JP2009293489A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2009293489A
JP2009293489A JP2008147235A JP2008147235A JP2009293489A JP 2009293489 A JP2009293489 A JP 2009293489A JP 2008147235 A JP2008147235 A JP 2008147235A JP 2008147235 A JP2008147235 A JP 2008147235A JP 2009293489 A JP2009293489 A JP 2009293489A
Authority
JP
Japan
Prior art keywords
valve
egr
opening
state
tcv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008147235A
Other languages
Japanese (ja)
Inventor
Yuichi Takemura
優一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2008147235A priority Critical patent/JP2009293489A/en
Publication of JP2009293489A publication Critical patent/JP2009293489A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device for an internal combustion engine suppressing excessiveness of an EGR amount when a flow control valve changes from a valve closed state to a valve opened state. <P>SOLUTION: The intake device is applied to an internal combustion engine 1 provided with an EGR passage 21 returning part of exhaust to an intake passage 10, and an opening adjustable EGR valve 22 provided in the EGR passage 21. The device is equipped with a bulkhead 17 partitioning the intake passage 10 into two passages 12A, 12B, and an opening adjustable tumble control valve (TCV) 18 provided in one passage 12A. In a process of changing from the valve closed state to the valve opened state of the TCV 18, the EGR valve 22 is controlled to a closed side such that a return amount of exhaust via the EGR passage 21 is reduced prior to completion of changing to the valve opened state of the TCV. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気の一部を吸気通路に還流するEGR通路と、そのEGR通路に設けられて開度調整可能なEGR弁とが設けられた内燃機関に適用される内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine applied to an internal combustion engine provided with an EGR passage that recirculates a part of exhaust gas to an intake passage and an EGR valve that is provided in the EGR passage and is adjustable in opening.

内燃機関には燃焼温度を低下させて窒素酸化物の排出量を低減するため、排気通路から取り出された排気の一部を吸気通路に還流する排気還流装置が設けられていることが多い。こうした内燃機関に適用される吸気装置として、吸気ポートを仕切り板によって二つの流路に区分し、一方の流路に流量制御弁を設けるとともに、他方の流路にEGR通路を接続したものが知られている(特許文献1)。また、同様の吸気装置としては、二つの流路の一方の設けられた流量制御弁の開度増加に応じてEGR弁の開度が絞られるように、流量制御弁の動作とEGR弁の動作とを同期させたものが知られている(特許文献2)。   In many cases, an internal combustion engine is provided with an exhaust gas recirculation device that recirculates a part of the exhaust gas extracted from the exhaust passage to the intake passage in order to reduce the emission temperature of nitrogen oxides by lowering the combustion temperature. As an intake device applied to such an internal combustion engine, an intake port is divided into two flow paths by a partition plate, a flow control valve is provided in one flow path, and an EGR passage is connected to the other flow path. (Patent Document 1). In addition, as a similar intake device, the operation of the flow control valve and the operation of the EGR valve so that the opening of the EGR valve is throttled in accordance with the increase of the opening of the flow control valve provided in one of the two flow paths. Is known (Patent Document 2).

特開2002−106419号公報JP 2002-106419 A 特開平2−185653号公報JP-A-2-185653

これらの文献の吸気装置は、流量制御弁が閉弁状態にあるとその流量制御弁が設けられた流路内に気筒側から吹き返された既燃ガスが滞留することがある。そのため、排気と同視し得る既燃ガスが滞留した状態で流量制御弁が閉弁状態から開弁状態へ移行すると、その既燃ガスとEGRガス通路を経由した排気とが一緒に気筒内に導かれるため、実質的なEGR量が一時的に過多になることがある。特許文献2の吸気装置は、流量制御弁の開度増加に応じてEGR弁の開度が絞られるが、流量制御弁が開かれた状態でEGR弁の開度が絞られるにすぎないため上記のようなEGR量の一時的な過多を十分に抑えることができない。   In the intake devices of these documents, when the flow control valve is in a closed state, burned gas blown back from the cylinder side may stay in the flow path provided with the flow control valve. For this reason, when the flow control valve shifts from the closed state to the open state while the burnt gas that can be regarded as exhaust gas remains, the burned gas and the exhaust gas that passes through the EGR gas passage are introduced into the cylinder together. Therefore, the substantial EGR amount may temporarily become excessive. In the intake device of Patent Document 2, the opening degree of the EGR valve is reduced according to the increase in the opening degree of the flow control valve, but the opening degree of the EGR valve is only reduced in the state where the flow control valve is opened. Such a temporary excess of the EGR amount cannot be sufficiently suppressed.

そこで、本発明は、流量制御弁が閉弁状態から開弁状態へ移行する際のEGR量の過多を抑制できる内燃機関の吸気装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an intake device for an internal combustion engine that can suppress an excessive amount of EGR when the flow rate control valve shifts from the closed state to the open state.

本発明の内燃機関の吸気装置は、排気の一部を吸気通路に還流するEGR通路と、前記EGR通路に設けられて開度調整可能なEGR弁とが設けられた内燃機関に適用される内燃機関の吸気装置において、前記吸気通路を少なくとも二つの流路に区分する仕切部材と、前記二つの流路のいずれか一方の流路に設けられて開度調整可能な流量制御弁と、前記流量制御弁が閉弁状態から開弁状態へ移行する過程で、前記流量制御弁の開弁状態への移行完了に先立って前記EGR通路を経由した排気の還流量が減少するように前記EGR弁を閉じ側に制御する制御手段と、を備えることにより、上述した課題を解決する(請求項1)。   An intake system for an internal combustion engine according to the present invention is applied to an internal combustion engine provided with an EGR passage that recirculates a part of exhaust gas to an intake passage and an EGR valve that is provided in the EGR passage and is adjustable in opening. In an engine intake device, a partition member that divides the intake passage into at least two flow paths, a flow rate control valve that is provided in one of the two flow paths and can be adjusted in opening, and the flow rate In the process in which the control valve shifts from the closed state to the open state, the EGR valve is controlled so that the recirculation amount of the exhaust gas that has passed through the EGR passage decreases prior to the completion of the transition of the flow rate control valve to the open state. The above-described problem is solved by providing control means for controlling to the closed side (Claim 1).

この吸気装置によれば、流量制御弁が閉弁状態から開弁状態へ移行する過程で、流量制御弁の開弁状態への移行完了に先立って排気の還流量が減少される。そのため、流路に滞留した既燃ガスが流量制御弁により解放された場合でも、EGR通路を経由する排気の還流量の減少によって、流路に滞留した既燃ガスの相当量が相殺される。これにより、気筒内に導かれる実質的なEGR量の過多を抑制できる。   According to this intake device, the exhaust gas recirculation amount is reduced prior to the completion of the transition of the flow control valve to the open state in the process of transition of the flow control valve from the closed state to the open state. Therefore, even when the burned gas staying in the flow path is released by the flow control valve, the corresponding amount of the burned gas staying in the flow path is offset by the decrease in the recirculation amount of the exhaust gas passing through the EGR passage. Thereby, it is possible to suppress a substantial excess of the EGR amount guided into the cylinder.

本発明の吸気装置の一態様において、前記制御手段は、前記流量制御弁の開弁状態に対応する開度が得られるように前記EGR弁を制御する開弁モードと、前記流量制御弁の閉弁状態に対応する開度が得られるように前記EGR弁を制御する閉弁モードとを選択的に実行するとともに、前記流量制御弁が閉弁状態から開弁状態へ移行する過程で前記閉弁モードから前記開弁モードへ切り替える間に、前記EGR通路を経由した排気の還流量が減少するように前記EGR弁を閉じ側に制御してもよい(請求項2)。流量制御弁の状態が変化すると吸気通路内の流れ場が変化するので、その変化によってEGR通路を経由した排気の還流量は影響を受ける。この態様によれば、流量制御弁の状態に対応した制御モードが選択的に実行されるので、吸気通路への安定的な排気の還流を実現できる。そして、流量制御弁が閉弁状態から開弁状態に移行に伴って閉弁モードから開弁モードへ切り替える間に、EGR通路を経由した排気の還流量が減少するため、気筒内に導かれる実質的なEGR量の過多を抑制できる。   In one aspect of the intake device of the present invention, the control means includes a valve opening mode for controlling the EGR valve so as to obtain an opening degree corresponding to a valve opening state of the flow control valve, and a closing of the flow control valve. And selectively executing a valve closing mode for controlling the EGR valve so as to obtain an opening corresponding to the valve state, and in the process of the flow control valve shifting from the valve closing state to the valve opening state, While switching from the mode to the valve opening mode, the EGR valve may be controlled to the closed side so that the recirculation amount of the exhaust gas passing through the EGR passage decreases. Since the flow field in the intake passage changes when the state of the flow control valve changes, the change affects the amount of exhaust gas recirculated via the EGR passage. According to this aspect, since the control mode corresponding to the state of the flow control valve is selectively executed, stable exhaust gas recirculation to the intake passage can be realized. Since the flow rate of the exhaust flow through the EGR passage decreases while the flow rate control valve switches from the closed mode to the open mode with the transition from the closed state to the open state, the flow control valve is led into the cylinder. Excessive EGR amount can be suppressed.

前記制御手段は、前記EGR弁を閉じ側に制御する際に、吸気流量が大きいほど前記EGR弁の開度を絞ってもよい(請求項3)。この態様によれば、吸気流量が大きいほど流路に滞留した既燃ガスの流量が増加するため、その増加分に見合うだけEGR通路を経由した排気の還流量を減少させることができる。これにより、EGR量の過多をより確実に抑制することができる。   When the EGR valve is controlled to be closed, the control means may throttle the opening of the EGR valve as the intake air flow rate increases. According to this aspect, since the flow rate of the burned gas staying in the flow path increases as the intake air flow rate increases, the recirculation amount of the exhaust gas via the EGR passage can be reduced as much as the increase amount. Thereby, excess of the EGR amount can be more reliably suppressed.

EGR通路の吸気通路への接続位置は任意であるが、例えば、前記EGR通路は、前記二つの流路のいずれか他方に接続されていてもよい(請求項4)。一方の流量に流量制御弁が設けられ、他方の流路にEGR通路が接続されている場合は、流量制御弁が閉弁状態から開弁状態へ移行すると、一方の流路に滞留した既燃ガスとEGR通路を経由した排気とが時間差なく気筒内に導かれるからEGR量が過多となり易い。この態様によれば、こうしたEGR量の過多を効果的に抑制できるため実用性の高い吸気装置を提供できる。   Although the connection position of the EGR passage to the intake passage is arbitrary, for example, the EGR passage may be connected to one of the two flow paths (Claim 4). When a flow control valve is provided for one flow rate and an EGR passage is connected to the other flow channel, the burned gas that has accumulated in one flow channel when the flow control valve shifts from the closed state to the open state. Since the gas and the exhaust gas passing through the EGR passage are guided into the cylinder without time difference, the EGR amount tends to be excessive. According to this aspect, since the excess of the EGR amount can be effectively suppressed, a highly practical intake device can be provided.

この態様において、前記制御手段は、前記流量制御弁の開弁状態に対応する開度が得られるように前記EGR弁を制御する開弁モードと、前記流量制御弁の閉弁状態に対応する開度が得られるように前記EGR弁を制御する閉弁モードとを選択的に実行するとともに、前記流量制御弁が開弁状態から閉弁状態へ移行する過程で、前記流量制御弁の閉弁状態への移行完了に先立って前記開弁モードから前記閉弁モードへ切り換えてもよい(請求項5)。流量制御弁が閉弁状態にあると他方の流路の流速及び脈動が開弁状態の場合に比べて増加する。そのため、流量制御弁が開弁状態及び閉弁状態のそれぞれの状態でEGR弁を同一開度にして排気の還流量を比べた場合、流量制御弁が閉弁状態にあるときの排気の還流量は流量制御弁が開弁状態にあるときと比べて大きくなる。従って、流量制御弁が閉弁状態へ移行したと同時に又はその後に、開弁モードから閉弁モードへ切り替えた場合にはその切り替え時にEGR量が一時的に過多となるおそれがある。この形態によれば、流量制御弁の閉弁状態への移行完了に先立って開弁モードから閉弁モードへ切り換えられるから、EGR弁の動作に対して流量制御弁の動作が遅れることになる。これにより、こうしたEGR量の一時的な過多を抑制することができる。   In this aspect, the control means includes an opening mode for controlling the EGR valve so as to obtain an opening corresponding to the opened state of the flow control valve, and an open state corresponding to the closed state of the flow control valve. A valve closing mode for controlling the EGR valve so as to obtain a degree of pressure, and in a process in which the flow control valve shifts from a valve opening state to a valve closing state, Prior to the completion of the transition to, the valve opening mode may be switched to the valve closing mode (Claim 5). When the flow rate control valve is in the closed state, the flow velocity and pulsation of the other flow path increase as compared to the open state. Therefore, when the flow rate control valve is in the open state and the closed state, and the EGR valve is set to the same opening degree and the exhaust gas recirculation amount is compared, the recirculation amount of the exhaust gas when the flow control valve is in the closed state. Becomes larger than when the flow control valve is in the open state. Therefore, when the flow rate control valve is switched from the valve opening mode to the valve closing mode at the same time or after the transition to the valve closing state, the EGR amount may temporarily become excessive at the time of switching. According to this embodiment, since the valve opening mode is switched to the valve closing mode prior to the completion of the transition of the flow control valve to the closed state, the operation of the flow control valve is delayed with respect to the operation of the EGR valve. Thereby, such temporary excess of the EGR amount can be suppressed.

以上説明したように、本発明によれば、流量制御弁が閉弁状態から開弁状態へ移行する過程で、流量制御弁の開弁状態への移行完了に先立って排気の還流量が減少される。そのため、流路に滞留した既燃ガスが流量制御弁により解放された場合でも、EGR通路を経由する排気の還流量の減少によって、流路に滞留した既燃ガスの相当量が相殺される。これにより、気筒内に導かれる実質的なEGR量の過多を抑制できる。   As described above, according to the present invention, the exhaust gas recirculation amount is reduced prior to the completion of the transition of the flow control valve to the open state in the process of transition of the flow control valve from the closed state to the open state. The Therefore, even when the burned gas staying in the flow path is released by the flow control valve, the corresponding amount of the burned gas staying in the flow path is offset by the decrease in the recirculation amount of the exhaust gas passing through the EGR passage. Thereby, it is possible to suppress a substantial excess of the EGR amount guided into the cylinder.

図1は本発明の一形態に係る吸気装置が適用された内燃機関の要部を示している。内燃機関1は自動車の走行用動力源として搭載され、燃料を気筒2内に直接噴射する筒内直接噴射型の内燃機関として構成されている。なお、内燃機関1は気筒2を複数個有しているが図においては便宜上1つの気筒2のみを図示した。   FIG. 1 shows a main part of an internal combustion engine to which an intake device according to an embodiment of the present invention is applied. The internal combustion engine 1 is mounted as a driving power source for an automobile and is configured as an in-cylinder direct injection internal combustion engine that directly injects fuel into the cylinder 2. Although the internal combustion engine 1 has a plurality of cylinders 2, only one cylinder 2 is shown in the figure for convenience.

気筒2はシリンダブロック3に形成されており、気筒2の開口部はシリンダヘッド4にて塞がれる。気筒2にはピストン5が往復動自在に挿入されており、ピストン5の上方に燃焼室6が形成される。シリンダヘッド4には気筒2の天井面の中央部に先端が臨むようにして点火プラグ7が設けられている。また、シリンダヘッド4には気筒2の天井面の隅部に先端が臨むようにして燃料噴射弁8が取り付けられている。   The cylinder 2 is formed in the cylinder block 3, and the opening of the cylinder 2 is closed by the cylinder head 4. A piston 5 is inserted into the cylinder 2 so as to freely reciprocate, and a combustion chamber 6 is formed above the piston 5. The cylinder head 4 is provided with a spark plug 7 so that its tip faces the center of the ceiling surface of the cylinder 2. A fuel injection valve 8 is attached to the cylinder head 4 such that the tip of the cylinder head 4 faces the corner of the ceiling surface of the cylinder 2.

内燃機関1は、気筒2に吸気を取り込むための吸気通路10と気筒2からの排気を導くための排気通路11とを備えている。吸気通路10は気筒2毎に分岐する不図示の分岐部を有するとともに、その分岐部に続く吸気ポート12を有している。吸気ポート12はシリンダヘッド4に形成されていて、気筒2の天井面に開口する。また、排気通路11はシリンダヘッド4に形成されて気筒2の天井面に開口する排気ポート13を含んでいる。   The internal combustion engine 1 includes an intake passage 10 for taking intake air into the cylinder 2 and an exhaust passage 11 for guiding exhaust from the cylinder 2. The intake passage 10 has a branch portion (not shown) that branches for each cylinder 2 and an intake port 12 that follows the branch portion. The intake port 12 is formed in the cylinder head 4 and opens on the ceiling surface of the cylinder 2. The exhaust passage 11 includes an exhaust port 13 that is formed in the cylinder head 4 and opens to the ceiling surface of the cylinder 2.

吸気ポート12を開閉する吸気弁15はシリンダヘッド4に対して摺動可能に装着されており、排気ポート13を開閉する排気弁16も同様にシリンダヘッド4に対して摺動可能に装着されている。吸気弁15及び排気弁16のそれぞれは不図示の動弁機構にて所定の開閉タイミングに従って開閉駆動される。   An intake valve 15 that opens and closes the intake port 12 is slidably attached to the cylinder head 4, and an exhaust valve 16 that opens and closes the exhaust port 13 is also slidably attached to the cylinder head 4. Yes. Each of the intake valve 15 and the exhaust valve 16 is driven to open / close by a valve mechanism (not shown) according to a predetermined opening / closing timing.

吸気ポート12は仕切部材としての隔壁17にて二つの流路12A、12Bに区分されている。隔壁17は吸気ポート12の流れ方向に延びており、隔壁17にて区分された流路12A、12Bは気筒2の中心線方向の上下に並べられている。また、各流路12A、12Bの流量比を変化させるため、上側の流路12Aには開度調整可能な流量制御弁としてのタンブルコントロールバルブ(TCV)18が設けられている。TCV18は流路12Aの上流側の端部に回転自在に取り付けられている。TCV18には実線で示した全閉位置から想像線で示した全開位置までの間で開度を自在に保持できる不図示の駆動装置が設けられている。その駆動装置を適宜操作してTCV18の開度を変化させることにより、流路12Aの流量と流路12Bの流量との流量比を1:1〜0:1の範囲内で変化させることができる。例えば、TCV18の開度を閉じ側に設定し、吸気ポート12内の流速分布を下側に偏らせることにより、気筒2内に縦方向に旋回する吸気流動であるタンブルFtを生成することができる。また、閉じ側の開度を適宜設定することでタンブルFtの強さを調整することもできる。   The intake port 12 is divided into two flow paths 12A and 12B by a partition wall 17 as a partition member. The partition wall 17 extends in the flow direction of the intake port 12, and the flow paths 12 </ b> A and 12 </ b> B divided by the partition wall 17 are arranged vertically in the center line direction of the cylinder 2. Further, a tumble control valve (TCV) 18 as a flow control valve whose opening degree can be adjusted is provided in the upper flow path 12A in order to change the flow ratio of the flow paths 12A and 12B. The TCV 18 is rotatably attached to the upstream end of the flow path 12A. The TCV 18 is provided with a drive device (not shown) that can freely hold the opening degree from the fully closed position indicated by the solid line to the fully open position indicated by the imaginary line. By appropriately operating the drive device to change the opening of the TCV 18, the flow rate ratio between the flow rate of the flow channel 12A and the flow rate of the flow channel 12B can be changed within a range of 1: 1 to 0: 1. . For example, by setting the opening of the TCV 18 to the closed side and biasing the flow velocity distribution in the intake port 12 downward, it is possible to generate the tumble Ft that is the intake flow swirling in the cylinder 2 in the vertical direction. . Further, the strength of the tumble Ft can be adjusted by appropriately setting the opening on the closing side.

内燃機関1には気筒2内の燃焼温度を低下させて窒素酸化物の排出量を低減するため、排気通路11から取り出された排気を吸気通路10に還流するEGR装置20が設けられている。EGR装置20は、排気通路11と吸気通路10とを結ぶEGR通路21と、EGR通路21に設けられて開度調整可能なEGR弁22とを備えている。EGR通路21は排気通路11から取り出した排気の一部を吸気ポート12毎に分配するための分岐部21aを有しており、その分岐部21aは吸気ポート12の下側の流路12Bに接続されている。これにより、排気の一部G1は図1の矢印線で示すように下側の流路12B内に導入される。   The internal combustion engine 1 is provided with an EGR device 20 that recirculates the exhaust gas extracted from the exhaust passage 11 to the intake passage 10 in order to lower the combustion temperature in the cylinder 2 and reduce the emission amount of nitrogen oxides. The EGR device 20 includes an EGR passage 21 connecting the exhaust passage 11 and the intake passage 10 and an EGR valve 22 provided in the EGR passage 21 and having an adjustable opening. The EGR passage 21 has a branch portion 21a for distributing a part of the exhaust gas taken out from the exhaust passage 11 to each intake port 12, and the branch portion 21a is connected to a flow path 12B below the intake port 12. Has been. As a result, a part of the exhaust G1 is introduced into the lower flow path 12B as shown by the arrow line in FIG.

TCV18及びEGR弁22のそれぞれの開度は内燃機関1の運転状態を制御するコンピュータとして構成されたエンジンコントロールユニット(ECU)25にて制御される。ECU25は各種のセンサからの情報を参照しつつ所定のプログラムに従って燃料噴射弁8の噴射時期や点火プラグ7の点火時期などを制御している。以下、ECU25が行う制御のうち本発明に関連する制御に限定して説明する。   The respective opening degrees of the TCV 18 and the EGR valve 22 are controlled by an engine control unit (ECU) 25 configured as a computer that controls the operating state of the internal combustion engine 1. The ECU 25 controls the injection timing of the fuel injection valve 8 and the ignition timing of the spark plug 7 according to a predetermined program while referring to information from various sensors. Hereinafter, the control performed by the ECU 25 will be described by limiting to the control related to the present invention.

TCV18の開度制御は、内燃機関1の回転速度や負荷に応じてタンブルFtが形成されるように行われている。本形態の場合は、TCV18の中間開度に保持することはせず、上側の流路12Aを全閉する閉弁状態とその流路12Aを全開する開弁状態とを切り替えるようにTCV18を動作させるようにしている。TCV18の状態が閉弁状態と開弁状態との間で変化すると吸気通路10内の流れ場が変化するので、その変化によってEGR通路21を経由した排気の還流量は影響を受ける。   The opening degree control of the TCV 18 is performed so that the tumble Ft is formed according to the rotational speed and load of the internal combustion engine 1. In the case of this embodiment, the TCV 18 is not held at the intermediate opening of the TCV 18 and the TCV 18 is operated so as to switch between a valve closing state in which the upper flow path 12A is fully closed and a valve opening state in which the flow path 12A is fully opened. I try to let them. When the state of the TCV 18 changes between the valve closing state and the valve opening state, the flow field in the intake passage 10 changes, so that the change affects the amount of exhaust gas recirculated via the EGR passage 21.

そこで、ECU25は、TCV18の開弁状態に対応する開度が得られるようにEGR弁22を制御する開弁モードと、TCV18の閉弁状態に対応する開度が得られるようにEGR弁22を制御する閉弁モードとを選択的に実行する。これらの制御モードにおいては、内燃機関1の回転速度、負荷等の運転パラメータに対してEGR弁22の目標開度を対応付ける開度マップをECU25が参照することにより、実際の運転パラメータの値に応じた目標開度を演算し、その目標開度が実現できるようにEGR弁22を制御している。開度マップは制御モード毎に用意されており、ECU25はTCV18の状態の変更に伴って開度マップを選択的に切り替えている。本形態はTCV18の状態が開弁状態と閉弁状態との間で切り替わる過渡状態における、TCV18の動作に連係したEGR弁22の制御に特徴を有している。   Therefore, the ECU 25 opens the EGR valve 22 so that the opening degree corresponding to the valve opening state of the TCV 18 is obtained, and the valve opening mode for controlling the EGR valve 22 so as to obtain the opening degree corresponding to the valve opening state of the TCV 18. The valve closing mode to be controlled is selectively executed. In these control modes, the ECU 25 refers to an opening map that associates the target opening of the EGR valve 22 with the operation parameters such as the rotation speed and load of the internal combustion engine 1, so that it corresponds to the actual operation parameter value. The target opening is calculated and the EGR valve 22 is controlled so that the target opening can be realized. An opening degree map is prepared for each control mode, and the ECU 25 selectively switches the opening degree map as the state of the TCV 18 is changed. This embodiment is characterized by the control of the EGR valve 22 linked to the operation of the TCV 18 in a transient state in which the state of the TCV 18 is switched between the valve open state and the valve closed state.

図2は本形態に係る制御結果の一例を示したタイミングチャートである。このタイミングチャートにはTCV18の作動要求、TCV18の作動許可フラグ、TCV18の動作状態及びEGR弁22の目標開度のそれぞれの時間的変化が同一時間軸で示されている。TCV18の作動要求は内燃機関1の運転状態に応じて発せられるものであり、その作動要求にはTCV18を閉弁状態から開弁状態へ移行すべき開要求と、開弁状態から閉弁状態へ移行すべき閉要求とが含まれる。TCV18の作動許可フラグは、作動要求が発せられたことを要件の一つとした作動許可条件の成立時に所定値にセットされ、その条件の不成立時にクリアされる変数である。作動許可フラグはECU25の所定の記憶領域に割り当てられている。その許可フラグがセットされた場合にTCV18が実際に操作されることになっている。   FIG. 2 is a timing chart showing an example of a control result according to this embodiment. In this timing chart, the TCV 18 operation request, the TCV 18 operation permission flag, the TCV 18 operation state, and the time variation of the target opening of the EGR valve 22 are shown on the same time axis. The operation request for the TCV 18 is issued in accordance with the operating state of the internal combustion engine 1. The operation request includes an opening request for shifting the TCV 18 from the valve closing state to the valve opening state, and from the valve opening state to the valve closing state. And a close request to be transferred. The operation permission flag of the TCV 18 is a variable that is set to a predetermined value when an operation permission condition that satisfies the requirement that an operation request is issued is satisfied, and is cleared when the condition is not satisfied. The operation permission flag is assigned to a predetermined storage area of the ECU 25. The TCV 18 is actually operated when the permission flag is set.

図2に示すように、時刻t0においてはTCV18が閉弁状態にあるため、EGR弁22の目標開度は閉弁状態用の開度マップに基づいて演算される。つまり、ECU25はEGR弁22の制御モードとして閉弁モードを選択している。TCV18が閉弁状態にあると図1に示すように上側の流路12Aが上流側で塞がれるため、気筒2側から吹き返した排気と同視し得る既燃ガスG2がTCV18の下流側の流路12A内に滞留した状態になる。   As shown in FIG. 2, since the TCV 18 is in the closed state at time t0, the target opening degree of the EGR valve 22 is calculated based on the opening degree map for the closed state. That is, the ECU 25 selects the valve closing mode as the control mode of the EGR valve 22. When the TCV 18 is in a closed state, as shown in FIG. 1, the upper flow path 12A is closed on the upstream side, so that the burned gas G2 that can be regarded as exhaust blown back from the cylinder 2 side flows on the downstream side of the TCV 18. It will be in the state which stayed in the path 12A.

図2に戻り、時刻t1でTCV18の開要求が発せられると、直ちに作動許可フラグがセットされ、作動許可フラグのセットに応答してEGR弁18の目標開度が閉じ側の所定開度αに変更される。その所定開度αは固定値(例えば全閉状態の開度0%)でもよいし、吸気流量が大きいほどEGR弁22の開度が絞られるように吸気流量に応じて変化する変動値でもよい。EGR弁18の目標開度は、TCV18の開弁状態への移行完了前まで所定時間Δt1に亘って所定開度αに維持される。所定時間Δt1の経過後には、EGR弁22の目標開度を演算する開度マップが開弁状態用の開度マップに切り替えられる。つまり、EGR弁22は制御モードが閉弁モードから開弁モードへ切り替えられる間に閉じ側の所定開度αに制御される。EGR弁18のこうした制御と並行して、TCV18は作動許可フラグのセットに応答して閉弁状態から開弁状態へ移行するように操作される。その操作に伴ってTCV18の下流に滞留した既燃ガスG2(図1)が解放され、図1の矢印で示した下流に向かって流れ始める。   Returning to FIG. 2, when a request to open the TCV 18 is issued at time t1, the operation permission flag is set immediately, and the target opening of the EGR valve 18 is set to the predetermined opening α on the closing side in response to the setting of the operation permission flag. Be changed. The predetermined opening degree α may be a fixed value (for example, an opening degree of 0% in a fully closed state), or may be a variable value that changes in accordance with the intake flow rate so that the opening degree of the EGR valve 22 is reduced as the intake flow rate increases. . The target opening degree of the EGR valve 18 is maintained at the predetermined opening degree α for a predetermined time Δt1 until the TCV 18 is completely shifted to the valve opening state. After the elapse of the predetermined time Δt1, the opening degree map for calculating the target opening degree of the EGR valve 22 is switched to the opening degree opening degree map. That is, the EGR valve 22 is controlled to the predetermined opening degree α on the closing side while the control mode is switched from the valve closing mode to the valve opening mode. In parallel with such control of the EGR valve 18, the TCV 18 is operated to shift from the valve closing state to the valve opening state in response to the setting of the operation permission flag. With this operation, the burned gas G2 (FIG. 1) staying downstream of the TCV 18 is released and starts flowing toward the downstream indicated by the arrow in FIG.

このように、TCV18が閉弁状態から開弁状態へ移行する過程で、TCV18の開弁状態への移行完了に先立ってEGR弁18の開度が閉じ側の所定開度αに制御されるから、TCV18の開弁状態への移行完了前にEGR通路21を経由した排気の還流量が減少する。そのため、流路12Aに滞留した既燃ガスG2がTCV18にて解放された場合でも、EGR通路21を経由する排気の還流量の減少によって、流路12Aに滞留した既燃ガスG2の相当量が相殺される。従って、気筒2内に導かれる実質的なEGR量の過多を抑制できる。   As described above, in the process of the TCV 18 shifting from the valve closing state to the valve opening state, the opening degree of the EGR valve 18 is controlled to the predetermined opening degree α on the closing side prior to completion of the transition of the TCV 18 to the valve opening state. The recirculation amount of the exhaust gas that has passed through the EGR passage 21 decreases before the TCV 18 shifts to the valve open state. Therefore, even when the burned gas G2 staying in the flow path 12A is released by the TCV 18, a considerable amount of the burned gas G2 staying in the flow path 12A is reduced due to a decrease in the recirculation amount of the exhaust gas passing through the EGR passage 21. Offset. Accordingly, it is possible to suppress an excessive excess of the EGR amount guided into the cylinder 2.

時刻t2においては、TCV18は開弁状態にあるため、EGR弁22の目標開度は開弁状態用の開度マップに基づいて演算される。つまり、ECU25はEGR弁22の制御モードとして開弁モードを選択している。   At time t2, since the TCV 18 is in the valve opening state, the target opening degree of the EGR valve 22 is calculated based on the opening degree opening degree map. That is, the ECU 25 selects the valve opening mode as the control mode of the EGR valve 22.

その後、時刻t3においてTCV18の閉要求が発せられると、TCV18が開弁状態に維持された状態で、EGR弁22の制御モードが開弁モードから閉弁モードへ切り替えられる。制御モードが切り替えられてから所定時間Δt2を経過した時に作動許可フラグがセットされ、そのセットに応答してTCV18は開弁状態から閉弁状態へ移行するように操作される。即ち、TCV18が開弁状態から閉弁状態へ移行する過程で、TCV18の閉弁状態への移行完了に先立ってEGR弁22の制御モードが開弁モードから閉弁モードへ切り換えられる。   Thereafter, when a request for closing the TCV 18 is issued at time t3, the control mode of the EGR valve 22 is switched from the valve opening mode to the valve closing mode while the TCV 18 is maintained in the valve opening state. The operation permission flag is set when a predetermined time Δt2 has elapsed since the control mode was switched, and the TCV 18 is operated so as to shift from the open state to the closed state in response to the setting. That is, in the process in which the TCV 18 transitions from the valve opening state to the valve closing state, the control mode of the EGR valve 22 is switched from the valve opening mode to the valve closing mode prior to completion of the transition of the TCV 18 to the valve closing state.

図1に示すように、TCV18が閉弁状態にあると下側の流路12Bの流速及び脈動が開弁状態の場合に比べて増加する。そのため、仮に、TCV18が開弁状態から閉弁状態へ移行したと同時に又はその後にEGR弁22の制御モードを開弁モードから閉弁モードへ切り替えた場合には、その切り替え時にEGR量が一時的に過多となるおそれがある。本形態ではTCV18の閉弁状態への移行完了に先立ってEGR弁22の制御モードが開弁モードから閉弁モードへ切り換えられるから、EGR弁22の動作に対してTCV18の動作が遅れることになる。これにより、こうしたEGR量の一時的な過多を抑制することができる。   As shown in FIG. 1, when the TCV 18 is in the valve closing state, the flow velocity and pulsation of the lower flow path 12B increase as compared with the valve opening state. Therefore, if the control mode of the EGR valve 22 is switched from the valve opening mode to the valve closing mode at the same time or after the TCV 18 shifts from the valve opening state to the valve closing state, the EGR amount is temporarily changed during the switching. May be excessive. In this embodiment, since the control mode of the EGR valve 22 is switched from the valve opening mode to the valve closing mode prior to the completion of the transition of the TCV 18 to the valve closing state, the operation of the TCV 18 is delayed with respect to the operation of the EGR valve 22. . Thereby, such temporary excess of the EGR amount can be suppressed.

図2に示した制御を実現するため、本形態のECU25は図3の制御ルーチンを実行している。図3は本形態に係る制御ルーチンの一例を示すフローチャートである。このルーチンのプログラムはECU25に保持されており、適時に読み出されて所定間隔で繰り返し実行される。   In order to realize the control shown in FIG. 2, the ECU 25 of the present embodiment executes the control routine of FIG. FIG. 3 is a flowchart showing an example of a control routine according to this embodiment. A program for this routine is held in the ECU 25, read out in a timely manner, and repeatedly executed at predetermined intervals.

図示するように、ステップS1では、TCV18が閉弁状態か否かを判定する。その判定はTCV18の開度に応じた信号を出力する開度センサ26からの出力信号に基づいて行われる。TCV18が閉弁状態であるときはステップS2に進み、そうでない場合つまりTCV18が開弁状態であるときはステップS9に進む。   As shown in the figure, in step S1, it is determined whether or not the TCV 18 is in a closed state. The determination is made based on an output signal from the opening sensor 26 that outputs a signal corresponding to the opening of the TCV 18. When the TCV 18 is in the closed state, the process proceeds to step S2, and when not, that is, when the TCV 18 is in the opened state, the process proceeds to step S9.

ステップS2では、EGR弁22の制御モードとして閉弁モードを選択する。即ち、EGR弁22の目標開度を閉弁状態用の開度マップに基づいて演算し、その目標開度が得られるようにEGR弁22を制御する。   In step S2, the valve closing mode is selected as the control mode of the EGR valve 22. That is, the target opening of the EGR valve 22 is calculated based on the opening map for the closed state, and the EGR valve 22 is controlled so that the target opening is obtained.

ステップS3では、TCV18に対する開要求の有無を判定する。開要求がある場合はステップS4に進み、そうでない場合は閉弁モードを維持すべく以後の処理をスキップして今回のルーチンを終了する。   In step S3, it is determined whether or not there is an open request for the TCV 18. If there is an open request, the process proceeds to step S4, and if not, the subsequent process is skipped in order to maintain the valve closing mode, and the current routine is terminated.

ステップS4では、TCV18を閉弁状態から開弁状態へ移行させることを許可する作動許可フラグをセットする。その作動許可フラグのセットに応答して、図3のルーチンと並行して実行されるTCV18の開度制御ルーチン(不図示)により、閉弁状態から開弁状態へ移行するようにTCV18が操作される。   In step S4, an operation permission flag for permitting the TCV 18 to shift from the valve closing state to the valve opening state is set. In response to the setting of the operation permission flag, the TCV 18 is operated so as to shift from the valve closing state to the valve opening state by an opening degree control routine (not shown) of the TCV 18 executed in parallel with the routine of FIG. The

ステップS5では、EGR弁22の開度を閉じ側の所定開度αに保持する閉じ側制御を開始させる。   In step S5, the closing side control for maintaining the opening degree of the EGR valve 22 at a predetermined opening degree α on the closing side is started.

ステップS6では、TCV18の開弁許可が出てから、つまり作動許可フラグがセットされてから所定時間Δt1経過したか否かを判定し、その所定時間Δt1を経過するまで処理を保留する。つまり、EGR弁22に対する閉じ側制御を続行する。   In step S6, it is determined whether or not a predetermined time Δt1 has elapsed since the opening of the TCV 18 has been approved, that is, since the operation permission flag has been set, and the processing is suspended until the predetermined time Δt1 has elapsed. That is, the closing side control for the EGR valve 22 is continued.

所定時間Δt1を経過した場合はステップS7に進み、ステップS5で開始したEGR弁22の閉じ側制御を終了する。この形態では、TCV18の作動許可フラグが出てから、TCV18の開弁状態への移行が完了するまでの遅れ時間を考慮して、開弁状態への移行完了前にEGR弁22の閉じ側制御が終了するように所定時間Δt1の値が設定されている(図2参照)。   If the predetermined time Δt1 has elapsed, the process proceeds to step S7, and the closing side control of the EGR valve 22 started in step S5 is terminated. In this embodiment, the closing side control of the EGR valve 22 is completed before the transition to the valve opening state is completed in consideration of the delay time from when the operation permission flag of the TCV 18 is output until the transition to the valve opening state of the TCV 18 is completed. Is set to a predetermined time Δt1 (see FIG. 2).

ステップS8では、EGR弁22の制御モードを開弁モードへ切り替える。つまり、制御モードとして開弁モードを選択し、EGR弁22の目標開度を開弁状態用の開度マップに基づいて演算する。そして、その目標開度が実現されるようにEGR弁22を制御する。その後、今回のルーチンを終了する。   In step S8, the control mode of the EGR valve 22 is switched to the valve opening mode. That is, the valve opening mode is selected as the control mode, and the target opening degree of the EGR valve 22 is calculated based on the opening degree opening degree map. Then, the EGR valve 22 is controlled so that the target opening degree is realized. Thereafter, the current routine is terminated.

ステップS9では、TCV18が開弁状態にあるので、EGR弁22の制御モードとして開弁モードを選択する。即ち、EGR弁22の目標開度を開弁状態用の開度マップに基づいて演算し、その目標開度が得られるようにEGR弁22を制御する。   In step S9, since the TCV 18 is in the valve opening state, the valve opening mode is selected as the control mode of the EGR valve 22. That is, the target opening degree of the EGR valve 22 is calculated based on the opening degree opening degree map, and the EGR valve 22 is controlled so as to obtain the target opening degree.

ステップS10では、TCV18に対する閉要求の有無を判定する。閉要求がある場合はステップS11に進み、そうでない場合は開弁モードを維持すべく以後の処理をスキップして今回のルーチンを終了する。   In step S10, it is determined whether or not there is a close request for the TCV 18. If there is a closing request, the process proceeds to step S11. If not, the subsequent routine is terminated by skipping the subsequent processing to maintain the valve opening mode.

ステップS11では、EGR弁22の制御モードを閉弁モードへ切り替える。つまり、制御モードとして閉弁モードを選択し、EGR弁22の目標開度を閉弁状態用の開度マップに基づいて演算し、その目標開度が実現されるようにEGR弁22を制御する。   In step S11, the control mode of the EGR valve 22 is switched to the valve closing mode. That is, the valve closing mode is selected as the control mode, the target opening degree of the EGR valve 22 is calculated based on the opening degree map for the valve closing state, and the EGR valve 22 is controlled so that the target opening degree is realized. .

ステップS12では、制御モードの切り替えから所定時間Δt2経過したか否かを判定し、その所定時間Δt2を経過するまで処理を保留する。   In step S12, it is determined whether or not a predetermined time Δt2 has elapsed since the switching of the control mode, and the process is suspended until the predetermined time Δt2 has elapsed.

所定時間Δt2を経過した場合はステップS13に進み、TCV18を開弁状態から閉弁状態へ移行させることを許可する作動許可フラグをセットする。その作動許可フラグのセットに応答して、図3のルーチンと並行して実行されるTCV18の開度制御ルーチン(不図示)により、開弁状態から閉弁状態へ移行するようにTCV18が操作される。その後、今回のルーチンを終了する。   When the predetermined time Δt2 has elapsed, the process proceeds to step S13, and an operation permission flag for permitting the TCV 18 to shift from the valve open state to the valve close state is set. In response to the setting of the operation permission flag, the TCV 18 is operated so as to shift from the valve open state to the valve closed state by an opening degree control routine (not shown) of the TCV 18 executed in parallel with the routine of FIG. The Thereafter, the current routine is terminated.

以上のルーチンによれば、TCV18が閉弁状態から開弁状態へ移行する過程でTCV18の開弁状態への移行完了に先立ってEGR弁18の開度が閉じ側の所定開度Tに制御されるとともに、TCV18が開弁状態から閉弁状態へ移行する過程でTCV18の閉弁状態への移行完了に先立ってEGR弁22の制御モードが開弁モードから閉弁モードへ切り換えられる。これにより図2で説明した効果を得ることができる。そして、ECU25が図3のルーチンを実行することにより、ECU25は本発明に係る制御手段として機能する。   According to the above routine, the opening degree of the EGR valve 18 is controlled to the predetermined opening degree T on the closing side prior to the completion of the transition of the TCV 18 to the valve opening state in the process of the TCV 18 shifting from the valve closing state to the valve opening state. At the same time, the control mode of the EGR valve 22 is switched from the valve opening mode to the valve closing mode prior to the completion of the transition of the TCV 18 to the valve closing state in the process of the TCV 18 shifting from the valve opening state to the valve closing state. Thereby, the effect demonstrated in FIG. 2 can be acquired. And when ECU25 performs the routine of FIG. 3, ECU25 functions as a control means which concerns on this invention.

本発明は上述した形態に限定されず種々の形態にて実施することができる。本発明の吸気装置を適用し得る内燃機関は筒内直接噴射型の内燃機関に限らない。吸気通路内に燃料を噴射するポート噴射型の内燃機関に本発明を適用することも可能である。   This invention is not limited to the form mentioned above, It can implement with a various form. The internal combustion engine to which the intake device of the present invention can be applied is not limited to the direct injection type internal combustion engine. The present invention can also be applied to a port injection type internal combustion engine that injects fuel into the intake passage.

図示の形態では、EGR通路21が隔壁17にて仕切られた下側の流路12Bに接続されているが、その接続位置に限定されず、EGR通路21が吸気通路10の任意の場所に接続されていてもよい。例えば、EGR通路21がTCV18の上流側の吸気通路10に接続された形態で本発明を実施することもできる。   In the illustrated form, the EGR passage 21 is connected to the lower flow path 12B partitioned by the partition wall 17, but is not limited to the connection position, and the EGR passage 21 is connected to an arbitrary place in the intake passage 10. May be. For example, the present invention can be implemented in a form in which the EGR passage 21 is connected to the intake passage 10 on the upstream side of the TCV 18.

TCV18は流量制御弁の一例に過ぎない。例えば、流量制御弁として、気筒内に周方向に旋回するスワールを形成するスワールコントロールバルブを設けた形態で本発明を実施してもよい。また、流量制御弁はTCV18のようにバタフライバルブとして構成されたものでなくてよい。例えば、図4に示すように、隔壁17の上流側の端部に設定された回転軸線Axの回りに回転可能な状態で配置されて二つの流路12A、12Bのいずれか一方を開閉するフラップ30が流量制御弁として設けられた形態で本発明を実施することも可能である。   The TCV 18 is only an example of a flow control valve. For example, the present invention may be implemented in a form in which a swirl control valve that forms a swirl that turns in a circumferential direction is provided as a flow control valve. Further, the flow control valve may not be configured as a butterfly valve like the TCV 18. For example, as shown in FIG. 4, a flap that is arranged in a rotatable state around a rotation axis Ax set at the upstream end of the partition wall 17 and opens or closes one of the two flow paths 12A and 12B. It is also possible to implement the present invention in a form in which 30 is provided as a flow control valve.

上述した形態では、流量制御弁の状態に合わせてEGR弁の制御モードを開弁モードと閉弁モードとを切り替えているが、EGR弁に対して上述した閉じ側制御を行う限りにおいて、その閉じ側制御を行わない領域では単一の制御モードでEGR弁を制御しても構わない。   In the above-described form, the control mode of the EGR valve is switched between the valve opening mode and the valve closing mode in accordance with the state of the flow control valve. However, as long as the above-described closing side control is performed on the EGR valve, the closing operation is performed. In an area where side control is not performed, the EGR valve may be controlled in a single control mode.

本発明の一形態に係る吸気装置が適用された内燃機関の要部を示した図。The figure which showed the principal part of the internal combustion engine to which the intake device which concerns on one form of this invention was applied. 制御結果の一例を示したタイミングチャート。The timing chart which showed an example of the control result. 制御ルーチンの一例を示すフローチャート。The flowchart which shows an example of a control routine. 流量制御弁の他の形態を説明する説明図。Explanatory drawing explaining the other form of a flow control valve.

符号の説明Explanation of symbols

1 内燃機関
10 吸気通路
12A、12B 流路
17 隔壁(仕切部材)
18 TCV(流量制御弁)
21 EGR通路
22 EGR弁
25 ECU(制御手段)
30 フラップ(流量制御弁)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 10 Intake passage 12A, 12B Flow path 17 Partition (partition member)
18 TCV (Flow control valve)
21 EGR passage 22 EGR valve 25 ECU (control means)
30 flaps (flow control valve)

Claims (5)

排気の一部を吸気通路に還流するEGR通路と、前記EGR通路に設けられて開度調整可能なEGR弁とが設けられた内燃機関に適用される内燃機関の吸気装置において、
前記吸気通路を少なくとも二つの流路に区分する仕切部材と、前記二つの流路のいずれか一方の流路に設けられて開度調整可能な流量制御弁と、前記流量制御弁が閉弁状態から開弁状態へ移行する過程で、前記流量制御弁の開弁状態への移行完了に先立って前記EGR通路を経由した排気の還流量が減少するように前記EGR弁を閉じ側に制御する制御手段と、を備えることを特徴とする内燃機関の吸気装置。
In an internal combustion engine intake system applied to an internal combustion engine provided with an EGR passage that recirculates a part of exhaust gas to an intake passage and an EGR valve that is provided in the EGR passage and can be adjusted in opening degree.
A partition member that divides the intake passage into at least two flow paths, a flow rate control valve that is provided in one of the two flow paths and can be adjusted in opening, and the flow rate control valve is in a closed state Control for controlling the EGR valve to the closed side so that the recirculation amount of the exhaust gas passing through the EGR passage is reduced prior to completion of the transition of the flow rate control valve to the valve open state in the process of transition from the valve to the valve open state. And an intake device for an internal combustion engine.
前記制御手段は、前記流量制御弁の開弁状態に対応する開度が得られるように前記EGR弁を制御する開弁モードと、前記流量制御弁の閉弁状態に対応する開度が得られるように前記EGR弁を制御する閉弁モードとを選択的に実行するとともに、前記流量制御弁が閉弁状態から開弁状態へ移行する過程で前記閉弁モードから前記開弁モードへ切り替える間に、前記EGR通路を経由した排気の還流量が減少するように前記EGR弁を閉じ側に制御する請求項1に記載の吸気装置。   The control means obtains a valve opening mode for controlling the EGR valve so as to obtain an opening corresponding to the open state of the flow control valve, and an opening corresponding to the closed state of the flow control valve. The valve closing mode for controlling the EGR valve is selectively executed and the flow rate control valve is switched from the valve closing mode to the valve opening mode in the process of shifting from the valve closing state to the valve opening state. The intake device according to claim 1, wherein the EGR valve is controlled to be closed so that a recirculation amount of the exhaust gas that has passed through the EGR passage decreases. 前記制御手段は、前記EGR弁を閉じ側に制御する際に、吸気流量が大きいほど前記EGR弁の開度を絞る請求項1又は2に記載の吸気装置。   3. The intake device according to claim 1, wherein when the control means controls the EGR valve to the closed side, the opening degree of the EGR valve is reduced as the intake flow rate increases. 前記EGR通路は、前記二つの流路のいずれか他方に接続されている請求項1に記載の吸気装置。   The intake device according to claim 1, wherein the EGR passage is connected to one of the two flow paths. 前記制御手段は、前記流量制御弁の開弁状態に対応する開度が得られるように前記EGR弁を制御する開弁モードと、前記流量制御弁の閉弁状態に対応する開度が得られるように前記EGR弁を制御する閉弁モードとを選択的に実行するとともに、前記流量制御弁が開弁状態から閉弁状態へ移行する過程で、前記流量制御弁の閉弁状態への移行完了に先立って前記開弁モードから前記閉弁モードへ切り換える請求項4に記載の吸気装置。   The control means obtains a valve opening mode for controlling the EGR valve so as to obtain an opening corresponding to the open state of the flow control valve, and an opening corresponding to the closed state of the flow control valve. The valve closing mode for controlling the EGR valve is selectively executed, and the transition of the flow control valve to the closed state is completed in the process of the flow control valve shifting from the open state to the closed state. The intake device according to claim 4, wherein the valve opening mode is switched to the valve closing mode prior to the valve opening mode.
JP2008147235A 2008-06-04 2008-06-04 Intake device for internal combustion engine Pending JP2009293489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008147235A JP2009293489A (en) 2008-06-04 2008-06-04 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147235A JP2009293489A (en) 2008-06-04 2008-06-04 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009293489A true JP2009293489A (en) 2009-12-17

Family

ID=41541881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147235A Pending JP2009293489A (en) 2008-06-04 2008-06-04 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009293489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425507A (en) * 2011-11-08 2012-04-25 天津大学 Exhaust gas circulation (EGR) based hybrid stratified charge system and method of gasoline engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425507A (en) * 2011-11-08 2012-04-25 天津大学 Exhaust gas circulation (EGR) based hybrid stratified charge system and method of gasoline engine

Similar Documents

Publication Publication Date Title
US8904787B2 (en) Fixed rate EGR system
US9840976B2 (en) Method and system for knock control
US9334826B2 (en) Method and system for improved dilution tolerance
US9032939B2 (en) Method for controlling a variable charge air cooler
US9080499B2 (en) Method for controlling a variable charge air cooler
RU152593U1 (en) ENGINE SYSTEM
US8050846B2 (en) Apparatus and method for controlling engine
US10465620B2 (en) Systems and methods for LP-EGR delivery in a variable displacement engine
US9388746B2 (en) Vacuum generation with a peripheral venturi
WO2013150768A1 (en) Air intake system for internal combustion engine
US11060476B2 (en) Internal combustion engine control device
CN111788378A (en) Internal combustion engine and control method thereof
JP2006299992A (en) Control system of internal combustion engine
JP2009293489A (en) Intake device for internal combustion engine
JP2009041531A (en) Cylinder injection internal combustion engine
JP2010138772A (en) Control device of internal combustion engine
JP2008297929A (en) Internal combustion engine controlling device
US20160348610A1 (en) Internal combustion engine
JP2010121550A (en) Engine control device, and engine control method
JP2009114931A (en) Control device for internal combustion engine
JP4274002B2 (en) Internal combustion engine control system
JP2010138829A (en) Automatic combustion control system of diesel engine
JP2005256778A (en) Engine equipped with exhaust gas circulating device
JP2011157859A (en) Internal combustion engine
US10060384B2 (en) System and method for air-fuel mixture formation in an internal combustion engine