JP2009294235A - Atom probe apparatus and atom probe analysis method - Google Patents

Atom probe apparatus and atom probe analysis method Download PDF

Info

Publication number
JP2009294235A
JP2009294235A JP2009220844A JP2009220844A JP2009294235A JP 2009294235 A JP2009294235 A JP 2009294235A JP 2009220844 A JP2009220844 A JP 2009220844A JP 2009220844 A JP2009220844 A JP 2009220844A JP 2009294235 A JP2009294235 A JP 2009294235A
Authority
JP
Japan
Prior art keywords
sample
layer
needle
electric field
atom probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220844A
Other languages
Japanese (ja)
Other versions
JP4902712B2 (en
Inventor
Takashi Minafuji
孝 皆藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2009220844A priority Critical patent/JP4902712B2/en
Publication of JP2009294235A publication Critical patent/JP2009294235A/en
Application granted granted Critical
Publication of JP4902712B2 publication Critical patent/JP4902712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present a technique for preliminarily working a sample, which makes a place, that is desired to be analyzed, of a device into a needle-like protrusion by locally cutting out the place, and to provide a technique for making an SAP analysis at the atomic level possible by ensuring stabilized ion evaporation sequentially even in the case of a sample of multilayer structure including an element layer of small evaporation electric field in the following circumstances. <P>SOLUTION: A preliminary processing method for a sample used on atom probe apparatus includes the steps of: cutting the desired observing part of the sample into a block using an FIB equipment; transferring the sample block onto a sample substrate and fixing the sample block in place; and processing the sample block fixed onto the sample substrate into a needle-point shape by FIB etching. The sample processed into a needle-point shape is shaped such that the layer direction of the multilayer structure becomes parallel to the longitudinal direction of the needle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、中空円錐状のイオン引出電極を備えたアトムプローブ装置における試料配置と針状試料の予備加工方法とに関する。   The present invention relates to a sample arrangement in an atom probe apparatus equipped with a hollow conical ion extraction electrode and a pre-processing method for a needle-like sample.

電子のトンネル現象を利用した最初の高分解能顕微鏡は、図3に示すように鋭い針先から電子を放射させ、拡大投映させた放射電子像を観察する電界放射顕微鏡FEM(Field Emission Microscope)であった。この顕微鏡は真空状態の下で強電界をかけると、量子力学的トンネル効果により金属導体表面から表面ポテンシャルの障壁を越えて電子が放出される電界放射現象を利用したもので、針状に形成された金属の先端表面から強電界の作用で蛍光体が塗布されたスクリーンに向けて電子放射がなされように構成することで、蛍光スクリーン上に放出金属表面の拡大像を映し出させるというものである。FEMの分解能は約1nmと低いので原子は見えないが、針に印加した負電圧と放射電流のI−V特性から針先の半球面上の微細な結晶面の仕事関数が求まる。針への印加電圧を負から正に切り替え、鏡体内に低圧の不活性ガスを導入すると、FEMは電界イオン顕微鏡FIM(Field Ion Microscope)として作動し、針先の原子配列を直接観察できるようになる。FIMには、電界蒸発現象により針先の表面原子を陽イオンとして順序正しく脱離させることができる特性がある。この現象は走査型トンネル顕微鏡STM(Scanning Tunneling Microscope)による原子操作にも利用されている。脱離イオンを逐一検出同定すると針先の組成を原子レベルで解析できる。この発想にもとづいて、単一イオンを検出できる質量分析器とFIMとの複合器アトムプローブAP(Atom Probe)が開発された。APは、針先の電子状態・原子配列・組成分布を解析できる唯一の装置である。電界蒸発は表面第1層から原子層ごと順序正しく進行するので、APによって層ごとの組成や界面の組成分布、さらには電子状態変化をしらべることができる。   The first high-resolution microscope using the electron tunneling phenomenon is a field emission microscope (FEM) that emits electrons from a sharp needle tip and observes an enlarged projected radiated electron image as shown in FIG. It was. This microscope uses a field emission phenomenon in which electrons are emitted from the surface of a metal conductor across the surface potential barrier by a quantum mechanical tunnel effect when a strong electric field is applied under vacuum conditions. In addition, an electron beam is emitted from the tip surface of the metal toward the screen coated with the phosphor by the action of a strong electric field, so that an enlarged image of the surface of the emitted metal is displayed on the phosphor screen. Since the resolution of FEM is as low as about 1 nm, atoms cannot be seen, but the work function of a fine crystal plane on the hemisphere of the needle tip can be obtained from the negative voltage applied to the needle and the IV characteristics of the radiation current. When the voltage applied to the needle is switched from negative to positive and a low-pressure inert gas is introduced into the lens body, the FEM operates as a field ion microscope FIM (Field Ion Microscope) so that the atomic arrangement of the needle tip can be directly observed. Become. FIM has a characteristic that the surface atoms of the needle tip can be desorbed in order as cations by the electric field evaporation phenomenon. This phenomenon is also used for atomic operations using a scanning tunneling microscope (STM). By detecting and identifying the desorbed ions one by one, the composition of the needle tip can be analyzed at the atomic level. Based on this idea, a composite atom probe AP (Atom Probe) of a mass analyzer capable of detecting a single ion and FIM was developed. The AP is the only device that can analyze the electronic state, atomic arrangement, and composition distribution of the needle tip. Since field evaporation proceeds in order from the first surface layer to each atomic layer, the composition of each layer, the composition distribution of the interface, and the change in the electronic state can be examined by AP.

ただし、このAPには試料の作製と形状に厳しい制約があり、その特性を生かせる分野は限られていた。この制約を打破するために考案されたのが走査型アトムプローブ(SAP:Scanning Atom Probe )である。密集配列した針から特定の針を選びその先端をしらべるには、針先に電界を局在化させなければならない。そこで、接地された微細な漏斗型の引出電極をAPの鏡体内に取り付け、微細な針が密集配列している平面状試料に正電圧を印加する。すると、引出電極先端の直径が数μmから数十μmの孔の真下にある単一の針先に高電界が発生するとともに、電界は孔と針先との間のきわめて狭い空間に局在化する。コンピュータによる電界分布計算によると、針先の頂角で90°、先端曲率半径が50nmであっても、針先には電界放射や電界蒸発に求められる高電界が発生する。このことは、平らな試料面上に数μm程度の凹凸があれば、その突起の先端を分析できることを示している。平滑処理が施されていない表面や腐食した表面、高効率の触媒の表面等は、通常凹凸に富んでいるので、これらの表面があるがままにしらべられることになる。図4にSAPの基本構造を示す。左端の試料は密集配列型電界放射電子源を模式的に示したものである。漏斗型の引出電極の先端の孔が試料面上の針先または突起の先端に近づくと、先端と電極間のきわめて狭い領域に高電界が発生し、針先から放射された電子がスクリーンにFEM像を映し出す。また、鏡体内にヘリウムのような不活性映像ガスを導入し、試料に正電圧を印加すると、スクリーンには高分解能のFIM像が映し出される。さらに定常電圧の上にパルス電圧を上乗せするかパルスレーザー光を試料面に照射して表面原子を電界蒸発させると、陽イオンとして蒸発した表面原子はスクリーン中央の探査孔を通り抜けて質量分析器であるリフレクトロンに入り、逐一検出される。分析される領域は探査孔に対応した突起先端の直径数ナノから数十ナノの領域である。分析を続けると、この領域の深さ方向の組成変化を1原子層の分解能でしらべることができる。   However, this AP has severe restrictions on the preparation and shape of the sample, and the field in which the characteristics can be utilized is limited. A scanning atom probe (SAP) has been devised to overcome this limitation. In order to select a specific needle from closely packed needles and examine its tip, an electric field must be localized at the needle tip. Therefore, a grounded fine funnel-shaped extraction electrode is attached to the AP body, and a positive voltage is applied to a planar sample in which fine needles are closely arranged. Then, a high electric field is generated at a single needle tip just below a hole with a diameter of several μm to several tens of μm at the tip of the extraction electrode, and the electric field is localized in a very narrow space between the hole and the needle tip. To do. According to the electric field distribution calculation by a computer, even if the apex angle of the needle tip is 90 ° and the tip radius of curvature is 50 nm, a high electric field required for electric field radiation and field evaporation is generated at the needle tip. This indicates that the tip of the protrusion can be analyzed if there are irregularities of about several μm on the flat sample surface. Surfaces that have not been smoothed, corroded surfaces, highly efficient catalyst surfaces, and the like are usually rich in irregularities, so these surfaces can be left as they are. FIG. 4 shows the basic structure of the SAP. The leftmost sample schematically shows a densely arranged field emission electron source. When the hole at the tip of the funnel-type extraction electrode approaches the tip of the needle tip or protrusion on the sample surface, a high electric field is generated in a very narrow region between the tip and the electrode, and electrons emitted from the tip of the needle are FEM on the screen. Project an image. Further, when an inert video gas such as helium is introduced into the lens body and a positive voltage is applied to the sample, a high-resolution FIM image is displayed on the screen. Furthermore, when a pulse voltage is added to the steady voltage or the surface of the specimen is irradiated with pulse laser light and the surface atoms are field evaporated, the surface atoms evaporated as cations pass through the search hole in the center of the screen and pass through the mass spectrometer. A certain reflectron is entered and detected one by one. The region to be analyzed is a region with a diameter of several nanometers to several tens of nanometers at the tip of the protrusion corresponding to the exploration hole. If the analysis is continued, the compositional change in the depth direction of this region can be investigated with the resolution of one atomic layer.

この文献では、表面に凹凸のある試料を分析対象としており、特に凸の部分を探し出し引出電極と対向させて試料突起部を上層原子から順に電界蒸発させてイオンとして引出し、上記引出電極の後方に配置されたイオン検出器(二次元検出タイプ)で検出すると、各イオンの飛行時間計測により元素分析が出来ること。位置情報も得られるので原子レベルの三次元組成分析が可能であることを示している。   In this document, a sample with an uneven surface is used as an analysis target. In particular, a convex portion is searched for and opposed to an extraction electrode, and a sample projection is sequentially evaporated from an upper layer atom and extracted as an ion, and behind the extraction electrode. Elemental analysis can be performed by measuring the time of flight of each ion when it is detected by the installed ion detector (two-dimensional detection type). Since position information is also obtained, it is shown that three-dimensional composition analysis at the atomic level is possible.

一方、強い分析ニーズのある半導体ウェハ、GMR或いはTMRと呼ばれる薄膜磁気ヘッドウェハ等の分析対象試料を試料とする場合には、複雑なパターンを積重ねた多層構造となっていることが多く、分析したい部分の構造は多種多様である。APを用いてこのような分析対象を分析するためには、分析したいところを局所的に切出して電極となる針状突起の先に微細な切片として切り出して固定しなくてはならないが、従来は金属材料等の試料を針状にする旧来の方法のみが存在していたにすぎず、微細な特定部位をAPで分析することは非常に困難であった。そのため、これに代わる手法として試料自体を針状に加工する予備加工技術の開発が必須となる。原子レベルの分析である関係上、分析対象寸法は 100nm立方程度となるので、分析対象部をピンポイントで針状試料に作製する技術が極めて重要となる。   On the other hand, when a sample to be analyzed such as a semiconductor wafer having a strong analysis need or a thin film magnetic head wafer called GMR or TMR is used as a sample, it is often a multi-layer structure in which complicated patterns are stacked. The structure of the parts is diverse. In order to analyze such an object to be analyzed using AP, it is necessary to locally cut out the portion to be analyzed and cut out and fix it as a fine section at the tip of the needle-like projection that becomes an electrode. Only the conventional method of forming a sample of a metal material or the like into a needle shape existed, and it was very difficult to analyze a fine specific site by AP. Therefore, as an alternative method, it is essential to develop a pre-processing technique for processing the sample itself into a needle shape. Because of the analysis at the atomic level, the size of the analysis target is about 100 nm cubic, so the technology for producing the analysis target portion into a needle-like sample is extremely important.

特開2004−361139号公報JP 2004-361139 A

森田清三編著「走査型プローブ顕微鏡基礎と未来予測」平成12年2月10日丸善発行 2.7走査型アトムプローブ(SAP) 70〜73頁Seizo Morita, “Scanning Probe Microscopy Fundamentals and Future Prediction” published by Maruzen on February 10, 2000 2.7 Scanning Atom Probe (SAP) 70-73 西川治編著「走査型プローブ顕微鏡STMからSPMへ」 平成10年3月30日丸善発行 8頁の記載及び、表1-2 各種元素の蒸発電界強度Edited by Osamu Nishikawa “From Scanning Probe Microscope STM to SPM” March 30, 1998, published by Maruzen Page 8 and Table 1-2 Evaporation field strength of various elements

本発明が解決しようとする課題は、SAP分析対象試料が微小凹凸を備えている突起部に限定されることなく、デバイスの分析したいところを局所的に切出して針状突起にする試料予備加工の技術を提示すると共に、後述する事情の中で蒸発電界が大きく異なる元素層を含む多層構造の試料であっても順次の安定したイオン蒸発を可能とし、原子レベルのSAP分析を可能とする技術を提供することにある。   The problem to be solved by the present invention is that the sample to be analyzed is not limited to a protrusion having a micro unevenness, and the sample preliminary processing of the sample to be processed into a needle-like protrusion by locally cutting out the portion of the device to be analyzed In addition to presenting the technology, a technology that enables sequential and stable ion evaporation and enables atomic level SAP analysis even for multi-layered samples including element layers with greatly different evaporation fields in the circumstances described later. It is to provide.

本発明のアトムプローブ装置は、多層構造からなる試料の各層の端部に引き出し電界を印加する引き出し電極と、多層構造の各層の蒸発電界の強度を記憶する記憶手段と、イオンを検出するためのスクリーン上の到着位置を検知する手段とを備え、多層構造の各層の蒸発電界強度と到達位置から特定する層の端部位置を特定する機能を有する。   An atom probe apparatus according to the present invention includes an extraction electrode that applies an extraction electric field to the end of each layer of a sample having a multilayer structure, a storage unit that stores the strength of the evaporation electric field of each layer of the multilayer structure, and an ion detection device. Means for detecting an arrival position on the screen, and has a function of specifying the end position of the layer specified from the evaporation electric field strength and the arrival position of each layer of the multilayer structure.

また、本発明のアトムプローブ分析方法は、多層構造の各層の界面の方向が針の長手方向に平行となる針先形状の試料の各層の端部に電界を印加して蒸発したイオンがスクリーンに到達した位置を検出し試料を構成する元素について分析するアトムプローブ分析方法において、試料に印加する電界強度を徐々に上げる工程と、各層の蒸発電界強度を記憶する工程と、各層の蒸発電界強度を用いてスクリーンにイオンが到達した位置から試料の構成元素の位置を補正する工程とを含む。   In addition, the atom probe analysis method of the present invention is configured so that ions evaporated by applying an electric field to the end of each layer of a needle-tip-shaped sample in which the interface direction of each layer of the multilayer structure is parallel to the longitudinal direction of the needle are applied to the screen. In the atom probe analysis method for detecting the position reached and analyzing the element constituting the sample, the step of gradually increasing the electric field strength applied to the sample, the step of storing the evaporation electric field strength of each layer, and the evaporation electric field strength of each layer And correcting the position of the constituent element of the sample from the position where the ions have reached the screen.

本発明のアトムプローブ装置用試料の予備加工方法は、FIB装置を用いて試料所望分析部位をブロック状に切り出すステップと、該ブロック状の切り出し試料を試料基板上に移送して固定するステップと、該試料基板上に固定されたブロック状の試料をFIBエッチング加工によって針先形状に加工するステップとからなるものであるから、分析所望箇所を切り出して、アトムプローブ装置用の試料として好適な先鋭な針先形状に形成することができる。   The method for pre-processing a sample for an atom probe device of the present invention includes a step of cutting a sample desired analysis site into a block shape using an FIB device, a step of transferring and fixing the block-shaped cut sample on a sample substrate, Since the block-shaped sample fixed on the sample substrate includes a step of processing into a needle tip shape by FIB etching processing, a desired analysis point is cut out and a sharp point suitable as a sample for an atom probe apparatus is obtained. It can be formed into a needle tip shape.

また、本発明のアトムプローブ装置用試料の予備加工方法は、ブロック状の切り出し試料を試料基板上に固定する手法としてFIB−CVDによって仮接着するステップと、ブロック状の試料の基部と試料基板とにかけてFIBエッチングで切り込みを入れるステップと、その上で該切り込み部分にFIB−CVDを施すようにしたものであるから、試料基板とブロック状試料とを堅固に接着固定することができた。これによってアトムプローブ装置による試験を安定して行うことができる。   In addition, the preliminary processing method of the sample for the atom probe apparatus of the present invention includes a step of temporarily adhering the block-shaped cut-out sample on the sample substrate by FIB-CVD, a base of the block-shaped sample, and the sample substrate. Since the FIB-CVD was performed on the cut portion and the cut portion was subjected to FIB-CVD, the sample substrate and the block sample could be firmly bonded and fixed. As a result, the test using the atom probe apparatus can be performed stably.

ブロック状の試料をFIBエッチング加工によって針先形状に加工する仕上加工では、加速電圧10kV以下で行うことにより、照射イオンが試料内に残留するダメージを極力抑えることができる。   In the finishing process in which a block-shaped sample is processed into a needle tip shape by FIB etching, the damage of irradiation ions remaining in the sample can be suppressed as much as possible by performing the acceleration voltage at 10 kV or less.

また、仕上加工を加速電圧10kV以下で行った後、さらに低加速Arイオンミリング等でそのダメージ層を除去することができる。   In addition, after the finishing process is performed at an acceleration voltage of 10 kV or less, the damaged layer can be removed by low acceleration Ar ion milling or the like.

本発明のアトムプローブ装置用試料は、針先形状に加工された試料は多層構造の層方向が針の長手方向に平行となるように形成されているので、多層構造内に蒸発電圧が異なる元素の層があってもその境界面で剥離してしまうようなことが無く、アトムプローブ装置による試験を安定して行うことができる。   In the sample for the atom probe apparatus of the present invention, the sample processed into the shape of the needle tip is formed so that the layer direction of the multilayer structure is parallel to the longitudinal direction of the needle. Even if there is a layer, there will be no separation at the boundary surface, and the test using the atom probe apparatus can be performed stably.

本発明のアトムプローブ装置用試料は、どの元素の層が先に蒸発するかなどの情報を蓄積した記憶手段と、イオン検出器となるスクリーンへの到着位置を検知する手段を備えるものであるから、その情報を元に特定する元素の層の端部位置を割り出すことができる。   The sample for the atom probe apparatus of the present invention comprises a storage means for accumulating information such as which element layer evaporates first, and a means for detecting the arrival position on the screen serving as an ion detector. The end position of the element layer to be identified can be determined based on the information.

本発明のアトムプローブ装置は、混在してイオン蒸発する異なる元素をそれぞれ分別して分析することを可能とした。   The atom probe apparatus according to the present invention can separately analyze different elements that co-mix and ionize.

SAP用の針状試料を予備加工する本発明の手法を説明する図である。It is a figure explaining the method of this invention which pre-processes the needle-shaped sample for SAP. 多層構造試料の層を針の軸方向にしてSAP用の針状試料に予備加工する本発明の手法を説明する図である。It is a figure explaining the method of this invention which pre-processes the needle-shaped sample for SAP by making the layer of a multilayer structure sample into the axial direction of a needle | hook. 電界放射顕微鏡FEMの基本構成を説明する図である。It is a figure explaining the basic composition of field emission microscope FEM. 走査型アトムプローブSAPの基本構造を示す図である。It is a figure which shows the basic structure of the scanning atom probe SAP.

本発明者等は複雑なパターンを積重ねた多層構造となっているデバイスをAPの技術で原子層毎の分析を行うべく試料の予備加工とそれを用いた分析を試みた。まず、試料の予備加工としてデバイスの一部を集束イオンビーム(FIB)装置を用いてブロック状に切り出して、試料基板上に移送固定し、更にFIB装置を用いて針状試料に仕上げる加工方法をとった。その手順は例えばウェハ状の大きな試料からFIB装置の走査型イオン顕微鏡(SIM)機能を用いてデバイスの観察所望箇所を特定し、その表面にFIB−CVDによって保護膜を形成する。ここで、APで分析したい領域が試料表面に存在する場合には、FIB照射によるGaイオン注入などのダメージを避けるために、FIB照射前に保護膜を付けるようにする。保護膜は、真空蒸着装置、あるいはスパッタ成膜装置を用いる方法で成膜出来る。なお、場所出し後に所望位置に保護膜を付けることが可能という点で好適な方法について以下に述べる。FIBと同一点を照射するように配置したSEMを備えた装置を使用し、このSEMによって概略の位置出しした後に、EB−CVDで少なくともFIBの進入深さより厚い50nm程度の保護膜を付ける。もっと厚い膜が必要な場合は高速成膜が可能なFIB−CVDで追加成膜しても良い。続いて図1のAに示すように観察所望箇所の四方周辺をFIBエッチングにより穴掘り加工を行い、大きな穴を開けた方向からFIB照射ができるように試料ステージをチルトしFIBエッチングによるボトムカットをしてデバイスから切り離す。切り離されたブロック状の観察試料片1を図1のBに示すようにマニピュレータによって操作される微細なプローブ3で固定基板2上に移送しFIB−CVDによって仮固定する。このときの切り出された試料片1はチルト角方向からのFIBによってボトムカットされるため、底部は表面に対し傾斜角をもつことになり、固定試料台2への固定は図示されたように傾斜部分を埋めるようにして固定する。以上のプロセスは本発明者グループが先に開発し特願2003−157120号として出願した透過型電子顕微鏡用試料に関する「ピックアップ試料の垂直位置出し方法と垂直方向を示す印をもつ試料」明細書(特許文献1)に開示した手法に準じたものである。   The inventors of the present invention tried to perform preliminary processing of a sample and analysis using the sample in order to analyze a device having a multi-layer structure in which complicated patterns are stacked for each atomic layer by using the AP technique. First, there is a processing method in which a part of a device is cut out in a block shape using a focused ion beam (FIB) device as a preliminary processing of a sample, transferred and fixed on a sample substrate, and further processed into a needle-like sample using an FIB device. I took it. For example, a desired observation position of the device is specified from a large wafer-like sample by using a scanning ion microscope (SIM) function of the FIB apparatus, and a protective film is formed on the surface by FIB-CVD. Here, when a region to be analyzed by AP exists on the sample surface, a protective film is attached before FIB irradiation in order to avoid damage such as Ga ion implantation due to FIB irradiation. The protective film can be formed by a method using a vacuum deposition apparatus or a sputtering film forming apparatus. Note that a method suitable for the point that a protective film can be applied at a desired position after the placement is described below. Using a device equipped with an SEM arranged so as to irradiate the same point as the FIB, after roughly positioning by this SEM, a protective film of about 50 nm thicker than at least the depth of penetration of the FIB is attached by EB-CVD. If a thicker film is required, additional film formation may be performed by FIB-CVD, which allows high-speed film formation. Subsequently, as shown in FIG. 1A, the periphery of the desired observation point is drilled by FIB etching, and the sample stage is tilted so that FIB irradiation can be performed from the direction of the large hole, and the bottom cut by FIB etching is performed. Disconnect from the device. The separated block-shaped observation sample piece 1 is transferred onto a fixed substrate 2 by a fine probe 3 operated by a manipulator as shown in FIG. 1B and temporarily fixed by FIB-CVD. Since the sample piece 1 cut out at this time is bottom-cut by FIB from the tilt angle direction, the bottom portion has an inclination angle with respect to the surface, and the fixation to the fixed sample stage 2 is inclined as shown in the figure. Fix it to fill the part. The above-described process is a description of a "sample with a mark indicating the vertical direction and a vertical positioning method of a pickup sample" relating to a transmission electron microscope sample developed by the present inventors group and filed as Japanese Patent Application No. 2003-157120 ( This is in accordance with the method disclosed in Patent Document 1).

観察したい個所を特定してFIBエッチングによって固定基板上に切り出されたブロック状の試料片1が仮固定(5仮固定部)されたなら、試料ステージをチルトしてブロック状の試料片1の基部と固定基板2とにかけてFIBエッチングで切り込みを入れる。そうした上でその切り込み部分にFIB−CVDを施し、試料基板とブロック状試料とを接着本固定(6本固定部)する。この状態を図1のDに示す。この本固定を複数箇所施すことによりブロック試料片1を固定基板2に堅固に固着する。最後にこのブロック状の試料片1はFIBエッチングで針形状に成形加工される。このようにして予備加工された針状試料1aを図1のEに示す。ここでは、図1のBに示すように、固定基板2は切り出した試料片1より大きな平板としたが、場合によっては図1のCに示すように固定基板2に先端を平坦にした針状突起を設けておき、その上に切り出した試料片1を固定して全体が大きな針状になるように加工しても良い。試料針先に電界を集中させるために、針の長さをイオン引出電極の径の数倍にする必要があるからである。上記のように固定基板に突起を設けておくことにより、APのイオン引出電極の径が大きい場合にも対応できるようになる。FIB加工によって、ガリウムなどの照射イオンが試料内に打ち込まれるダメージの及ぶ深さは、加速電圧を低くすれば浅く出来るので仕上加工を加速電圧5〜10kV以下で行えばダメージ層の厚さを10nm以下に出来る。試料針の先端径は200nm程度なので外周部の一部を除く大部分の領域の分析が可能となる。さらに低加速Arイオンミリング等でダメージ層を除去する工程を含めることも有効である。   If the block-shaped sample piece 1 cut out on the fixed substrate by FIB etching after specifying the location to be observed is temporarily fixed (5 temporarily fixed portions), the sample stage is tilted to form the base of the block-shaped sample piece 1 And the fixed substrate 2 are cut by FIB etching. Then, FIB-CVD is applied to the cut portion, and the sample substrate and the block-shaped sample are bonded and fixed (six fixed portions). This state is shown in FIG. The block sample piece 1 is firmly fixed to the fixed substrate 2 by performing the main fixing at a plurality of positions. Finally, the block-shaped sample piece 1 is formed into a needle shape by FIB etching. The needle-like sample 1a preliminarily processed in this way is shown in FIG. Here, as shown in FIG. 1B, the fixed substrate 2 is a flat plate larger than the cut sample piece 1, but in some cases, the fixed substrate 2 has a needle shape with a flat tip as shown in FIG. 1C. Protrusions may be provided, and the sample piece 1 cut out thereon may be fixed and processed so as to have a large needle shape as a whole. This is because the length of the needle needs to be several times the diameter of the ion extraction electrode in order to concentrate the electric field on the sample needle tip. Providing the protrusions on the fixed substrate as described above makes it possible to cope with the case where the diameter of the AP ion extraction electrode is large. The depth of damage caused by irradiation of irradiated ions such as gallium into the sample by FIB processing can be made shallower if the acceleration voltage is lowered. You can: Since the tip diameter of the sample needle is about 200 nm, it is possible to analyze most of the region excluding a part of the outer periphery. It is also effective to include a step of removing the damaged layer by low acceleration Ar ion milling or the like.

このようにして加工された試料は針の先端から基部方向にかけて異なる素材が多重に積層された形態となっている。この試料をSAPにセットし試料基板と中空円錐状の引出電極間に電圧を印加し、試料先端部分から原子層毎にイオン蒸発させて、イオン検出器で元素分析を行うことになるが、その際電界蒸発に必要な電界強度が元素によって大きく異なることは公知の技術事項である。非特許文献2には各元素について理論式から求められる蒸発電界と蒸発電界実験値の値が一覧表で示されている。そのために、多層薄膜試料のAP分析においては、各層毎に印加電界強度を適切な値に迅速に切り換え、分析を進める必要がある。蒸発電界が特に大きい元素の層の下に、界面付着強度の小さな層がある場合などに、付着力が静電引力に負けてその弱い界面で剥離を起こしてその層以上の試料が飛んでしまうという問題が発生する。   The sample processed in this way has a form in which different materials are stacked in layers from the tip of the needle to the base. This sample is set on the SAP, a voltage is applied between the sample substrate and the hollow conical extraction electrode, and ions are evaporated for each atomic layer from the tip of the sample, and elemental analysis is performed with an ion detector. It is a known technical matter that the electric field strength required for the field evaporation differs greatly depending on the element. Non-Patent Document 2 shows a list of evaporation electric fields and evaporation electric field experimental values obtained from theoretical formulas for each element. Therefore, in the AP analysis of a multilayer thin film sample, it is necessary to quickly switch the applied electric field strength to an appropriate value for each layer and proceed with the analysis. When there is a layer with low interfacial adhesion strength under a layer of an element with a particularly large evaporation field, the adhesion force is defeated by electrostatic attraction, causing separation at the weak interface and causing a sample above that layer to fly. The problem occurs.

そこで、本発明者等は更に試料の多層構造中に剥離しやすい界面が存在しても、その元素の層の部分で剥離してしまうようなことが無く安定したイオン蒸発を可能とし、原子レベルの分析を可能とするアトムプローブ装置を提供することを更なる課題として研究を進めた。   Therefore, the present inventors have made it possible to perform stable ion evaporation without peeling off at the element layer even if there is an easily peelable interface in the multilayer structure of the sample, and at the atomic level The research was advanced as a further problem to provide an atom probe device that can analyze the above.

この課題を解決する第1の方法として薄膜試料中に、付着強度が小さい界面を挟んで蒸発電界が大きい層と小さい層がある場合には、蒸発電界が小さい層が表面側になるように、試料方向を切出して試料基板上に接着する。このように配置することで当初は低い電圧印加で蒸発電界が小さい層の原子をイオン蒸発させ、その原子層が蒸発した後で電界を強くして蒸発電界が大きい層の原子をイオン蒸発させるようにすることで原子レベルの分析が可能となる。   As a first method for solving this problem, in a thin film sample, when there are a layer with a large evaporation electric field and a layer with a small adhesion strength across the interface, the layer with a small evaporation electric field is on the surface side. The sample direction is cut out and bonded onto the sample substrate. By arranging in this way, atoms in a layer with a small evaporation electric field are initially ion-evaporated by applying a low voltage, and after the atomic layer has evaporated, the electric field is strengthened so that atoms in a layer with a large evaporation electric field are ion-evaporated. By doing so, analysis at the atomic level becomes possible.

多層薄膜試料で中間層に界面付着強度が小さい層が存在する場合にはこの方法が採れないので、本発明では各層の界面の方向が試料針の長手方向となるように試料構造を加工することに想到した。この場合の試料の予備加工は図2に示すように進められる。試料加工の仕上がりとして針形状の長手方向に積層面が来るように、FIBエッチングによるブロック切り出し加工を行う。一般に半導体素子の積層構造は層面が表面と並行となっているので、図2のAに示すように長方形のエリアを浅く切り出すことになるが、その前に分析箇所を位置出しし、FIBによるダメージを受けないようにその領域の表面に第1の保護膜4aを形成しておく。この辺については、加速電圧10kV以下で行い、ダメージ層を浅くする方法を用いるのが好適である。次に、FIBエッチングによって観察領域を含む切り出し試料片1として切り出し、図2のBに示すようにマニピュレータを操作して微細なプローブ3でこの切り出し試料片1を固定する基板2上に移送し、FIB−CVDによって仮固定(5仮固定部)する。このとき試料片1の向きは針形状を形成するものであるから長手方向を試料基板2と直交する方向に固定することになる。仮固定がすんだところで本固定(6本固定部)を施すことになるが、その際図2のCに示すようにFIB照射によるダメージを防止するため試料先端部にFIB−CVDによって第2の保護膜4bを形成する。この保護膜4aを形成する前に観察領域となる多層構造部分の位置情報はSIMによって検知しておくことが必要である。ブロック状の切り出し試料片1を試料固定基板2上に本固定する手法は試料ステージをチルトしてFIBをブロック状の試料片1の基部と試料基板2とにかけて斜め上方から照射させ、FIBエッチングで切り込みを入れ、その上でガス銃からフェナントレンなどの原料ガスを噴射しつつ該切り込み部分にFIBを照射してCVDを施し、試料基板とブロック状試料とを接着固定する。このような接着加工を複数箇所に施し、ブロック試料を試料基板に堅固に固着する。   This method cannot be used when there is a layer with low interface adhesion strength in the intermediate layer in a multilayer thin film sample. In the present invention, the sample structure is processed so that the interface direction of each layer is the longitudinal direction of the sample needle. I came up with it. The preliminary processing of the sample in this case proceeds as shown in FIG. Block cutting by FIB etching is performed so that the laminated surface comes in the longitudinal direction of the needle shape as a sample processing finish. In general, since the laminated surface of the semiconductor element has a layer surface parallel to the surface, a rectangular area is cut out shallowly as shown in FIG. 2A, but before that, an analysis point is located and damage caused by FIB. The first protective film 4a is formed on the surface of the region so as not to receive. For this side, it is preferable to use an acceleration voltage of 10 kV or less and a shallow damage layer. Next, the cut sample piece 1 including the observation region is cut out by FIB etching, and the manipulator is operated as shown in FIG. 2B to transfer the cut sample piece 1 onto the substrate 2 on which the cut sample piece 1 is fixed. Temporarily fixed (5 temporarily fixed parts) by FIB-CVD. At this time, since the direction of the sample piece 1 forms a needle shape, the longitudinal direction is fixed in a direction orthogonal to the sample substrate 2. When temporary fixing has been completed, the main fixing (six fixing parts) is performed. At that time, as shown in FIG. 2C, in order to prevent damage due to the FIB irradiation, the second end of the sample is subjected to FIB-CVD. A protective film 4b is formed. Before forming the protective film 4a, it is necessary to detect the position information of the multilayer structure portion serving as the observation region by the SIM. The method of permanently fixing the block-shaped cut sample piece 1 on the sample fixing substrate 2 is to tilt the sample stage and irradiate the FIB from the diagonally upper part to the base of the block-shaped sample piece 1 and the sample substrate 2 and perform FIB etching. An incision is made, and while a source gas such as phenanthrene is ejected from a gas gun, FIB is irradiated to the incision portion to perform CVD, and the sample substrate and the block-like sample are bonded and fixed. Such adhesion processing is applied to a plurality of locations, and the block sample is firmly fixed to the sample substrate.

固定基板2に固定された柱状の試料片1に対し上方からのFIB照射をおこなってエッチングし、針形状を形成する。この際、柱状の試料片1のどの部分に観察領域があるかを先に検出し記憶してある位置情報を基にエッチング加工を施す。このようにして加工された状態を図2のDに示してある。先端径は0.2μmφ程度に加工する。   The columnar sample piece 1 fixed to the fixed substrate 2 is etched by FIB irradiation from above to form a needle shape. At this time, which part of the columnar sample piece 1 has the observation region is detected and etched based on the stored positional information. The state machined in this way is shown in FIG. The tip diameter is processed to about 0.2 μmφ.

層厚がnm或いはサブナノオーダーまである多層試料をこのように針形状に作製すると、各層の端部が同時に引出電界にさらされることになるので、各層の原子が同時にイオン化蒸発を始めることになるが、中でも小さな蒸発電界の元素の層から先にイオン化して飛び出す。すると相対的に大きな蒸発電界の層が取り残されるので、その層が凸となり電界が集中する一方で、蒸発した層は凹となり、図2のEに示すように元素の蒸発電界の差によって先端部の位置に段差を生じることとなる。低い蒸発電界の層の端部は低くなるがそうなると引出電極との間に形成される電界強度が下がることになる。その結果として、印加電圧が一定なら蒸発電界の小さな層のイオン化がスローダウンする。そこで、イオン化レートが分析可能な範囲で一定となるように引出電界を設定すれば、時間のずれがあってもバランスするようになり、ついには全ての層が電界蒸発するに至る。これにより、特定の層が高速で蒸発してしまい各層の分析が出来なくなるという不具合を解決出来るのである。   When a multilayer sample having a layer thickness of nm or sub-nano order is produced in such a needle shape, the end of each layer is exposed to the extraction electric field at the same time, so atoms in each layer start ionization evaporation at the same time. In particular, it ionizes and jumps out from the element layer with a small evaporation field. Then, since a layer having a relatively large evaporation electric field is left behind, the layer becomes convex and the electric field concentrates, while the evaporated layer becomes concave, and the tip portion is caused by the difference in the element's evaporation electric field as shown in FIG. A step will be produced at the position of. The end of the layer with a low evaporation electric field is lowered, but when this is done, the electric field strength formed between the extraction electrodes is lowered. As a result, if the applied voltage is constant, the ionization of the layer with a small evaporation field is slowed down. Therefore, if the extraction electric field is set so that the ionization rate is constant within the range that can be analyzed, it will be balanced even if there is a time lag, and eventually all the layers will be evaporated. As a result, the problem that a specific layer evaporates at a high speed and analysis of each layer cannot be performed can be solved.

SAPによってこの試料を分析する際、abcd各層の蒸発電界の値には違いがあるので、電界強度を徐々に上げてゆくとまず最も低い値の元素をスクリーン上で検出でき、順次蒸発電界の値の低いものが検出できる。これを時系列的にトレースしていけば蒸発速度の違いによって先端部の位置が変わっても対応関係はとれ、位置の補正が可能である。すなわち、蒸発表面側に凹凸が出来ると、イオンの飛行方向が単純な針先の場合と変化することになるが、各層の端部と引出電極との位置関係から、イオン発生場所と検出器となるスクリーンへの到着位置との対応はつくので、位置補正が可能である。これらの多様な分析により、従来困難であった超薄寸法の多層構造試料の原子レベル組成分析が可能になった。   When analyzing this sample by SAP, there is a difference in the value of the evaporation electric field of each layer of abcd. As the electric field strength is gradually increased, the lowest value element can be detected on the screen first, and the value of the evaporation electric field is sequentially increased. Can be detected. If this is traced in time series, even if the position of the tip changes due to the difference in evaporation speed, the correspondence can be taken and the position can be corrected. In other words, if the evaporation surface is uneven, the flight direction of ions will change from the case of a simple needle tip, but from the positional relationship between the end of each layer and the extraction electrode, the ion generation location and detector Since it corresponds to the arrival position on the screen, position correction is possible. These various analyzes have made it possible to perform atomic level composition analysis of ultra-thin multi-layered samples, which has been difficult in the past.

1… 切り出し試料片
1a… 針状試料
2… 試料固定基板
3… プローブ
4、4a、4b… 保護膜
5… 仮固定部
6… 本固定部
DESCRIPTION OF SYMBOLS 1 ... Cut-out sample piece 1a ... Needle-shaped sample 2 ... Sample fixing board 3 ... Probe 4, 4a, 4b ... Protective film 5 ... Temporary fixing part 6 ... Main fixing part

Claims (2)

多層構造からなる試料の各層の端部に引き出し電界を印加する引き出し電極と、
前記多層構造の各層の蒸発電界の強度を記憶する記憶手段と、
イオンを検出するためのスクリーン上の到着位置を検知する手段とを備え、
前記多層構造の各層の蒸発電界強度と前記到達位置から特定する層の端部位置を特定する機能を有するアトムプローブ装置。
An extraction electrode for applying an extraction electric field to the end of each layer of the sample having a multilayer structure;
Storage means for storing the intensity of the evaporation electric field of each layer of the multilayer structure;
Means for detecting the arrival position on the screen for detecting ions,
An atom probe apparatus having a function of specifying an end portion position of a layer specified from an evaporation electric field strength of each layer of the multilayer structure and the arrival position.
多層構造の各層の界面の方向が針の長手方向に平行となる針先形状の試料の前記各層の端部に電界を印加して蒸発したイオンがスクリーンに到達した位置を検出し前記試料を構成する元素について分析するアトムプローブ分析方法において、
前記試料に印加する電界強度を徐々に上げる工程と、
前記各層の蒸発電界強度を記憶する工程と、
前記各層の蒸発電界強度を用いて前記スクリーンにイオンが到達した位置から前記試料の構成元素の位置を補正する工程と、
を含むアトムプローブ分析方法。
The sample is formed by detecting the position where the ions that have evaporated by reaching the screen by applying an electric field to the end of each layer of the sample of the needle tip shape in which the interface direction of each layer of the multilayer structure is parallel to the longitudinal direction of the needle In the atom probe analysis method for analyzing the element to be
Gradually increasing the electric field strength applied to the sample;
Storing the evaporation electric field strength of each of the layers;
Correcting the position of the constituent element of the sample from the position where ions have reached the screen using the evaporation electric field strength of each layer;
Atom probe analysis method comprising:
JP2009220844A 2009-09-25 2009-09-25 Atom probe analysis method Expired - Lifetime JP4902712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220844A JP4902712B2 (en) 2009-09-25 2009-09-25 Atom probe analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220844A JP4902712B2 (en) 2009-09-25 2009-09-25 Atom probe analysis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004075873A Division JP4393899B2 (en) 2004-03-17 2004-03-17 Sample for atom probe apparatus and processing method thereof

Publications (2)

Publication Number Publication Date
JP2009294235A true JP2009294235A (en) 2009-12-17
JP4902712B2 JP4902712B2 (en) 2012-03-21

Family

ID=41542508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220844A Expired - Lifetime JP4902712B2 (en) 2009-09-25 2009-09-25 Atom probe analysis method

Country Status (1)

Country Link
JP (1) JP4902712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150026970A (en) 2013-09-02 2015-03-11 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
KR20150026971A (en) 2013-09-02 2015-03-11 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
US9875878B2 (en) 2013-12-05 2018-01-23 Hitachi, Ltd. Sample holder and analytical vacuum device
JPWO2019224993A1 (en) * 2018-05-25 2021-02-18 三菱電機株式会社 Method for preparing a transmission electron microscope sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821793A (en) * 1994-07-08 1996-01-23 Hitachi Ltd Method for evaluating corrosion resistance of metallic material, method for designing high corrosion-resistant alloy, method for diagnosing corrosion state of metallic material and method for operating plant
JP2002042715A (en) * 2000-07-25 2002-02-08 Kanazawa Inst Of Technology Composition distribution stereoscopic display atom probe and scanning type composition distribution stereoscopic display atom probe
JP2005265516A (en) * 2004-03-17 2005-09-29 Sii Nanotechnology Inc Atom probe device and sample pre-processing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821793A (en) * 1994-07-08 1996-01-23 Hitachi Ltd Method for evaluating corrosion resistance of metallic material, method for designing high corrosion-resistant alloy, method for diagnosing corrosion state of metallic material and method for operating plant
JP2002042715A (en) * 2000-07-25 2002-02-08 Kanazawa Inst Of Technology Composition distribution stereoscopic display atom probe and scanning type composition distribution stereoscopic display atom probe
JP2005265516A (en) * 2004-03-17 2005-09-29 Sii Nanotechnology Inc Atom probe device and sample pre-processing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150026970A (en) 2013-09-02 2015-03-11 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
KR20150026971A (en) 2013-09-02 2015-03-11 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
JP2015050069A (en) * 2013-09-02 2015-03-16 株式会社日立ハイテクサイエンス Charged particle beam apparatus
US9245713B2 (en) 2013-09-02 2016-01-26 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US9318303B2 (en) 2013-09-02 2016-04-19 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US9875878B2 (en) 2013-12-05 2018-01-23 Hitachi, Ltd. Sample holder and analytical vacuum device
JPWO2019224993A1 (en) * 2018-05-25 2021-02-18 三菱電機株式会社 Method for preparing a transmission electron microscope sample

Also Published As

Publication number Publication date
JP4902712B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2005090941A1 (en) Atom probe equipment and preliminary processing method for sample by it
JP5090255B2 (en) STEM sample preparation method in situ
JP3902925B2 (en) Scanning atom probe
KR102646112B1 (en) Charged particle beam device
CN103797351B (en) Glancing angle milling
US20130248354A1 (en) High Throughput TEM Preparation Processes and Hardware for Backside Thinning of Cross-Sectional View Lamella
JP5492364B2 (en) 3D fiducial mark
TW200926245A (en) Composite focused ion beam apparatus, and machining monitoring method and machining method using composite focused ion beam apparatus
US9837246B1 (en) Reinforced sample for transmission electron microscope
CN108666196B (en) Charged particle beam device and sample processing method
KR20090093839A (en) Section processing method and its apparatus
JP4902712B2 (en) Atom probe analysis method
CN109841534B (en) Method for observing cross section processing and charged particle beam device
JP4784888B2 (en) Method for preparing sample for atom probe analysis by FIB and apparatus for implementing the same
Xia et al. Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing
JP3266995B2 (en) Method and apparatus for observing and measuring conductive members
JP5489295B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
EP3101679B1 (en) Dynamic creation of backup fiducials
Saressalo et al. In-situ plasma treatment of Cu surfaces for reducing the generation of vacuum arc breakdowns
JP2001021467A (en) Sample preparing method through use of focusing ion beam and focusing ion beam preparing device
Latif Nanofabrication using focused ion beam
US20240055220A1 (en) Charged Particle Beam Device
Park et al. FIB overview
JPWO2006064548A1 (en) Charged particle beam device and sample preparation method using the same
JP6331960B2 (en) Thin film sample pretreatment method and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4902712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term