認められない。なお、特許文献1には(110)面の回折データが示されていなかったため、(110)面の回折強度比は0と推察する。   On the other hand, in the conventional example of Patent Document 1, the (003) plane, (101) plane, and (104) plane are observed with a large intensity ratio, and no orientation in a specific direction with respect to the substrate plane is recognized. In addition, since the diffraction data of the (110) plane was not shown in Patent Document 1, the diffraction intensity ratio of the (110) plane is assumed to be zero.

<原子配列>
図2に、実施例1のAu基板とその上にエピタキシャル成長したLiCoOとの界面におけるAu原子とLiCoOのO原子との配列関係を示す。
<Atomic arrangement>
Figure 2 shows the arrangement relationship between the Au atoms and LiCoO 2 O atoms at the interface between the Au substrate of Example 1 and LiCoO 2 was epitaxially grown thereon.

同図に示したように、Au[1−11]方向とLiCoO[006]方向とが一致しており、これらの方向の隣接O原子(図中●)間距離と隣接Au原子(図中○)間距離とがほぼ等しい。更に、Au(1−11)面とLiCoO(006)面とが規則性を持って周期的に重なっている。つまり重なり合うことで安定に存在している。 As shown in the figure, the Au [1-11] direction and the LiCoO 2 [006] direction coincide with each other, the distance between adjacent O atoms (● in the figure) and the adjacent Au atom (in the figure). ○) The distance is almost equal. Furthermore, the Au (1-11) plane and the LiCoO 2 (006) plane periodically overlap with regularity. In other words, it exists stably by overlapping.

図2は、Au基板の場合を示したが、Pt基板の場合についても、LiCoOエピタキシャル薄膜との間で同様の原子配列関係が成立している。 Although FIG. 2 shows the case of the Au substrate, the same atomic arrangement relationship is established with the LiCoO 2 epitaxial thin film also in the case of the Pt substrate.

AuまたはPt基板とLiCoOエピタキシャル薄膜との接触面において、AuおよびPt基板の最表面の原子配列とLiCoO薄膜の最表面の原子配列とが重なった点が周期的に規則的に配列した組み合わせを選択したことで、本発明の(110)配向したLiCoO薄膜を得ることができる。 A combination in which the points where the atomic arrangement on the outermost surface of the Au and Pt substrate overlaps the atomic arrangement on the outermost surface of the LiCoO 2 thin film are regularly and regularly arranged at the contact surface between the Au or Pt substrate and the LiCoO 2 epitaxial thin film By selecting this, the (110) -oriented LiCoO 2 thin film of the present invention can be obtained.

〔比較例〕
LiCoO薄膜を実施例1と同じ条件で製造した。ただし、基板として単結晶Au(111)基板を用いた。実施例1、2と同様にX線回折を行った。結果を表3に示す。
[Comparative example]
A LiCoO 2 thin film was produced under the same conditions as in Example 1. However, a single crystal Au (111) substrate was used as the substrate. X-ray diffraction was performed in the same manner as in Examples 1 and 2. The results are shown in Table 3.

Figure 2009295514
Figure 2009295514

表3に示したように、out of plane測定では(003)面のみが観測され、in plane測定では(003)面と直角の関係にある(110)面のみが観測された。   As shown in Table 3, only the (003) plane was observed in the out of plane measurement, and only the (110) plane perpendicular to the (003) plane was observed in the in plane measurement.

この結果から、Au(111)基板面に対して(003)面が完全に平行に配向しているLiCoOが形成されたことが分かる。すなわち、本発明の狙いとする基板面に対して(003)面が垂直に配向したLiCoO薄膜は得られなかった。 From this result, it can be seen that LiCoO 2 was formed in which the (003) plane was perfectly parallel to the Au (111) substrate surface. That is, a LiCoO 2 thin film in which the (003) plane was oriented perpendicular to the target substrate surface of the present invention could not be obtained.

<充放電特性>
実施例1および比較例で作製したAu基板/LiCoO正極をそれぞれ用いた下記セル構成のリチウムイオン二次電池を作製し、下記の条件で充放電特性を測定した。
<Charge / discharge characteristics>
A lithium ion secondary battery having the following cell configuration using each of the Au substrate / LiCoO 2 positive electrode prepared in Example 1 and the comparative example was manufactured, and charge / discharge characteristics were measured under the following conditions.

≪セル構成≫
正極…実施例1または比較例にて成膜
負極…Li金属(本城金属製)
電解液…1M LiO4/EC−DEC(富山薬品製)
セパレーター…UP3025(宇部興産製)
≪測定条件≫
装置:1286型ポテンショスタット/ガルバノスタット(Solartron社製)
治具(セル):トムセル(日本トムセル製)
測定環境:25℃高温槽内
測定条件: 測定電位…3.0〜4.3V
挿引速度…0.1mV/sec
図3に測定結果を示す。図中、実線の電位/電流曲線で示した実施例1によるセルでは、充電時および放電時共に3.9V付近の電位でシャープなピーク(酸化還元反応)が認められ、Liイオンの出入りが盛んに行なわれることが分かる。これに対して、破線の電位/電流曲線で示した比較例によるセルでは、充電時も放電時も明瞭なピークは認められず、Liイオンの移動がほとんど行なわれないことが分かる。
≪Cell configuration≫
Positive electrode: film formation in Example 1 or Comparative Example Negative electrode: Li metal (made by Honjo Metal)
Electrolyte ... 1M LiO4 / EC-DEC (Toyama Pharmaceutical)
Separator: UP3025 (Ube Industries)
≪Measurement conditions≫
Apparatus: 1286 type potentiostat / galvanostat (manufactured by Solartron)
Jig (cell): Tomcell (made by Nippon Tomcell)
Measurement environment: in a high temperature bath at 25 ° C. Measurement conditions: Measurement potential: 3.0 to 4.3 V
Insertion speed: 0.1 mV / sec
FIG. 3 shows the measurement results. In the figure, in the cell according to Example 1 shown by the solid line potential / current curve, a sharp peak (oxidation-reduction reaction) was observed at a potential of about 3.9 V both during charging and discharging, and Li ions entered and exited actively. It can be seen that On the other hand, in the cell according to the comparative example shown by the broken line potential / current curve, no clear peak is observed at the time of charging and discharging, and it is understood that the movement of Li ions is hardly performed.

このように、本発明により単結晶Au(110)基板面に(003)面を垂直に配向させてエピタキシャル成長したLiCoO単結晶の薄膜から成る正極を有するリチウムイオン二次電池は、充放電時のLiイオンの出入りが向上し、高出力化が可能である。 Thus, according to the present invention, a lithium ion secondary battery having a positive electrode made of a thin film of LiCoO 2 single crystal epitaxially grown with the (003) plane oriented vertically on the single crystal Au (110) substrate surface is the Li ion entry / exit is improved, and high output is possible.

本発明によれば、基板に対して正極活物質であるLiCoOの特定結晶面を配向させたことにより高出力化を可能としたリチウムイオン二次電池およびその製造方法が提供される。 According to the present invention, the positive electrode active high output capable and the lithium ion secondary battery and a manufacturing method thereof by a specific crystal plane of LiCoO 2 is a material was aligned with respect to the substrate is provided.

図1は、本発明のリチウムイオン二次電池の正極構造を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a positive electrode structure of a lithium ion secondary battery of the present invention. 図2は、実施例1のAu基板とその上にエピタキシャル成長したLiCoOとの界面におけるAu原子とLiCoOのO原子との配列関係を示す平面図である。Figure 2 is a plan view showing an arrangement relationship between the Au atoms and LiCoO 2 O atoms at the interface between the Au substrate of Example 1 and LiCoO 2 epitaxially grown thereon. 図3は、実施例1および比較例で作製したAu基板/LiCoO正極をそれぞれ用いたリチウムイオン二次電池の充放電曲線を示すグラフである。FIG. 3 is a graph showing charge / discharge curves of a lithium ion secondary battery using the Au substrate / LiCoO 2 positive electrode prepared in Example 1 and the comparative example, respectively.

符号の説明Explanation of symbols

10 正極
12 金属単結晶基板
12S 基板面(基板(110)面)
14 LiCoO単結晶薄膜
16 CoO
18 Li層(Liイオン)
R LiCoO[110]方向
C 充電時のLiイオン18の移動方向
D 放電時のLiイオン18の移動方向
10 Positive electrode 12 Metal single crystal substrate 12S Substrate surface (substrate (110) surface)
14 LiCoO 2 single crystal thin film 16 CoO 2 layer 18 Li layer (Li ion)
R LiCoO 2 [110] direction C Movement direction of Li ion 18 during charging D Movement direction of Li ion 18 during discharging

Claims (4)

金属単結晶基板面に(003)面を垂直に配向させてエピタキシャル成長したLiCoO単結晶の薄膜から成る正極を有することを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode made of a thin film of LiCoO 2 single crystal epitaxially grown with a (003) plane vertically oriented on a metal single crystal substrate surface. 請求項1において、前記金属単結晶基板がAuまたはPtから成り、該基板面がAuまたはPtの(110)面であることを特徴とするリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the metal single crystal substrate is made of Au or Pt, and the substrate surface is a (110) surface of Au or Pt. 金属単結晶基板面上にLiCoOの(003)面を垂直に配向させてエピタキシャル成長させることにより正極を形成することを特徴とするリチウムイオン二次電池の製造方法。 A method of manufacturing a lithium ion secondary battery, comprising forming a positive electrode by epitaxially growing a (003) plane of LiCoO 2 vertically on a metal single crystal substrate surface. 請求項3において、前記金属単結晶基板として(110)面を基板面とするAuまたはPtの基板を用い、前記エピタキシャル成長をパルスレーザー・デポジション法により行なうことを特徴とするリチウムイオン二次電池の製造方法。   4. The lithium ion secondary battery according to claim 3, wherein an Au or Pt substrate having a (110) plane as a substrate surface is used as the metal single crystal substrate, and the epitaxial growth is performed by a pulse laser deposition method. Production method.
JP2008149798A 2008-06-06 2008-06-06 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP5195049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149798A JP5195049B2 (en) 2008-06-06 2008-06-06 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149798A JP5195049B2 (en) 2008-06-06 2008-06-06 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009295514A true JP2009295514A (en) 2009-12-17
JP5195049B2 JP5195049B2 (en) 2013-05-08

Family

ID=41543508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149798A Expired - Fee Related JP5195049B2 (en) 2008-06-06 2008-06-06 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5195049B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074303A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
WO2010074299A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
WO2010074302A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
JP2012238495A (en) * 2011-05-12 2012-12-06 Ngk Insulators Ltd Lithium secondary battery and positive electrode active material particle thereof
US8404001B2 (en) 2011-04-15 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode and power storage device
WO2014038394A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Positive electrode active material for lithium secondary battery
WO2015029289A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
WO2015029307A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2015029290A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
WO2015104824A1 (en) * 2014-01-10 2015-07-16 株式会社日立製作所 Lithium ion secondary battery positive electrode and lithium ion secondary battery
EP3128581A1 (en) * 2015-08-04 2017-02-08 Samsung Electronics Co., Ltd. Cathode including sintered polycrystalline material, secondary battery including the same, and method of manufacturing the cathode
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
JP2017103054A (en) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 Positive electrode active material, and lithium ion secondary battery using the same
JP2018527693A (en) * 2015-06-10 2018-09-20 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing nanostructured layer
US20190103612A1 (en) * 2017-09-29 2019-04-04 International Business Machines Corporation High-capacity rechargeable battery stacks containing a spalled cathode material
US10601033B2 (en) 2017-09-29 2020-03-24 International Business Machines Corporation High-performance rechargeable batteries having a spalled and textured cathode layer
KR20230098047A (en) 2021-12-24 2023-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode, secondary battery, and electronic device
US11757094B2 (en) 2019-08-01 2023-09-12 Samsung Electronics Co., Ltd. Battery and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922693A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JPH09120815A (en) * 1995-08-23 1997-05-06 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922693A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JPH09120815A (en) * 1995-08-23 1997-05-06 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacture

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
WO2010074299A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074302A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
JPWO2010074314A1 (en) * 2008-12-24 2012-06-21 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JPWO2010074304A1 (en) * 2008-12-24 2012-06-21 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JP5043203B2 (en) * 2008-12-24 2012-10-10 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
WO2010074303A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
JP5542694B2 (en) * 2008-12-24 2014-07-09 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
US8518584B2 (en) 2010-02-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha Production method for electrode for battery, electrode produced by production method, and battery including electrode
US8404001B2 (en) 2011-04-15 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode and power storage device
JP2012238495A (en) * 2011-05-12 2012-12-06 Ngk Insulators Ltd Lithium secondary battery and positive electrode active material particle thereof
WO2014038394A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Positive electrode active material for lithium secondary battery
US9246168B2 (en) 2012-09-04 2016-01-26 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery
JPWO2014038394A1 (en) * 2012-09-04 2016-08-08 日本碍子株式会社 Positive electrode active material for lithium secondary battery
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
US9780407B2 (en) 2013-08-29 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. All-solid lithium secondary battery
JPWO2015029289A1 (en) * 2013-08-29 2017-03-02 パナソニックIpマネジメント株式会社 All-solid lithium secondary battery
WO2015029290A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
JP5789796B2 (en) * 2013-08-29 2015-10-07 パナソニックIpマネジメント株式会社 All-solid lithium secondary battery
WO2015029307A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2015029289A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
US9799920B2 (en) 2013-08-29 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. All-solid lithium secondary battery
JP5853212B2 (en) * 2013-08-29 2016-02-09 パナソニックIpマネジメント株式会社 Lithium secondary battery
JPWO2015029290A1 (en) * 2013-08-29 2017-03-02 パナソニックIpマネジメント株式会社 All-solid lithium secondary battery
JPWO2015029307A1 (en) * 2013-08-29 2017-03-02 パナソニックIpマネジメント株式会社 Lithium secondary battery
US9660264B2 (en) 2013-08-29 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
WO2015104824A1 (en) * 2014-01-10 2015-07-16 株式会社日立製作所 Lithium ion secondary battery positive electrode and lithium ion secondary battery
JP2018527693A (en) * 2015-06-10 2018-09-20 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing nanostructured layer
US11111576B2 (en) 2015-06-10 2021-09-07 Forschungszentrum Juelich Gmbh Method for producing nanostructured layers
EP3128581A1 (en) * 2015-08-04 2017-02-08 Samsung Electronics Co., Ltd. Cathode including sintered polycrystalline material, secondary battery including the same, and method of manufacturing the cathode
KR20220119345A (en) * 2015-08-04 2022-08-29 삼성전자주식회사 Cathode including sintered poly crystalline material, secondary battery including the cathode, and method of manufacturing the cathode
EP3389118A1 (en) * 2015-08-04 2018-10-17 Samsung Electronics Co., Ltd. Cathode including sintered polycrystalline material and secondary battery including the same
US10147944B2 (en) 2015-08-04 2018-12-04 Samsung Electronics Co., Ltd. Cathode including sintered polycrystalline material, secondary battery including the cathode, and method of manufacturing the cathode
KR102598713B1 (en) * 2015-08-04 2023-11-06 삼성전자주식회사 Cathode including sintered poly crystalline material, secondary battery including the cathode, and method of manufacturing the cathode
CN113555525A (en) * 2015-08-04 2021-10-26 三星电子株式会社 Positive electrode, secondary battery including the same, and method of preparing the same
US11133502B2 (en) 2015-08-04 2021-09-28 Samsung Electronics Co., Ltd. Cathode including sintered polycrystalline material, secondary battery including the cathode, and method of manufacturing the cathode
CN106450271A (en) * 2015-08-04 2017-02-22 三星电子株式会社 Cathode, secondary battery including the cathode and method of manufacturing the cathode
CN106450271B (en) * 2015-08-04 2021-07-16 三星电子株式会社 Positive electrode, secondary battery including the same, and method of preparing the same
JP2017103054A (en) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 Positive electrode active material, and lithium ion secondary battery using the same
JP2020535590A (en) * 2017-09-29 2020-12-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Rechargeable battery stack
US10622636B2 (en) * 2017-09-29 2020-04-14 International Business Machines Corporation High-capacity rechargeable battery stacks containing a spalled cathode material
US10601033B2 (en) 2017-09-29 2020-03-24 International Business Machines Corporation High-performance rechargeable batteries having a spalled and textured cathode layer
JP7104482B2 (en) 2017-09-29 2022-07-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Rechargeable battery stack
US20190103612A1 (en) * 2017-09-29 2019-04-04 International Business Machines Corporation High-capacity rechargeable battery stacks containing a spalled cathode material
US11757094B2 (en) 2019-08-01 2023-09-12 Samsung Electronics Co., Ltd. Battery and method of manufacturing the same
KR20230098047A (en) 2021-12-24 2023-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode, secondary battery, and electronic device

Also Published As

Publication number Publication date
JP5195049B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5195049B2 (en) Lithium ion secondary battery and manufacturing method thereof
US10147942B2 (en) Multi-layer structured lithium metal electrode and method for manufacturing same
US9249502B2 (en) Method for high volume manufacture of electrochemical cells using physical vapor deposition
JP5095412B2 (en) LiCoO2 deposition
US9780407B2 (en) All-solid lithium secondary battery
JP5549192B2 (en) Solid electrolyte battery and positive electrode active material
Yang et al. Advances in materials design for all-solid-state batteries: from bulk to thin films
US9799920B2 (en) All-solid lithium secondary battery
JP2016225281A (en) All-solid lithium ion secondary battery and method of manufacturing the same
TWI472082B (en) Silicon compound, and a method for manufacturing the same
KR20120093833A (en) Non-aqueous electrolyte cell
JP2008045213A (en) DEPOSITION OF LiCoO2
CN111095649B (en) High performance thin film battery with interfacial layer
US20110200881A1 (en) ELECTRODE FOR HIGH PEFORMANCE Li-ION BATTERIES
JP2020529720A (en) How to Form Solid Lithium Base Batteries and Solid Lithium Base Batteries
KR20110112067A (en) Thin film battery having improved anode characteristics and method of manufacturing the same
JP2011159467A (en) Nonaqueous electrolyte battery
US20220393142A1 (en) Method of forming crystalline layer, method of forming a battery half cell
JP7025308B2 (en) Lithium ion secondary battery
TW201336146A (en) Lithium ion secondary battery
JP2012160324A (en) Nonaqueous electrolyte battery
Donders et al. All-solid-state batteries: a challenging route towards 3D integration
JP5121638B2 (en) Vapor deposition apparatus and method for producing vapor deposition film using vapor deposition apparatus
JP2016084261A (en) Ca-Si-F-BASED COMPOUND, COMPOSITE MATERIAL, SEMICONDUCTOR, AND BATTERY
KR101509533B1 (en) Si/Al multi-layer thin film anode for rechargeable lithium ion battery and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees