JP2009294518A - Objective lens for microscope - Google Patents

Objective lens for microscope Download PDF

Info

Publication number
JP2009294518A
JP2009294518A JP2008149383A JP2008149383A JP2009294518A JP 2009294518 A JP2009294518 A JP 2009294518A JP 2008149383 A JP2008149383 A JP 2008149383A JP 2008149383 A JP2008149383 A JP 2008149383A JP 2009294518 A JP2009294518 A JP 2009294518A
Authority
JP
Japan
Prior art keywords
lens
lens group
cemented
concave
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008149383A
Other languages
Japanese (ja)
Other versions
JP5369503B2 (en
Inventor
Kotaro Yamaguchi
弘太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008149383A priority Critical patent/JP5369503B2/en
Publication of JP2009294518A publication Critical patent/JP2009294518A/en
Application granted granted Critical
Publication of JP5369503B2 publication Critical patent/JP5369503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely low magnification objective lens for a microscope which is favorably corrected in various aberrations and provides excellent observation up to the vicinity of a viewing field over a wide viewing field even in epi-illumination. <P>SOLUTION: The objective lens for the microscope is configured to include a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power in order from the side of an object O. The second lens group G2 includes at least two sets of cemented lenses L2 and L3 and the third lens group G3 includes at least two sets of cemented lenses L4 and L5. The respective two sets of cemented lenses are arranged so that their concave surfaces face each other and telecentric on the side of the object O. The objective lens satisfies the conditions of the following expressions: 0.02<¾f2/F¾<0.2 and 0.02<¾f3/F¾<0.2, wherein f2 is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, and F is the focal length of the entire system of the objective lens. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、対物レンズに関し、さらに詳細には、極低倍率の顕微鏡用対物レンズに関する。   The present invention relates to an objective lens, and more particularly to an extremely low magnification microscope objective lens.

従来、肉眼でも見ることが可能な標本等を、広い視野に渡って観察するマクロ観察は、生物用および工業用に広く利用されている。このようなマクロ観察をする際、一般的に低倍(例えば10倍以下)の対物レンズが使用されており(例えば、特許文献1を参照)、また極低倍率(例えば1倍)の対物レンズも使用されている。このマクロ観察は、広い視野の画像データを一度に取り込むことができるので、標本の寸法測定および画像解析等が容易になるという利点がある。ここで上記観察時には、標本からの反射光を利用する落射照明が一般的に用いられるが、ケラレおよび色ムラが小さい良好な画像が得られるように対物レンズの諸収差を補正する際、瞳の収差も考慮して補正する必要がある。
特開2007−11092
Conventionally, macro observation for observing a specimen that can be seen with the naked eye over a wide field of view is widely used for biological and industrial purposes. When performing such macro observation, an objective lens having a low magnification (for example, 10 times or less) is generally used (see, for example, Patent Document 1), and an objective lens having an extremely low magnification (for example, 1 time). Has also been used. This macro observation has an advantage that it is easy to measure the size of a specimen and analyze an image because image data with a wide field of view can be captured at a time. Here, in the above observation, epi-illumination using reflected light from the specimen is generally used, but when correcting various aberrations of the objective lens so that a good image with small vignetting and color unevenness can be obtained, It is necessary to correct in consideration of aberration.
JP2007-11092

ところで、一般に対物レンズの全長には寸法上の制限があるため、テレフォトタイプと呼ばれる構成にすることによって、焦点距離が長い極低倍率の対物レンズでは全長を短くする必要がある。しかしながら、対物レンズの全長が短く構成されるに応じて、特に倍率色収差および像面の平坦性の補正が困難になるとともに、瞳の収差補正も困難になるという課題があった。   By the way, since the total length of the objective lens is generally limited in size, it is necessary to shorten the total length of a very low magnification objective lens having a long focal length by adopting a configuration called a telephoto type. However, as the total length of the objective lens is shortened, there is a problem that correction of chromatic aberration of magnification and flatness of the image surface becomes difficult, and correction of pupil aberration is also difficult.

本発明は、このような問題に鑑みてなされたものであり、諸収差が良好に補正されて、落射照明時においても広視野に渡って視野周辺まで良好に観察可能なNAが0.03および倍率−1倍程度の極低倍率の顕微鏡用対物レンズを提供することを目的とする。   The present invention has been made in view of such a problem, and various aberrations are corrected satisfactorily, and an NA which can be observed well around the field of view over a wide field of view even in epi-illumination is 0.03 and An object of the present invention is to provide a microscope objective lens having a very low magnification of about magnification -1.

このような目的を達成するため、本発明では、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力の第4レンズ群とを有して構成され、前記第2レンズ群および前記第3レンズ群はそれぞれ少なくとも2組の接合レンズを有し、前記2組の接合レンズは互いに凹面が向かい合うように配置されて構成され、物体側にテレセントリックであり、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3とし、対物レンズ全系の焦点距離をFとしたとき、次式(1)および(2)の条件を満足することを特徴とする。   In order to achieve such an object, in the present invention, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a negative refractive power, arranged in order from the object side. A third lens group and a fourth lens group having a positive refractive power, and each of the second lens group and the third lens group has at least two sets of cemented lenses; The cemented lens is configured so that the concave surfaces face each other, is telecentric on the object side, the focal length of the second lens group is f2, the focal length of the third lens group is f3, and the entire objective lens system When the focal length of F is F, the following conditions (1) and (2) are satisfied.

0.02<|f2/F|<0.2 …(1)
0.02<|f3/F|<0.2 …(2)
0.02 <| f2 / F | <0.2 (1)
0.02 <| f3 / F | <0.2 (2)

また、前記第2レンズ群の2組の接合レンズは、凸レンズと凹レンズとを貼り合わせて構成され、
前記第2レンズ群における物体側の接合レンズを構成する凸レンズおよび凹レンズの硝財のアッベ数をそれぞれνdp21およびνdn21とし、前記第2レンズ群における像側の接合レンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp22及びνdn22とするとき、次式(3)および(4)の条件を満足することが好ましい。
The two sets of cemented lenses of the second lens group are configured by bonding a convex lens and a concave lens,
The Abbe numbers of the convex and concave lenses constituting the object-side cemented lens in the second lens group are νdp21 and νdn21, respectively, and the convex and concave lens materials constituting the image-side cemented lens in the second lens group When the Abbe numbers are νdp22 and νdn22, respectively, it is preferable that the conditions of the following expressions (3) and (4) are satisfied.

1.5<νdp21/νdn21<5.1 …(3)
1.1<νdn22/νdp22<3.2 …(4)
1.5 <νdp21 / νdn21 <5.1 (3)
1.1 <νdn22 / νdp22 <3.2 (4)

さらに、前記第3レンズ群の2組の接合レンズは、凸レンズと凹レンズとを貼り合わせてメニスカス形状に構成され、前記第3レンズ群における物体側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp31およびνdn31とし、前記第3レンズ群における像側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp32およびνdn32とするとき、次式(5)および(6)の条件を満足することが好ましい。   Further, the two pairs of cemented lenses of the third lens group are formed into a meniscus shape by bonding a convex lens and a concave lens, and a glass material of a convex lens and a concave lens constituting the cemented meniscus lens on the object side in the third lens group. When the Abbe numbers are νdp31 and νdn31, respectively, and the Abbe numbers of the convex and concave lens materials constituting the cemented meniscus lens on the image side in the third lens group are νdp32 and νdn32, respectively, the following equations (5) and (6) It is preferable to satisfy the following conditions.

1.1<νdn31/νdp31<3.2 …(5)
1.5<νdp32/νdn32<5.1 …(6)
1.1 <νdn31 / νdp31 <3.2 (5)
1.5 <νdp32 / νdn32 <5.1 (6)

また、前記第2レンズ群における物体側の接合レンズは、凸レンズと凹レンズとを貼り合わせてメニスカス形状に構成され、前記第2レンズ群における物体側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率をそれぞれndp2およびndn2とするとき、次式(7)の条件を満足することが好ましい。   The cemented lens on the object side in the second lens group is formed in a meniscus shape by bonding a convex lens and a concave lens, and the convex lens and the concave lens glass material constituting the cemented meniscus lens on the object side in the second lens group. When the refractive indexes are ndp2 and ndn2, respectively, it is preferable that the condition of the following formula (7) is satisfied.

1.1<ndn2/ndp2<1.5 …(7)   1.1 <ndn2 / ndp2 <1.5 (7)

また、前記第3レンズ群における像側の接合メニスカスレンズは、凸レンズと凹レンズとを貼り合わせて構成され、前記第3レンズ群における像側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率をそれぞれndp3およびndn3とするとき、次式(8)の条件を満足することが好ましい。   The cemented meniscus lens on the image side in the third lens group is configured by bonding a convex lens and a concave lens, and the refractive index of the glass material of the convex lens and the concave lens constituting the cemented meniscus lens on the image side in the third lens group. Is preferably ndp3 and ndn3, respectively, it is preferable to satisfy the condition of the following formula (8).

1.1<ndn3/ndp3<1.5 …(8)   1.1 <ndn3 / ndp3 <1.5 (8)

さらに、物体面から最も像側に配置されたレンズ面の頂点までの距離をLとするとき、次式(9)の条件を満足することが好ましい。   Furthermore, when the distance from the object plane to the apex of the lens surface disposed closest to the image side is L, it is preferable that the condition of the following equation (9) is satisfied.

0.25<L/F<0.7 …(9)   0.25 <L / F <0.7 (9)

以上説明したように、本発明によれば、諸収差(倍率色収差、像面の平坦性および瞳の収差等)が良好に補正されて、落射照明時においても広視野に渡って視野周辺まで良好に観察可能な極低倍率の顕微鏡用対物レンズを実現できる。   As described above, according to the present invention, various aberrations (such as lateral chromatic aberration, image plane flatness, pupil aberration, etc.) are corrected well, and even in the epi-illumination, the wide field of view is good up to the periphery of the field of view. It is possible to realize an ultra-low magnification microscope objective lens that can be observed easily.

以下、本願の好ましい実施形態について、図面を参照しながら説明する。まず、図1を用いて、本願に係る顕微鏡用対物レンズの構成について説明する。この顕微鏡用対物レンズは、所謂無限系対物レンズで、物体O側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力の第4レンズ群G4とを備えて構成されている。第1レンズ群G1には、物体Oに対して凸面を向けた凸メニスカスレンズ(図1におけるレンズL1)が設けられている。また、第2レンズ群G2は、物体O側から順に並んだ、凸レンズ(図1におけるレンズL21)と凹レンズ(図1におけるレンズL22)との貼り合わせからなり、全体として像側に凹面を向けた接合メニスカスレンズ(図1におけるレンズL2)と、凹レンズ(図1におけるレンズL31)と凸レンズ(図1におけるレンズL32)との貼り合わせからなり、全体として物体O側に凹面を向けた接合レンズ(図1におけるレンズL3)とから構成されている。   Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. First, the configuration of the microscope objective lens according to the present application will be described with reference to FIG. This microscope objective lens is a so-called infinite objective lens, and is arranged in order from the object O side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a negative lens group. A third lens group G3 having a refractive power and a fourth lens group G4 having a positive refractive power are provided. The first lens group G1 is provided with a convex meniscus lens (lens L1 in FIG. 1) having a convex surface directed toward the object O. The second lens group G2 is composed of a combination of a convex lens (lens L21 in FIG. 1) and a concave lens (lens L22 in FIG. 1) arranged in order from the object O side, and has a concave surface facing the image side as a whole. The cemented meniscus lens (lens L2 in FIG. 1), a concave lens (lens L31 in FIG. 1), and a convex lens (lens L32 in FIG. 1) are bonded together, and the cemented lens with the concave surface facing the object O as a whole (FIG. 1 and the lens L3).

さらに、第3レンズ群G3は、物体O側から順に並んだ、凸レンズ(図1におけるレンズL41)と凹レンズ(図1におけるレンズL42)との貼り合わせからなり、全体として像側に凹面を向けた接合メニスカスレンズ(図1におけるレンズL4)と、凹レンズ(図1におけるレンズL51)と凸レンズ(図1におけるレンズL52)との貼り合わせからなり、全体として物体O側に凹面を向けた接合メニスカスレンズ(図1におけるレンズL5)とから構成されている。また、第4レンズ群G4には、凸レンズ(図1におけるレンズL6)が設けられている。   Further, the third lens group G3 is formed by bonding a convex lens (lens L41 in FIG. 1) and a concave lens (lens L42 in FIG. 1) arranged in order from the object O side, and has a concave surface directed toward the image side as a whole. A cemented meniscus lens (lens L4 in FIG. 1), a concave lens (lens L51 in FIG. 1), and a convex lens (lens L52 in FIG. 1) are bonded together, and a cemented meniscus lens having a concave surface facing the object O as a whole ( The lens L5) in FIG. The fourth lens group G4 is provided with a convex lens (lens L6 in FIG. 1).

ところで、例えば回路基板等の金属標本を観察する顕微鏡において、標本からの反射光を利用する落射照明が一般的に用いられるが、視野周辺まで均一な明るさの画像を得るためには、対物レンズの物体側において略テレセントリックに照明されることが必要とされる。また、例えばDIC観察(微分干渉観察)を行う場合において、色ムラのない画像を得るために対物レンズの像側瞳の色収差や球面収差が十分小さく補正されていることが必要とされる。このように、低倍率でマクロ観察を行う場合、必然的に実視野が大きくなるが、物体高が大きくなるほど、レンズを通過する光軸上の物点からの光束と周辺の光束との高さの差が大きくなるため、瞳の収差補正が困難となる。したがって、良好な画像を得るためには、物体と像との結像性能のみならず、瞳の結像性能も併せて良好にすることが求められる。上述のように構成された本願に係る顕微鏡用対物レンズは、良好な画像を得るためにこのような課題を解決した構成となっており、その詳細について以下に説明する。   By the way, in a microscope for observing a metal specimen such as a circuit board, epi-illumination using reflected light from the specimen is generally used. In order to obtain an image with uniform brightness up to the periphery of the field of view, an objective lens It is necessary to illuminate substantially telecentrically on the object side. In addition, for example, when performing DIC observation (differential interference observation), it is necessary that the chromatic aberration and spherical aberration of the image side pupil of the objective lens are corrected to be sufficiently small in order to obtain an image without color unevenness. In this way, when performing macro observation at low magnification, the actual field of view is inevitably increased, but as the object height increases, the height of the luminous flux from the object point on the optical axis passing through the lens and the surrounding luminous flux. Since the difference between the two becomes large, it becomes difficult to correct the aberration of the pupil. Therefore, in order to obtain a good image, it is required to improve not only the imaging performance of the object and the image but also the imaging performance of the pupil. The microscope objective lens according to the present application configured as described above has a configuration that solves such a problem in order to obtain a good image, and details thereof will be described below.

上記構成の顕微鏡用対物レンズにおいて、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3とし、対物レンズ全系の焦点距離をFとしたとき、次式(1)および(2)を満足するように構成されている。   In the microscope objective lens having the above-described configuration, when the focal length of the second lens group G2 is f2, the focal length of the third lens group G3 is f3, and the focal length of the entire objective lens system is F, the following expression (1 ) And (2).

0.02<|f2/F|<0.2 …(1)
0.02<|f3/F|<0.2 …(2)
0.02 <| f2 / F | <0.2 (1)
0.02 <| f3 / F | <0.2 (2)

上記条件式(1)および(2)は、像面湾曲および瞳収差を良好に補正するための条件である。上記条件式(1)および(2)の上限値を超えると、第2レンズ群G2あるいは第3レンズ群G3の屈折力が弱くなりすぎるため、物体O側に対するテレセン性を保つことができなくなり、視野全体を均一に照明することが困難となる。また、上記条件式(1)および(2)の下限値を超えると、負の屈折力が強くなりすぎるため、ペッツバール和がマイナスになりすぎて像面湾曲が増大してしまう。なお、更に良好な結像性能を発揮するためには、上記条件式(1)および(2)において、上限値を0.11とし、下限値を0.03とすることが好ましい。   Conditional expressions (1) and (2) are conditions for satisfactorily correcting field curvature and pupil aberration. If the upper limit value of the conditional expressions (1) and (2) is exceeded, the refractive power of the second lens group G2 or the third lens group G3 becomes too weak, so that the telecentricity with respect to the object O side cannot be maintained. It becomes difficult to uniformly illuminate the entire field of view. If the lower limit value of the conditional expressions (1) and (2) is exceeded, the negative refractive power becomes too strong, the Petzval sum becomes too negative, and the field curvature increases. In order to exhibit better imaging performance, it is preferable to set the upper limit value to 0.11 and the lower limit value to 0.03 in the conditional expressions (1) and (2).

また、第2レンズ群G2における物体O側の接合メニスカスレンズ(図1におけるレンズL2)を構成する凸レンズ(図1におけるレンズL21)および凹レンズ(図1におけるレンズL22)の硝財のアッベ数をそれぞれνdp21およびνdn21とし、第2レンズ群G2における像側の接合レンズ(図1におけるレンズL3)を構成する凸レンズ(図1におけるレンズL32)および凹レンズ(図1におけるレンズL31)の硝材のアッベ数をそれぞれνdp22及びνdn22とするとき、次式(3)および(4)を満足することが好ましい。   Further, the Abbe numbers of the glass goods of the convex lens (lens L21 in FIG. 1) and the concave lens (lens L22 in FIG. 1) constituting the cemented meniscus lens (lens L2 in FIG. 1) on the object O side in the second lens group G2, respectively. Let νdp21 and νdn21 be the Abbe numbers of the glass materials of the convex lens (lens L32 in FIG. 1) and the concave lens (lens L31 in FIG. 1) constituting the image-side cemented lens (lens L3 in FIG. 1) in the second lens group G2, respectively. When νdp22 and νdn22 are satisfied, it is preferable that the following expressions (3) and (4) are satisfied.

1.5<νdp21/νdn21<5.1 …(3)
1.1<νdn22/νdp22<3.2 …(4)
1.5 <νdp21 / νdn21 <5.1 (3)
1.1 <νdn22 / νdp22 <3.2 (4)

上記条件式(3)および(4)は、色収差の補正上好ましい条件与えるものであって、上記条件式(3)は、第2レンズ群G2における物体O側の接合メニスカスレンズを構成する凸レンズと凹レンズとの、アッベ数の比率の範囲を規定している。また、上記条件式(4)は、第2レンズ群G2における像側の接合レンズを構成する凸レンズと凹レンズとの、アッベ数の比率の範囲を規定しており、上記条件式(3)および(4)を同時に満足させることで、対物レンズ全系の色収差補正および像側瞳の色収差補正を両立させることが可能となる。上記条件式(3)および(4)の上限値を超えると、第2レンズ群G2の色消しが過剰となり、倍率の色収差の補正が困難となる。また、上記条件式(3)および(4)の下限値を超えると、第2レンズ群G2の色消しが不足となり、対物レンズの像側瞳の軸上色収差が増大してしまう。なお、より効果的に対物レンズ全系の色収差および像側瞳の色収差を補正するためには、上記条件式(3)の上限値を2.9、下限値を1.9とし、また、上記条件式(4)の上限値を2.9、下限値を1.9とすることが好ましい。   The conditional expressions (3) and (4) give preferable conditions for correcting chromatic aberration, and the conditional expression (3) includes a convex lens constituting a cemented meniscus lens on the object O side in the second lens group G2. Defines the range of the Abbe number ratio with the concave lens. The conditional expression (4) defines the range of the Abbe number ratio between the convex lens and the concave lens constituting the cemented lens on the image side in the second lens group G2, and the conditional expressions (3) and (3) By satisfying 4) at the same time, it is possible to achieve both chromatic aberration correction of the entire objective lens system and chromatic aberration correction of the image side pupil. If the upper limit values of the conditional expressions (3) and (4) are exceeded, the achromaticity of the second lens group G2 becomes excessive, and it becomes difficult to correct the chromatic aberration of magnification. If the lower limit value of the conditional expressions (3) and (4) is exceeded, the achromaticity of the second lens group G2 becomes insufficient, and the axial chromatic aberration of the image side pupil of the objective lens increases. In order to more effectively correct the chromatic aberration of the entire objective lens system and the chromatic aberration of the image side pupil, the upper limit value of the conditional expression (3) is set to 2.9, and the lower limit value is set to 1.9. It is preferable to set the upper limit of conditional expression (4) to 2.9 and the lower limit to 1.9.

さらに、第3レンズ群G3における物体O側の接合メニスカスレンズ(図1におけるレンズL4)を構成する凸レンズ(図1におけるレンズL41)および凹レンズ(図1におけるレンズL42)の硝材のアッベ数をそれぞれνdp31およびνdn31とし、第3レンズ群G3における像側の接合メニスカスレンズ(図1におけるレンズL5)を構成する凸レンズ(図1におけるレンズL52)および凹レンズ(図1におけるレンズL51)の硝材のアッベ数をそれぞれνdp32およびνdn32とするとき、次式(5)および(6)を満足することが好ましい。   Further, the Abbe numbers of the glass materials of the convex lens (lens L41 in FIG. 1) and the concave lens (lens L42 in FIG. 1) constituting the cemented meniscus lens (lens L4 in FIG. 1) on the object O side in the third lens group G3 are respectively νdp31. Νdn31 and the Abbe numbers of the glass materials of the convex lens (lens L52 in FIG. 1) and the concave lens (lens L51 in FIG. 1) constituting the cemented meniscus lens (lens L5 in FIG. 1) in the third lens group G3, respectively. When νdp32 and νdn32, it is preferable to satisfy the following expressions (5) and (6).

1.1<νdn31/νdp31<3.2 …(5)
1.5<νdp32/νdn32<5.1 …(6)
1.1 <νdn31 / νdp31 <3.2 (5)
1.5 <νdp32 / νdn32 <5.1 (6)

上記条件式(5)および(6)は、色収差の補正上好ましい条件を与えるものである。上記条件式(5)は、第3レンズ群G3における物体O側の接合メニスカスレンズを構成する凸レンズと凹レンズとの、アッベ数の比率の範囲を規定している。また、上記条件式(6)は、第3レンズ群G3における像側の接合メニスカスレンズを構成する凸レンズと凹レンズとの、アッベ数の比率の範囲を規定している。上記条件式(5)および(6)を同時に満足させることで、対物レンズ全系の軸上色収差の補正および倍率色収差の補正を良好に行うことが可能となる。上記条件式(5)の上限値を超えると、第3レンズ群G3の色消しが過剰となり、一方、上記条件式(5)の下限値を超えると、第3レンズ群G3の色消しが不足となり対物レンズ全系の倍率色収差が増大してしまう。なお、より効果的に対物レンズ全系の倍率色収差を補正するためには、上記条件式(5)の上限値を2.9とし、下限値を1.9とすることが好ましい。   Conditional expressions (5) and (6) give preferable conditions for correcting chromatic aberration. The conditional expression (5) defines the range of the Abbe number ratio between the convex lens and the concave lens constituting the cemented meniscus lens on the object O side in the third lens group G3. The conditional expression (6) defines the range of the Abbe number ratio between the convex lens and the concave lens constituting the cemented meniscus lens on the image side in the third lens group G3. By satisfying the conditional expressions (5) and (6) at the same time, it is possible to satisfactorily correct the longitudinal chromatic aberration and the lateral chromatic aberration of the entire objective lens system. When the upper limit value of the conditional expression (5) is exceeded, the achromaticity of the third lens group G3 becomes excessive. On the other hand, when the lower limit value of the conditional expression (5) is exceeded, the achromaticity of the third lens group G3 is insufficient. Thus, the chromatic aberration of magnification of the entire objective lens system is increased. In order to more effectively correct the lateral chromatic aberration of the entire objective lens system, it is preferable to set the upper limit value of the conditional expression (5) to 2.9 and the lower limit value to 1.9.

また、上記条件式(6)の上限値を超えると、第3レンズ群G3の色消しが過剰となり、一方、下限値を超えると、第3レンズ群G3の色消しが不足となり対物レンズ全系の軸上色収差が増大してしまう。なお、より効果的に対物レンズ全系の軸上色収差を補正するためには、上記条件式(6)の上限値を2.9とし、下限値を1.9とすることが好ましい。   If the upper limit value of conditional expression (6) is exceeded, the achromaticity of the third lens group G3 becomes excessive. On the other hand, if the lower limit value is exceeded, the achromaticity of the third lens group G3 becomes insufficient and the entire objective lens system. This increases the longitudinal chromatic aberration. In order to more effectively correct the longitudinal chromatic aberration of the entire objective lens system, it is preferable to set the upper limit value of conditional expression (6) to 2.9 and the lower limit value to 1.9.

また、第2レンズ群G2における物体O側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率を、それぞれndp2およびndn2とするとき、次式(7)を満足することが好ましい。   In addition, when the refractive indexes of the glass materials of the convex lens and the concave lens constituting the cemented meniscus lens on the object O side in the second lens group G2 are ndp2 and ndn2, respectively, it is preferable that the following expression (7) is satisfied.

1.1<ndn2/ndp2<1.5 …(7)   1.1 <ndn2 / ndp2 <1.5 (7)

上記条件式(7)は、第2レンズ群G2における物体O側の接合メニスカスレンズを構成する凸レンズと凹レンズとの、屈折率の比率の範囲を規定している。上記条件式(7)の上限値を超えると、第2レンズ群G2における物体O側の接合メニスカスレンズを構成する凸レンズと凹レンズとの屈折率差が大きくなりすぎて、対物レンズ全系の非点収差および像側瞳の球面収差の補正が困難となってしまう。なお、より効果的に像側瞳の球面収差の補正を行うためには、上記条件式(7)の上限値を1.4とし、下限値を1.25とすることが好ましい。   The conditional expression (7) defines the range of the refractive index ratio between the convex lens and the concave lens constituting the cemented meniscus lens on the object O side in the second lens group G2. If the upper limit value of the conditional expression (7) is exceeded, the refractive index difference between the convex lens and the concave lens constituting the cemented meniscus lens on the object O side in the second lens group G2 becomes too large, and the astigmatism of the entire objective lens system is increased. Correction of aberration and spherical aberration of the image side pupil becomes difficult. In order to more effectively correct the spherical aberration of the image side pupil, it is preferable to set the upper limit value of the conditional expression (7) to 1.4 and the lower limit value to 1.25.

さらに、第3レンズ群G3における像側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率を、それぞれndp3およびndn3とするとき、次式(8)を満足することが好ましい。   Furthermore, when the refractive indexes of the glass materials of the convex lens and the concave lens constituting the cemented meniscus lens on the image side in the third lens group G3 are ndp3 and ndn3, respectively, it is preferable that the following expression (8) is satisfied.

1.1<ndn3/ndp3<1.5 …(8)   1.1 <ndn3 / ndp3 <1.5 (8)

上記条件式(8)は、第3レンズ群G3における像側の接合メニスカスレンズを構成する凸レンズと凹レンズとの、屈折率の比率の範囲を規定している。上記条件式(8)の上限値を超えると、第3レンズ群G3における像側の接合メニスカスレンズの凸レンズと凹レンズとの屈折率差が大きくなりすぎて、対物レンズ全系の球面収差やコマ収差の補正が困難となってしまう。なお、より効果的に対物レンズ全系の球面収差およびコマ収差の補正を行うためには、上記条件式(8)の上限値を1.4とし、下限値を1.25とすることが好ましい。   The conditional expression (8) defines the range of the refractive index ratio between the convex lens and the concave lens constituting the cemented meniscus lens on the image side in the third lens group G3. If the upper limit of conditional expression (8) is exceeded, the refractive index difference between the convex lens and concave lens of the cemented meniscus lens on the image side in the third lens group G3 becomes too large, and spherical aberration and coma aberration of the entire objective lens system. It becomes difficult to correct. In order to more effectively correct spherical aberration and coma aberration of the entire objective lens system, it is preferable to set the upper limit value of conditional expression (8) to 1.4 and the lower limit value to 1.25. .

またさらに、物体面から最も像側に配置されたレンズ面の頂点までの距離をLとするとき、次式(9)を満足することが好ましい。   Furthermore, when the distance from the object surface to the apex of the lens surface disposed closest to the image side is L, it is preferable that the following expression (9) is satisfied.

0.25<L/F<0.7 …(9)   0.25 <L / F <0.7 (9)

上記条件式(9)は、対物レンズ全系の焦点距離Fと物体面から最も像側に配置されるレンズ面の頂点までの距離L(レンズ長)との、比率の範囲を規定している。上記条件式(9)の上限値を越えると、レンズ全長が長くなりすぎて対物レンズが大型化してしまい、一方、上記条件式(9)の下限値を越えると収差補正が困難となり、実際の観察において必要とされる実用的な作動距離WDおよび視野数を確保できなくなってしまう。   Conditional expression (9) defines the range of the ratio between the focal length F of the entire objective lens system and the distance L (lens length) from the object plane to the apex of the lens surface arranged closest to the image side. . If the upper limit value of the conditional expression (9) is exceeded, the total lens length becomes too long and the objective lens becomes large. On the other hand, if the lower limit value of the conditional expression (9) is exceeded, it becomes difficult to correct aberrations. The practical working distance WD and the number of visual fields required for observation cannot be secured.

以下、本願に係る顕微鏡用対物レンズの各実施例を添付図面に基づいて説明する。   Embodiments of a microscope objective lens according to the present application will be described below with reference to the accompanying drawings.

以下に示す表1および表2は、本願に係る顕微鏡用対物レンズの第1実施例および第2実施例の各レンズの諸元の表である。いずれの表においても、βは対応倍率、NAは物体側開口数、D0は物体Oから第1レンズ群G1の第1レンズ面(表中の面番号1)の頂点までの距離、Fは対物レンズ全系の合成焦点距離をそれぞれ示している。また、第1欄NO.は光線の進行する方向に沿った物体O側からのレンズ面の順序(以下、面番号と称する)、第2欄Rは各レンズ面の曲率半径、第3欄dは各光学面から次の光学面(又は像面)までの光軸上の距離(以下、面間隔と称する)、第4欄ndはd線(波長587.562nm)に対する屈折率、第5欄νdはd線におけるアッベ数をそれぞれ示している。   Tables 1 and 2 shown below are specifications of the lenses of the first and second examples of the microscope objective lens according to the present application. In any table, β is the corresponding magnification, NA is the object-side numerical aperture, D0 is the distance from the object O to the apex of the first lens surface (surface number 1 in the table) of the first lens group G1, and F is the objective. The combined focal length of the entire lens system is shown. The first column No. is the order of the lens surfaces from the object O side along the direction of travel of light (hereinafter referred to as surface number), the second column R is the radius of curvature of each lens surface, and the third column d. Is the distance on the optical axis from each optical surface to the next optical surface (or image surface) (hereinafter referred to as the surface interval), the fourth column nd is the refractive index for the d-line (wavelength 587.562 nm), the fifth column νd. Indicates the Abbe number on the d line.

表中において、焦点距離F、曲率半径R、面間隔d、その他の長さの単位は、一般に「mm」が使われている。ただし、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。また、表中において、曲率半径Rの「INFINITY」は平面を示し、空気の屈折率「1.00000」の記載は省略している。また、表中において、上記の条件式(1)〜(9)に対応する値、すなわち条件対応値も示している。   In the table, “mm” is generally used as the unit of focal length F, radius of curvature R, surface separation d, and other lengths. However, since the optical system can obtain the same optical performance even when proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used. In the table, “INFINITY” of the radius of curvature R indicates a plane, and the description of the refractive index “1.00000” of air is omitted. In the table, values corresponding to the conditional expressions (1) to (9), that is, the condition corresponding values are also shown.

(第1実施例)
上述の説明で用いた図1は、本願の顕微鏡用対物レンズの第1実施例を示しており、この第1実施例に係る顕微鏡用対物レンズについて、図1、図2、図5(a)および表1を用いて説明する。この顕微鏡用対物レンズは上述したように、物体O側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを備えて構成される。
(First embodiment)
FIG. 1 used in the above description shows a first embodiment of the microscope objective lens according to the present application. The microscope objective lens according to the first embodiment is shown in FIGS. 1, 2, and 5A. This will be described with reference to Table 1. As described above, the microscope objective lens has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a negative refractive power arranged in order from the object O side. A third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体Oに対して凸面を向けた凸メニスカスレンズL1を設けて構成される。また、第2レンズ群G2は、物体O側から順に並んだ、凸レンズL21と凹レンズL22との貼り合わせからなり、全体として像側に凹面を向けた接合メニスカスレンズL2と、凹レンズL31と凸レンズL32との貼り合わせからなり、全体として物体O側に凹面を向けた接合レンズL3とから構成される。さらに、第3レンズ群G3は、物体O側から順に並んだ、凸レンズL41と凹レンズL42との貼り合わせからなり、全体として像側に凹面を向けた接合メニスカスレンズL4と、凹レンズL51と凸レンズL52との貼り合わせからなり、全体として物体O側に凹面を向けた接合メニスカスレンズL5とから構成される。また、第4レンズ群G4は、凸レンズL6を設けた構成となっている。   The first lens group G1 includes a convex meniscus lens L1 having a convex surface directed toward the object O. The second lens group G2 includes a cemented meniscus lens L2 having a concave surface facing the image side as a whole, a concave lens L31, and a convex lens L32. And a cemented lens L3 having a concave surface facing the object O as a whole. Further, the third lens group G3 includes a cemented meniscus lens L4 having a concave surface facing the image side as a whole, a concave lens L51, and a convex lens L52. And a cemented meniscus lens L5 having a concave surface facing the object O as a whole. The fourth lens group G4 has a configuration in which a convex lens L6 is provided.

表1に、第1実施例における各諸元の表を示す。なお、表1における面番号1〜16は、図1に示す面1〜16に対応している。   Table 1 shows a table of specifications in the first embodiment. The surface numbers 1 to 16 in Table 1 correspond to the surfaces 1 to 16 shown in FIG.

(表1)
[全体諸元]
β=−1,NA=0.03,D0=6.319,F=198.054
[レンズ諸元]
NO. R d nd νd
1 22.69900 5.200000 1.81600 46.6
2 174.64400 0.500000
3 13.31000 6.500000 1.43425 95.0
4 INFINITY 2.500000 1.84666 23.8
5 12.87300 15.207107
6 ‐9.35550 1.000000 1.90265 35.7
7 4.57300 2.800000 1.80809 22.8
8 111.81000 0.500000
9 18.19300 2.800000 1.80809 22.8
10 ‐4.71940 1.000000 1.90265 35.7
11 14.53020 8.669947
12 ‐28.65800 1.000000 1.90265 35.7
13 19.49200 3.500000 1.43425 95.0
14 ‐13.00200 1.526871
15 120.02800 4.300000 1.49782 82.5
16 ‐11.80120
[条件対応値]
条件式(1)|f2/F|=0.031
条件式(2)|f3/F|=0.103
条件式(3)νdp21/νdn21=3.99
条件式(4)νdn22/νdp22=1.57
条件式(5)νdn31/νdp31=1.57
条件式(6)νdp32/νdn32=2.66
条件式(7)ndn2/ndp2=1.29
条件式(8)ndn3/ndp3=1.33
条件式(9)L/F=0.32
(Table 1)
[Overall specifications]
β = −1, NA = 0.03, D0 = 6.319, F = 198.054
[Lens specifications]
NO. R d nd νd
1 22.69900 5.200000 1.81600 46.6
2 174.64400 0.500000
3 13.31000 6.500000 1.43425 95.0
4 INFINITY 2.500000 1.84666 23.8
5 12.87300 15.207107
6 -9.35550 1.000000 1.90265 35.7
7 4.57300 2.800000 1.80809 22.8
8 111.81000 0.500000
9 18.19300 2.800000 1.80809 22.8
10 -4.71940 1.000000 1.90265 35.7
11 14.53020 8.669947
12 -28.65800 1.000000 1.90265 35.7
13 19.49200 3.500000 1.43425 95.0
14 -13.00200 1.526871
15 120.02800 4.300000 1.49782 82.5
16 -11.80120
[Conditional value]
Conditional expression (1) | f2 / F | = 0.031
Conditional expression (2) | f3 / F | = 0.103
Conditional expression (3) νdp21 / νdn21 = 3.99
Conditional expression (4) νdn22 / νdp22 = 1.57
Conditional expression (5) νdn31 / νdp31 = 1.57
Conditional expression (6) νdp32 / νdn32 = 2.66
Conditional expression (7) ndn2 / ndp2 = 1.29
Conditional expression (8) ndn3 / ndp3 = 1.33
Conditional expression (9) L / F = 0.32.

上記表1に示す諸元の表から明らかなように、第1実施例では上記条件式(1)から(9)を全て満たしていることが分かる。   As is clear from the table of specifications shown in Table 1 above, it can be seen that the first example satisfies all the conditional expressions (1) to (9).

図2には、この第1実施例の顕微鏡用対物レンズの後続の結像レンズの焦点距離fkが200mmの理想レンズとして計算された、C線(波長656.279nm)、d線(波長587.562nm)、F線(波長486.133nm)およびg線(波長435.835nm)に対する諸収差図(球面収差、非点収差およびコマ収差)を示している。ここで、図2に示す非点収差図において、実線はサジタル像面を示し、破線はメリジオナル像面をそれぞれ示す。また、図5(a)には、上記各線に対する瞳の球面収差図を示している。なお、各収差図において、NAは開口数を、Yは像高を示しており、この収差図の説明は後述する第2実施例においても同様である。   FIG. 2 shows the C-line (wavelength 656.279 nm) and d-line (wavelength 587.562 nm) calculated as ideal lenses having a focal length fk of 200 mm following the objective lens for the microscope of the first embodiment. The aberration diagrams (spherical aberration, astigmatism and coma aberration) for the F-line (wavelength 486.133 nm) and the g-line (wavelength 435.835 nm) are shown. Here, in the astigmatism diagram shown in FIG. 2, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. FIG. 5A shows a spherical aberration diagram of the pupil for each of the above lines. In each aberration diagram, NA represents the numerical aperture, and Y represents the image height. The explanation of this aberration diagram is the same in the second embodiment to be described later.

各収差図から明らかなように、第1実施例に係る顕微鏡用対物レンズでは、C線、d線、F線およびg線の各波長において、NA=0.03、視野数25まで良好に補正されていることが分かる。   As is apparent from each aberration diagram, in the microscope objective lens according to the first example, NA = 0.03 and a field number of 25 are satisfactorily corrected at each wavelength of C-line, d-line, F-line, and g-line. You can see that.

(第2実施例)
本願の第2実施例について、図3、図4、図5(b)および表2を用いて説明する。図3に示す第2実施例に係る顕微鏡用対物レンズは、第2レンズ群G2の像側の接合レンズ(図3に示す接合レンズL3)がメニスカス形状となっていることを除けば、図1に示す第1実施例とほぼ同じ構成となっている。そのため、以下の説明において、第1実施例と同一部分には同一の符号を付して、その詳細な説明は省略する(図3を参照)。表2に、第2実施例における各諸元の表を示しており、表2における面番号1〜16は、図3に示す面1〜16に対応している。
(Second embodiment)
2nd Example of this application is described using FIG. 3, FIG. 4, FIG.5 (b) and Table 2. FIG. The objective lens for a microscope according to Example 2 shown in FIG. 3 is similar to that shown in FIG. 1 except that the cemented lens on the image side of the second lens group G2 (the cemented lens L3 shown in FIG. 3) has a meniscus shape. The configuration is almost the same as that of the first embodiment shown in FIG. Therefore, in the following description, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted (see FIG. 3). Table 2 shows a table of specifications in the second embodiment. Surface numbers 1 to 16 in Table 2 correspond to surfaces 1 to 16 shown in FIG.

(表2)
[全体諸元]
β=−1,NA=0.03,D0=7.65,F=198.037
[レンズ諸元]
NO. R d nd νd
1 20.58079 5.200000 1.75500 52.3
2 87.93078 0.550000
3 14.99529 6.500000 1.43425 95.0
4 INFINITY 2.000000 1.84666 23.8
5 20.00000 13.300000
6 ‐10.04292 1.000000 1.90265 35.7
7 4.53365 3.000000 1.80809 22.8
8 ‐32.60227 2.000000
9 56.61271 3.000000 1.80809 22.8
10 ‐4.48893 1.000000 1.90265 35.7
11 11.17116 7.000000
12 ‐23.99958 1.000000 1.90265 35.7
13 13.99140 4.000000 1.43425 95.0
14 ‐10.85567 2.500000
15 ‐205.25741 4.300000 1.49782 82.5
16 ‐10.50822
[条件対応値]
条件式(1)|f2/F|=0.062
条件式(2)|f3/F|=0.045
条件式(3)νdp21/νdn21=3.99
条件式(4)νdn22/νdp22=1.57
条件式(5)νdn31/νdp31=1.57
条件式(6)νdp32/νdn32=2.66
条件式(7)ndn2/ndp2=1.29
条件式(8)ndn3/ndp3=1.33
条件式(9)L/F=0.32
(Table 2)
[Overall specifications]
β = −1, NA = 0.03, D0 = 7.65, F = 198.037
[Lens specifications]
NO. R d nd νd
1 20.58079 5.200000 1.75500 52.3
2 87.93078 0.550000
3 14.99529 6.500000 1.43425 95.0
4 INFINITY 2.000000 1.84666 23.8
5 20.00000 13.300000
6 -10.04292 1.000000 1.90265 35.7
7 4.53365 3.000000 1.80809 22.8
8 -32.60227 2.000000
9 56.61271 3.000000 1.80809 22.8
10 -4.48893 1.000000 1.90265 35.7
11 11.17116 7.000000
12 -23.99958 1.000000 1.90265 35.7
13 13.99140 4.000000 1.43425 95.0
14 -10.85567 2.500000
15 -205.25741 4.300000 1.49782 82.5
16 -10.50822
[Conditional value]
Conditional expression (1) | f2 / F | = 0.062
Conditional expression (2) | f3 / F | = 0.045
Conditional expression (3) νdp21 / νdn21 = 3.99
Conditional expression (4) νdn22 / νdp22 = 1.57
Conditional expression (5) νdn31 / νdp31 = 1.57
Conditional expression (6) νdp32 / νdn32 = 2.66
Conditional expression (7) ndn2 / ndp2 = 1.29
Conditional expression (8) ndn3 / ndp3 = 1.33
Conditional expression (9) L / F = 0.32.

上記表2に示す諸元の表から明らかなように、第2実施例では上記条件式(1)から(9)を全て満たしていることが分かる。   As is apparent from the table of specifications shown in Table 2 above, it can be seen that all the conditional expressions (1) to (9) are satisfied in the second embodiment.

図4には、この第2実施例の顕微鏡用対物レンズの後続の結像レンズの焦点距離fkが200mmの理想レンズとして計算された、C線(波長656.279nm)、d線(波長587.562nm)、F線(波長486.133nm)およびg線(波長435.835nm)に対する諸収差図(球面収差、非点収差およびコマ収差)を示している。また、図5(b)には、上記各線に対する瞳の球面収差図を示している。各収差図から明らかなように、第2実施例に係る顕微鏡用対物レンズでは、C線、d線、F線およびg線の各波長において、NA=0.03、視野数25まで良好に補正されている。   FIG. 4 shows the C-line (wavelength 656.279 nm) and d-line (wavelength 587.562 nm) calculated as ideal lenses having a focal length fk of 200 mm following the imaging lens of the microscope objective lens of the second embodiment. The aberration diagrams (spherical aberration, astigmatism and coma aberration) for the F-line (wavelength 486.133 nm) and the g-line (wavelength 435.835 nm) are shown. FIG. 5B shows a spherical aberration diagram of the pupil for each line. As is apparent from each aberration diagram, in the microscope objective lens according to the second example, NA = 0.03 and a field number of 25 are satisfactorily corrected at each wavelength of C-line, d-line, F-line, and g-line. Has been.

以上説明したように、本発明に係る顕微鏡用対物レンズによれば、倍率が1倍で開口数が0.03において視野数25まで諸収差が良好に補正され、落射照明観察時の視野周辺においてもシェーディングおよび色ムラの少ない優れた結像性能を発揮することができる。   As described above, according to the objective lens for a microscope according to the present invention, various aberrations are satisfactorily corrected up to a field number of 25 at a magnification of 1 and a numerical aperture of 0.03. Can exhibit excellent imaging performance with little shading and color unevenness.

上述の第1実施例および第2実施例において、物体Oと対物レンズの第1面との間に1/4波長板やデポラライザ(偏光解消板)を配置することにより、落射照明時に対物レンズ各面において反射されるフレアーを防止する構成が望ましい。さらにこのとき、1/4波長板やデポラライザにおける物体O側の面からの反射光を視野外に除去するために、これらの光学素子は対物レンズのNA相当を傾けて使用することがより望ましい。   In the first and second embodiments described above, by arranging a quarter-wave plate or a depolarizer (depolarizer) between the object O and the first surface of the objective lens, A configuration that prevents flare reflected at the surface is desirable. Further, at this time, in order to remove the reflected light from the surface on the object O side of the quarter wavelength plate or the depolarizer out of the field of view, it is more desirable to use these optical elements with the NA equivalent of the objective lens inclined.

なお、以上のような本発明は、上記実施形態に限定されるものではなく、本発明に係る要旨を逸脱しない範囲であれば適宜改良可能である。   The present invention as described above is not limited to the above-described embodiment, and can be appropriately improved as long as it does not depart from the gist of the present invention.

本発明の第1実施例に係る顕微鏡用対物レンズのレンズ構成図である。It is a lens block diagram of the objective lens for microscopes concerning the 1st example of the present invention. 本発明の第1実施例に係る顕微鏡用対物レンズの諸収差図である。FIG. 4 is a diagram illustrating various aberrations of the microscope objective lens according to the first example of the present invention. 本発明の第2実施例に係る顕微鏡用対物レンズのレンズ構成図である。It is a lens block diagram of the objective lens for microscopes concerning 2nd Example of this invention. 本発明の第2実施例に係る顕微鏡用対物レンズの諸収差図である。It is an aberration diagram of the objective lens for a microscope according to the second example of the present invention. (a)は第1実施例に係る瞳の球面収差図で、(b)は第2実施例に係る瞳の球面収差図である。(A) is a spherical aberration diagram of the pupil according to the first example, and (b) is a spherical aberration diagram of the pupil according to the second example.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
L2 第2レンズ群を構成する物体側の接合レンズ
L3 第2レンズ群を構成する像側の接合レンズ
L4 第3レンズ群を構成する物体側の接合レンズ
L5 第3レンズ群を構成する像側の接合レンズ
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group L2 Joint lens on the object side constituting the second lens group L3 Joint lens on the image side constituting the second lens group L4 Third lens Cemented lens on the object side constituting the lens group L5 cemented lens on the image side constituting the third lens group

Claims (6)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力の第4レンズ群とを有して構成され、
前記第2レンズ群および前記第3レンズ群はそれぞれ少なくとも2組の接合レンズを有し、前記2組の接合レンズは互いに凹面が向かい合うように配置されて構成され、物体側にテレセントリックであり、
前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3とし、対物レンズ全系の焦点距離をFとしたとき、次式
0.02<|f2/F|<0.2
0.02<|f3/F|<0.2
の条件を満足することを特徴とする顕微鏡用対物レンズ。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power, arranged in order from the object side. A lens group,
The second lens group and the third lens group each have at least two sets of cemented lenses, and the two groups of cemented lenses are configured such that their concave surfaces face each other, and are telecentric on the object side,
When the focal length of the second lens group is f2, the focal length of the third lens group is f3, and the focal length of the entire objective lens system is F, the following expression 0.02 <| f2 / F | <0 .2
0.02 <| f3 / F | <0.2
The objective lens for microscopes characterized by satisfying the following conditions.
前記第2レンズ群の2組の接合レンズは、凸レンズと凹レンズとを貼り合わせて構成され、
前記第2レンズ群における物体側の接合レンズを構成する凸レンズおよび凹レンズの硝財のアッベ数をそれぞれνdp21およびνdn21とし、前記第2レンズ群における像側の接合レンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp22及びνdn22とするとき、次式
1.5<νdp21/νdn21<5.1
1.1<νdn22/νdp22<3.2
の条件を満足することを特徴とする請求項1に記載の顕微鏡用対物レンズ。
The two sets of cemented lenses of the second lens group are configured by bonding a convex lens and a concave lens,
The Abbe numbers of the convex and concave lenses constituting the object-side cemented lens in the second lens group are νdp21 and νdn21, respectively, and the convex and concave lens materials constituting the image-side cemented lens in the second lens group When the Abbe numbers are νdp22 and νdn22, respectively, the following formula 1.5 <νdp21 / νdn21 <5.1
1.1 <νdn22 / νdp22 <3.2
The microscope objective lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ群の2組の接合レンズは、凸レンズと凹レンズとを貼り合わせてメニスカス形状に構成され、
前記第3レンズ群における物体側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp31およびνdn31とし、前記第3レンズ群における像側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材のアッベ数をそれぞれνdp32およびνdn32とするとき、次式
1.1<νdn31/νdp31<3.2
1.5<νdp32/νdn32<5.1
の条件を満足することを特徴とする請求項1または2に記載の顕微鏡用対物レンズ。
The two cemented lenses in the third lens group are configured in a meniscus shape by bonding a convex lens and a concave lens,
The Abbe numbers of the convex and concave lens materials constituting the object side cemented meniscus lens in the third lens group are νdp31 and νdn31, respectively, and the convex lens and concave lens glass materials constituting the image side cemented meniscus lens in the third lens group, respectively. When the Abbe numbers of νdp32 and νdn32 are respectively given by: 1.1 <νdn31 / νdp31 <3.2
1.5 <νdp32 / νdn32 <5.1
The microscope objective lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群における物体側の接合レンズは、凸レンズと凹レンズとを貼り合わせてメニスカス形状に構成され、
前記第2レンズ群における物体側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率をそれぞれndp2およびndn2とするとき、次式
1.1<ndn2/ndp2<1.5
の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の顕微鏡用対物レンズ。
The cemented lens on the object side in the second lens group is configured in a meniscus shape by bonding a convex lens and a concave lens,
When the refractive indexes of the glass materials of the convex lens and the concave lens constituting the cemented meniscus lens on the object side in the second lens group are ndp2 and ndn2, respectively, the following expression 1.1 <ndn2 / ndp2 <1.5
The microscope objective lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ群における像側の接合メニスカスレンズは、凸レンズと凹レンズとを貼り合わせて構成され、
前記第3レンズ群における像側の接合メニスカスレンズを構成する凸レンズおよび凹レンズの硝材の屈折率をそれぞれndp3およびndn3とするとき、次式
1.1<ndn3/ndp3<1.5
の条件を満足することを特徴とする請求項1〜4のいずれか一項に記載の顕微鏡用対物レンズ。
The cemented meniscus lens on the image side in the third lens group is configured by bonding a convex lens and a concave lens,
When the refractive indexes of the glass materials of the convex lens and the concave lens constituting the cemented meniscus lens on the image side in the third lens group are ndp3 and ndn3, respectively, the following expression 1.1 <ndn3 / ndp3 <1.5
The microscope objective lens according to claim 1, wherein the following condition is satisfied.
物体面から最も像側に配置されたレンズ面の頂点までの距離をLとするとき、次式
0.25<L/F<0.7
の条件を満足することを特徴とする請求項1〜5のいずれか一項に記載の顕微鏡用対物レンズ。
When the distance from the object plane to the apex of the lens surface arranged closest to the image side is L, the following expression 0.25 <L / F <0.7
The microscope objective lens according to claim 1, wherein the following condition is satisfied.
JP2008149383A 2008-06-06 2008-06-06 Microscope objective lens Active JP5369503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149383A JP5369503B2 (en) 2008-06-06 2008-06-06 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149383A JP5369503B2 (en) 2008-06-06 2008-06-06 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2009294518A true JP2009294518A (en) 2009-12-17
JP5369503B2 JP5369503B2 (en) 2013-12-18

Family

ID=41542739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149383A Active JP5369503B2 (en) 2008-06-06 2008-06-06 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP5369503B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793326A (en) * 2015-04-30 2015-07-22 麦克奥迪实业集团有限公司 Stereo microscope with coaxial lighting effect
CN111679400A (en) * 2020-06-22 2020-09-18 秦皇岛视听机械研究所有限公司 Detection lens only using three domestic optical materials and design method and application thereof
CN114153064A (en) * 2021-12-31 2022-03-08 湖南长步道光学科技有限公司 Integrated microscopic optical system and microscope
US11402618B2 (en) 2018-04-19 2022-08-02 Olympus Corporation Microscope objective

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419317A (en) * 1987-07-14 1989-01-23 Dainippon Screen Mfg Telecentric image formation optical system with large picture plane size
JPH0442208A (en) * 1990-06-08 1992-02-12 Dainippon Screen Mfg Co Ltd Telecentric projection lens
JPH05203874A (en) * 1992-01-23 1993-08-13 Dainippon Screen Mfg Co Ltd Telecentric image formation optical system
JPH08248321A (en) * 1995-03-07 1996-09-27 Nikon Corp Objective lens of microscope
JPH09127416A (en) * 1995-11-02 1997-05-16 Dainippon Screen Mfg Co Ltd Variable power optical system
JPH11352398A (en) * 1998-06-10 1999-12-24 Nikon Corp Both-side telecentric optical system
JP2003066333A (en) * 2000-11-08 2003-03-05 Olympus Optical Co Ltd Microscopic zoom objective lens
JP2005316143A (en) * 2004-04-28 2005-11-10 Dainippon Screen Mfg Co Ltd Both-sided telecentric zoom lens
JP2007011092A (en) * 2005-06-30 2007-01-18 Nikon Corp Objective lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419317A (en) * 1987-07-14 1989-01-23 Dainippon Screen Mfg Telecentric image formation optical system with large picture plane size
JPH0442208A (en) * 1990-06-08 1992-02-12 Dainippon Screen Mfg Co Ltd Telecentric projection lens
JPH05203874A (en) * 1992-01-23 1993-08-13 Dainippon Screen Mfg Co Ltd Telecentric image formation optical system
JPH08248321A (en) * 1995-03-07 1996-09-27 Nikon Corp Objective lens of microscope
JPH09127416A (en) * 1995-11-02 1997-05-16 Dainippon Screen Mfg Co Ltd Variable power optical system
JPH11352398A (en) * 1998-06-10 1999-12-24 Nikon Corp Both-side telecentric optical system
JP2003066333A (en) * 2000-11-08 2003-03-05 Olympus Optical Co Ltd Microscopic zoom objective lens
JP2005316143A (en) * 2004-04-28 2005-11-10 Dainippon Screen Mfg Co Ltd Both-sided telecentric zoom lens
JP2007011092A (en) * 2005-06-30 2007-01-18 Nikon Corp Objective lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793326A (en) * 2015-04-30 2015-07-22 麦克奥迪实业集团有限公司 Stereo microscope with coaxial lighting effect
US11402618B2 (en) 2018-04-19 2022-08-02 Olympus Corporation Microscope objective
CN111679400A (en) * 2020-06-22 2020-09-18 秦皇岛视听机械研究所有限公司 Detection lens only using three domestic optical materials and design method and application thereof
CN111679400B (en) * 2020-06-22 2022-05-10 秦皇岛视听机械研究所有限公司 Detection lens only using three domestic optical materials and design method and application thereof
CN114153064A (en) * 2021-12-31 2022-03-08 湖南长步道光学科技有限公司 Integrated microscopic optical system and microscope
CN114153064B (en) * 2021-12-31 2023-09-01 湖南长步道光学科技有限公司 Integrated micro-optical system and microscope

Also Published As

Publication number Publication date
JP5369503B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US7889432B2 (en) Immersion microscope objective lens
US8199408B2 (en) Immersion microscope objective lens
US20020089760A1 (en) Immersion microscope ojective lens
JP4496524B2 (en) Immersion microscope objective lens
JPH06160720A (en) Liquid immersion system microscope objective lens
JP2006113486A (en) Immersion system microscope objective
JP5445898B2 (en) Immersion microscope objective lens
JP2010134218A (en) Microscope objective lens
JP5993250B2 (en) Immersion microscope objective lens and microscope using the same
JP5369503B2 (en) Microscope objective lens
JP5277178B2 (en) Telescope optics
JP2009075281A (en) Microscope objective lens
JP4720319B2 (en) Objective lens
JPH11174345A (en) Wide visual field ocular
JP2008015418A (en) Eyepiece
JPH09138352A (en) Immersion microscopic objective lens
JPH10133120A (en) Microscope objective lens
JP3944099B2 (en) Immersion microscope objective lens
JP2010224477A (en) Microscope objective lens
EP3557303A1 (en) Microscope objective
JP7214192B2 (en) Immersion microscope objective lens, imaging lens and microscope device
JP5422214B2 (en) Eyepieces and optical equipment
JP4673027B2 (en) Eyepiece
JP5387960B2 (en) Objective lens for parallel stereo microscope
JP5288242B2 (en) Microscope objective lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250