JP2009292947A - Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell - Google Patents

Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell Download PDF

Info

Publication number
JP2009292947A
JP2009292947A JP2008148051A JP2008148051A JP2009292947A JP 2009292947 A JP2009292947 A JP 2009292947A JP 2008148051 A JP2008148051 A JP 2008148051A JP 2008148051 A JP2008148051 A JP 2008148051A JP 2009292947 A JP2009292947 A JP 2009292947A
Authority
JP
Japan
Prior art keywords
group
membrane
phosphonic acid
electrolyte membrane
acid group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008148051A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
仁士 伊藤
Ryotaro Yamamoto
涼太郎 山本
Hiroshi Yokota
洋 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008148051A priority Critical patent/JP2009292947A/en
Publication of JP2009292947A publication Critical patent/JP2009292947A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane exhibiting electrolyte properties sufficient for application to an electrochemical device, having heat resistance, oxidation resistance and mechanical strength sufficient for the application, containing no fluorine causing a high environmental load in disposal, and having excellent processability such as membrane formability. <P>SOLUTION: A substituted polyacetylene compound having a phosphonic acid group containing a repeating unit represented by formula (1) and the electrolyte membrane formed of this compound are provided. In the formula, part or all of R<SP>1</SP>-R<SP>6</SP>are phosphonic acid groups while the rest of them are selected from H, Br, Cl, I, a silicon-containing substituent, hydroxy group, 1-6C straight chain/branched chain alkyl/alkoxy group, phenoxy group, and sulfonic group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池、二次電池、湿度センサー、イオンセンサー、ガスセンサー、デシカント剤等、種々の電気化学デバイスにおいて好適に用いられる、ポリアセチレンからなる主鎖にホスホン酸基を含む側鎖を有するか又はホスホン酸基を含む側鎖とスルホン酸基を含む側鎖とを有する置換ポリアセチレンとその製造方法、この置換ポリアセチレンからなる電解質膜、並びに該電解質膜を用いた電解質膜・電極接合体、それを用いた電気化学デバイス及び燃料電池に関する。   The present invention has a side chain containing a phosphonic acid group in the main chain made of polyacetylene, which is suitably used in various electrochemical devices such as a fuel cell, a secondary battery, a humidity sensor, an ion sensor, a gas sensor, and a desiccant agent. Or a substituted polyacetylene having a side chain containing a phosphonic acid group and a side chain containing a sulfonic acid group, a method for producing the same, an electrolyte membrane comprising the substituted polyacetylene, and an electrolyte membrane / electrode assembly using the electrolyte membrane, The present invention relates to an electrochemical device and a fuel cell.

固体電解質や電解質膜は、燃料電池、二次電池、湿度センサー、イオンセンサー、ガスセンサー、デシカント剤等の電気化学デバイスにおいて用いられ、それらの電気化学デバイスの性能に最も大きな影響を及ぼす部材である。こうした部材を構成する電解質材料として、Nafion(登録商標)を代表とする酸解離性官能基を有するフッ素系高分子が、プロトン伝導性、機械的特性、化学的安定性において優れた性能を発揮するため広く用いられている。しかしながら、このフッ素系高分子はガラス転移温度が120℃付近と低いため、燃料電池システムの運転温度を80℃以下にしなければならないという制約がある。また、一般にフッ素系高分子は製造コストが高く、フッ素を含むために廃棄処理時の環境負荷の側面から焼却処分が困難という問題がある。   Solid electrolytes and electrolyte membranes are used in electrochemical devices such as fuel cells, secondary batteries, humidity sensors, ion sensors, gas sensors, and desiccants, and are the members that have the greatest impact on the performance of these electrochemical devices. . As an electrolyte material constituting such a member, a fluorine-based polymer having an acid dissociable functional group represented by Nafion (registered trademark) exhibits excellent performance in proton conductivity, mechanical properties, and chemical stability. Therefore, it is widely used. However, since this fluoropolymer has a low glass transition temperature of around 120 ° C., there is a restriction that the operating temperature of the fuel cell system must be 80 ° C. or less. Further, in general, a fluorine-based polymer has a high production cost, and since it contains fluorine, there is a problem that incineration disposal is difficult from the aspect of environmental burden during disposal.

電解質材料として、フッ素系高分子以外では、主に芳香族系高分子の開発が進められている。特に、耐熱性や機械的特性、化学的安定性に優れた芳香族系高分子、例えば、ポリベンゾイミダゾール、ポリスルホン、ポリエーテルエーテルケトン、ポリアミド、ポリイミドなどが電解質材料の主鎖骨格として利用されている。   As electrolyte materials, other than fluorine-based polymers, aromatic polymers are mainly being developed. In particular, aromatic polymers with excellent heat resistance, mechanical properties, and chemical stability, such as polybenzimidazole, polysulfone, polyetheretherketone, polyamide, and polyimide, are used as the main chain skeleton of electrolyte materials. Yes.

これら芳香族系高分子からなる電解質は、燃料電池内部で発生する過酸化水素やヒドロキシラジカルへの耐性を高めるため、全芳香族骨格を持つものが多い。ところが、これらのポリマー主鎖は剛直であり、有機溶媒に溶けにくい性質があるため、製膜方法が制限される。さらに膜状物は、機械的強度が低く、例えば固体高分子形燃料電池に用いた場合には、運転時の湿度変化による膨潤−収縮によって破膜しやすいという問題がある。   Many of these electrolytes composed of aromatic polymers have a wholly aromatic skeleton in order to increase resistance to hydrogen peroxide and hydroxy radicals generated in the fuel cell. However, these polymer main chains are rigid and have a property of being hardly soluble in an organic solvent, so that the film forming method is limited. Further, the film-like material has a low mechanical strength, and, for example, when used in a polymer electrolyte fuel cell, there is a problem that the film-like material is easily broken due to swelling and shrinkage due to a change in humidity during operation.

一方、ポリアセチレン(置換ポリアセチレン)は、アセチレン化合物を遷移金属を用いて配位重合させたもので、主鎖骨格に二重結合と単結合が交互につながった構造を有する。特にトリメチルシリル基を持つポリジフェニルアセチレンは、溶媒に可溶であるため製膜性に優れ、かつ高い耐熱性を有する(例えば、特許文献1参照)。すなわち、置換ポリアセチレンは全芳香族骨格を有するポリマーと比べて製膜性に優れている。   On the other hand, polyacetylene (substituted polyacetylene) is obtained by coordination polymerization of an acetylene compound using a transition metal, and has a structure in which double bonds and single bonds are alternately connected to a main chain skeleton. In particular, polydiphenylacetylene having a trimethylsilyl group is soluble in a solvent and thus has excellent film forming properties and high heat resistance (see, for example, Patent Document 1). That is, the substituted polyacetylene is excellent in film forming properties as compared with a polymer having a wholly aromatic skeleton.

また、特許文献2には、置換ポリアセチレンにイオン解離基を導入して、固体高分子電解質を得る方法が開示されている。これには、重合した置換ポリアセチレンをスルホン化剤と反応させた後に製膜する方法と、スルホン酸基を持つモノマーを重合した後に製膜する方法とが開示されている。しかしながら、いずれの方法においてもスルホン化した置換ポリアセチレンは溶媒に不溶であり、その製膜は困難であった。   Patent Document 2 discloses a method for obtaining a solid polymer electrolyte by introducing an ion dissociation group into substituted polyacetylene. This discloses a method of forming a film after reacting a polymerized substituted polyacetylene with a sulfonating agent, and a method of forming a film after polymerizing a monomer having a sulfonic acid group. However, in any of the methods, the sulfonated substituted polyacetylene is insoluble in a solvent and its film formation is difficult.

さらに、特許文献3には、ポリアセチレンのスルホン化方法、特に膜厚方向に均一にスルホン酸基を導入する方法が開示されている。この特許文献3に記載されたように、本発明者らは、ポリアセチレンに予め嵩高いシリル基、例えば、トリメチルシリル基を側鎖に導入してこれを膜状に成型し、濃硫酸、又は濃硫酸と有機溶媒の混合溶液に浸漬することにより、室温付近という温和な条件でスルホン酸基が膜厚方向に均一に導入されることを見出している。得られたスルホン化ポリアセチレン膜は高いプロトン伝導度を示すことも開示されている。しかしながら、固体高分子形燃料電池用の固体電解質膜として重要な物性である耐酸化性、耐ラジカル性については、さらなる改善が必要とされていた。   Further, Patent Document 3 discloses a method of sulfonating polyacetylene, particularly a method of introducing sulfonic acid groups uniformly in the film thickness direction. As described in Patent Document 3, the present inventors previously introduced a bulky silyl group into polyacetylene, for example, a trimethylsilyl group, into a side chain and molded it into a film shape. It has been found that the sulfonic acid groups are uniformly introduced in the film thickness direction under a mild condition of around room temperature by dipping in a mixed solution of organic solvent and organic solvent. It is also disclosed that the resulting sulfonated polyacetylene membrane exhibits high proton conductivity. However, further improvement has been required for oxidation resistance and radical resistance, which are important physical properties as a solid electrolyte membrane for a polymer electrolyte fuel cell.

固体高分子型燃料電池に用いる固体電解質膜の耐酸化性、耐ラジカル性を向上させる方法としては、二つの方法がある。第1の方法は、過酸化水素を分解又はトラップする作用を持つ化合物を膜に含ませる方法である。例えば、特許文献4に開示されているように、高分子電解質膜内に触媒金属粒子を担持させ、過酸化水素を分解する技術、特許文献5に開示されているように、高分子電解質膜中に過酸化物ラジカルを分解できる酸化マンガンなどの遷移金属酸化物、又はフェノール性水酸基を有する化合物を添加する技術、特許文献6に開示されているように、スルホン化ポリフェニレンサルファイド膜に含まれるスルホン酸基のH(Hイオン)の一部を、Mg、Ca等で置換する技術、Coイオンを含有させる技術が挙げられる。
触媒金属粒子又は遷移金属化合物を含有させる方法では、膜中に均一に分散させる工程が必要であるが、これがうまくいかないと、膜質の均一性および膜表面の平滑性を損なうおそれがある。さらに、フェノール性水酸基を導入する方法、イオン交換によりMg、Caを担持させる方法、又はCoイオンを含有させる方法があるが、作用機構が何れも不可逆反応であるため、含有させた作用物質が存在する間は耐酸化性、耐ラジカル性を向上させる効果を有するが、含有させた作用物質が全量消費された後はその効果(例えば耐久性)は維持できないという問題がある。
There are two methods for improving the oxidation resistance and radical resistance of the solid electrolyte membrane used in the polymer electrolyte fuel cell. The first method is a method in which a compound having a function of decomposing or trapping hydrogen peroxide is included in the film. For example, as disclosed in Patent Document 4, a catalyst metal particle is supported in a polymer electrolyte membrane, and hydrogen peroxide is decomposed. As disclosed in Patent Document 5, A transition metal oxide such as manganese oxide capable of decomposing peroxide radicals, or a compound having a phenolic hydroxyl group, and sulfonic acid contained in a sulfonated polyphenylene sulfide membrane as disclosed in Patent Document 6 Examples thereof include a technique for substituting a part of the group H (H ions) with Mg, Ca, etc., and a technique for containing Co ions.
In the method of containing the catalyst metal particles or the transition metal compound, a step of uniformly dispersing in the film is required, but if this is not successful, the film quality uniformity and the film surface smoothness may be impaired. Furthermore, there are a method of introducing a phenolic hydroxyl group, a method of supporting Mg and Ca by ion exchange, or a method of containing Co ions, but since the action mechanism is an irreversible reaction, there is an active substance contained. While it has an effect of improving the oxidation resistance and radical resistance, the effect (for example, durability) cannot be maintained after the entire amount of the contained active substance is consumed.

第2の方法は、特許文献8、9に開示されているように、高分子基材にリン酸基、ホスホン酸基などのPを含む官能基を導入する方法である。特許文献8には、パーフルオロ系ポリマーフィルム基材に少量の塩基性ビニルモノマーとホスホン酸、ビニルホスホン酸などをグラフト重合して電解質膜を得る方法が開示され、また特許文献9には、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂にホスホン酸基を導入した電解質膜が開示されている。
これらのポリマーは、Pを含む官能基を導入することによって耐ラジカル性が向上したと報告されているが、グラフト側鎖部分はビニル系ポリマーである。そのため、その主鎖部分には引き抜き反応を受けやすいHが存在しており、より高いレベルでの耐ラジカル性、耐酸化性の要求には十分対応できない。
The second method is a method of introducing a functional group containing P such as a phosphoric acid group and a phosphonic acid group into a polymer substrate as disclosed in Patent Documents 8 and 9. Patent Document 8 discloses a method for obtaining an electrolyte membrane by graft polymerization of a small amount of a basic vinyl monomer and a phosphonic acid, vinylphosphonic acid or the like on a perfluoro-based polymer film substrate, and Patent Document 9 discloses a polystyrene film. An electrolyte membrane in which a phosphonic acid group is introduced into a graft-ethylenetetrafluoroethylene resin is disclosed.
These polymers are reported to have improved radical resistance by introducing a functional group containing P, but the graft side chain portion is a vinyl polymer. For this reason, H that tends to undergo a pulling-out reaction exists in the main chain portion, and it cannot sufficiently meet the requirements for radical resistance and oxidation resistance at a higher level.

一方、炭化水素系高分子側鎖にホスホン酸基を導入した例としては、ポリ(ホスホフェニレンオキサイド)(特許文献10)、ホスホン酸化−ポリ(4−フェノキシベンゾイルー1,4−フェニレン)(特許文献11)、ホスホン化ポリベンゾイミダゾール(特許文献12)が提案されている。しかし、ポリフェニレンオキサイド、ポリパラフェニレンは一般に高分子量体を得ることが困難であるとともに、全芳香族骨格を持つことから溶媒に溶けにくく、製膜時の加工性は低いことが予想される。また、何らかの方法で製膜した場合であっても、得られる膜は硬く脆いので、機械的強度が十分でないことが危惧される。また、ポリベンゾイミダゾールなどは主鎖に複素環式化合物を持ち、脱水縮合反応を経て得られるため、高温熱水中では可逆的に加水分解反応が進行することが知られており、十分な耐久性を有していないと考えられる。
特開2002−322293号公報 特開2004−296141号公報 特開2007−270028号公報 特開平06−103992号公報 特開2001−118591号公報 特開2004−018573号公報 特開2006−210166号公報 特開2007−66852号公報 特開2000−11755号公報 特開2007−238806号公報 特開2004−175997号公報 特開2003−327826号公報
On the other hand, examples of introducing a phosphonic acid group into a hydrocarbon polymer side chain include poly (phosphophenylene oxide) (Patent Document 10), phosphonated-poly (4-phenoxybenzoyl-1,4-phenylene) (patent Document 11) and phosphonated polybenzimidazole (Patent Document 12) have been proposed. However, polyphenylene oxide and polyparaphenylene are generally difficult to obtain a high molecular weight body, and since they have a wholly aromatic skeleton, they are difficult to dissolve in a solvent and are expected to have low processability during film formation. Further, even when the film is formed by any method, the resulting film is hard and brittle, and there is a concern that the mechanical strength is not sufficient. In addition, polybenzimidazole has a heterocyclic compound in the main chain and is obtained through a dehydration condensation reaction. Therefore, it is known that the hydrolysis reaction proceeds reversibly in high-temperature hot water, so that it has sufficient durability. It is thought that it does not have sex.
JP 2002-322293 A JP 2004-296141 A JP 2007-270028 A Japanese Patent Laid-Open No. 06-103992 JP 2001-118591 A JP 2004-018573 A JP 2006-210166 A JP 2007-66852 A JP 2000-11755 A JP 2007-238806 A JP 2004-175997 A JP 2003-327826 A

ポリジフェニルアセチレンは、ビニル系ポリマーと異なり、主鎖にラジカルなどにより引き抜き反応を受けるHが存在しないため、耐酸化性、耐ラジカル性に優れている。さらに、ガラス転移温度が熱分解温度(一般的には400℃以上)まで観測されず、耐熱性に優れたポリマーであることが知られている。したがって、ポリジフェニルアセチレン骨格にPを含む官能基を導入することができれば、全芳香族骨格を持つポリマー、ビニル系ポリマーおよび複素環を持つポリマーとは異なり、耐酸化性、耐ラジカル性、機械的強度に優れた固体電解質膜になる可能性があることに本発明者らは着目した。リン酸基を導入したポリアセチレンの合成方法としては、リン酸基を導入したアセチレンモノマーをTaなどの遷移金属触媒を用いて重合させる方法が開示されている(例えば、特許文献2参照)が、一般にP化合物は遷移金属触媒を被毒することが知られている。本発明者らが実施した実験においても、遷移金属触媒ではホスホン酸基やホスホン酸エステル基を導入したアセチレンモノマーを重合させることができなかった。   Unlike vinyl polymers, polydiphenylacetylene is excellent in oxidation resistance and radical resistance because there is no H in the main chain that undergoes an extraction reaction by radicals or the like. Furthermore, the glass transition temperature is not observed up to the thermal decomposition temperature (generally 400 ° C. or higher), and it is known that the polymer is excellent in heat resistance. Therefore, if a functional group containing P can be introduced into the polydiphenylacetylene skeleton, unlike polymers having a wholly aromatic skeleton, vinyl polymers, and polymers having a heterocyclic ring, oxidation resistance, radical resistance, mechanical The present inventors paid attention to the possibility of a solid electrolyte membrane having excellent strength. As a method for synthesizing a polyacetylene having a phosphoric acid group introduced, a method in which an acetylene monomer having a phosphoric acid group introduced is polymerized using a transition metal catalyst such as Ta is disclosed (for example, see Patent Document 2). P compounds are known to poison transition metal catalysts. Even in experiments conducted by the present inventors, it was not possible to polymerize an acetylene monomer having a phosphonic acid group or a phosphonic acid ester group introduced with a transition metal catalyst.

本発明は、前記事情に鑑みてなされ、電気化学デバイスで使用するのに充分な電解質特性を示し、かつ充分な耐熱性、耐酸化性、耐ラジカル性および機械的強度を有し、廃棄処理時に環境負荷の大きなフッ素を含まず、製膜性などの加工性に優れた置換ポリアセチレンとその製造方法、この置換ポリアセチレンからなる電解質膜、並びに該電解質膜を用いた電解質膜・電極接合体(いわゆるMEA:Membrane Electrode Assembly)、それを用いた電気化学デバイス及び燃料電池の提供を目的とする。   The present invention has been made in view of the above circumstances, exhibits electrolyte characteristics sufficient for use in electrochemical devices, has sufficient heat resistance, oxidation resistance, radical resistance and mechanical strength, and is disposed at the time of disposal. Substituted polyacetylene that does not contain fluorine, which has a large environmental impact, and has excellent processability such as film-forming properties, a method for producing the same, an electrolyte membrane comprising the substituted polyacetylene, and an electrolyte membrane / electrode assembly (so-called MEA) using the electrolyte membrane : Membrane Electrode Assembly), and to provide an electrochemical device and a fuel cell using the same.

前記目的を達成するため、本発明は、ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖を有する置換ポリアセチレンを提供する。   In order to achieve the above object, the present invention provides a substituted polyacetylene having a side chain containing a phosphonic acid group in the main chain composed of polyacetylene.

また本発明は、ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖とスルホン酸基を含む側鎖とを有する置換ポリアセチレンを提供する。   The present invention also provides a substituted polyacetylene having a side chain containing a phosphonic acid group and a side chain containing a sulfonic acid group in the main chain composed of polyacetylene.

また本発明は、下記式(1)   The present invention also provides the following formula (1):

Figure 2009292947
Figure 2009292947

〔ただし、式(1)中、R〜Rの一部又は全部がホスホン酸基であり、残りがH、Br、Cl、I、含珪素置換基、水酸基、炭素数1〜6の直鎖又は分岐のアルキル基又はアルコキシ基、フェノキシ基、スルホン酸基からなる群から選択されるいずれかである。〕で表される繰り返し単位を有する置換ポリアセチレンを提供する。 [However, in the formula (1), a part or all of R 1 to R 6 is a phosphonic acid group, and the rest are H, Br, Cl, I, a silicon-containing substituent, a hydroxyl group, a straight chain having 1 to 6 carbon atoms. Any one selected from the group consisting of a chain or branched alkyl group or an alkoxy group, a phenoxy group, and a sulfonic acid group. A substituted polyacetylene having a repeating unit represented by the formula:

本発明の置換ポリアセチレンにおいて、前記式(1)中のR、R、RがHであり、Rが含珪素置換基又はHであり、RとRのいずれか一方又は両方がホスホン酸基であり、残りがH、メチル基、スルホン酸基、Br、Cl、Iからなる群から選択されるいずれかであるものが好ましい。 In the substituted polyacetylene of the present invention, R 1 , R 3 and R 5 in the formula (1) are H, R 2 is a silicon-containing substituent or H, and either one or both of R 4 and R 6 Is a phosphonic acid group, and the remainder is any one selected from the group consisting of H, a methyl group, a sulfonic acid group, Br, Cl, and I.

本発明の置換ポリアセチレンにおいて、前記式(1)中のR〜Rの一部がスルホン酸基で、残りがHであり、R〜Rの一部又は全部がホスホン酸基であり、残りがH、メチル基、Br、Cl、Iの群から選択されるいずれかであるものも好ましい。 In the substituted polyacetylene of the present invention, a part of R 1 to R 3 in the formula (1) is a sulfonic acid group, the rest is H, and a part or all of R 4 to R 6 is a phosphonic acid group. Also preferably, the remainder is any one selected from the group consisting of H, methyl group, Br, Cl and I.

また本発明は、前記式(1)中のR〜Rのうち少なくとも一つが含珪素置換基で、残りがHであり、R〜Rの一部又は全部がホスホン酸基であり、残りがH、メチル基、Br、Cl、Iからなる群から選択されるいずれかである置換ポリアセチレンをスルホン化剤に接触させてスルホン化することによって、ホスホン酸基およびスルホン酸基を有する置換ポリアセチレンを得る置換ポリアセチレンの製造方法を提供する。 In the present invention, at least one of R 1 to R 3 in the formula (1) is a silicon-containing substituent, the rest is H, and a part or all of R 4 to R 6 is a phosphonic acid group. Substitution with a phosphonic acid group and a sulfonic acid group by sulfonating a substituted polyacetylene that is any one selected from the group consisting of H, methyl group, Br, Cl, and I with a sulfonating agent Provided is a method for producing a substituted polyacetylene to obtain a polyacetylene.

また本発明は、本発明に係る前記置換ポリアセチレンからなる電解質膜を提供する。   The present invention also provides an electrolyte membrane comprising the substituted polyacetylene according to the present invention.

また本発明は、本発明に係る置換ポリアセチレンの製造方法により得られ、膜状に成形された電解質膜であって、膜中のスルホン酸基の分布が膜厚方向に均一である電解質膜を提供する。   The present invention also provides an electrolyte membrane obtained by the method for producing a substituted polyacetylene according to the present invention and formed into a membrane, wherein the distribution of sulfonic acid groups in the membrane is uniform in the film thickness direction. To do.

本発明の電解質膜は、膜中にイミダゾール、ベンゾイミダゾール、トリアゾール、ピラゾール又はそれらの誘導体を含浸させてなるものが好ましい。   The electrolyte membrane of the present invention is preferably one in which the membrane is impregnated with imidazole, benzimidazole, triazole, pyrazole or derivatives thereof.

また本発明は、本発明に係る電解質膜、又は該電解質膜を含む複合体膜に電極を設けてなる電解質膜・電極接合体を提供する。   The present invention also provides an electrolyte membrane / electrode assembly in which an electrode is provided on the electrolyte membrane according to the present invention or a composite membrane containing the electrolyte membrane.

また本発明は、本発明に係る電解質膜・電極接合体を有する電気化学デバイスを提供する。   The present invention also provides an electrochemical device having the electrolyte membrane / electrode assembly according to the present invention.

また本発明は、本発明に係る電解質膜・電極接合体を有する燃料電池を提供する。   The present invention also provides a fuel cell having the electrolyte membrane / electrode assembly according to the present invention.

本発明によれば、耐酸化性、耐ラジカル性に優れ、高いプロトン伝導性を有し、かつ十分な耐熱性と低い膨潤度を有し、十分な機械的強度を有する置換ポリアセチレンおよび電解質膜を得ることができる。加えて、その電解質膜に複素環式化合物を含浸すれば、高温低湿度下でも良好なプロトン伝導性を示す電解質膜を得ることができる。さらに、この電解質膜は、フッ素を含有していないため、焼却処分が可能であり、廃棄の際には環境負荷が小さいという特徴を有する。   According to the present invention, a substituted polyacetylene and an electrolyte membrane having excellent oxidation resistance and radical resistance, high proton conductivity, sufficient heat resistance, low swelling, and sufficient mechanical strength are provided. Obtainable. In addition, if the electrolyte membrane is impregnated with a heterocyclic compound, an electrolyte membrane showing good proton conductivity even at high temperature and low humidity can be obtained. Furthermore, since this electrolyte membrane does not contain fluorine, it can be disposed of by incineration, and has a feature that the environmental load is small at the time of disposal.

本発明によって得られるホスホン酸基を有する置換ポリアセチレン、又はホスホン酸基およびスルホン酸基を有する置換ポリアセチレンの好ましい用途としては、これらの置換ポリアセチレンを製膜して得られる電解質膜、該電解質膜に電極を付与した電解質膜・電極接合体が挙げられる。この置換ポリアセチレンからなる電解質膜・電極接合体は、各種の電気化学デバイスに好適に用いることができる。電気化学デバイスとしては、例えば、燃料電池、二次電池、湿度センサー、イオンセンサー、ガスセンサー、デシカント剤などが挙げられ、特に固体高分子型燃料電池において最も好適に用いることができる。   Preferred uses of the substituted polyacetylene having a phosphonic acid group or the substituted polyacetylene having a phosphonic acid group and a sulfonic acid group obtained by the present invention include an electrolyte membrane obtained by forming these substituted polyacetylenes, and an electrode on the electrolyte membrane. An electrolyte membrane / electrode assembly to which is given. The electrolyte membrane / electrode assembly made of this substituted polyacetylene can be suitably used for various electrochemical devices. Examples of the electrochemical device include a fuel cell, a secondary battery, a humidity sensor, an ion sensor, a gas sensor, and a desiccant, and can be most suitably used particularly in a polymer electrolyte fuel cell.

本発明に係る置換ポリアセチレンは、ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖を有するか、或いはホスホン酸基を含む側鎖とスルホン酸基を含む側鎖とを有することを特徴としている。   The substituted polyacetylene according to the present invention is characterized in that the main chain composed of polyacetylene has a side chain containing a phosphonic acid group, or a side chain containing a phosphonic acid group and a side chain containing a sulfonic acid group. .

本発明に係る置換ポリアセチレンにおいて、ポリアセチレンからなる主鎖は、その骨格に二重結合と単結合が交互につながったポリエン構造を有する。このポリアセチレンからなる主鎖は、トランス型、シス型の何れであってもよい。   In the substituted polyacetylene according to the present invention, the main chain composed of polyacetylene has a polyene structure in which double bonds and single bonds are alternately connected to the skeleton. The main chain made of polyacetylene may be either trans or cis.

本発明に係る置換ポリアセチレンにおいて、側鎖としては、少なくとも1つのホスホン酸基を有するか、或いはホスホン酸基とスルホン酸基とを両方有する炭化水素基が挙げられる。このベースとなる炭化水素基としては、メチル基などの直鎖又は分岐炭化水素基、環状炭化水素基、フェニル基などの芳香族炭化水素基などが挙げられる。この側鎖は、ベースとなる炭化水素基のHが、少なくとも1つのホスホン酸基やスルホン酸基で置換された炭化水素基以外にも、ホスホン酸基やスルホン酸基を含み、且つホスホン酸基やスルホン酸基以外の各種の置換基(例えば、含珪素置換基、水酸基、直鎖又は分岐アルキル基、アルコキシ基、フェニル基、フェノキシ基など)やハロゲン(例えば、Br,Cl、Iなど)で置換された炭化水素基であってもよい。   In the substituted polyacetylene according to the present invention, examples of the side chain include a hydrocarbon group having at least one phosphonic acid group or both a phosphonic acid group and a sulfonic acid group. Examples of the base hydrocarbon group include a linear or branched hydrocarbon group such as a methyl group, an aromatic hydrocarbon group such as a cyclic hydrocarbon group, and a phenyl group. This side chain includes a phosphonic acid group and a sulfonic acid group in addition to a hydrocarbon group in which H of the hydrocarbon group serving as a base is substituted with at least one phosphonic acid group or sulfonic acid group, and the phosphonic acid group And various substituents other than sulfonic acid groups (eg, silicon-containing substituents, hydroxyl groups, linear or branched alkyl groups, alkoxy groups, phenyl groups, phenoxy groups, etc.) and halogens (eg, Br, Cl, I, etc.) It may be a substituted hydrocarbon group.

本発明に係る置換ポリアセチレンの好ましい実施形態は、前記式(1)に示す通りである。式(1)中、R〜Rの一部又は全部がホスホン酸基であり、残りがH、Br、Cl、I、含珪素置換基、水酸基、炭素数1〜6の直鎖又は分岐のアルキル基又はアルコキシ基、フェノキシ基、スルホン酸基からなる群から選択されるいずれかである。
前記含珪素置換基とは、Siを含む各種の置換基の中から適宜選択でき、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基が挙げられる。本発明において、特に好ましい含珪素置換基としては、トリメチルシリル基が挙げられる。
また式(1)中のnは2以上の数、好ましくは4〜40000の範囲の数であり、より好ましくは200〜20000の範囲の数である。nが40未満であると、得られる置換ポリアセチレン膜の機械的強度が不十分となり、実用的な電解質膜を得ることが困難になる。また、nが20000を超えると、有機溶媒への溶解性が低下し、製膜が困難となる。
A preferred embodiment of the substituted polyacetylene according to the present invention is as shown in the formula (1). In formula (1), part or all of R 1 to R 6 is a phosphonic acid group, and the rest are H, Br, Cl, I, a silicon-containing substituent, a hydroxyl group, a linear or branched chain having 1 to 6 carbon atoms Or an alkyl group, an alkoxy group, a phenoxy group, or a sulfonic acid group.
The silicon-containing substituent can be appropriately selected from various substituents containing Si, and examples thereof include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, and a dimethylisopropylsilyl group. In the present invention, a particularly preferred silicon-containing substituent is a trimethylsilyl group.
Moreover, n in Formula (1) is a number of 2 or more, preferably a number in the range of 4 to 40,000, more preferably a number in the range of 200 to 20000. When n is less than 40, the resulting substituted polyacetylene film has insufficient mechanical strength, making it difficult to obtain a practical electrolyte membrane. Moreover, when n exceeds 20000, the solubility to an organic solvent will fall and film formation will become difficult.

本発明の置換ポリアセチレンは、ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖を有するか、或いはホスホン酸基を含む側鎖とスルホン酸基を含む側鎖とを有する構造としたことによって、耐酸化性、耐ラジカル性に優れ、高いプロトン伝導性を有し、かつ十分な耐熱性と低い膨潤度を有し、十分な機械的強度を有する電解質膜を製膜することができる。加えて、複素環式化合物を含浸すれば、高温低湿度下でも良好なプロトン伝導性を示す電解質膜を得ることができる。さらに、この膜はフッ素を含有していないため、焼却処分が可能であり、廃棄の際には環境負荷が小さいという特徴を有する。   The substituted polyacetylene of the present invention has a structure having a side chain containing a phosphonic acid group and a side chain containing a phosphonic acid group and a side chain containing a sulfonic acid group in the main chain made of polyacetylene. An electrolyte membrane having excellent oxidation resistance and radical resistance, high proton conductivity, sufficient heat resistance, low swelling, and sufficient mechanical strength can be formed. In addition, if the heterocyclic compound is impregnated, an electrolyte membrane showing good proton conductivity even at high temperature and low humidity can be obtained. Furthermore, since this membrane does not contain fluorine, it can be disposed of by incineration, and has a feature that the environmental load is small when discarded.

前記式(1)で表される本発明の置換ポリアセチレンの中でも、特に好ましいものとして、前記式(1)中のR、R、RがHであり、Rが含珪素置換基又はHであり、RとRのいずれか一方又は両方がホスホン酸基であり、残りがH、メチル基、スルホン酸基、Br、Cl、Iからなる群から選択されるいずれかである置換ポリアセチレンが挙げられる。
この構造で表される置換ポリアセチレンは、合成出発材料の入手が容易であり、且つ有機溶媒に可溶であるため製膜性に優れている。
Among the substituted polyacetylenes of the present invention represented by the formula (1), R 1 , R 3 and R 5 in the formula (1) are H and R 2 is a silicon-containing substituent or A substituent in which either one or both of R 4 and R 6 is a phosphonic acid group, and the remainder is selected from the group consisting of H, a methyl group, a sulfonic acid group, Br, Cl, and I Polyacetylene is mentioned.
The substituted polyacetylene represented by this structure is easy to obtain a synthetic starting material and is excellent in film formability because it is soluble in an organic solvent.

特に好ましい別の置換ポリアセチレンとして、前記式(1)中のR〜Rの一部がスルホン酸基で、残りがHであり、R〜Rの一部又は全部がホスホン酸基であり、残りがH、メチル基、Br、Cl、Iの群から選択されるいずれかである置換ポリアセチレンが挙げられる。 As another particularly preferable substituted polyacetylene, a part of R 1 to R 3 in the formula (1) is a sulfonic acid group, the rest is H, and a part or all of R 4 to R 6 is a phosphonic acid group. And substituted polyacetylene, the remaining being any one selected from the group consisting of H, methyl group, Br, Cl and I.

次に、本発明に係る置換ポリアセチレンの製造方法の一例を説明する。
本発明に係る置換ポリアセチレンを得るには、第一工程として下記反応式(A)に従い、式(2)および式(3)で表される化合物を出発材料とし、式(4)で表される中間体を経て、これを重合させることによって、有機溶媒に可溶な式(5)で表される置換ポリアセチレンを合成する。この有機溶媒は特に制限はないが、脱水溶媒のトルエン、テトラヒドロフラン、ジエチルエーテル、キシレンが好ましい。
Next, an example of a method for producing a substituted polyacetylene according to the present invention will be described.
In order to obtain the substituted polyacetylene according to the present invention, as a first step, according to the following reaction formula (A), the compounds represented by the formulas (2) and (3) are used as starting materials, and represented by the formula (4). The substituted polyacetylene represented by the formula (5) that is soluble in an organic solvent is synthesized by polymerizing this through an intermediate. The organic solvent is not particularly limited but is preferably a dehydrating solvent such as toluene, tetrahydrofuran, diethyl ether or xylene.

Figure 2009292947
Figure 2009292947

ただし、式(2)中のXはCl、Br又はIであり、式(2)、(3)中、R〜R12の少なくとも一部がCl、Br、Iのいずれかであり、残りのうち少なくとも一つが、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、フェノキシ基、tert−ブチルジメチルオキシ基、tert−ブチルジメチルオキシフェニル基、シクロヘキシル基、N,N−ジフェニルアミノ基、3a,7a−ジヒドロ−1H−インドリル基、3−メチル−3a,7a−ジヒドロ−1H−インドリル基からなる群から選択されるいずれかの基であり、さらに残りがH、ハロゲン原子、炭素数1〜6の直鎖又は分岐のアルキル基である。 However, X in the formula (2) is Cl, Br or I, and in the formulas (2) and (3), at least a part of R 7 to R 12 is any one of Cl, Br and I, and the rest At least one of them is trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, phenoxy group, tert-butyldimethyloxy group, tert-butyldimethyloxyphenyl group, cyclohexyl group, N, N-diphenylamino. A group selected from the group consisting of a group, 3a, 7a-dihydro-1H-indolyl group, 3-methyl-3a, 7a-dihydro-1H-indolyl group, and the remainder being H, halogen atom, carbon It is a linear or branched alkyl group of formula 1-6.

なお、前記の各種置換基の導入は、予めハロゲン化アリーレン化合物に、公知の方法で該置換基を導入しておくか、下記反応式(B)に従って該置換基を導入したアセチレン化合物を合成することができる。   In addition, the introduction of the various substituents described above is performed by introducing the substituents into the halogenated arylene compound in a known manner in advance, or synthesizing the acetylene compound into which the substituents are introduced according to the following reaction formula (B). be able to.

Figure 2009292947
Figure 2009292947

すなわち、式(6)で表される該置換基R10〜R12を導入したハロゲン化アリーレン化合物と2−メチル−3−ブチン−2−オールとを公知のカップリング反応、好ましくは薗頭-萩原カップリング法を用いてカップリングさせ、式(7)で表されるアセチレン化合物を得る。その後、トルエンもしくはベンゼン中で、塩基、例えば、水酸化ナトリウム又は水酸化カリウムを過剰量加えて、数時間還流し、シリカゲルカラムクロマトグラフィー又は蒸留など、常法によって分離、精製することによって、式(3)で表される該置換基を導入したアセチレン化合物を合成することができる。また、水酸基などの活性基を導入する場合には、予めtert−ブチルジメチルクロロシランを用いて、tert−ブチルジメチルシロキシ基として保護しておくことが好ましい。 That is, the halogenated arylene compound into which the substituents R 10 to R 12 represented by the formula (6) are introduced and 2-methyl-3-butyn-2-ol are subjected to a known coupling reaction, preferably a Sonogashira- Coupling is performed using the EBARA coupling method to obtain an acetylene compound represented by the formula (7). Thereafter, an excessive amount of a base such as sodium hydroxide or potassium hydroxide is added in toluene or benzene, and the mixture is refluxed for several hours, and separated and purified by a conventional method such as silica gel column chromatography or distillation. An acetylene compound into which the substituent represented by 3) is introduced can be synthesized. In addition, when an active group such as a hydroxyl group is introduced, it is preferably protected beforehand as tert-butyldimethylsiloxy group using tert-butyldimethylchlorosilane.

前記反応式(B)により得られた式(3)で表されるアセチレン化合物は、前記反応式(A)に示した通り、式(2)で表されるハロゲン化アリーレン化合物と公知のカップリング反応、好ましくは薗頭-萩原カップリング法を用いてカップリングさせ、式(4)で表されるアセチレン化合物を得る。   The acetylene compound represented by the formula (3) obtained by the reaction formula (B) is a known coupling with the halogenated arylene compound represented by the formula (2) as shown in the reaction formula (A). Coupling is performed using a reaction, preferably the Sonogashira-Hagiwara coupling method, to obtain an acetylene compound represented by the formula (4).

前記反応式(A)中の式(5)で表される置換ポリアセチレンは、式(4)で表されるアセチレン化合物をNb、Ta、Mo、Wなどの遷移金属触媒、又は、これらの触媒とテトラブチル錫などの助触媒を用いて、脱水溶媒中で加熱撹拌することにより得られる。また、他の公知の重合方法を用いてもよい。式(5)で表される置換ポリアセチレンの分子量は、電解質膜として使用する場合の耐熱性及び機械的強度に大きな影響を与える。分子量が小さすぎると、耐熱性及び機械的強度の低下を招き、分子量が大きすぎると、溶解性の低下、製膜時に使用する溶媒量の増加などを招くので、置換ポリアセチレンの分子量はおおむね1万から1000万の範囲、より望ましくは5万から500万の範囲であるべきである。式(5)で表される置換ポリアセチレンは、前記の構造を含んでいれば特に制限はなく、一種類のアセチレン化合物を重合してなる単独重合体でも2種以上のアセチレン化合物を重合してなる共重合体でもよい。   The substituted polyacetylene represented by the formula (5) in the reaction formula (A) is obtained by converting the acetylene compound represented by the formula (4) into a transition metal catalyst such as Nb, Ta, Mo, or W, or these catalysts. It can be obtained by heating and stirring in a dehydrating solvent using a promoter such as tetrabutyltin. Further, other known polymerization methods may be used. The molecular weight of the substituted polyacetylene represented by the formula (5) greatly affects the heat resistance and mechanical strength when used as an electrolyte membrane. If the molecular weight is too small, the heat resistance and mechanical strength are lowered, and if the molecular weight is too large, the solubility is lowered and the amount of solvent used for film formation is increased. Therefore, the molecular weight of the substituted polyacetylene is approximately 10,000. Should be in the range of -10 to 10 million, more preferably in the range of 50,000 to 5 million. The substituted polyacetylene represented by the formula (5) is not particularly limited as long as it contains the structure described above, and even a homopolymer obtained by polymerizing one kind of acetylene compound is obtained by polymerizing two or more kinds of acetylene compounds. A copolymer may be used.

第二工程では、少なくとも側鎖の一部にホスホン酸エステル基を有する置換ポリアセチレンを合成する。該ポリマーは、例えば以下の手順で得ることができる。式(5)で表される少なくとも一部にハロゲンを有する置換ポリアセチレンを脱水溶媒、例えば、トルエン、テトラヒドロフラン、ジエチルエーテル、キシレンのいずれかに加えて加熱撹拌し、一部又は全部を溶解させる。その後、適量の塩化ニッケル(II)およびリン酸エステル、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニルのいずれかを加えて、100〜200℃、好ましくは150〜200℃に加熱することによって得られる(アルブゾフ反応)。又は、パラジウム触媒(例えば、テトラキストリフェニルホスフィンパラジウム)と、亜リン酸エステル(例えば、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルのいずれか)と、塩基(例えば、トリエチルアミン又はピリジン)を加えて、加熱撹拌することによって得られる。加熱温度は50〜200℃、好ましくは100〜150℃に加熱し、2時間以上、好ましくは24〜144時間撹拌を行うことにより得られる。   In the second step, a substituted polyacetylene having a phosphonate ester group in at least a part of the side chain is synthesized. The polymer can be obtained, for example, by the following procedure. The substituted polyacetylene having halogen in at least a part represented by the formula (5) is added to any of dehydrating solvents such as toluene, tetrahydrofuran, diethyl ether, and xylene, and heated and stirred to dissolve a part or all of them. Thereafter, an appropriate amount of nickel chloride (II) and a phosphate ester such as trimethyl phosphate, triethyl phosphate, or triphenyl phosphate are added and heated to 100 to 200 ° C, preferably 150 to 200 ° C. (Arbuzov reaction). Or a palladium catalyst (eg, tetrakistriphenylphosphine palladium), a phosphite (eg, trimethyl phosphite, triethyl phosphite, or triphenyl phosphite) and a base (eg, triethylamine or pyridine) ) And heated and stirred. The heating temperature is 50 to 200 ° C., preferably 100 to 150 ° C., and is obtained by stirring for 2 hours or more, preferably 24 to 144 hours.

また、別法として、一部にホスホン酸エステル基を有する置換ポリアセチレンは、触媒に酢酸パラジウムを用いた反応でも得ることができる。式(5)で表される少なくとも一部にハロゲンを有する置換ポリアセチレンを脱水溶媒、例えば、トルエン、テトラヒドロフラン、ジエチルエーテル、キシレンのいずれかに加えて加熱撹拌し、一部又は全部を溶解させる。その後、適量の酢酸パラジウム、トリフェニルホスフィンと亜リン酸エステル(例えば、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルのいずれか)および塩基、例えば、トリエチルアミン又はピリジンを加え、50〜200℃、好ましくは100〜150℃で2時間以上、好ましくは24〜144時間撹拌することでも得られる。その他、式(5)で表される少なくとも一部にハロゲンを有する置換ポリアセチレンを前述の脱水溶媒に溶解後、−78〜35℃、好ましくは0〜25℃に冷却した後、アルキルリチウム、例えば、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウムのいずれかを加え、ハロゲン化リン酸エステル、例えば、クロロリン酸ジメチル、クロロリン酸ジエチル、クロロリン酸ジフェニルのいずれかを加え、0〜60℃、好ましくは25〜40℃で数時間撹拌することによっても得られる。また、その他ホスホン酸エステル基を導入する公知の反応を利用することができる。   Alternatively, a substituted polyacetylene having a phosphonic acid ester group in part can be obtained by a reaction using palladium acetate as a catalyst. The substituted polyacetylene having halogen in at least a part represented by the formula (5) is added to any of dehydrating solvents such as toluene, tetrahydrofuran, diethyl ether, and xylene, and heated and stirred to dissolve a part or all of them. Thereafter, an appropriate amount of palladium acetate, triphenylphosphine and phosphite (for example, trimethyl phosphite, triethyl phosphite, triphenyl phosphite) and a base such as triethylamine or pyridine are added, and 50 to It can also be obtained by stirring at 200 ° C., preferably 100 to 150 ° C. for 2 hours or longer, preferably 24 to 144 hours. In addition, after dissolving the substituted polyacetylene having halogen in at least a part represented by the formula (5) in the above-mentioned dehydrating solvent, after cooling to −78 to 35 ° C., preferably 0 to 25 ° C., alkyl lithium, for example, n-Butyllithium, sec-Butyllithium, or tert-Butyllithium is added, and a halogenated phosphoric acid ester such as dimethyl chlorophosphate, diethyl chlorophosphate, or diphenyl chlorophosphate is added, and the temperature is 0 to 60 ° C. Preferably, it can also be obtained by stirring at 25 to 40 ° C. for several hours. In addition, other known reactions for introducing a phosphonate group can be used.

得られたポリマーは、メタノール、ヘキサン、ジエチルエーテル、アセトンなどのリン化合物をよく溶解し、かつホスホン酸エステル基を導入したポリジフェニルアセチレンを溶解しない溶媒中に注入し、再沈殿精製を行うことにより得られる。ポリマー中に残存するパラジウム触媒は、繰り返し再沈殿精製を行うとともに、前記の精製に用いる溶媒、好ましくはアセトンを用いてソックスレー抽出を行うことにより、取り除くことができる。   The obtained polymer was dissolved in a phosphorus compound such as methanol, hexane, diethyl ether, and acetone, and injected into a solvent that did not dissolve polydiphenylacetylene having a phosphonate ester group introduced therein, followed by reprecipitation purification. can get. The palladium catalyst remaining in the polymer can be removed by repeated reprecipitation purification and Soxhlet extraction using the solvent used for the purification, preferably acetone.

第三工程では、少なくとも一部にホスホン酸エステル基を導入した置換ポリアセチレンを膜状に成型する。得られたホスホン酸エステル基を導入したポリジフェニルアセチレンは、テトラヒドロフラン、トルエンなどの有機溶媒に可溶であり、公知の製膜方法、例えば、溶媒キャスト法、スピンコート法、転写法、印刷法等による製膜方法の他、必要に応じて加熱処理や、圧延・延伸などの機械的処理を組み合わせて膜状に成型することができる。   In the third step, a substituted polyacetylene having a phosphonate ester group introduced at least in part is molded into a film. The obtained polydiphenylacetylene into which the phosphonic acid ester group is introduced is soluble in an organic solvent such as tetrahydrofuran and toluene, and is a known film forming method such as a solvent casting method, a spin coating method, a transfer method, a printing method, etc. In addition to the film forming method according to the above, it can be formed into a film shape by combining heat treatment and mechanical treatment such as rolling / stretching as necessary.

第四工程では、該膜のホスホン酸エステル基を脱保護し、ホスホン酸基を有する置換アセチレン膜を合成する。該膜を臭化水素酸、濃硫酸、メタンスルホン酸、濃塩酸などの強酸中に浸漬した状態で、2〜72時間、好ましくは24〜48時間、50〜100℃に加熱することにより、ホスホン酸エステル基が脱保護反応の進行によりホスホン酸基となり、ホスホン酸基を有する置換ポリアセチレン膜を得ることができる。   In the fourth step, the phosphonic acid ester group of the film is deprotected to synthesize a substituted acetylene film having a phosphonic acid group. By heating the membrane in a strong acid such as hydrobromic acid, concentrated sulfuric acid, methanesulfonic acid, concentrated hydrochloric acid or the like for 2 to 72 hours, preferably 24 to 48 hours, phosphon The acid ester group becomes a phosphonic acid group by the progress of the deprotection reaction, and a substituted polyacetylene film having a phosphonic acid group can be obtained.

脱保護反応には別法として、前記の強酸を用いる反応のほか、トリメチルシリルヨージドを用いる反応など、公知の加水分解反応を用いることができる。なお、ホスホン酸基を持つ置換ポリアセチレンは、トルエン、テトラヒドロフランなどの有機溶媒に可溶であるため、ホスホン酸エステル基を導入した置換ポリアセチレンを前記の方法で脱保護し、ホスホン酸基を有する置換ポリアセチレンに変換したのちに、公知の製膜方法、例えば、溶媒キャスト法、スピンコート法、転写法、印刷法等による製膜方法の他、必要に応じて加熱処理や、圧延・延伸などの機械的処理を組み合わせて膜状に成型してもよい。なお、ホスホン酸エステル基を導入した置換ポリアセチレンの一部にトリメチルシリル基など含珪素置換基が導入されている場合には、強酸中で加熱すると、該含珪素置換基の脱離反応が起こる可能性がある。   As a different method for the deprotection reaction, a known hydrolysis reaction such as a reaction using trimethylsilyl iodide can be used in addition to the reaction using the strong acid. In addition, since substituted polyacetylene having a phosphonic acid group is soluble in an organic solvent such as toluene and tetrahydrofuran, the substituted polyacetylene having a phosphonic acid ester group introduced therein is deprotected by the above-described method to obtain a substituted polyacetylene having a phosphonic acid group. After conversion into a known film-forming method, for example, a solvent casting method, a spin-coating method, a transfer method, a film-forming method by a printing method, etc., as needed, heat treatment, mechanical treatment such as rolling / stretching, etc. You may shape | mold into a film form combining a process. When a silicon-containing substituent such as a trimethylsilyl group is introduced into a part of the substituted polyacetylene introduced with a phosphonic acid ester group, the elimination reaction of the silicon-containing substituent may occur when heated in a strong acid. There is.

脱保護後に得られるホスホン酸基を導入した置換ポリアセチレンを、より有機溶媒に溶けやすくすることが望ましい場合には、前記強酸と有機溶媒、例えば、酢酸エチル、ジエチルエーテルなどとの混合溶媒を用いて加熱し、含珪素置換基を残存させることも可能である。該混合溶液の強酸の好ましい濃度は、50〜95質量%である。また、反応時間、反応温度などの反応条件を変えることによっても含珪素置換基を残存させることが可能である。さらに別法としては、トリメチルシリルヨージドなど、エステルの脱保護反応を選択的に進行させる公知の試薬を用いてもよい。   When it is desirable to make the substituted polyacetylene having a phosphonic acid group introduced after deprotection more soluble in an organic solvent, a mixed solvent of the strong acid and an organic solvent such as ethyl acetate or diethyl ether is used. Heating may leave the silicon-containing substituents. A preferable concentration of the strong acid in the mixed solution is 50 to 95% by mass. The silicon-containing substituent can also be left by changing reaction conditions such as reaction time and reaction temperature. Furthermore, as another method, a known reagent such as trimethylsilyl iodide for allowing the ester deprotection reaction to proceed selectively may be used.

さらに、燃料電池、二次電池、湿度センサー、イオンセンサー、ガスセンサー、デシカント剤などの設計から、電解質膜により高いプロトン伝導性が要求される場合には、ホスホン酸エステル基を有する置換ポリアセチレン膜(ポリジフェニルアセチレン膜)を濃硫酸、濃硫酸と溶媒、例えば、酢酸エチル、ジエチルエーテルなどとの混合溶液、発煙硫酸、三酸化硫黄−ジオキサン、三酸化硫黄−ピリジン、クロロスルホン酸又は亜硫酸などのスルホン化剤と接触させることにより、スルホン酸基を導入することができる。このとき、ホスホン酸エステル基を有する置換ポリアセチレン膜(ポリジフェニルアセチレン膜)にあらかじめトリメチルシリル基などの含珪素置換基を導入することが望ましい。嵩高い含珪素置換基は、ポリマー鎖間に空隙を生じさせ、スルホン化剤が膜内部まで浸透しやすくなるので、膜厚方向に均一にスルホン酸基を導入することが可能となる。   Furthermore, when high proton conductivity is required for the electrolyte membrane from the design of fuel cells, secondary batteries, humidity sensors, ion sensors, gas sensors, desiccants, etc., substituted polyacetylene membranes having phosphonate ester groups ( Polydiphenylacetylene membrane) with concentrated sulfuric acid, mixed solution of concentrated sulfuric acid and solvent, for example, ethyl acetate, diethyl ether, etc., fuming sulfuric acid, sulfur trioxide-dioxane, sulfur trioxide-pyridine, chlorosulfonic acid or sulfurous acid such as sulfurous acid A sulfonic acid group can be introduced by contacting with an agent. At this time, it is desirable to introduce a silicon-containing substituent such as a trimethylsilyl group in advance into a substituted polyacetylene film (polydiphenylacetylene film) having a phosphonate group. The bulky silicon-containing substituent causes voids between polymer chains, and the sulfonating agent easily penetrates into the membrane, so that sulfonic acid groups can be introduced uniformly in the film thickness direction.

液相中でスルホン化する場合には、必要に応じて溶媒や界面活性剤を用いることができる。この溶媒及び界面活性剤としては、膜の性状やスルホン化の制御に悪影響を及ぼさなければ特に制限はなく、例えば、溶媒としては、水、炭素数1〜8のアルコール、酢酸エチル、酢酸ブチル、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、ギ酸、酢酸、酪酸、無水酢酸、クロロ酢酸、トリフルオロ酢酸、トリフルオロ酢酸無水物、ニトロベンゼンなどを単独、あるいは2種以上混合して用いることができる。界面活性剤としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウムなどの4級アンモニウムイオンと塩化物イオン、臭化物イオン、ヨウ化物イオン、硫酸水素イオンなどとの塩、又はノナニルベンゼンスルホン酸、ラウリル硫酸、安息香酸などのナトリウム塩やアンモニウム塩のようなイオン性界面活性剤、プロピレングリコールやポリオキシエチレングリコールモノラウリルエーテルなどの非イオン性界面活性剤などを、単独又は2種以上混合して用いることができる。   In the case of sulfonation in the liquid phase, a solvent or a surfactant can be used as necessary. The solvent and the surfactant are not particularly limited as long as the properties of the membrane and the control of sulfonation are not adversely affected. Examples of the solvent include water, alcohols having 1 to 8 carbon atoms, ethyl acetate, butyl acetate, Chloroform, dichloromethane, 1,2-dichloroethane, formic acid, acetic acid, butyric acid, acetic anhydride, chloroacetic acid, trifluoroacetic acid, trifluoroacetic anhydride, nitrobenzene and the like can be used alone or in admixture of two or more. Surfactants include salts of quaternary ammonium ions such as tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium and the like with chloride ions, bromide ions, iodide ions, hydrogen sulfate ions, etc., or nonanylbenzene Single or two or more ionic surfactants such as sodium salts and ammonium salts such as sulfonic acid, lauryl sulfate, and benzoic acid, and nonionic surfactants such as propylene glycol and polyoxyethylene glycol monolauryl ether It can be used by mixing.

気相中でスルホン化する場合には、例えば亜硫酸ガスに直接膜を曝しても良い。この場合、スルホン化雰囲気の制御又は移動相として、窒素ガス、空気、又は前述した溶媒の蒸気などを単独又は2種以上混合して用いることができる。スルホン化試薬の量、溶媒や界面活性剤の量、ガス量、スルホン化処理に要す時間、温度などは、膜の性状への影響、目的の電気化学デバイスに必要な電気化学的特性に応じたスルホン化量をもとに決めればよく、生産効率を考慮して、処理時間が数分から数時間になるようにすればよい。   When sulfonating in the gas phase, for example, the membrane may be directly exposed to sulfurous acid gas. In this case, as a control or mobile phase of the sulfonated atmosphere, nitrogen gas, air, the above-mentioned solvent vapor, or the like can be used alone or in combination. The amount of sulfonation reagent, the amount of solvent and surfactant, the amount of gas, the time required for the sulfonation treatment, temperature, etc. depend on the influence on the properties of the membrane and the electrochemical characteristics required for the target electrochemical device. The amount of sulfonation may be determined based on the amount of sulfonation, and the processing time may be from several minutes to several hours in consideration of production efficiency.

スルホン化剤の中では、工業的に安価で、取り扱いが比較的容易であり、さらには再利用が可能な、濃硫酸又は濃硫酸と溶媒の混合溶液が好ましい。濃硫酸と混合する溶媒としては、濃硫酸と反応しない溶媒であれば特に制限はなく、例えば、前述した溶媒のいずれかを用いることができる。濃硫酸の濃度は、濃硫酸20〜100質量%、好ましくは50〜100質量%、さらに好ましくは80〜100質量%である。   Among the sulfonating agents, concentrated sulfuric acid or a mixed solution of concentrated sulfuric acid and a solvent that is industrially inexpensive, relatively easy to handle, and reusable is preferable. The solvent mixed with concentrated sulfuric acid is not particularly limited as long as it does not react with concentrated sulfuric acid. For example, any of the solvents described above can be used. The density | concentration of concentrated sulfuric acid is 20-100 mass% of concentrated sulfuric acids, Preferably it is 50-100 mass%, More preferably, it is 80-100 mass%.

ホスホン酸エステル基を導入した置換ポリアセチレン膜をこれらスルホン化剤に浸漬させる場合には、予め膜を溶媒に浸漬して膨潤させておいてもよい。膨潤させる溶媒は、膜が溶解しなければ特に制限はなく、酢酸エチル、ジエチルエーテルなどが例示できる。さらには、ホスホン酸エステル基を導入した置換ポリアセチレン膜を浸漬させる温度については、用いた溶媒の沸点以下であれば特に制限はないが、好ましくは−30〜200℃、より好ましくは0〜100℃である。なお、本発明において、導入されたスルホン酸基が内部まで導入され均一であるとは、SEM−EDS(Scanning Electron Microscope−Energy Dispersive X−ray Spectrometer)によって膜厚方向のスルホン酸基分布(硫黄原子Sに基づく)を調べた場合に、膜中心部の硫黄の特性X線(SKa)の強度が、測定範囲中のSKaの最大値の50%以上、より好ましくは70%以上、さらに好ましくは80%以上であることを意味する。   When the substituted polyacetylene membrane having a phosphonate ester group introduced therein is immersed in these sulfonating agents, the membrane may be previously immersed in a solvent and swollen. The solvent for swelling is not particularly limited as long as the film does not dissolve, and examples thereof include ethyl acetate and diethyl ether. Furthermore, the temperature at which the substituted polyacetylene film into which the phosphonic acid ester group is introduced is immersed is not particularly limited as long as it is not higher than the boiling point of the solvent used, but is preferably −30 to 200 ° C., more preferably 0 to 100 ° C. It is. In the present invention, the introduced sulfonic acid group is introduced to the inside and is uniform in that the sulfonic acid group distribution (sulfur atom) in the film thickness direction is determined by SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer). (Based on S), the intensity of the characteristic X-ray (SKa) of the sulfur in the center of the film is 50% or more, more preferably 70% or more, more preferably 80% of the maximum value of SKa in the measurement range. It means that it is more than%.

スルホン酸基を導入した後、前記の脱保護反応により、ホスホン酸エステル基をホスホン酸基とすることで、耐酸化性、耐ラジカル性に優れ、且つ高プロトン伝導性、高耐熱性を示し、膨潤度が小さく、十分な機械的強度を持つホスホン酸基およびスルホン酸基を有する置換ポリアセチレン膜を得ることができる。   After introducing a sulfonic acid group, the phosphonic acid ester group is converted to a phosphonic acid group by the above deprotection reaction, thereby exhibiting excellent oxidation resistance and radical resistance, and high proton conductivity and high heat resistance. A substituted polyacetylene film having a phosphonic acid group and a sulfonic acid group having a low degree of swelling and sufficient mechanical strength can be obtained.

本発明の置換ポリアセチレン膜からなる電解質膜は、耐酸化性、耐ラジカル性に優れ、高いプロトン伝導性を有し、かつ十分な耐熱性と低い膨潤度を有し、十分な機械的強度を有している。
また、本発明の置換ポリアセチレン膜からなる電解質膜は、イミダゾール、ベンゾイミダゾール、トリアゾール、ピラゾールやそれらの誘導体等の塩基性を示す複素環式化合物を含浸させることにより、高温低湿度下で高いプロトン伝導度を有するものとなる。
さらに、この電解質膜は、フッ素を含有していないため、焼却処分が可能であり、廃棄の際には環境負荷が小さいという特徴を有する。
The electrolyte membrane comprising the substituted polyacetylene membrane of the present invention has excellent oxidation resistance and radical resistance, high proton conductivity, sufficient heat resistance and low swelling, and sufficient mechanical strength. is doing.
In addition, the electrolyte membrane comprising the substituted polyacetylene membrane of the present invention is impregnated with a heterocyclic compound showing basicity such as imidazole, benzimidazole, triazole, pyrazole, and their derivatives, thereby allowing high proton conductivity at high temperature and low humidity. It will have a degree.
Furthermore, since this electrolyte membrane does not contain fluorine, it can be disposed of by incineration, and has a feature that the environmental load is small at the time of disposal.

現在の固体高分子形燃料電池は、Nafion(登録商標)が高加湿条件下でないと高プロトン伝導性を示さないため、水素、空気(酸素)は加湿装置により加湿された後に発電セルに供給される。高温での湿度コントロールは露点計などの計測器を必要とするため、コストアップにつながっている。したがって、より簡略化された加湿装置、さらには、低湿度条件下で使用可能な固体電解質膜が望まれている。ホスホン酸基又は、ホスホン酸基とスルホン酸基を有する置換ポリアセチレン膜は十分なプロトン伝導性を示すが、より低湿度条件下で機能する高いプロトン伝導性を付与するために、該膜にピロール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、イミダゾール、イミダゾリン、ピラゾール、1,3,5−トリアジン、ピリミジン、ピリタジン、ピラジン、インドール、キノリン、イソキノリン、ブリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、テトラゾール、テトラジン、トリアゾール 、カルバゾール、アクリジン、キノキサリン、キナゾリンからなる含窒素複素環化合物あるいはこれらの誘導体からなる群から選ばれる化合物を含浸させてもよい。中でも、塩基性分子である、イミダゾール、ベンゾイミダゾール、トリアゾール、ピラゾールおよびその誘導体が好ましい。   In the current polymer electrolyte fuel cell, since Nafion (registered trademark) does not exhibit high proton conductivity unless it is under high humidification conditions, hydrogen and air (oxygen) are supplied to the power generation cell after being humidified by a humidifier. The Humidity control at high temperature requires a measuring instrument such as a dew point meter, leading to an increase in cost. Therefore, a more simplified humidifier and a solid electrolyte membrane that can be used under low humidity conditions are desired. Substituted polyacetylene membranes having phosphonic acid groups or phosphonic acid groups and sulfonic acid groups exhibit sufficient proton conductivity, but in order to impart high proton conductivity that functions under lower humidity conditions, pyrrole, Thiazole, isothiazole, oxazole, isoxazole, pyridine, imidazole, imidazoline, pyrazole, 1,3,5-triazine, pyrimidine, pyritadine, pyrazine, indole, quinoline, isoquinoline, brine, benzimidazole, benzoxazole, benzthiazole, tetrazole , Tetrazine, triazole, carbazole, acridine, quinoxaline, quinazoline, a nitrogen-containing heterocyclic compound composed of quinazoline, or a compound selected from the group consisting of these derivatives may be impregnated. Among these, basic molecules such as imidazole, benzimidazole, triazole, pyrazole and derivatives thereof are preferable.

電解質膜への含浸の方法としては、純水、メタノール、エタノール、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、アセトン等の溶媒に適量の含窒素複素環式化合物を溶解させ、該溶液に前記置換ポリアセチレンからなる電解質膜を浸漬し、撹拌することにより、電解質膜中に含窒素複素環式化合物を導入する方法などが挙げられる。電解質膜中の含窒素複素環式化合物は、ホスホン酸基、又はスルホン酸基と水素結合を形成するので、電解質膜外に溶出することはない。含窒素複素環式化合物を電解質膜中に導入することにより、低湿度下でも機能する高プロトン伝導性を付与できる。含窒素複素環式化合物の導入量はホスホン酸基、又はホスホン酸基とスルホン酸基の合計モルに対し、0から3倍モルに相当する量が好ましく、1から2倍モルに相当する量がより好ましい。含窒素複素環式化合物の導入量が十分でないと、プロトン伝導性向上効果は小さく、低湿度条件下で高いプロトン伝導性を付与することができない。一方、導入量が過剰であると、発電中に含窒素複素環式化合物が電解質膜外へ溶出するおそれがある。   As a method for impregnating the electrolyte membrane, an appropriate amount of nitrogen-containing solvent is used such as pure water, methanol, ethanol, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, acetone and the like. Examples include a method of introducing a nitrogen-containing heterocyclic compound into the electrolyte membrane by dissolving the heterocyclic compound, immersing the electrolyte membrane made of the substituted polyacetylene in the solution, and stirring the electrolyte membrane. Since the nitrogen-containing heterocyclic compound in the electrolyte membrane forms a hydrogen bond with the phosphonic acid group or sulfonic acid group, it does not elute out of the electrolyte membrane. By introducing the nitrogen-containing heterocyclic compound into the electrolyte membrane, high proton conductivity that functions even under low humidity can be imparted. The introduction amount of the nitrogen-containing heterocyclic compound is preferably an amount corresponding to 0 to 3 times mol, and an amount corresponding to 1 to 2 times mol of the total mol of the phosphonic acid group or the phosphonic acid group and the sulfonic acid group. More preferred. If the introduction amount of the nitrogen-containing heterocyclic compound is not sufficient, the effect of improving proton conductivity is small and high proton conductivity cannot be imparted under low humidity conditions. On the other hand, if the introduction amount is excessive, the nitrogen-containing heterocyclic compound may be eluted out of the electrolyte membrane during power generation.

本発明に係る電解質膜は、公知の方法を利用して電解質膜・電極接合体を作製することができる。例えば、電解質膜の両側に触媒粒子とガス拡散電極と支持集電体とを配置して複合化することにより、電解質膜・電極接合体を作製することができる。触媒粒子としては、例えば、白金担持カーボン粒子を用いることができ、ガス拡散電極としては、例えば、撥水材と結着材を混合してシート状に成型したものを焼成して作製されるガス拡散電極を用いることができ、さらに、支持集電体としては、例えば、カーボンペーパーやカーボン織布などを用いることができる。これらに、Nafion(登録商標)などを塗布又は含浸して、複合化し、該電解質膜を両側から複合体で挟みこんでホットプレスすることにより、電解質膜・電極接合体に加工することができる。   The electrolyte membrane according to the present invention can produce an electrolyte membrane / electrode assembly using a known method. For example, an electrolyte membrane / electrode assembly can be produced by arranging catalyst particles, a gas diffusion electrode, and a supporting current collector on both sides of the electrolyte membrane to form a composite. As the catalyst particles, for example, platinum-supported carbon particles can be used. As the gas diffusion electrode, for example, a gas produced by firing a mixture of a water-repellent material and a binder and molding it into a sheet shape. A diffusion electrode can be used. Further, as the supporting current collector, for example, carbon paper or carbon woven fabric can be used. These are coated or impregnated with Nafion (registered trademark) or the like to form a composite, and the electrolyte membrane is sandwiched between the composites from both sides and hot-pressed to be processed into an electrolyte membrane / electrode assembly.

得られた電解質膜・電極接合体は、燃料電池、二次電池、湿度センサー、イオンセンサー、ガスセンサー、デシカント剤等、種々の電気化学デバイスに適用することができる。例えば、該電解質膜・電極接合体を、水素又は空気の流路を形成させたバイポーラプレートで両側から挟みこむことによって燃料電池の単セルを作製し、これを積層することにより、燃料電池セルスタックに加工することができる。   The obtained electrolyte membrane / electrode assembly can be applied to various electrochemical devices such as fuel cells, secondary batteries, humidity sensors, ion sensors, gas sensors, desiccant agents, and the like. For example, a single cell of a fuel cell is manufactured by sandwiching the electrolyte membrane / electrode assembly from both sides with a bipolar plate in which a flow path of hydrogen or air is formed, and a fuel cell stack is formed by stacking the cells. Can be processed.

以下、実施例に基づいて本発明を詳しく説明するが、本発明はこれに限定されるものではない。なお、比較例及び実施例において、電解質膜(以下、膜と略記する。)の作製方法は、モノマー合成、ポリマー合成、製膜方法の順に記載した。なお、H−NMRスペクトル、FT−IRスペクトル、分子量、膜厚、リンおよびハロゲン含有量、イオン交換容量、含水率、膨潤度、プロトン伝導度および軟化点は以下のようにして求めた。また、Fenton試験は以下の手順で行った。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this. In Comparative Examples and Examples, the method for producing the electrolyte membrane (hereinafter abbreviated as membrane) was described in the order of monomer synthesis, polymer synthesis, and film formation method. The 1 H-NMR spectrum, FT-IR spectrum, molecular weight, film thickness, phosphorus and halogen content, ion exchange capacity, water content, swelling degree, proton conductivity and softening point were determined as follows. The Fenton test was performed according to the following procedure.

1.H−NMRスペクトル
核磁気共鳴装置(BurkerBiospin社製、 商品名AVNCE DRX 400)を用いて測定した。
1. 1 H-NMR spectrum Measurement was performed using a nuclear magnetic resonance apparatus (manufactured by Burker Biospin, trade name: AVNCE DRX 400).

2.FT−IRスペクトル
FT−IR測定装置(PERKINELMER社製、商品名PARAGON FT−IR)を用いてKBrディスク法により測定した。
2. FT-IR spectrum The FT-IR spectrum was measured by the KBr disc method using a FT-IR measuring apparatus (trade name PARAGON FT-IR, manufactured by PERKINELMER).

3.分子量
化合物の分子量はガスクロマトグラフィー質量分析計(Hewlett−Packard社製、HP−5890/HP−5971)によって測定した。
3. Molecular weight The molecular weight of the compound was measured by a gas chromatography mass spectrometer (HP-5890 / HP-5971, manufactured by Hewlett-Packard).

4.ポリマーの分子量測定
得られたポリマーをテトラヒドロフラン(THF)に溶解し、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製、商品名HLC−8220−GPC)により数平均分子量及び質量平均分子量を測定した。溶離液にはTHF、標準試料としてポリスチレンを用いた。
4). Measurement of Polymer Molecular Weight The obtained polymer was dissolved in tetrahydrofuran (THF), and the number average molecular weight and the mass average molecular weight were measured by gel permeation chromatography (GPC) (trade name HLC-8220-GPC, manufactured by Tosoh Corporation). The eluent was THF, and polystyrene was used as a standard sample.

5.膜厚
所定の膜を110℃にて16時間真空乾燥した後、膜厚計(Mitutoyo社製、商品名クイックマイクロ)を用いて膜の周囲及び中心部5点を測定し、その平均値を算出した。
5. Film thickness After vacuum drying a given film at 110 ° C. for 16 hours, the film thickness meter (manufactured by Mitutoyo, trade name: Quick Micro) was used to measure the circumference and 5 points of the center and calculate the average value. did.

6.リンおよびハロゲン含有量
所定の質量のポリマー又は膜を密閉した三角フラスコ内で燃焼させ、燃焼ガスを所定量の3%過酸化水素水に吸収させた。吸収液をイオンクロマトグラフICS−3000(DIONEX社製)を用いて測定し、下記の式(a)によりリンおよびハロゲンの含有量を算出した。
リン又はハロゲンの含有量(質量%)=〔サンプル中のリン又はハロゲンの濃度(ppm)〕×〔吸収液量(L)〕/〔サンプル質量(mg)〕×100 ・・・(a)
6). Phosphorus and Halogen Content A predetermined mass of polymer or membrane was combusted in a closed Erlenmeyer flask, and the combustion gas was absorbed in a predetermined amount of 3% aqueous hydrogen peroxide. The absorbing solution was measured using an ion chromatograph ICS-3000 (manufactured by DIONEX), and the contents of phosphorus and halogen were calculated by the following formula (a).
Phosphorus or halogen content (mass%) = [phosphorus or halogen concentration in sample (ppm)] × [absorbed liquid amount (L)] / [sample mass (mg)] × 100 (a)

7.イオン交換容量
所定量の膜を110℃にて16時間真空乾燥し、質量測定を行った。その後、膜を0.1mol/L塩化ナトリウム水溶液50mLに浸漬し、16時間緩やかに撹拌した。次いで、膜を取り出し、1/50N水酸化ナトリウム水溶液にて滴定した(Nは標準液の規定度を示す)。滴定には自動滴定装置(東亜電波工業社製、商品名AUT−501)を用い、滴定曲線の変曲点を中和点(終点)として、下記の式(b)に従いイオン交換容量を算出した。なお、同様の操作を3回行い、その合計値をイオン交換容量とした。
イオン交換容量(meq/g)=〔0.02 × ファクター × 1/50N水酸化ナトリウム水溶液の消費量(mL)〕/〔膜の質量(g)〕 ・・・(b)
7). Ion exchange capacity A predetermined amount of the membrane was vacuum dried at 110 ° C. for 16 hours, and mass measurement was performed. Thereafter, the membrane was immersed in 50 mL of a 0.1 mol / L sodium chloride aqueous solution and gently stirred for 16 hours. Next, the membrane was taken out and titrated with a 1 / 50N sodium hydroxide aqueous solution (N represents the normality of the standard solution). For the titration, an automatic titration apparatus (manufactured by Toa Denpa Kogyo Co., Ltd., trade name: AUT-501) was used, and the inflection point of the titration curve was used as the neutralization point (end point), and the ion exchange capacity was calculated according to the following formula (b). . In addition, the same operation was performed 3 times and the total value was made into the ion exchange capacity.
Ion exchange capacity (meq / g) = [0.02 × factor × 1 / 50N sodium hydroxide aqueous solution consumption (mL)] / [membrane mass (g)] (b)

8.含水率
所定量の膜を1.0mol/L硫酸水溶液にて1時間煮沸し、さらに純水にて1時間煮沸した後に膜の質量を測定した。次いで、膜を110℃にて16時間真空乾燥した後に質量測定を行い、下記の式(c)に従って含水率を算出した。
含水率(%)=〔含水膜の質量(g)−乾燥時の質量(g)〕/〔乾燥時の質量(g)〕×100 ・・・(c)
8). Moisture content A predetermined amount of the membrane was boiled in 1.0 mol / L sulfuric acid aqueous solution for 1 hour, and further boiled in pure water for 1 hour, and then the mass of the membrane was measured. Next, the membrane was vacuum-dried at 110 ° C. for 16 hours and then mass measurement was performed, and the water content was calculated according to the following formula (c).
Moisture content (%) = [mass of hydrous film (g) −mass at drying (g)] / [mass at drying (g)] × 100 (c)

9.膨潤度
所定量の膜を1.0mol/L硫酸水溶液にて1時間煮沸し、さらに純水にて1時間煮沸したのち、膜の大きさ(縦×横×厚さ)を測定した。次いで、膜を110℃にて16時間真空乾燥した後に膜の大きさを測定し、下記の式(d)に従って膨潤度を算出した。
膨潤度(%)=〔膨潤時の体積(mm)〕/〔乾燥時の体積(mm)〕×100 ・・・(d)
9. Swelling degree A predetermined amount of the film was boiled with 1.0 mol / L sulfuric acid aqueous solution for 1 hour, and further boiled with pure water for 1 hour, and then the size (length × width × thickness) of the film was measured. Next, the membrane was vacuum-dried at 110 ° C. for 16 hours, then the size of the membrane was measured, and the degree of swelling was calculated according to the following formula (d).
Swelling degree (%) = [volume at the time of swelling (mm 3 )] / [volume at the time of drying (mm 3 )] × 100 (d)

10.プロトン伝導度
膜を2cm×5cmの大きさに切り、1mol/Lの硫酸水溶液で1時間煮沸処理した。続いて蒸留水で1時間煮沸した後、0.5cm離して平行に配置した長さ4cmの金電極上に密着させ、恒温恒湿槽内で90℃、相対湿度(RH)90%に制御しながらインピーダンスアナライザ(東陽テクニカ社製、商品名Solatoron 1260)を用いて周波数0.5Hz〜10MHzの範囲でインピーダンスを測定した。得られたNyquist Plotよりインピーダンスを求め、下記の式(e)に従いプロトン伝導度を算出した。
プロトン伝導度(S/cm)=〔0.5(cm)〕/〔インピーダンス(Ω)×(4 (cm))×膜厚(cm)〕 ・・・(e)
10. Proton conductivity The membrane was cut into a size of 2 cm × 5 cm and boiled in a 1 mol / L sulfuric acid aqueous solution for 1 hour. Subsequently, after boiling with distilled water for 1 hour, it is closely attached to a 4 cm long gold electrode spaced 0.5 cm apart and controlled to 90 ° C. and relative humidity (RH) 90% in a constant temperature and humidity chamber. However, the impedance was measured in the frequency range of 0.5 Hz to 10 MHz using an impedance analyzer (trade name Solatoron 1260, manufactured by Toyo Corporation). Impedance was obtained from the obtained Nyquist Plot, and proton conductivity was calculated according to the following formula (e).
Proton conductivity (S / cm) = [0.5 (cm)] / [impedance (Ω) × (4 (cm)) × film thickness (cm)] (e)

11.軟化点測定
膜を1cm×1cmに切り出し、熱機械測定装置(島津製作所社製、TMA−60)を用い、加重50gでニードルを接触させ、昇温速度10℃/minで400℃まで昇温した。ニードルの侵入温度を軟化点とした。
11. Measurement of softening point The film was cut into 1 cm × 1 cm, and a needle was contacted with a load of 50 g using a thermomechanical measuring device (manufactured by Shimadzu Corporation, TMA-60), and the temperature was raised to 400 ° C. at a temperature rising rate of 10 ° C./min. . The penetration temperature of the needle was taken as the softening point.

12.Fenton試験
50mLのFenton溶液(4ppm、Fe2+、3%過酸化水素水)を調製し、膜を所定の大きさに切り出し、質量を測定した後68℃で24時間浸漬した。その後、膜を1mol/L硫酸水溶液で1時間煮沸し、さらに、純水で1時間煮沸した。110℃で12時間以上真空乾燥した後に質量測定を行い、反応前後の質量変化を求めた。
12 Fenton test 50 mL of a Fenton solution (4 ppm, Fe 2+ , 3% hydrogen peroxide solution) was prepared, the film was cut into a predetermined size, the mass was measured, and then immersed at 68 ° C. for 24 hours. Thereafter, the membrane was boiled with 1 mol / L sulfuric acid aqueous solution for 1 hour, and further boiled with pure water for 1 hour. After vacuum drying at 110 ° C. for 12 hours or more, mass measurement was performed to determine a mass change before and after the reaction.

{比較例1}
[モノマーM−1の合成]
下記反応式(C)に従って、モノマー(M−1)を合成した。
{Comparative Example 1}
[Synthesis of Monomer M-1]
Monomer (M-1) was synthesized according to the following reaction formula (C).

Figure 2009292947
Figure 2009292947

アルゴン雰囲気下、1−ブロモ−4−リン酸ジエチルベンゼン4.3g(14mmol)、トリフェニルホスフィン55mg(0.21mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム30mg(0.043mmol)、ヨウ化銅8.2mg(0.043mmol)及び水素化カルシウムにて脱水したトリエチルアミン7.2mL(2.0mol/L)を加えて撹拌し、次いでフェニルアセチレン1.8mL(16mmol)を添加して90℃で1時間撹拌した。トリエチルアミンを留去した後、ジエチルエーテルを過剰に加えて撹拌し、不溶物をろ別して溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=30:70,v/v)にて精製し、4.1gのモノマーM−1(収率:92%)を得た。   Under an argon atmosphere, 4.3 g (14 mmol) of 1-bromo-4-phosphate diethylbenzene, 55 mg (0.21 mmol) of triphenylphosphine, 30 mg (0.043 mmol) of dichlorobis (triphenylphosphine) palladium, 8.2 mg of copper iodide (0.043 mmol) and 7.2 mL (2.0 mol / L) of triethylamine dehydrated with calcium hydride were added and stirred, and then 1.8 mL (16 mmol) of phenylacetylene was added and stirred at 90 ° C. for 1 hour. . Triethylamine was distilled off, diethyl ether was added in excess, and the mixture was stirred. Insoluble materials were filtered off, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent hexane: ethyl acetate = 30: 70, v / v) to obtain 4.1 g of monomer M-1 (yield: 92%).

H−NMR,δ(ppm,CDCl,400MHz):1.32(6H,t,CH),4.12(4H,m,CH),7.35(3H,m,Ph),7.53(2H,m,Ph),7.61(2H,m,Ph),7.78(2H,m,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 1.32 (6H, t, CH 3 ), 4.12 (4H, m, CH 2 ), 7.35 (3H, m, Ph), 7.53 (2H, m, Ph), 7.61 (2H, m, Ph), 7.78 (2H, m, Ph).

IR,ν(cm−1,KBr disk):3476(m),3062(w,arC−H),2984(m,alC−H),2932(w,alC−H),2906(m,alC−H),2219(w,C≡C),1602(s,arC−C),1505(w,arC−C),1443(m,alC−H),1393(m,alC−H),1251(s,P=O),1164(m),1149(m),1121(s),1100(m),1052(s),1023(s,P−O−C),968(s,P−O−C),835(m),796(m),759(s,arC−H),692(m,arC−C),621(s),554(m),541(m),526(m)。 IR, ν (cm -1, KBr disk): 3476 (m), 3062 (w, arC-H), 2984 (m, alC-H), 2932 (w, alC-H), 2906 (m, alC- H), 2219 (w, C≡C), 1602 (s, arC-C), 1505 (w, arC-C), 1443 (m, alC-H), 1393 (m, alC-H), 1251 ( s, P = O), 1164 (m), 1149 (m), 1121 (s), 1100 (m), 1052 (s), 1023 (s, P-O-C), 968 (s, P-O) -C), 835 (m), 796 (m), 759 (s, arC-H), 692 (m, arC-C), 621 (s), 554 (m), 541 (m), 526 (m ).

[モノマーM−1の重合]
前記の通り合成して得られたモノマーM−1 0.20g(0.64mmol)をナスフラスコに量り取り、グローブボックス中にて五塩化タンタル(V)9.3mg(0.026mmol)、n−テトラブチル錫(IV)17μL(0.052mmol)を加えた。その後、脱水トルエン1.3mL(0.5mol/L)を加え、80℃で24時間撹拌した。得られた溶液をメタノール中に注入したところ、沈殿物の生成は見られなかった。そこで、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=30:70,v/v)にて精製したところ、モノマーM−1 0.19g(回収率:95%)が回収された。したがって、モノマーM−1の重合反応が進行しなかったことは明らかである。
[Polymerization of Monomer M-1]
Monomer M-1 0.20 g (0.64 mmol) obtained by synthesis as described above was weighed into an eggplant flask, 9.3 mg (0.026 mmol) of tantalum pentachloride (V) in a glove box, n- Tetrabutyltin (IV) 17 μL (0.052 mmol) was added. Thereafter, 1.3 mL (0.5 mol / L) of dehydrated toluene was added and stirred at 80 ° C. for 24 hours. When the obtained solution was poured into methanol, no precipitate was observed. Therefore, the solvent was distilled off, and the residue was purified by silica gel column chromatography (developing solvent hexane: ethyl acetate = 30: 70, v / v). As a result, 0.19 g of monomer M-1 (recovery: 95%) Was recovered. Therefore, it is clear that the polymerization reaction of the monomer M-1 did not proceed.

{比較例2}
[モノマーM−2の合成]
下記式(M−2)で表されるモノマーを合成した。
{Comparative Example 2}
[Synthesis of Monomer M-2]
A monomer represented by the following formula (M-2) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−リン酸ジエチルベンゼンの代わりに1−ブロモ−4−リン酸ジフェニルベンゼンを用いる以外は、比較例1と同様の手順で、モノマーM−2の合成を行った。収率は24%であった。   Monomer M-2 was synthesized in the same procedure as Comparative Example 1 except that 1-bromo-4-phosphate diphenylbenzene was used instead of 1-bromo-4-phosphate diethylbenzene. The yield was 24%.

H−NMR,δ(ppm,CDCl,400MHz):7.22(6H,m,Ph),7.39(4H,m,Ph),7.46(3H,m,Ph),7.60(2H,m,Ph),7.76(2H,m,Ph),7.97(2H,m,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 7.22 (6H, m, Ph), 7.39 (4H, m, Ph), 7.46 (3H, m, Ph), 7. 60 (2H, m, Ph), 7.76 (2H, m, Ph), 7.97 (2H, m, Ph).

IR,ν(cm−1,KBr disk):3064(m,arC−H),2219(m,C≡C),1599(s,arC−C),1489(s,arC−C),1456(m),1443(m),1397(m),1280(s,P=O),1268(s,P=O),1213(s),1188(s,P−O−C),1163(s),1120(s),1071(m),1026(m),1007(m),933(s,P−O−C),833(m),756(s,arC−H),689(s,arC−C),627(s),569(m),549(m),525(s)。 IR, ν (cm −1 , KBr disk): 3064 (m, arC—H), 2219 (m, C≡C), 1599 (s, arC—C), 1489 (s, arC—C), 1456 ( m), 1443 (m), 1397 (m), 1280 (s, P = O), 1268 (s, P = O), 1213 (s), 1188 (s, P-O-C), 1163 (s) ), 1120 (s), 1071 (m), 1026 (m), 1007 (m), 933 (s, P—O—C), 833 (m), 756 (s, arC—H), 689 (s) , ArC-C), 627 (s), 569 (m), 549 (m), 525 (s).

[モノマーM−2の重合]
前記実施例1の[モノマーM−1の重合]と同様の手順で、前記の通り合成したモノマーM−2を反応させた後、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=80:20,v/v)にて精製したところ、モノマーM−2 0.21g(回収率:81%)が回収された。したがって、モノマーM−2の重合反応が進行しなかったことは明らかである。
[Polymerization of monomer M-2]
In the same procedure as in [Polymerization of monomer M-1] in Example 1, after reacting monomer M-2 synthesized as described above, the solvent was distilled off and the residue was subjected to silica gel column chromatography (developing solvent hexane). : Ethyl acetate = 80: 20, v / v), 0.21 g of monomer M-2 (recovery rate: 81%) was recovered. Therefore, it is clear that the polymerization reaction of the monomer M-2 did not proceed.

{比較例3}
[モノマーM−3の合成]
下記反応式(D)中のモノマーM−3を合成した。
{Comparative Example 3}
[Synthesis of Monomer M-3]
Monomer M-3 in the following reaction formula (D) was synthesized.

Figure 2009292947
Figure 2009292947

アルゴン雰囲気下、200mL三口フラスコにビス(トリフェニルホスフィン)パラジウム(II)ジクロライド17mg(0.024mmol)、ヨウ化銅23mg (0.12mmol)及びトリフェニルホスフィン32mg(0.12mmol)を量り取った。その後、予め水素化カルシウムにより脱水したトリエチルアミン70mL(0.50mmol)を加えた。さらに、1−ブロモ−4−(トリメチルシリル)ベンゼン1.6mL (8.0mmol)とフェニルアセチレン0.90mL(8.0mmol)を加え、90℃にて16時間撹拌した。その後、トリエチルアミンを留去し、ジエチルエーテルを加えろ過した。次に、このろ液を濃縮し、シリカゲルカラムクロマトグラフィー(溶媒:ヘキサン)を用いて精製した。その後、アルミナカラムクロマトグラフィー(溶媒:ヘキサン)を用いて精製したところ、透明で粘ちょうな液体1.2g(収率:61%)を得た。H-NMR,IR測定により、液体がM−3であることを確認した。 Under an argon atmosphere, 17 mg (0.024 mmol) of bis (triphenylphosphine) palladium (II) dichloride, 23 mg (0.12 mmol) of copper iodide, and 32 mg (0.12 mmol) of triphenylphosphine were weighed into a 200 mL three-necked flask. Thereafter, 70 mL (0.50 mmol) of triethylamine previously dehydrated with calcium hydride was added. Furthermore, 1.6 mL (8.0 mmol) of 1-bromo-4- (trimethylsilyl) benzene and 0.90 mL (8.0 mmol) of phenylacetylene were added and stirred at 90 ° C. for 16 hours. Then, triethylamine was distilled off, diethyl ether was added and filtered. Next, the filtrate was concentrated and purified using silica gel column chromatography (solvent: hexane). Then, when refine | purifying using an alumina column chromatography (solvent: hexane), 1.2 g (yield: 61%) of the transparent viscous liquid was obtained. 1 H-NMR and IR measurements confirmed that the liquid was M-3.

H-NMR,δ(ppm,CDCl,400MHz):0.28(9H,s,CH×3),7.33(2H,m,Ph),7.35(1H,m,Ph),7.50(4H,s,Ph),7.53(2H,m,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.28 (9H, s, CH 3 × 3), 7.33 (2H, m, Ph), 7.35 (1H, m, Ph) , 7.50 (4H, s, Ph), 7.53 (2H, m, Ph).

IR,ν(KBr disk,cm−1):3065(w),2956(m,C−H),2219(vw,C≡C),1601(m,arC−C),1249(s),1101(w),855(s,Si−C),839(s),820(s),755(m),690(s),627(w),633(m)。 IR, ν (KBr disk, cm −1 ): 3065 (w), 2956 (m, C—H), 2219 (vw, C≡C), 1601 (m, ar C—C), 1249 (s), 1101 (W), 855 (s, Si-C), 839 (s), 820 (s), 755 (m), 690 (s), 627 (w), 633 (m).

[ポリマーP−3の合成]
前記反応式(D)の通り、前記モノマーM−3を重合させてポリマーP−3を合成した。
グローブボックス中にて、50mLナスフラスコに五塩化タンタル(V)55mg(0.15mmol)及びテトラブチル錫(IV)0.10mL(0.31mmol)を加えた。さらに、脱水トルエン4.0mLを加え、80℃にて20分間撹拌し、触媒溶液を熟成させた。また、アルゴン雰囲気下で50mLナスフラスコに、前記モノマーM−3 1.0g(4.0mmol)を量り取り、脱水トルエン4.0mLを加えモノマー溶液を調製した。次に、キャヌラによりモノマー溶液を触媒溶液に加え、80℃にて2時間撹拌した。得られた溶液を希釈し、これをメタノール中に注入して析出させ、黄色繊維状の生成物0.70g(収率:73%)を得た。IR測定により、得られた物質はポリマーP−3であることを確認した。また、GPC(ゲル浸透クロマトグラフィー)により、平均分子量を測定した。
[Synthesis of Polymer P-3]
According to the reaction formula (D), the monomer M-3 was polymerized to synthesize a polymer P-3.
In a glove box, 55 mg (0.15 mmol) of tantalum pentachloride (V) and 0.10 mL (0.31 mmol) of tetrabutyltin (IV) were added to a 50 mL eggplant flask. Further, 4.0 mL of dehydrated toluene was added and stirred at 80 ° C. for 20 minutes to age the catalyst solution. Further, 1.0 g (4.0 mmol) of the monomer M-3 was weighed into a 50 mL eggplant flask under an argon atmosphere, and 4.0 mL of dehydrated toluene was added to prepare a monomer solution. Next, the monomer solution was added to the catalyst solution with a cannula and stirred at 80 ° C. for 2 hours. The obtained solution was diluted, and this was poured into methanol for precipitation, to obtain 0.70 g (yield: 73%) of a yellow fibrous product. The obtained substance was confirmed to be polymer P-3 by IR measurement. Further, the average molecular weight was measured by GPC (gel permeation chromatography).

IR,ν(cm−1,KBr disk):3055(w,arC−H),3017(w),2957(s,C−H),1646(vw,>C=C<),1597(w,arC−C),1494(w),1248(s),1118(m),855(s,Si−C),835(s),814(s),755(s),689(s),630(w),554(s)。 IR, ν (cm −1 , KBr disk): 3055 (w, arC—H), 3017 (w), 2957 (s, C—H), 1646 (vw,> C = C <), 1597 (w, arC-C), 1494 (w), 1248 (s), 1118 (m), 855 (s, Si-C), 835 (s), 814 (s), 755 (s), 689 (s), 630 (W), 554 (s).

GPC測定結果:Mn=6.0×10、Mw=6.1×10、Mw/Mn≒1。 GPC measurement results: Mn = 6.0 × 10 5 , Mw = 6.1 × 10 5 , Mw / Mn≈1.

[ポリマーP−3の製膜]
300mLナスフラスコに、前記の通り作製したポリマーP−3を0.2g量り取り、トルエン50mLを加え、100℃にて16時間溶解させた。その後、恒温槽内に水平に設置した10cm×10cmのガラス板の周縁部に、幅1cmのポリ四フッ化エチレン製枠を取り付け、ポリマーP−3のトルエン溶液をキャストした。60℃にて3日間静置させ、膜厚29μmの丈夫な膜P−3を得た。
[Polymer P-3 Film Formation]
In a 300 mL eggplant flask, 0.2 g of the polymer P-3 prepared as described above was weighed, 50 mL of toluene was added, and the mixture was dissolved at 100 ° C. for 16 hours. Thereafter, a frame made of polytetrafluoroethylene having a width of 1 cm was attached to the periphery of a 10 cm × 10 cm glass plate installed horizontally in a thermostat, and a toluene solution of polymer P-3 was cast. The film was allowed to stand at 60 ° C. for 3 days to obtain a strong film P-3 having a film thickness of 29 μm.

[膜P−3のスルホン化]
100mLナスフラスコに、濃硫酸(97質量%)50mLを量り取り、前記の通り製膜した膜P−3 69mgを浸漬し、室温にて3時間緩やかに撹拌した。膜を取り出した後、その膜を水洗し、さらに純水にて1時間煮沸した。その後、110℃にて16時間真空乾燥し、膜P−3がスルホン化された緑色の膜PS−3を得た。IR(赤外分光法)測定により、膜PS−3にて脱シリル化反応及びスルホン化反応が進行したことを確認した。
[Sulfonation of membrane P-3]
In a 100 mL eggplant flask, 50 mL of concentrated sulfuric acid (97% by mass) was weighed, 69 mg of membrane P-3 formed as described above was immersed, and gently stirred at room temperature for 3 hours. After removing the membrane, the membrane was washed with water and further boiled with pure water for 1 hour. Then, it vacuum-dried at 110 degreeC for 16 hours, and obtained green film | membrane PS-3 by which the film | membrane P-3 was sulfonated. It was confirmed by IR (infrared spectroscopy) measurement that the desilylation reaction and the sulfonation reaction proceeded in the membrane PS-3.

IR,ν(cm−1,KBr disk):3056(w,arC−H),1642(m,arC−C),1492(s,arC−C),1442(w),1218(s),1154(s),1128(w,SOH),1033(w,SOH),1005(w),907(w),825(w),755(s),691(s),572(m)。 IR, ν (cm −1 , KBr disk): 3056 (w, arC-H), 1642 (m, arC-C), 1492 (s, arC-C), 1442 (w), 1218 (s), 1154 (S), 1128 (w, SO 3 H), 1033 (w, SO 3 H), 1005 (w), 907 (w), 825 (w), 755 (s), 691 (s), 572 (m ).

[膜PS−3の物性]
前記の通り膜P−3のスルホン化によって得られた膜PS−3は、膜厚29μm、イオン交換容量2.3meq/g、含水率80%、膨潤度282%、プロトン伝導度は3.7×10−1 S/cmであった(90℃,相対湿度90%)。
[Physical properties of membrane PS-3]
As described above, the membrane PS-3 obtained by sulfonation of the membrane P-3 has a film thickness of 29 μm, an ion exchange capacity of 2.3 meq / g, a water content of 80%, a swelling degree of 282%, and a proton conductivity of 3.7. × 10 −1 S / cm (90 ° C., relative humidity 90%).

{実施例1}
[モノマーM−4の合成]
下記反応式(E)に従い、モノマーM−4を合成した。
{Example 1}
[Synthesis of Monomer M-4]
Monomer M-4 was synthesized according to the following reaction formula (E).

Figure 2009292947
Figure 2009292947

100mL三口フラスコにアルゴン雰囲気下、ジクロロビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.02g(0.03mmol)、トリフェニルホスフィン0.04g(0.15mmol)及びヨウ化銅(I)0.02g(0.10mmol)を量り取り、化合物1−ブロモ−4−ヨードベンゼン8.6g(30mmol)を加えた。その後、水素化カルシウムにて脱水処理したトリエチルアミン(TEA)60mLを加え、さらに1−エチニル−4−トリメチルシリルベンゼン5.2g(30mmol)を加え、90℃で24時間撹拌した。トリエチルアミン留去の後、ジエチルエーテルを過剰に加えて生成物を抽出し、ろ過した。得られた抽出物を飽和食塩水及び純水で順次洗浄した後、硫酸ナトリウムにて脱水した。ろ液をエバポレーターで減圧留去した後、シリカゲルカラムクロマトグラフィー(溶媒:n−ヘキサン)にて精製し、8.9gのモノマーM−4を得た。収率は91%であった。   In a 100 mL three-necked flask under an argon atmosphere, 0.02 g (0.03 mmol) of dichlorobis (triphenylphosphine) palladium (II) dichloride, 0.04 g (0.15 mmol) of triphenylphosphine and 0.02 g of copper (I) iodide ( 0.10 mmol) was weighed out and 8.6 g (30 mmol) of the compound 1-bromo-4-iodobenzene was added. Thereafter, 60 mL of triethylamine (TEA) dehydrated with calcium hydride was added, and 5.2 g (30 mmol) of 1-ethynyl-4-trimethylsilylbenzene was further added, followed by stirring at 90 ° C. for 24 hours. After evaporation of triethylamine, diethyl ether was added in excess to extract the product and filtered. The obtained extract was washed successively with saturated saline and pure water, and then dehydrated with sodium sulfate. The filtrate was distilled off under reduced pressure using an evaporator and then purified by silica gel column chromatography (solvent: n-hexane) to obtain 8.9 g of monomer M-4. The yield was 91%.

H-NMR,δ(ppm,CDCl,400MHz):0.2(9H, CH×3),7.3(2H,Ph),7.4(2H,Ph),7.5(4H,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.2 (9H, CH 3 × 3), 7.3 (2H, Ph), 7.4 (2H, Ph), 7.5 (4H , Ph).

IR,ν(cm−1,KBr disk):3067(w,C−H st),3021(w),2958(m,C−H st),2896(w),2220(s,−C≡C−),1392(w,arC−C),1305(w,arC−C), 1247(s,Si−H),1099(w),908(w),838(s,Si−C),823(s,Si−C),756(s),715(m),517(m)。 IR, ν (cm −1 , KBr disk): 3067 (w, C—H st), 3021 (w), 2958 (m, C—H st), 2896 (w), 2220 (s, —C≡C -), 1392 (w, arC-C), 1305 (w, arC-C), 1247 (s, Si-H), 1099 (w), 908 (w), 838 (s, Si-C), 823 (S, Si-C), 756 (s), 715 (m), 517 (m).

GC-MS (M/Z):330,315。 GC-MS (M / Z) <+> : 330, 315.

[ポリマーP−4の合成]
グローブボックス中でアルゴン置換した二口フラスコに五塩化タンタル(V)0.23g(0.64mmol)及びn−テトラブチル錫(IV)0.42mL(1.3mmol)を加えた。さらに、脱水トルエン22mLを加え、80℃で15分間撹拌し、触媒を熟成させた。また、ナスフラスコにモノマーM−4 2.1g(6.4mmol)を量り取り、アルゴン置換したのち、トルエン10mLを加え、モノマー溶液を調製した。その後、キャヌラによりモノマー溶液を触媒溶液に加え、90℃で24時間撹拌した後、メタノールにこの溶液を投入した。得られた沈殿物を回収してトルエンに再度溶解し、この溶液をメタノール中に注入して沈殿物を得た。この沈殿物をろ別し、ポリマーP−4 1.7gを得た。収率は82%であった。
[Synthesis of Polymer P-4]
To a two-necked flask purged with argon in a glove box were added 0.23 g (0.64 mmol) of tantalum pentachloride (V) and 0.42 mL (1.3 mmol) of n-tetrabutyltin (IV). Further, 22 mL of dehydrated toluene was added and stirred at 80 ° C. for 15 minutes to age the catalyst. In addition, 2.1 g (6.4 mmol) of monomer M-4 was weighed into an eggplant flask and purged with argon, and then 10 mL of toluene was added to prepare a monomer solution. Thereafter, the monomer solution was added to the catalyst solution with a cannula and stirred at 90 ° C. for 24 hours, and then this solution was added to methanol. The obtained precipitate was recovered and dissolved again in toluene, and this solution was poured into methanol to obtain a precipitate. The precipitate was filtered off to obtain 1.7 g of polymer P-4. The yield was 82%.

IR,ν(cm−1,KBr disk):3067(w),3013(w),2955(m,C−H st),2897(w),1585(w,arC−C),1484(s),1389(m),1248(s,SiC−H),1114(s),1075(m),1010(m),856(s,Si−C),835(s,Si−C),816(s),756(s),715(s),693(s),553(w)。 IR, ν (cm −1 , KBr disk): 3067 (w), 3013 (w), 2955 (m, C—H st), 2897 (w), 1585 (w, arC-C), 1484 (s) , 1389 (m), 1248 (s, SiC-H), 1114 (s), 1075 (m), 1010 (m), 856 (s, Si-C), 835 (s, Si-C), 816 ( s), 756 (s), 715 (s), 693 (s), 553 (w).

GPC:Mn=1.1×10,Mw=2.0×10,Mw/Mn≒1.8。 GPC: Mn = 1.1 × 10 6 , Mw = 2.0 × 10 6 , Mw / Mn≈1.8.

[ホスホン酸エステル基の導入(1)]
アルゴン雰囲気下、前記の通り作製したポリマーP−4 0.5g(1.5mmol)を量り取り、トルエン60mLを加え、100℃で15時間撹拌し溶解させた。この溶液に亜リン酸ジエチル3.9mL(30mmol)、テトラキストリフェニルホスフィンパラジウム2.6g(2.3mmol)及び脱水トリエチルアミン10mLを加え、100℃で4日間撹拌した。その後、この溶液をn−ヘキサン中に注入し、生成した沈殿物を2回再沈殿精製した。得られた沈殿物をろ別し、60℃で6時間真空乾燥した。その後、10質量%塩酸水溶液中で24時間煮沸し、その後110℃で真空乾燥させ、ホスホン酸エステル基導入ポリマーPE−4−1 0.36gを得た。収率は62%であった。
IR測定において、1056cm−1、1026cm−1付近に吸収ピークが観測されたことにより、PE−4−1にホスホン酸エステル基が導入されていることを確認した。
ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、29%と算出された。
[Introduction of phosphonate ester group (1)]
Under an argon atmosphere, 0.5 g (1.5 mmol) of the polymer P-4 prepared as described above was weighed, 60 mL of toluene was added, and the mixture was stirred and dissolved at 100 ° C. for 15 hours. To this solution were added diethyl phosphite 3.9 mL (30 mmol), tetrakistriphenylphosphine palladium 2.6 g (2.3 mmol) and dehydrated triethylamine 10 mL, and the mixture was stirred at 100 ° C. for 4 days. Thereafter, this solution was poured into n-hexane, and the resulting precipitate was purified by reprecipitation twice. The resulting precipitate was filtered off and dried in vacuo at 60 ° C. for 6 hours. Then, it boiled for 24 hours in 10 mass% hydrochloric acid aqueous solution, and was then vacuum-dried at 110 degreeC, and 0.36 g of phosphonic acid ester group introduction | transduction polymer PE-4-1 was obtained. The yield was 62%.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1026cm -1, it was confirmed that the PE-4-1 phosphonic acid ester group is introduced.
The introduction rate of the phosphonic acid ester group was calculated to be 29% by ion chromatography.

IR,ν(cm−1,KBr disk):3431(w),3065(w),2955(m,C−H st),2901(w),1585(w,arC−C),1391(m),1248(s,SiC−H),1164(w),1134(m),1115(m),1056(m,P−O−C),1026(s,P−O−C),964(m),837(s,Si−C),759(m),721(m),692(m),560(m)。 IR, ν (cm −1 , KBr disk): 3431 (w), 3065 (w), 2955 (m, C—H st), 2901 (w), 1585 (w, arC-C), 1391 (m) , 1248 (s, SiC-H), 1164 (w), 1134 (m), 1115 (m), 1056 (m, P-O-C), 1026 (s, P-O-C), 964 (m ), 837 (s, Si-C), 759 (m), 721 (m), 692 (m), 560 (m).

[ホスホン酸エステル基の導入(2)]
アルゴン雰囲気下、ナスフラスコに前記ポリマーP−4 0.5g(1.5mmol)を量り取り、トルエン50mLを加え、100℃で15時間撹拌し、溶液を調製した。この溶液に亜リン酸ジエチル3.9mL(30mmol)、テトラキストリフェニルホスフィンパラジウム2.6g(2.3mmol)及び脱水トリエチルアミン9mLを加え、100℃で6日間撹拌した。その後、この溶液をn−ヘキサン中に注入し、生成した沈殿物を2回再沈殿精製した。得られた沈殿物をろ別し、60℃で6時間以上真空乾燥させた。さらに、この沈殿物をアセトンで4日間ソックスレー抽出して精製し、ホスホン酸エステル基導入ポリマーPE−4−2 0.42gを得た。収率は72%であった。
IR測定において、1051cm−1、1022cm−1付近に吸収ピークが観測されたことにより、PE−4−2にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、48%と算出された。
[Introduction of phosphonate ester group (2)]
Under an argon atmosphere, 0.5 g (1.5 mmol) of the polymer P-4 was weighed into an eggplant flask, added with 50 mL of toluene, and stirred at 100 ° C. for 15 hours to prepare a solution. To this solution were added diethyl phosphite 3.9 mL (30 mmol), tetrakistriphenylphosphine palladium 2.6 g (2.3 mmol) and dehydrated triethylamine 9 mL, and the mixture was stirred at 100 ° C. for 6 days. Thereafter, this solution was poured into n-hexane, and the resulting precipitate was purified by reprecipitation twice. The resulting precipitate was filtered off and vacuum dried at 60 ° C. for 6 hours or more. Further, this precipitate was purified by Soxhlet extraction with acetone for 4 days to obtain 0.42 g of phosphonate ester group-introduced polymer PE-4-2. The yield was 72%.
In the IR measurement, 1051 -1, by the absorption peak was observed in the vicinity of 1022cm -1, it was confirmed that the PE-4-2 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 48% by ion chromatography.

IR,ν(cm−1,KBr disk):3448(w),3423(w),2956(w),2901(m),1598(w),1391(m),1247(s,SiC−H),1164(w),1133(m),1115(s),1051(s,P−O−C),1022(s,P−O−C),963(s),838(m,Si−C),760(m),721(m),654(m),562(m)。 IR, ν (cm −1 , KBr disk): 3448 (w), 3423 (w), 2956 (w), 2901 (m), 1598 (w), 1391 (m), 1247 (s, SiC-H) , 1164 (w), 1133 (m), 1115 (s), 1051 (s, P—O—C), 1022 (s, P—O—C), 963 (s), 838 (m, Si—C) ), 760 (m), 721 (m), 654 (m), 562 (m).

[ホスホン酸エステル基の導入(3)]
アルゴン雰囲気下、前記ポリマーP−4 0.54g(1.6mmol)を容器に量り取り、トルエン50mLを加え、100℃で15時間撹拌し、溶液を調製した。この溶液にエタノール8.0mLと脱水トリエチルアミン3.0mLを加えた後、酢酸パラジウム44mg(0.2mmol)を加え、さらに亜リン酸ジエチル1.5mL(11mmol)を加え、100℃で7日間撹拌した。この溶液をメタノール中に注入し、生成した沈殿物を2回再沈殿精製した。沈殿物をろ別し、60℃で6時間以上真空乾燥させた。さらに、この沈殿物をアセトンでソックスレー抽出し、ホスホン酸エステル基導入ポリマーPE−4−3 0.30gを得た。
IR測定において、1056cm−1、1027cm−1付近に吸収ピークが観測されたことにより、PE−4−3にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、11%と算出された。
[Introduction of phosphonate ester group (3)]
Under an argon atmosphere, 0.54 g (1.6 mmol) of the polymer P-4 was weighed into a container, 50 mL of toluene was added, and the mixture was stirred at 100 ° C. for 15 hours to prepare a solution. To this solution, 8.0 mL of ethanol and 3.0 mL of dehydrated triethylamine were added, 44 mg (0.2 mmol) of palladium acetate was added, 1.5 mL (11 mmol) of diethyl phosphite was further added, and the mixture was stirred at 100 ° C. for 7 days. . This solution was poured into methanol, and the resulting precipitate was purified by reprecipitation twice. The precipitate was filtered off and vacuum dried at 60 ° C. for 6 hours or more. Further, this precipitate was subjected to Soxhlet extraction with acetone to obtain 0.30 g of a phosphonic acid ester group-introduced polymer PE-4-3.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1027cm -1, it was confirmed that the PE-4-3 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 11% by ion chromatography.

IR,ν(cm−1,KBr disk):3066(w),2956(m),2899(m),1589(w),1484(m),1390(m),1249(s,SiC−H),1114(s),1056(s,P−O−C),1027(s,P−O−C),962(m),837(m,Si−C),816(s),756(w),718(m),554(w)。 IR, ν (cm −1 , KBr disk): 3066 (w), 2956 (m), 2899 (m), 1589 (w), 1484 (m), 1390 (m), 1249 (s, SiC-H) 1114 (s), 1056 (s, P-O-C), 1027 (s, P-O-C), 962 (m), 837 (m, Si-C), 816 (s), 756 (w ), 718 (m), 554 (w).

[ホスホン酸エステル基の導入(4)]
アルゴン雰囲気下、前記ポリマーP−4 0.33g (1.0mmol)を容器に量り取り、トルエン40mLを加え、100℃で15時間撹拌し溶液を調製した。この溶液にエタノール6.0mLと脱水トリエチルアミン1.5mLを加えた後、酢酸パラジウム0.34g(1.5mmol)を加え、さらに亜リン酸ジエチル0.77mL(6.0mmol)を加えた。その後、100℃で5日間撹拌した。この溶液をメタノール中に注入し、生成した沈殿物を2回再沈殿精製した。得られた沈殿物をろ別し、60℃で6時間以上真空乾燥させた。さらに、沈殿物をアセトンでソックスレー抽出し、ホスホン酸エステル基導入ポリマーPE−4−4 0.44gを得た。収率は49%であった。
IR測定において、1056cm−1、1024cm−1付近に吸収ピークが観測されたことにより、PE−4−4にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、27%と算出された。
[Introduction of phosphonate ester group (4)]
Under an argon atmosphere, 0.33 g (1.0 mmol) of the polymer P-4 was weighed into a container, 40 mL of toluene was added, and the mixture was stirred at 100 ° C. for 15 hours to prepare a solution. To this solution, 6.0 mL of ethanol and 1.5 mL of dehydrated triethylamine were added, and then 0.34 g (1.5 mmol) of palladium acetate was added, and 0.77 mL (6.0 mmol) of diethyl phosphite was further added. Then, it stirred at 100 degreeC for 5 days. This solution was poured into methanol, and the resulting precipitate was purified by reprecipitation twice. The resulting precipitate was filtered off and vacuum dried at 60 ° C. for 6 hours or more. Further, the precipitate was Soxhlet extracted with acetone to obtain 0.44 g of a phosphonic acid ester group-introduced polymer PE-4-4. The yield was 49%.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1024cm -1, it was confirmed that the PE-4-4 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 27% by ion chromatography.

IR,ν(cm−1,KBr disk):3066(w),2958(m),1598(w),1485(m),1391(m),1250(s,Si−C),1115(s),1056(s,P−O−C),1024(s,P−O−C),963(m),855(s),837(s,Si−C),815(s),757(w),719(m),556(w)。 IR, ν (cm −1 , KBr disk): 3066 (w), 2958 (m), 1598 (w), 1485 (m), 1391 (m), 1250 (s, Si—C), 1115 (s) , 1056 (s, P-O-C), 1024 (s, P-O-C), 963 (m), 855 (s), 837 (s, Si-C), 815 (s), 757 (w ), 719 (m), 556 (w).

[ホスホン酸エステル基の導入(5)]
アルゴン雰囲気下にて、ナスフラスコに、前記ポリマーP−4 0.33g (1.0mmol)を量り取り、脱水テトラヒドロフラン40mLを加えて加熱し、溶解させポリマー溶液を調製した。そのナスフラスコと連結管で接続した別のナスフラスコに、n−ブチルリチウムヘキサン溶液1.3mL (1.6mol/L、2.0mmol)を加え、これにポリマー溶液を加え、15分間撹拌した後、クロロリン酸ジエチル0.43g (2.5mmol)を加え、室温で5日間撹拌した。その後、この溶液をトルエン中に注入し、生成した沈殿物を再沈殿精製した。得られた沈殿物をろ別し、60℃で6時間以上真空乾燥させた。さらに、アセトンでソックスレー抽出を行い、ホスホン酸エステル基導入ポリマーPE−4−5 0.29gを得た。このときの収率は75%であった。
IR測定において、1034cm−1付近に吸収ピークが観測されたことにより、PE−4−5にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、10%と算出された。
[Introduction of phosphonate ester group (5)]
Under an argon atmosphere, 0.33 g (1.0 mmol) of the polymer P-4 was weighed into an eggplant flask, and 40 mL of dehydrated tetrahydrofuran was added and heated to dissolve to prepare a polymer solution. After adding 1.3 mL (1.6 mol / L, 2.0 mmol) of n-butyllithium hexane solution to another eggplant flask connected to the eggplant flask with a connecting tube, the polymer solution was added thereto, and the mixture was stirred for 15 minutes. Then, 0.43 g (2.5 mmol) of diethyl chlorophosphate was added, and the mixture was stirred at room temperature for 5 days. Thereafter, this solution was poured into toluene, and the generated precipitate was purified by reprecipitation. The resulting precipitate was filtered off and vacuum dried at 60 ° C. for 6 hours or more. Furthermore, Soxhlet extraction was performed with acetone to obtain 0.29 g of a phosphonic acid ester group-introduced polymer PE-4-5. The yield at this time was 75%.
In IR measurement, it was confirmed that a phosphonate group was introduced into PE-4-5 by observing an absorption peak in the vicinity of 1034 cm −1 . The introduction rate of the phosphonate ester group was calculated to be 10% by ion chromatography.

IR,ν(cm−1,KBr disk):3453(w),3058(w),2956(w),1597(w),1487(m),1249(s,Si−C),1116(w),1034(m,P−O−C),835(m,Si−C),755(m),719(m),691(m),552(m)。 IR, ν (cm −1 , KBr disk): 3453 (w), 3058 (w), 2956 (w), 1597 (w), 1487 (m), 1249 (s, Si—C), 1116 (w) , 1034 (m, P—O—C), 835 (m, Si—C), 755 (m), 719 (m), 691 (m), 552 (m).

[ホスホン酸エステル基の脱保護反応(1)]
アルゴン雰囲気下で、50mLナス型フラスコにジメチルスルフィド0.14mL(1.8mmol)を加え、氷浴で冷却した。これにメタンスルホン酸0.31mL(4. 8mmol)を徐々に滴下して加え、さらに前記ホスホン酸エステル基導入ポリマーPE−4−1 0.15gのトルエン溶液を滴下して加えた。この溶液を室温に戻し、4日間撹拌した。得られた溶液を純水中に注入し、生成した沈殿物をろ別した後、110℃で真空乾燥させ、ホスホン酸基導入ポリマーPP−4−1 0.14gを得た。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1026cm−1付近の吸収ピークが消滅し、新たに1005cm−1、930cm−1付近に吸収ピークが観測されたことにより、PE−4−1の脱保護反応が進行したことを確認した。また、1248cm−1、837cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、PE−4−1の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection of phosphonate ester group (1)]
Under an argon atmosphere, 0.14 mL (1.8 mmol) of dimethyl sulfide was added to a 50 mL eggplant-shaped flask and cooled in an ice bath. To this, 0.31 mL (4.8 mmol) of methanesulfonic acid was gradually added dropwise, and a toluene solution of 0.15 g of the phosphonic acid ester group-introduced polymer PE-4-1 was further added dropwise. The solution was returned to room temperature and stirred for 4 days. The obtained solution was poured into pure water, and the generated precipitate was filtered off and then vacuum dried at 110 ° C. to obtain 0.14 g of a phosphonic acid group-introduced polymer PP-4-1.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1026cm -1, newly 1005Cm -1, by the absorption peak was observed near 930 cm -1, PE-4-1 It was confirmed that the deprotection reaction of was progressed. Moreover, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1248 cm −1 and 837 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of PE-4-1 proceeded simultaneously.

IR,ν(cm−1,KBr disk):3425(m),1641(w,arC−C),1600(w),1489(m),1208(s),1145(w),1005(m,P−OH),930(w,P−OH),821(m),779(w),691(s),556(s)。 IR, ν (cm −1 , KBr disk): 3425 (m), 1641 (w, arC-C), 1600 (w), 1489 (m), 1208 (s), 1145 (w), 1005 (m, P-OH), 930 (w, P-OH), 821 (m), 779 (w), 691 (s), 556 (s).

[ホスホン酸エステル基の脱保護反応(2)]
ナスフラスコにホスホン酸エステル基導入ポリマーPE−4−1 0.15gを量り取り、臭化水素酸(47質量%)100mLを加えて、24時間還流した。次に、ポリマーをろ別し、純水で十分に洗浄し、さらに純水中で24時間煮沸した。その後、110℃で6時間以上真空乾燥させ、ホスホン酸基導入ポリマーPP−4−2 0.10gを得た。このときの収率は99%であった。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1026cm−1付近の吸収ピークが消滅し、新たに993cm−1、926cm−1付近に吸収ピークが観測されたことにより、PE−4−1の脱保護反応が進行したことを確認した。なお、1248cm−1、837cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、PE−4−1の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection reaction of phosphonate ester group (2)]
In an eggplant flask, 0.15 g of a phosphonic acid ester group-introduced polymer PE-4-1 was weighed, 100 mL of hydrobromic acid (47% by mass) was added, and the mixture was refluxed for 24 hours. Next, the polymer was filtered off, thoroughly washed with pure water, and boiled in pure water for 24 hours. Then, it was made to vacuum-dry at 110 degreeC for 6 hours or more, and 0.10 g of phosphonic acid group introduction | transduction polymer PP-4-2 was obtained. The yield at this time was 99%.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1026cm -1, newly 993Cm -1, by the absorption peak was observed in the vicinity of 926cm -1, PE-4-1 It was confirmed that the deprotection reaction of was progressed. In addition, since the absorption peak derived from the trimethylsilyl group near 1248 cm −1 and 837 cm −1 disappeared, it was confirmed that the detrimethylsilyl reaction of PE-4-1 also proceeded simultaneously.

IR,ν(cm−1, KBr disk):3405(m), 3054(w),2387(w),1628(w,arC−C),1600(w),1489(m),1140(s),1074(w),993(s,P−OH),926(s,P−OH),821(m),756(w),691(s),557(s)。 IR, ν (cm −1 , KBr disk): 3405 (m), 3054 (w), 2387 (w), 1628 (w, arC-C), 1600 (w), 1489 (m), 1140 (s) , 1074 (w), 993 (s, P—OH), 926 (s, P—OH), 821 (m), 756 (w), 691 (s), 557 (s).

[ホスホン酸エステル基の脱保護反応(3)]
アルゴン雰囲気下、ナスフラスコにホスホン酸エステル基導入ポリマーPE−4−2 0.52g(1.3mmol)を量り取り、無水クロロホルム10mLを加え、室温で撹拌し溶液を調製した。その後、この溶液を氷冷し、ヨードトリメチルシラン0.8mL(5.6mmol)を加えた。この溶液を室温に戻し24時間撹拌した。その後、亜硫酸ナトリウム飽和水溶液を加えて撹拌し、生成した沈殿物をろ別し、ホスホン酸基導入ポリマーPP−4−3 0.12gを得た。このときの収率は36%であった。
IR測定にて、ホスホン酸エステル基由来の1051cm−1、1022cm−1付近の吸収ピークが消滅し、新たに994cm−1付近に吸収ピークが観測されたことにより、PE−4−2の脱保護反応が進行したことを確認した。なお、1247cm−1、838cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、PE−4−2の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection reaction of phosphonate ester group (3)]
Under an argon atmosphere, 0.52 g (1.3 mmol) of a phosphonic acid ester group-introduced polymer PE-4-2 was weighed into an eggplant flask, added with 10 mL of anhydrous chloroform, and stirred at room temperature to prepare a solution. Thereafter, this solution was ice-cooled, and 0.8 mL (5.6 mmol) of iodotrimethylsilane was added. The solution was returned to room temperature and stirred for 24 hours. Thereafter, a saturated aqueous solution of sodium sulfite was added and stirred, and the resulting precipitate was filtered off to obtain 0.12 g of a phosphonic acid group-introduced polymer PP-4-3. The yield at this time was 36%.
By IR measurement, 1051 -1 derived from phosphonic acid ester group, disappeared absorption peak near 1022cm -1, by absorption peak at around newly 994cm -1 was observed, deprotection of PE-4-2 It was confirmed that the reaction proceeded. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1247 cm −1 and 838 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of PE-4-2 proceeded simultaneously.

IR,ν (cm−1,KBr disk):3362(w),1600(w,arC−C),1491(m),1138(s),994(s,P−O−C),823(m),692(s),557(s)。 IR, ν (cm −1 , KBr disk): 3362 (w), 1600 (w, arC-C), 1491 (m), 1138 (s), 994 (s, P—O—C), 823 (m ), 692 (s), 557 (s).

[ポリマーPE−4−3の製膜]
ホスホン酸エステル基導入ポリマーPE−4−3 0.15gをナスフラスコに量り取り、トルエンを60mL加え、加熱して溶解させ、ポリマー溶液を調製した。その後、恒温槽中に水平設置したポリ四フッ化エチレン製枠(8cm×8cm×1cm)を取り付けたガラス基板上に前記ポリマー溶液を流延し、室温にて3日間静置し溶媒を揮発させた。次に、ガラス基板ごとメタノールに浸漬し、ガラス基板上に形成された膜を剥離し、膜厚27μmの丈夫な自立膜、膜PE−4−3を得た。
[Polymer PE-4-3 Film Formation]
0.15 g of phosphonic acid ester group-introduced polymer PE-4-3 was weighed into an eggplant flask, and 60 mL of toluene was added and dissolved by heating to prepare a polymer solution. Then, the polymer solution is cast on a glass substrate to which a polytetrafluoroethylene frame (8 cm × 8 cm × 1 cm) installed horizontally in a thermostatic bath is attached, and left to stand at room temperature for 3 days to volatilize the solvent. It was. Next, the glass substrate was immersed in methanol, and the film formed on the glass substrate was peeled off to obtain a strong self-supporting film PE-4-3 having a film thickness of 27 μm.

[膜PE−4−3の脱保護反応]
膜PE−4−3 0.54gを臭化水素酸(47質量%)100mLに浸漬させた状態で、24時間還流させた後、純水で十分に洗浄し、さらに純水中で24時間煮沸した。さらに110℃で6時間以上真空乾燥させ、ホスホン酸基導入膜、膜PP−4−4を得た。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1027cm−1付近の吸収ピークが消滅し、新たに1009cm−1付近に吸収ピークが観測されたことにより、膜PE−4−3の脱保護反応が進行したことを確認した。なお、1249cm−1、837cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、膜PE−4−3の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection reaction of membrane PE-4-3]
Membrane PE-4-3 0.54 g was immersed in 100 mL of hydrobromic acid (47% by mass), refluxed for 24 hours, washed thoroughly with pure water, and boiled in pure water for 24 hours. did. Furthermore, it was vacuum-dried at 110 ° C. for 6 hours or more to obtain a phosphonic acid group-introduced film and a film PP-4-4.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1027cm -1, by absorption peak at around newly 1009Cm -1 were observed, deprotection of film PE-4-3 It was confirmed that the reaction proceeded. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1249 cm −1 and 837 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of the film PE-4-3 also proceeded simultaneously.

IR,ν(cm−1,KBr disk):3055(m),2924(w),2854(m),1585(w),1486(m),1441(w),1390(w),1140(m),1074(s),1009(m,P−OH),924(m),818(s),757(m),692(s),549(s)。 IR, ν (cm −1 , KBr disk): 3055 (m), 2924 (w), 2854 (m), 1585 (w), 1486 (m), 1441 (w), 1390 (w), 1140 (m) ), 1074 (s), 1009 (m, P—OH), 924 (m), 818 (s), 757 (m), 692 (s), 549 (s).

[膜PP−4−4の物性]
前記の通り、膜PE−4−3の脱保護反応を行って得られた膜PP−4−4は、膜厚18μm、含水率1.7%、膨潤度103%、イオン交換容量0.48meq/gであった。この膜の90℃、90RH%におけるプロトン伝導度は4.4×10−6S/cmであった。
[Physical properties of membrane PP-4-4]
As described above, the membrane PP-4-4 obtained by performing the deprotection reaction of the membrane PE-4-3 has a film thickness of 18 μm, a moisture content of 1.7%, a swelling degree of 103%, and an ion exchange capacity of 0.48 meq. / G. The proton conductivity of this membrane at 90 ° C. and 90 RH% was 4.4 × 10 −6 S / cm.

{実施例2}
[モノマーM−5の合成]
下記式(M−5)で表されるモノマーM−5を合成した。
{Example 2}
[Synthesis of Monomer M-5]
Monomer M-5 represented by the following formula (M-5) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−ヨードベンゼンに代えて1,3−ジブロモベンゼンを用いること以外は、前記[モノマーM−4の合成]と同様の手順で、モノマーM−5を合成した。このときの収率は64%であった。   Monomer M-5 was synthesized in the same procedure as in [Synthesis of Monomer M-4] except that 1,3-dibromobenzene was used instead of 1-bromo-4-iodobenzene. The yield at this time was 64%.

H−NMR,δ(ppm,CDCl,400MHz):0.3(9H,CH×3),7.3(4H,Ph),7.5(3H,Ph),7.7(1H,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.3 (9H, CH 3 × 3), 7.3 (4H, Ph), 7.5 (3H, Ph), 7.7 (1H , Ph).

IR,ν(cm−1,KBr disk):3022(w,C−H st),2953(m,C−H st),2894(w),2219(s,−C≡C−),1593(w),1555(w),1468(w),1405(w,arC−C),1248(w,arC−C),1248(s,Si−H),1102(m),1069(m),842(s,Si−C),822(s,Si−C),714(w),680(m),631(m)。 IR, ν (cm −1 , KBr disk): 3022 (w, C—H st), 2953 (m, C—H st), 2894 (w), 2219 (s, —C≡C—), 1593 ( w), 1555 (w), 1468 (w), 1405 (w, arC-C), 1248 (w, arC-C), 1248 (s, Si-H), 1102 (m), 1069 (m), 842 (s, Si-C), 822 (s, Si-C), 714 (w), 680 (m), 631 (m).

GC−MS(M/Z):329。 GC-MS (M / Z) <+> : 329.

[ポリマーP−5の合成]
モノマーM−4に代えてモノマーM−5を用いること以外は、前記[ポリマーP−4の合成]と同様の手順でモノマーM−5を重合し、ポリマーP−5を得た。このときの収率は80%であった。
[Synthesis of Polymer P-5]
Except for using monomer M-5 instead of monomer M-4, monomer M-5 was polymerized in the same procedure as in [Synthesis of polymer P-4] to obtain polymer P-5. The yield at this time was 80%.

IR,ν(cm−1,KBr disk):3066(w),3014(w),2956(m,C−H st),2898(w),1591(w,arC−C),1560(w),1470(m),1408(m),1249(s,SiC−H),1115(m),1072(w),838(s,Si−C),814(s),757(m),722(w),691(w),552(w)。 IR, ν (cm −1 , KBr disk): 3066 (w), 3014 (w), 2956 (m, C—H st), 2898 (w), 1591 (w, arC-C), 1560 (w) , 1470 (m), 1408 (m), 1249 (s, SiC-H), 1115 (m), 1072 (w), 838 (s, Si-C), 814 (s), 757 (m), 722 (W), 691 (w), 552 (w).

GPC:Mn=1.0×10,Mw=1.7×10,Mw/Mn≒1.6。 GPC: Mn = 1.0 × 10 6 , Mw = 1.7 × 10 6 , Mw / Mn≈1.6.

[ホスホン酸エステル基の導入]
ポリマーP−4に代えてポリマーP−5を用いること以外は、前記[ホスホン酸エステル基の導入(4)]と同様の手順でホスホン酸エステル基導入ポリマーPE−5を得た。
IR測定において、1055cm−1、1025cm−1付近に吸収ピークが観測されたことにより、PE−5にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、13%と算出された。得られたポリマーPE−5はトルエン、テトラヒドロフランに可溶であった。
[Introduction of phosphonate ester group]
A phosphonic acid ester group-introduced polymer PE-5 was obtained in the same manner as in [Introduction of phosphonic acid ester group (4)] except that polymer P-5 was used instead of polymer P-4.
In the IR measurement, 1055cm -1, by the absorption peak was observed near 1025 cm -1, it was confirmed that the PE-5 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 13% by ion chromatography. The obtained polymer PE-5 was soluble in toluene and tetrahydrofuran.

IR,ν(cm−1,KBr disk): 3461(w),2954(m),1470(m),1388(m),1247(s,Si−C),1114(w),1055(w,P−O−C),1025(m,P−O−C),957(m),837(s,Si−C),813(s),754(w),691(m)。 IR, ν (cm −1 , KBr disk): 3461 (w), 2954 (m), 1470 (m), 1388 (m), 1247 (s, Si—C), 1114 (w), 1055 (w, P-O-C), 1025 (m, P-O-C), 957 (m), 837 (s, Si-C), 813 (s), 754 (w), 691 (m).

[ポリマーPE−5の製膜]
ホスホン酸エステル基導入ポリマーPE−5 0.2gをナスフラスコに量り取り、トルエンを50mL加え、加熱して溶解させ、ポリマー溶液を調製した。その後、恒温槽中に水平設置したポリ四フッ化エチレン製枠(8cm×8cm×1cm)を取り付けたガラス基板上に前記ポリマー溶液を流延し、室温にて3日間静置し溶媒を揮発させた。次に、ガラス基板ごとメタノールに浸漬し、ガラス基板上に形成された膜を剥離し、膜厚33μmの丈夫な自立膜、膜PE−5を得た。
[Film formation of polymer PE-5]
0.2 g of phosphonic acid ester group-introduced polymer PE-5 was weighed into an eggplant flask, and 50 mL of toluene was added and dissolved by heating to prepare a polymer solution. Then, the polymer solution is cast on a glass substrate to which a polytetrafluoroethylene frame (8 cm × 8 cm × 1 cm) installed horizontally in a thermostatic bath is attached, and left to stand at room temperature for 3 days to volatilize the solvent. It was. Next, the whole glass substrate was immersed in methanol, and the film formed on the glass substrate was peeled off to obtain a strong self-supporting film having a film thickness of 33 μm, film PE-5.

[膜PE−5の脱保護反応]
膜PE−5 55mgを臭化水素酸(47質量%)100mLに浸漬させた状態で、24時間還流させた後、純水で十分に洗浄し、さらに純水中で24時間煮沸した。次に、110℃で6時間以上真空乾燥させ、ホスホン酸基導入膜、膜PP−5を得た。
IR測定において、ホスホン酸エステル基由来の1055cm−1、1025cm−1付近の吸収ピークが消滅し、新たに996cm−1付近に吸収ピークが観測されたことにより、膜PE−5の脱保護反応が進行したことを確認した。なお、1247cm−1、837cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、膜PE−5の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection reaction of membrane PE-5]
The membrane PE-5 (55 mg) was immersed in 100 mL of hydrobromic acid (47% by mass), refluxed for 24 hours, thoroughly washed with pure water, and boiled in pure water for 24 hours. Next, it was vacuum-dried at 110 ° C. for 6 hours or more to obtain a phosphonic acid group-introduced membrane, membrane PP-5.
In the IR measurement, 1055Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1025 cm -1, by the absorption peak newly around 996cm -1 was observed, the deprotection reaction of the film PE-5 Confirmed that it had progressed. In addition, since the absorption peaks derived from the trimethylsilyl group in the vicinity of 1247 cm −1 and 837 cm −1 disappeared, it was confirmed that the detrimethylsilyl reaction of the film PE-5 also proceeded simultaneously.

IR,ν(cm−1,KBr disk):3054(m),3019(m),2958(w),1588(w),1560(m),1491(m),1471(m),1441(m),1405(w),1221(m),1132(m),1072(m),996(m,P−OH),899(m),778(m),756(m)。 IR, ν (cm −1 , KBr disk): 3054 (m), 3019 (m), 2958 (w), 1588 (w), 1560 (m), 1491 (m), 1471 (m), 1441 (m) ), 1405 (w), 1221 (m), 1132 (m), 1072 (m), 996 (m, P-OH), 899 (m), 778 (m), 756 (m).

[膜PP−5の物性]
前記の通り、膜PE−5の脱保護反応を行って得られた膜PP−5は、膜厚25μm、含水率8.1%、膨潤度110%、イオン交換容量0.24meq/gであった。この膜の90℃、90RH%におけるプロトン伝導度は1.8×10−5S/cmであった。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of membrane PP-5]
As described above, the membrane PP-5 obtained by performing the deprotection reaction of the membrane PE-5 had a film thickness of 25 μm, a moisture content of 8.1%, a swelling degree of 110%, and an ion exchange capacity of 0.24 meq / g. It was. The proton conductivity of this membrane at 90 ° C. and 90 RH% was 1.8 × 10 −5 S / cm. Furthermore, no softening point was observed below 400 ° C.

{実施例3}
[モノマーM−6の合成]
下記式(M−6)で表されるモノマーM−6を合成した。
{Example 3}
[Synthesis of Monomer M-6]
Monomer M-6 represented by the following formula (M-6) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−ヨードベンゼンに代えて1,4−ジヨードベンゼンを用いること以外は、前記[モノマーM−4の合成]と同様の手順でモノマーM−6を合成した。このときの収率は46%であった。   Monomer M-6 was synthesized in the same procedure as in [Synthesis of Monomer M-4] except that 1,4-diiodobenzene was used instead of 1-bromo-4-iodobenzene. The yield at this time was 46%.

H−NMR,δ(ppm,CDCl,400MHz):0.4(9H,CH×3),7.4(2H,d,Ph),7.6(2H,d,Ph),7.7(2H,m,Ph),7.9(2H,d,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.4 (9H, CH 3 × 3), 7.4 (2H, d, Ph), 7.6 (2H, d, Ph), 7 .7 (2H, m, Ph), 7.9 (2H, d, Ph).

IR,ν(cm−1,KBr disk):3019(w),3062(w,C−H st),2954(m,C−H st),2894(w),2217(s,−C≡C−),1594(w),1577(w),1499(m),1477(m),1388(m,arC−C),1249(s,SiC−H),1141(m),1100(s),1055(m),1001(s),855(s,Si−C),836(s,Si−C),757(s),714(m),638(m),514(m)。 IR, ν (cm −1 , KBr disk): 3019 (w), 3062 (w, C—H st), 2954 (m, C—H st), 2894 (w), 2217 (s, —C≡C -), 1594 (w), 1577 (w), 1499 (m), 1477 (m), 1388 (m, arC-C), 1249 (s, SiC-H), 1141 (m), 1100 (s) , 1055 (m), 1001 (s), 855 (s, Si-C), 836 (s, Si-C), 757 (s), 714 (m), 638 (m), 514 (m).

GC-MS(M/Z):375,361,234。 GC-MS (M / Z) <+> : 375, 361, 234.

[ポリマーM−6の合成]
モノマーM−4に代えてモノマーM−6を用いること以外は、前記[ポリマーP−4の合成]と同様の手順でモノマーM−6を重合し、ポリマーP−6を得た。このときの収率は96%であった。
[Synthesis of Polymer M-6]
Except for using monomer M-6 instead of monomer M-4, monomer M-6 was polymerized in the same procedure as in [Synthesis of polymer P-4] to obtain polymer P-6. The yield at this time was 96%.

IR,ν(cm−1,KBr disk):3066(w),3013(w),2955(m,C−H st),2897(w),1580(w,arC−C),1480(m),1386(m),1248(s,SiC−H),1114(s),1005(m),835(s,Si−C),815(s,Si−C),755(m),715(m),551(w)。 IR, ν (cm −1 , KBr disk): 3066 (w), 3013 (w), 2955 (m, C—H st), 2897 (w), 1580 (w, arC-C), 1480 (m) , 1386 (m), 1248 (s, SiC-H), 1114 (s), 1005 (m), 835 (s, Si-C), 815 (s, Si-C), 755 (m), 715 ( m), 551 (w).

GPC:Mn=2.1×10,Mw=2.4×10,Mw/Mn≒1.1。 GPC: Mn = 2.1 × 10 6 , Mw = 2.4 × 10 6 , Mw / Mn≈1.1.

[ホスホン酸エステル基の導入]
ポリマーP−4に代えてポリマーP−6を用いること以外は、前記[ホスホン酸エステル基の導入(4)]と同様の手順で、ホスホン酸エステル基導入ポリマーPE−6を合成した。このときの収率は43%であった。
IR測定において、1053cm−1、1022cm−1付近に吸収ピークが観測されたことにより、PE−6にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、43%と算出された。
[Introduction of phosphonate ester group]
A phosphonic acid ester group-introduced polymer PE-6 was synthesized in the same manner as in [Introduction of Phosphonic Acid Ester Group (4)], except that polymer P-6 was used instead of polymer P-4. The yield at this time was 43%.
In the IR measurement, 1053cm -1, by the absorption peak was observed in the vicinity of 1022cm -1, it was confirmed that the PE-6 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 43% by ion chromatography.

IR,ν(cm−1,KBr disk):3433(W),3059(w),2955(m),2901(w),1597(w),1438(m),1390(m),1248(s,SiC−H),1190(w),1117(s),1053(m,P−O−C),1022(s,P−O−C),963(m),838(m,Si−C),755(m),721(m),695(m),560(m)。 IR, ν (cm −1 , KBr disk): 3433 (W), 3059 (w), 2955 (m), 2901 (w), 1597 (w), 1438 (m), 1390 (m), 1248 (s , SiC-H), 1190 (w), 1117 (s), 1053 (m, P—O—C), 1022 (s, P—O—C), 963 (m), 838 (m, Si—C) ), 755 (m), 721 (m), 695 (m), 560 (m).

[ホスホン酸エステル基の脱保護反応(1)]
ポリマーPE−4−2に代えてポリマーPE−6を用いること以外は、前記[ホスホン酸エステル基の脱保護反応(3)]と同様の手順で、ホスホン酸基導入ポリマーPP−6を合成した。このときの収率は100%であった。
IR測定において、ホスホン酸エステル基由来の1051cm−1、1023cm−1付近の吸収ピークが消滅し、新たに995cm−1、921cm−1付近に吸収ピークが観測されたことにより、PE−6の脱保護反応が進行したことを確認した。なお、1248cm−1、838cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、PE−6の脱トリメチルシリル反応も同時に進行していることを確認した。
[Deprotection of phosphonate ester group (1)]
A phosphonic acid group-introduced polymer PP-6 was synthesized in the same procedure as in [Deprotection reaction of phosphonic acid ester group (3)] except that polymer PE-6 was used instead of polymer PE-4-2. . The yield at this time was 100%.
In the IR measurement, 1051 -1 derived from phosphonic acid ester group, disappeared absorption peak near 1023cm -1, new 995 cm -1, by the absorption peak was observed in the vicinity of 921cm -1, prolapse PE-6 It was confirmed that the protection reaction proceeded. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1248 cm −1 and 838 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of PE-6 proceeded simultaneously.

IR,ν(cm−1,KBr disk):3376(m),3054(m),2387(w),1634(w,arC−C),1597(w),1490(m),1439(m),1121(s),995(m,P−OH),921(s,P−OH),821(m),724(m),692(s),556(s)。 IR, ν (cm −1 , KBr disk): 3376 (m), 3054 (m), 2387 (w), 1634 (w, arC-C), 1597 (w), 1490 (m), 1439 (m) , 1121 (s), 995 (m, P—OH), 921 (s, P—OH), 821 (m), 724 (m), 692 (s), 556 (s).

{実施例4}
[モノマーM−7の合成]
下記式(M−7)で表されるモノマーM−7を合成した。
{Example 4}
[Synthesis of Monomer M-7]
Monomer M-7 represented by the following formula (M-7) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−ヨードベンゼンに代えて1,3,5−トリブロモベンゼンを用いること以外は、前記[モノマーM−4の合成]と同様の手順で、モノマーM−7を合成した。このときの収率は63%であった。   Monomer M-7 was synthesized in the same procedure as in [Synthesis of Monomer M-4] except that 1,3,5-tribromobenzene was used instead of 1-bromo-4-iodobenzene. The yield at this time was 63%.

H-NMR,δ(ppm,CDCl,400MHz): 0.2 (9H, CH×3),7.4(4H, Ph),7.5(1H,Ph),7.6(2H,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.2 (9H, CH 3 × 3), 7.4 (4H, Ph), 7.5 (1H, Ph), 7.6 (2H , Ph).

IR,ν(cm−1,KBr disk):3101(w),3071(w,C−H st),3020(w),2954(m,C−H st),2895(w),2221(s,−C≡C−),1593(m),1577(s),1540(s),1426(m),1400(s,arC−C),1247(s,SiC−H),1103(s),892(w),845(s,Si−C),820(s,Si−C),750(s),713(m),636(m),533(m)。 IR, ν (cm −1 , KBr disk): 3101 (w), 3071 (w, C—H st), 3020 (w), 2954 (m, C—H st), 2895 (w), 2221 (s , -C≡C-), 1593 (m), 1577 (s), 1540 (s), 1426 (m), 1400 (s, arC-C), 1247 (s, SiC-H), 1103 (s) 892 (w), 845 (s, Si-C), 820 (s, Si-C), 750 (s), 713 (m), 636 (m), 533 (m).

GC-MS(M/Z):408,392,233。 GC-MS (M / Z) + : 408, 392, 233.

[ポリマーP−7の合成]
モノマーM−4に代えてモノマーM−7を用いること以外は、前記[ポリマーP−4の合成]と同様の手順でモノマーM−7を重合し、ポリマーP−7を得た。このときの収率は95%であった。
[Synthesis of Polymer P-7]
Except for using monomer M-7 instead of monomer M-4, monomer M-7 was polymerized in the same procedure as in [Synthesis of polymer P-4] to obtain polymer P-7. The yield at this time was 95%.

IR,ν(cm−1,KBr,disk):3064(w),3014(w),2956(m,C−H st),2898(w),1576(w,arC−C),1546(m),1401(m),1249(s,SiC−H),1109(s),841(s,Si−C),817(s,Si−C),748(m),685(m),552(w)。 IR, ν (cm -1, KBr , disk): 3064 (w), 3014 (w), 2956 (m, C-H st), 2898 (w), 1576 (w, arC-C), 1546 (m ), 1401 (m), 1249 (s, SiC-H), 1109 (s), 841 (s, Si-C), 817 (s, Si-C), 748 (m), 685 (m), 552 (W).

GPC:Mn=1.5×10,Mw=2.0×10,Mw/Mn≒1.3。 GPC: Mn = 1.5 × 10 6 , Mw = 2.0 × 10 6 , Mw / Mn≈1.3.

[ホスホン酸エステル基の導入]
アルゴン雰囲気下、前記ポリマーP−7 0.51g (1.3mmol)を容器に量り取り、トルエン50mLを加え、100℃で15時間撹拌し溶解させ、ポリマー溶液を調製した。この溶液に、亜リン酸ジエチル3.3mL(26mmol)、テトラキストリフェニルホスフィンパラジウム2.3g(2.0mmol)及び脱水トリエチルアミン4.0mLを加え、100℃で7日間撹拌した。その後、この溶液をメタノール中に注入し、生成した沈殿物を再沈殿精製した。得られた沈殿物をろ別し、60℃で6時間以上真空乾燥させた。さらに、アセトンでソックスレー抽出を4日間行い、ホスホン酸エステル基導入ポリマーPE−7 0.50gを得た。このときの収率は74%であった。
IR測定において、1056cm−1、1027cm−1付近に吸収ピークが観測されたことにより、得られたポリマーPE−7にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより、27%と算出された。
[Introduction of phosphonate ester group]
Under an argon atmosphere, 0.51 g (1.3 mmol) of the polymer P-7 was weighed into a container, 50 mL of toluene was added, and the mixture was stirred and dissolved at 100 ° C. for 15 hours to prepare a polymer solution. To this solution, 3.3 mL (26 mmol) of diethyl phosphite, 2.3 g (2.0 mmol) of tetrakistriphenylphosphine palladium and 4.0 mL of dehydrated triethylamine were added and stirred at 100 ° C. for 7 days. Thereafter, this solution was poured into methanol, and the generated precipitate was purified by reprecipitation. The resulting precipitate was filtered off and vacuum dried at 60 ° C. for 6 hours or more. Furthermore, Soxhlet extraction was performed with acetone for 4 days to obtain 0.50 g of phosphonic acid ester group-introduced polymer PE-7. The yield at this time was 74%.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1027cm -1, the resulting polymer PE-7 phosphonic acid ester group was confirmed to have been introduced. The introduction rate of the phosphonic acid ester group was calculated to be 27% by ion chromatography.

IR,ν(cm−1,KBr disk):3063(w),2957(w),2902(m),1577(w),1548(m),1397(m),1252(s,Si−C),1163(w),1133(m),1056(s,P−O−C),1027(s,P−O−C),962(m),844(m,Si−C),815(m,Si−C),754(w),691(w)。 IR, ν (cm −1 , KBr disk): 3063 (w), 2957 (w), 2902 (m), 1577 (w), 1548 (m), 1397 (m), 1252 (s, Si—C) , 1163 (w), 1133 (m), 1056 (s, P—O—C), 1027 (s, P—O—C), 962 (m), 844 (m, Si—C), 815 (m) , Si-C), 754 (w), 691 (w).

[ポリマーPE−7の製膜]
前記の通り合成したホスホン酸エステル基導入ポリマーPE−7 0.2gをナスフラスコに量り取り、トルエンを60mL加え、加熱して溶解させ、ポリマー溶液を調製した。その後、恒温槽中に水平設置したポリ四フッ化エチレン製枠(8cm×8cm×1cm)を取り付けたガラス基板上に前記ポリマー溶液を流延し、室温にて3日間静置し溶媒を揮発させた。次に、ガラス基板ごとメタノールに浸漬し、ガラス基板上に形成された膜を剥離し、膜厚48μmの丈夫な自立膜、膜PE−7を得た。
[Film formation of polymer PE-7]
0.2 g of the phosphonate ester group-introduced polymer PE-7 synthesized as described above was weighed into an eggplant flask, and 60 mL of toluene was added and dissolved by heating to prepare a polymer solution. Then, the polymer solution is cast on a glass substrate to which a polytetrafluoroethylene frame (8 cm × 8 cm × 1 cm) installed horizontally in a thermostatic bath is attached, and left to stand at room temperature for 3 days to volatilize the solvent. It was. Next, the whole glass substrate was immersed in methanol, and the film formed on the glass substrate was peeled off to obtain a strong self-supporting film having a film thickness of 48 μm, film PE-7.

[ホスホン酸エステル基導入膜(膜PE−7)の脱保護反応]
膜PE−7 0.13gを臭化水素酸(47質量%)100mLに浸漬させた状態で24時間還流させた後、純水で十分に洗浄し、さらに純水中で24時間煮沸した。110℃で6時間以上真空乾燥させ、ホスホン酸基導入膜、膜PP−7 0.11gを得た。IR測定において、ホスホン酸エステル基由来の1056cm−1、1027cm−1付近の吸収ピークが消滅し、新たに1002cm−1付近に吸収ピークが観測されたことにより、膜PE−7の脱保護反応が進行したことを確認した。なお、1252cm−1、844cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、膜PE−7の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection reaction of phosphonate group-introduced membrane (membrane PE-7)]
Membrane PE-7 (0.13 g) was refluxed for 24 hours in a state of being immersed in 100 mL of hydrobromic acid (47% by mass), sufficiently washed with pure water, and further boiled in pure water for 24 hours. Vacuum-dried at 110 ° C. for 6 hours or more to obtain 0.11 g of a phosphonic acid group-introduced membrane, membrane PP-7. In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1027cm -1, by absorption peak newly around 1002cm -1 was observed, the deprotection reaction of the membrane PE-7 Confirmed that it had progressed. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1252 cm −1 and 844 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of the film PE-7 also proceeded simultaneously.

IR,ν(cm−1,KBr disk):3401(m),3056(w),2964(w),2925(w),1627(w,arC−C),1575(w),1545(m),1400(m),1136(m),1105(m),1002(m,P−OH),937(m),758(w),689(s),529(m)。 IR, ν (cm −1 , KBr disk): 3401 (m), 3056 (w), 2964 (w), 2925 (w), 1627 (w, arC-C), 1575 (w), 1545 (m) , 1400 (m), 1136 (m), 1105 (m), 1002 (m, P-OH), 937 (m), 758 (w), 689 (s), 529 (m).

[ホスホン酸基導入膜PP−7の物性]
前記の通り、膜PE−7の脱保護反応を行って得られた膜PP−7は、膜厚49μm、含水率7.1%、膨潤度110%、イオン交換容量0.98meq/gであった。この膜の90℃、90RH%におけるプロトン伝導度は8.1×10−4S/cmであった。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of phosphonic acid group-introduced membrane PP-7]
As described above, the membrane PP-7 obtained by deprotecting the membrane PE-7 had a film thickness of 49 μm, a moisture content of 7.1%, a swelling degree of 110%, and an ion exchange capacity of 0.98 meq / g. It was. The proton conductivity of this membrane at 90 ° C. and 90 RH% was 8.1 × 10 −4 S / cm. Furthermore, no softening point was observed below 400 ° C.

{実施例5}
[モノマーM−8の合成]
下記式(M−8)で表されるモノマーM−8を合成した。
{Example 5}
[Synthesis of Monomer M-8]
Monomer M-8 represented by the following formula (M-8) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−ヨードベンゼンに代えて3,5−ジブロモ−1−トリメチルシリルベンゼンを用いること以外は、前記[モノマーM−4の合成]と同様の手順で、モノマーM−8を合成した。このときの収率は49%であった。   Monomer M-8 was synthesized in the same procedure as in [Synthesis of Monomer M-4] except that 3,5-dibromo-1-trimethylsilylbenzene was used instead of 1-bromo-4-iodobenzene. The yield at this time was 49%.

H-NMR,δ(ppm,CDCl,400 MHz):0.3(9H,CH×3),7.3(3H,Ph),7.5(3H,Ph),7.6(2H,Ph)。 1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 0.3 (9H, CH 3 × 3), 7.3 (3H, Ph), 7.5 (3H, Ph), 7.6 ( 2H, Ph).

IR,ν(cm−1,KBr disk):3057(w,C−H st),2956(m,C−H st),2897(w),2227(s,−C≡C−),1599(w),1576(w),1544(m),1490(w),1388(w,arC−C),1304(w,arC−C),1251(s,Si−H),1156(m),1129(m),1104(m),907(m),839(s,Si−C),755(s),687(m)。 IR, ν (cm −1 , KBr disk): 3057 (w, C—H st), 2956 (m, C—H st), 2897 (w), 2227 (s, —C≡C—), 1599 ( w), 1576 (w), 1544 (m), 1490 (w), 1388 (w, arC-C), 1304 (w, arC-C), 1251 (s, Si-H), 1156 (m), 1129 (m), 1104 (m), 907 (m), 839 (s, Si-C), 755 (s), 687 (m).

GC-MS(M/Z):329。 GC-MS (M / Z) <+> : 329.

[ポリマーP−8の合成]
モノマーM−4に代えてモノマーM−8を用いること以外は、前記[ポリマーP−4の合成]と同様の手順でモノマーM−8を重合し、ポリマーP−8を得た。このときの収率は15%であった。
[Synthesis of Polymer P-8]
Except for using monomer M-8 instead of monomer M-4, monomer M-8 was polymerized in the same procedure as in [Synthesis of polymer P-4] to obtain polymer P-8. The yield at this time was 15%.

IR,ν(cm−1,KBr disk):3055(w),2957(m,C−H st),2899(w),1545(w,arC−C),1250(s,SiC−H),1132(w),1107(w),838(s,Si−C),755(s),690(s),623(w)。 IR, ν (cm −1 , KBr disk): 3055 (w), 2957 (m, C—H st), 2899 (w), 1545 (w, arC—C), 1250 (s, SiC—H), 1132 (w), 1107 (w), 838 (s, Si-C), 755 (s), 690 (s), 623 (w).

GPC:Mn=5.4×10,Mw=1.2×10,Mw/Mn≒2.2。 GPC: Mn = 5.4 × 10 4 , Mw = 1.2 × 10 5 , Mw / Mn≈2.2.

[ホスホン酸エステル基の導入]
ポリマーP−4に代えてポリマーP−8を用いること以外は、前記[ホスホン酸エステル基の導入(4)]と同様の手順で、ホスホン酸エステル基導入ポリマーPE−8を得た。収率は83%であった。
IR測定において、1056cm−1、1024cm−1付近に吸収ピークが観測されたことにより、前記ポリマーPE−8にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより13%と算出された。
[Introduction of phosphonate ester group]
A phosphonic acid ester group-introduced polymer PE-8 was obtained in the same procedure as in [Introduction of phosphonic acid ester group (4)] except that polymer P-8 was used instead of polymer P-4. The yield was 83%.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1024cm -1, it was confirmed that the phosphonic acid ester groups in the polymer PE-8 has been introduced. The introduction rate of the phosphonate ester group was calculated to be 13% by ion chromatography.

IR,ν(cm−1,KBr disk):3053(w),2957(m),2900(w),1630(w),1546(w),1443(m),1383(m),1249(s,Si−C),1135(s),1056(m,P−O−C),1024(m,P−O−C),955(w),838(s,Si−C),755(w),691(s)。 IR, ν (cm −1 , KBr disk): 3053 (w), 2957 (m), 2900 (w), 1630 (w), 1546 (w), 1443 (m), 1383 (m), 1249 (s , Si-C), 1135 (s), 1056 (m, P-O-C), 1024 (m, P-O-C), 955 (w), 838 (s, Si-C), 755 (w ), 691 (s).

{実施例6}
[モノマーM−9の合成]
下記式(M−9)で表されるモノマーM−9を合成した。
{Example 6}
[Synthesis of Monomer M-9]
Monomer M-9 represented by the following formula (M-9) was synthesized.

Figure 2009292947
Figure 2009292947

1−ブロモ−4−ヨードベンゼンに代えて3,5−ジブロモトルエンを用いること以外は、前記[モノマーM−4の合成]と同様の手順で、モノマーM−9を合成した。このときの収率は61%であった。   Monomer M-9 was synthesized in the same procedure as in [Synthesis of Monomer M-4] except that 3,5-dibromotoluene was used instead of 1-bromo-4-iodobenzene. The yield at this time was 61%.

H-NMR,δ(ppm,Acetone-d,400MHz):0.40(9H,s,CH×3),2.47(3H,s,CH),7.47(1H,s,Ph),7.53(1H,s,Ph),7.64(3H,t,J=8.0Hz,Ph),7.71(2H,d,J=8.0Hz,Ph)。 1 H-NMR, δ (ppm, Acetone-d 6 , 400 MHz): 0.40 (9H, s, CH 3 × 3), 2.47 (3H, s, CH 3 ), 7.47 (1H, s , Ph), 7.53 (1H, s, Ph), 7.64 (3H, t, J = 8.0 Hz, Ph), 7.71 (2H, d, J = 8.0 Hz, Ph).

IR,ν(cm−1,KBr disk):3022(w),2955(m),2893(w),1596(m),1558(m),1444(w),1409(w),1376(w),1242(m),1101(m),835(s),821(s),752(m),676(m)。 IR, ν (cm −1 , KBr disk): 3022 (w), 2955 (m), 2893 (w), 1596 (m), 1558 (m), 1444 (w), 1409 (w), 1376 (w ), 1242 (m), 1101 (m), 835 (s), 821 (s), 752 (m), 676 (m).

[ポリマーP−9の合成]
モノマーM−4に代えてモノマーM−9を用いること以外は、前記[ポリマーP−4の合成]と同様の手順でモノマーM−9を重合し、ポリマーP−9を得た。このときの収率は78%であった。
[Synthesis of Polymer P-9]
Except for using monomer M-9 instead of monomer M-4, monomer M-9 was polymerized in the same procedure as in [Synthesis of polymer P-4] to obtain polymer P-9. The yield at this time was 78%.

IR,ν(cm−1,KBr disk):3063(w),3012(w),2955(m),2897(w),1596(m),1565(m),1452(w),1418(w),1386(w),1246(s),1112(m),1084(w),835(s),821(s),757(m),719(m),689(m)。 IR, ν (cm −1 , KBr disk): 3063 (w), 3012 (w), 2955 (m), 2897 (w), 1596 (m), 1565 (m), 1452 (w), 1418 (w ), 1386 (w), 1246 (s), 1112 (m), 1084 (w), 835 (s), 821 (s), 757 (m), 719 (m), 689 (m).

[ホスホン酸エステル基の導入]
ポリマーP−4に代えてポリマーP−9を用いること以外は、前記[ホスホン酸エステル基の導入(4)]と同様の手順で、ホスホン酸エステル基導入ポリマーPE−9を得た。このときの収率は90%であった。
IR測定において、1056cm−1、1027cm−1付近に吸収ピークが観測されたことにより、前記ポリマーPE−9にホスホン酸エステル基が導入されていることを確認した。ホスホン酸エステル基の導入率は、イオンクロマトグラフィーにより15%と算出された。
[Introduction of phosphonate ester group]
A phosphonic acid ester group-introduced polymer PE-9 was obtained in the same manner as in [Introduction of phosphonic acid ester group (4)], except that polymer P-9 was used instead of polymer P-4. The yield at this time was 90%.
In the IR measurement, 1056cm -1, by the absorption peak was observed in the vicinity of 1027cm -1, it was confirmed that the polymer PE-9 phosphonic acid ester group is introduced. The introduction rate of the phosphonic acid ester group was calculated to be 15% by ion chromatography.

IR,ν(cm−1,KBr disk):3063(w),2955(s),2901(m),1596(w),1565(w),1445(m),1387(m),1246(s,Si−C),1135(w),1115(m),1056(m,P−O−C),1027(m,P−O−C),959(w),834(s,Si−C),813(m),756(w),693(s)。 IR, ν (cm −1 , KBr disk): 3063 (w), 2955 (s), 2901 (m), 1596 (w), 1565 (w), 1445 (m), 1387 (m), 1246 (s , Si—C), 1135 (w), 1115 (m), 1056 (m, P—O—C), 1027 (m, P—O—C), 959 (w), 834 (s, Si—C) ), 813 (m), 756 (w), 693 (s).

[ポリマーPE−9の製膜]
前記の通り合成したホスホン酸エステル基導入ポリマーPE−9 0.2gをナスフラスコに量り取り、トルエンを60mL加え、加熱して溶解させ、ポリマー溶液を調製した。その後、恒温槽中に水平設置したポリ四フッ化エチレン製枠(8cm×8cm×1cm)を取り付けたガラス基板上に前記ポリマー溶液を流延し、室温にて3日間静置し溶媒を揮発させた。次に、ガラス基板ごとメタノールに浸漬して形成された膜を剥離し、膜厚26μmの丈夫な自立膜、膜PE−9を得た。
[Film formation of polymer PE-9]
0.2 g of the phosphonic acid ester group-introduced polymer PE-9 synthesized as described above was weighed into an eggplant flask, and 60 mL of toluene was added and dissolved by heating to prepare a polymer solution. Then, the polymer solution is cast on a glass substrate to which a polytetrafluoroethylene frame (8 cm × 8 cm × 1 cm) installed horizontally in a thermostatic bath is attached, and left to stand at room temperature for 3 days to volatilize the solvent. It was. Next, the film formed by immersing the glass substrate in methanol was peeled off to obtain a strong self-supporting film having a film thickness of 26 μm, film PE-9.

[ホスホン酸エステル基導入膜(膜PE−9)の脱保護反応]
膜PE−9 0.067gを臭化水素酸(47質量%)100mLに浸漬した状態で24時間還流させた後、純水でよく洗浄し、さらに純水中で24時間煮沸した。次に、110℃で6時間以上真空乾燥させ、ホスホン酸基導入膜、膜PP−9を得た。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1027cm−1付近の吸収ピークが消滅し、新たに991cm−1付近に吸収ピークが観測されたことにより、膜PE−9の脱保護反応が進行したことを確認した。なお、1252cm−1、844cm−1付近のトリメチルシリル基由来の吸収ピークも消滅していることより、膜PE−9の脱トリメチルシリル反応も同時に進行したことを確認した。
[Deprotection of phosphonate ester group-introduced membrane (membrane PE-9)]
After 0.067 g of membrane PE-9 was immersed in 100 mL of hydrobromic acid (47% by mass) for 24 hours, it was thoroughly washed with pure water and then boiled in pure water for 24 hours. Next, it was vacuum-dried at 110 ° C. for 6 hours or more to obtain a phosphonic acid group-introduced membrane, membrane PP-9.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1027cm -1, by absorption peak at around newly 991cm -1 was observed, the deprotection reaction of the film PE-9 Confirmed that it had progressed. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1252 cm −1 and 844 cm −1 also disappeared, it was confirmed that the detrimethylsilyl reaction of the film PE-9 also proceeded simultaneously.

IR,ν(cm−1,KBr disk):3052(w),2962(w),2922(w),2853(w),1596(m,arC−C),1563(m),1490(m),1441(m),1262(s),1137(m),1104(m),1072(m),1012(s),991(m,P−OH),945(m),845(m),822(m),756(m)。 IR, ν (cm −1 , KBr disk): 3052 (w), 2962 (w), 2922 (w), 2853 (w), 1596 (m, arC-C), 1563 (m), 1490 (m) , 1441 (m), 1262 (s), 1137 (m), 1104 (m), 1072 (m), 1012 (s), 991 (m, P-OH), 945 (m), 845 (m), 822 (m), 756 (m).

[ホスホン酸基導入膜PP−9の物性]
前記の通り、膜PE−9の脱保護反応を行って得られた膜PP−9は、膜厚32μm、含水率7.1%、膨潤度103%、イオン交換容量0.50meq/gであった。この膜の90℃、90RH%におけるプロトン伝導度は2.6×10−5S/cmであった。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of phosphonic acid group-introduced membrane PP-9]
As described above, the membrane PP-9 obtained by performing the deprotection reaction of the membrane PE-9 had a film thickness of 32 μm, a moisture content of 7.1%, a swelling degree of 103%, and an ion exchange capacity of 0.50 meq / g. It was. The proton conductivity of this membrane at 90 ° C. and 90 RH% was 2.6 × 10 −5 S / cm. Furthermore, no softening point was observed below 400 ° C.

{実施例7}
[ホスホン酸基およびスルホン酸基導入膜PPS−1の合成]
500mLビーカーに、濃硫酸(97質量%)80mLと酢酸エチル20mLを量り取って混合し、そこに前記ホスホン酸エステル基導入膜PE−7 49 mgを浸漬して60℃にて3時間緩やかに撹拌した。膜を取り出したのち水洗し、さらに純水にて2時間煮沸した。その後、110℃にて16時間真空乾燥させた。その後、膜を臭化水素酸(47質量%)100mLに浸漬した状態で72時間還流させた後、純水で十分に洗浄し、さらに純水中で24時間煮沸した。次に、110℃で6時間以上真空乾燥し、ホスホン酸基およびスルホン酸基導入膜PPS−1を得た。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1027cm−1付近の吸収ピークが消滅し、新たに 966cm−1付近に吸収ピークが観測されたことにより、膜PE−7の脱保護反応が進行したことを確認した。なお、1249cm−1、1056cm−1付近のトリメチルシリル基由来の吸収ピークが消滅していることより、膜PE−7の脱トリメチルシリル反応も同時に進行したことを確認した。さらに、1024cm−1付近にスルホン酸基に由来する吸収ピークが観測されたことから、膜PPS−1にスルホン酸基が導入されたことも確認した。
{Example 7}
[Synthesis of phosphonic acid group and sulfonic acid group-introduced membrane PPS-1]
In a 500 mL beaker, 80 mL of concentrated sulfuric acid (97% by mass) and 20 mL of ethyl acetate were weighed and mixed, and 49 mg of the phosphonate ester group-introduced membrane PE-7 was immersed therein and gently stirred at 60 ° C. for 3 hours. did. The membrane was taken out, washed with water, and boiled with pure water for 2 hours. Then, it vacuum-dried at 110 degreeC for 16 hours. Thereafter, the membrane was refluxed for 72 hours in a state immersed in 100 mL of hydrobromic acid (47% by mass), then sufficiently washed with pure water, and further boiled in pure water for 24 hours. Next, it was vacuum-dried at 110 ° C. for 6 hours or more to obtain a phosphonic acid group and sulfonic acid group-introduced membrane PPS-1.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1027cm -1, by absorption peak newly around 966cm -1 was observed, the deprotection reaction of the membrane PE-7 Confirmed that it had progressed. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1249 cm −1 and 1056 cm −1 disappeared, it was confirmed that the detrimethylsilyl reaction of the film PE-7 also proceeded simultaneously. Furthermore, since an absorption peak derived from a sulfonic acid group was observed in the vicinity of 1024 cm −1 , it was also confirmed that a sulfonic acid group was introduced into the membrane PPS-1.

IR, ν(cm−1,KBr disk):3420(w),3056(w),2982(m),2926(m),1576(w),1546(s),1489(w),1443(m),1397(m),1226(s),1163(m),1134(m),1048(s),1024(s,SOH),966(s,P−OH),758(m),690(s),566(m)。 IR, ν (cm −1 , KBr disk): 3420 (w), 3056 (w), 2982 (m), 2926 (m), 1576 (w), 1546 (s), 1489 (w), 1443 (m) ), 1397 (m), 1226 (s), 1163 (m), 1134 (m), 1048 (s), 1024 (s, SO 3 H), 966 (s, P—OH), 758 (m), 690 (s), 566 (m).

[膜PPS−1の物性]
前記の通り作製したホスホン酸基およびスルホン酸基導入膜PPS−1は、膜厚44μm、イオン交換容量1.4meq/g、含水率19%、膨潤度118%、プロトン伝導度は9.7×10−3S/cmであった(90℃,RH90%)。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of membrane PPS-1]
The phosphonic acid group and sulfonic acid group-introduced membrane PPS-1 produced as described above has a film thickness of 44 μm, an ion exchange capacity of 1.4 meq / g, a moisture content of 19%, a swelling degree of 118%, and a proton conductivity of 9.7 ×. 10 −3 S / cm (90 ° C., RH 90%). Furthermore, no softening point was observed below 400 ° C.

{実施例8}
[ホスホン酸基およびスルホン酸基導入膜PPS−2の合成]
実施例6で作製したホスホン酸エステル基導入膜PE−9を用いたこと、および臭化水素酸で還流させる時間を96時間とすること以外は、前記[ホスホン酸基およびスルホン酸基導入膜PPS−1の合成]と同様の手順で、ホスホン酸基およびスルホン酸基導入膜PPS−2を得た。
IR測定において、ホスホン酸エステル基由来の1056cm−1、1027cm−1付近の吸収ピークが消滅し、新たに 963cm−1付近に吸収ピークが観測されたことにより、ホスホン酸エステル基導入膜PE−9の脱保護反応が進行したことを確認した。なお、1249cm−1、1056cm−1付近のトリメチルシリル基由来の吸収ピークが消滅していることより、ホスホン酸エステル基導入膜PE−9の脱トリメチルシリル反応も同時に進行したことを確認した。さらに、1024cm−1付近にスルホン酸基に由来する吸収ピークが観測されたことから、膜PPS−2にスルホン酸基が導入されたことも確認した。
{Example 8}
[Synthesis of phosphonic acid group and sulfonic acid group-introduced membrane PPS-2]
[Phosphonic acid group and sulfonic acid group-introduced membrane PPS] except that the phosphonic acid ester group-introduced membrane PE-9 produced in Example 6 was used and that the reflux time with hydrobromic acid was 96 hours. The phosphonic acid group and sulfonic acid group-introduced membrane PPS-2 was obtained in the same procedure as in the synthesis of -1.
In the IR measurement, 1056Cm -1 derived from phosphonic acid ester group, disappeared absorption peak near 1027cm -1, by absorption peak at around newly 963cm -1 was observed, phosphonic acid ester group introduced film PE-9 It was confirmed that the deprotection reaction of was progressed. In addition, since the absorption peak derived from the trimethylsilyl group in the vicinity of 1249 cm −1 and 1056 cm −1 disappeared, it was confirmed that the detrimethylsilyl reaction of the phosphonate ester group-introduced film PE-9 also proceeded simultaneously. Furthermore, since an absorption peak derived from a sulfonic acid group was observed in the vicinity of 1024 cm −1 , it was also confirmed that a sulfonic acid group was introduced into the membrane PPS-2.

IR,ν(cm−1,KBr disk):3062(w),2955(s),2899(m),1576(w),1546(s),1421(w),1400(m),1247(s),1161(w),1111(m),1048(s),1024(s,SOH),963(s,P−OH),835(s),814(s),745(s)。 IR, ν (cm −1 , KBr disk): 3062 (w), 2955 (s), 2899 (m), 1576 (w), 1546 (s), 1421 (w), 1400 (m), 1247 (s ), 1161 (w), 1111 (m), 1048 (s), 1024 (s, SO 3 H), 963 (s, P—OH), 835 (s), 814 (s), 745 (s).

[膜SPP−2の物性]
前記の通り作製したホスホン酸基およびスルホン酸基導入膜SPP−2は、膜厚20μm、イオン交換容量1.5meq/g、含水率20%、膨潤度118%、プロトン伝導度は1.2×10−2S/cmであった(90℃,RH90%)。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of membrane SPP-2]
The phosphonic acid group and sulfonic acid group-introduced membrane SPP-2 produced as described above has a film thickness of 20 μm, an ion exchange capacity of 1.5 meq / g, a water content of 20%, a swelling degree of 118%, and a proton conductivity of 1.2 ×. 10 −2 S / cm (90 ° C., RH 90%). Furthermore, no softening point was observed below 400 ° C.

{実施例9}
[イミダゾール、ホスホン酸基、スルホン酸基導入膜IPPS−1の合成]
イミダゾール83mg(1.2mmol)を純水100mLに溶解し、実施例7で作製した膜PPS−1 51mgを該溶液中に浸漬し、24時間撹拌した。その後、純水で膜を洗浄し、110℃で16時間真空乾燥させ、イミダゾール、ホスホン酸基、スルホン酸基導入膜IPPS−1を得た。
IR測定において、1627cm−1付近にイミダゾールに由来するピークが観測されたことから、膜IPPS−1中にイミダゾールが導入されたことを確認した。FT−IRスペクトルを下記に示す。
{Example 9}
[Synthesis of Imidazole, Phosphonic Acid Group, and Sulfonic Acid Group Introduced Membrane IPPS-1]
83 mg (1.2 mmol) of imidazole was dissolved in 100 mL of pure water, and 51 mg of the membrane PPS-1 prepared in Example 7 was immersed in the solution and stirred for 24 hours. Thereafter, the membrane was washed with pure water and vacuum dried at 110 ° C. for 16 hours to obtain an imidazole, phosphonic acid group, and sulfonic acid group-introduced membrane IPPS-1.
In IR measurement, since a peak derived from imidazole was observed in the vicinity of 1627 cm −1 , it was confirmed that imidazole was introduced into the membrane IPPS-1. The FT-IR spectrum is shown below.

IR,ν(cm−1,KBr disk):3353(w),3054(w),2853(w),1627(m,C=N),1575(w),1545(s),1488(m),1441(s),1400(s),1132(m),1059(m),1036(m,SOH),1007(s,P−OH),990(s),909(s),870(m),758(m),741(s)。 IR, ν (cm −1 , KBr disk): 3353 (w), 3054 (w), 2853 (w), 1627 (m, C = N), 1575 (w), 1545 (s), 1488 (m) , 1441 (s), 1400 (s), 1132 (m), 1059 (m), 1036 (m, SO 3 H), 1007 (s, P—OH), 990 (s), 909 (s), 870 (M), 758 (m), 741 (s).

[膜IPPS−1の物性]
前記の通り作製したイミダゾール、ホスホン酸基、スルホン酸基導入膜IPPS−1は、膜厚30μm、イオン交換容量1.3meq/g、含水率21%、膨潤度118%、プロトン伝導度は2.2×10−5S/cmであった(90℃,RH50%)。さらに、400℃以下では軟化点は観測されなかった。
[Physical properties of membrane IPPS-1]
The imidazole, phosphonic acid group, and sulfonic acid group-introduced membrane IPPS-1 produced as described above has a film thickness of 30 μm, an ion exchange capacity of 1.3 meq / g, a moisture content of 21%, a swelling degree of 118%, and a proton conductivity of 2. It was 2 × 10 −5 S / cm (90 ° C., RH 50%). Furthermore, no softening point was observed below 400 ° C.

[Fenton試験結果]
サンプルとして、市販の電解質膜であるNafion(登録商標)115、比較例3で作製した膜PS−3、実施例4で作製した膜PP−7および実施例7で作製した膜PPS−1を用い、それぞれの膜に対してFenton試験を行い、Fenton試験前後の質量変化率、プロトン伝導度(90℃、90RH%において測定)を測定し、比較した。結果を表1に記す。
[Fenton test results]
As samples, Nafion (registered trademark) 115 which is a commercially available electrolyte membrane, the membrane PS-3 produced in Comparative Example 3, the membrane PP-7 produced in Example 4, and the membrane PPS-1 produced in Example 7 were used. The Fenton test was performed on each membrane, and the mass change rate before and after the Fenton test and the proton conductivity (measured at 90 ° C. and 90 RH%) were measured and compared. The results are shown in Table 1.

Figure 2009292947
Figure 2009292947

表1に示すように、ホスホン酸基、又はホスホン酸基およびスルホン酸基を有する置換ポリアセチレン膜である実施例4および実施例7の膜は、市販品および比較例3の膜と比べ、耐酸化性、耐ラジカル性に優れ、高いプロトン伝導性を示している。したがって、本発明によれば、耐酸化性、耐ラジカル性に優れ、高いプロトン伝導性を有し、かつ十分な耐熱性と低い膨潤度を有し、さらには十分な機械的強度を有する固体電解質およびその膜を得ることができる。加えて、複素環式化合物を含浸すれば、高温低湿度下でも良好なプロトン伝導性を示す電解質膜を得ることができる。さらに、フッ素を含有せず焼却処分が可能な電解質膜を提供できる。   As shown in Table 1, the membranes of Examples 4 and 7 which are substituted polyacetylene membranes having phosphonic acid groups or phosphonic acid groups and sulfonic acid groups are more resistant to oxidation than the commercially available products and Comparative Example 3 membranes. Excellent proton resistance and radical resistance and high proton conductivity. Therefore, according to the present invention, a solid electrolyte having excellent oxidation resistance and radical resistance, high proton conductivity, sufficient heat resistance, low swelling, and sufficient mechanical strength. And its membrane can be obtained. In addition, if the heterocyclic compound is impregnated, an electrolyte membrane showing good proton conductivity even at high temperature and low humidity can be obtained. Furthermore, an electrolyte membrane that does not contain fluorine and can be incinerated can be provided.

Claims (12)

ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖を有する置換ポリアセチレン。   A substituted polyacetylene having a side chain containing a phosphonic acid group in the main chain composed of polyacetylene. ポリアセチレンからなる主鎖に、ホスホン酸基を含む側鎖とスルホン酸基を含む側鎖とを有する置換ポリアセチレン。   A substituted polyacetylene having a side chain containing a phosphonic acid group and a side chain containing a sulfonic acid group in the main chain made of polyacetylene. 下記式(1)
Figure 2009292947
〔ただし、式(1)中、R〜Rの一部又は全部がホスホン酸基であり、残りがH、Br、Cl、I、含珪素置換基、水酸基、炭素数1〜6の直鎖又は分岐のアルキル基又はアルコキシ基、フェノキシ基、スルホン酸基からなる群から選択されるいずれかである。〕で表される繰り返し単位を有する置換ポリアセチレン。
Following formula (1)
Figure 2009292947
[However, in the formula (1), a part or all of R 1 to R 6 is a phosphonic acid group, and the rest are H, Br, Cl, I, a silicon-containing substituent, a hydroxyl group, a straight chain having 1 to 6 carbon atoms. Any one selected from the group consisting of a chain or branched alkyl group or an alkoxy group, a phenoxy group, and a sulfonic acid group. ] The substituted polyacetylene which has a repeating unit represented by these.
前記式(1)中のR、R、RがHであり、Rが含珪素置換基又はHであり、RとRのいずれか一方又は両方がホスホン酸基であり、残りがH、メチル基、スルホン酸基、Br、Cl、Iからなる群から選択されるいずれかである請求項3に記載の置換ポリアセチレン。 In the formula (1), R 1 , R 3 and R 5 are H, R 2 is a silicon-containing substituent or H, and one or both of R 4 and R 6 are phosphonic acid groups, The substituted polyacetylene according to claim 3, wherein the remainder is any one selected from the group consisting of H, a methyl group, a sulfonic acid group, Br, Cl, and I. 前記式(1)中のR〜Rの一部がスルホン酸基で、残りがHであり、R〜Rの一部又は全部がホスホン酸基であり、残りがH、メチル基、Br、Cl、Iの群から選択されるいずれかである請求項3に記載の置換ポリアセチレン。 A part of R 1 to R 3 in the formula (1) is a sulfonic acid group, the rest is H, a part or all of R 4 to R 6 is a phosphonic acid group, and the rest is H, a methyl group 4. The substituted polyacetylene according to claim 3, which is any one selected from the group consisting of B, Br, Cl and I. 5. 前記式(1)中のR〜Rのうち少なくとも一つが含珪素置換基で、残りがHであり、R〜Rの一部又は全部がホスホン酸基であり、残りがH、メチル基、Br、Cl、Iからなる群から選択されるいずれかである置換ポリアセチレンをスルホン化剤に接触させてスルホン化することによって、側鎖にホスホン酸基およびスルホン酸基を有する置換ポリアセチレンを得る置換ポリアセチレンの製造方法。 At least one of R 1 to R 3 in the formula (1) is a silicon-containing substituent, the rest is H, a part or all of R 4 to R 6 is a phosphonic acid group, and the rest is H. A substituted polyacetylene having a phosphonic acid group and a sulfonic acid group in the side chain is obtained by sulfonating a substituted polyacetylene selected from the group consisting of a methyl group, Br, Cl, and I with a sulfonating agent. A process for producing a substituted polyacetylene. 請求項1〜5のいずれか1項に記載の置換ポリアセチレンからなる電解質膜。   The electrolyte membrane which consists of substituted polyacetylene of any one of Claims 1-5. 請求項6に記載の置換ポリアセチレンの製造方法により得られ、膜状に成形された電解質膜であって、膜中のスルホン酸基の分布が膜厚方向に均一である電解質膜。   An electrolyte membrane obtained by the method for producing a substituted polyacetylene according to claim 6 and formed into a membrane shape, wherein the distribution of sulfonic acid groups in the membrane is uniform in the film thickness direction. 膜中にイミダゾール、ベンゾイミダゾール、トリアゾール、ピラゾール又はそれらの誘導体を含浸させてなる請求項7又は8に記載の電解質膜。   The electrolyte membrane according to claim 7 or 8, wherein the membrane is impregnated with imidazole, benzimidazole, triazole, pyrazole or a derivative thereof. 請求項7〜9のいずれか1項に記載の電解質膜、又は該電解質膜を含む複合体膜に電極を設けてなる電解質膜・電極接合体。   An electrolyte membrane / electrode assembly obtained by providing an electrode on the electrolyte membrane according to any one of claims 7 to 9, or a composite membrane containing the electrolyte membrane. 請求項10に記載の電解質膜・電極接合体を有する電気化学デバイス。   An electrochemical device comprising the electrolyte membrane / electrode assembly according to claim 10. 請求項10に記載の電解質膜・電極接合体を有する燃料電池。   A fuel cell comprising the electrolyte membrane / electrode assembly according to claim 10.
JP2008148051A 2008-06-05 2008-06-05 Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell Pending JP2009292947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148051A JP2009292947A (en) 2008-06-05 2008-06-05 Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148051A JP2009292947A (en) 2008-06-05 2008-06-05 Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell

Publications (1)

Publication Number Publication Date
JP2009292947A true JP2009292947A (en) 2009-12-17

Family

ID=41541432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148051A Pending JP2009292947A (en) 2008-06-05 2008-06-05 Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell

Country Status (1)

Country Link
JP (1) JP2009292947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574369A (en) * 2019-03-19 2021-10-29 费加罗技研株式会社 Gas detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574369A (en) * 2019-03-19 2021-10-29 费加罗技研株式会社 Gas detector

Similar Documents

Publication Publication Date Title
Hu et al. Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity
Lee et al. Hydrophilic–hydrophobic multiblock copolymers based on poly (arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells
Lafitte et al. Phosphonation of polysulfones via lithiation and reaction with chlorophosphonic acid esters
JP5475941B2 (en) Hybrid inorganic organic proton electrolyte membrane (PEM) grafted with phosphonic acid
Abouzari-Lotf et al. Phosphonated poly (arylene ether) s as potential high temperature proton conducting materials
Luo et al. Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes
WO2006068279A1 (en) Ion-conductive binder, membrane-electrode assembly and fuel cell
Papadimitriou et al. Phosphonated fully aromatic polyethers for PEMFCs applications
Rusanov et al. Proton-conducting polymers and membranes carrying phosphonic acid groups
Ghorai et al. Chemically stable sulfonated polytriazoles containing trifluoromethyl and phosphine oxide moieties for proton exchange membranes
WO2005001969A1 (en) Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell
JP2007294408A (en) Polyparaphenylene hydrocarbon electrolyte, manufacture method therefor, polyparaphenylene, and electrolyte membrane, catalyst layer and polymer electrolyte fuel cell using polyparaphenylene hydrocarbon electrolyte
Ghorai et al. Preparation of sulfonated polytriazoles with a phosphaphenanthrene unit via click polymerization: fabrication of membranes and properties thereof
JP5032843B2 (en) Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell
US7101637B2 (en) Proton conductive membrane for electromechanical applications
Fukuzaki et al. Highly phosphonated poly (N‐phenylacrylamide) for proton exchange membranes
Seo et al. The stability of semi-interpenetrating polymer networks based on sulfonated polyimide and poly (ethylene glycol) diacrylate for fuel cell applications
Liu et al. Stable crosslinked vinyl‐addition‐type polynorbornene graft copolymer proton‐exchange membranes
JP2007270028A (en) Preparation process for substituted polyacetylene membrane having sulfonic acid group, membrane obtained thereby and its use
Kato et al. Synthesis of proton-conductive sol–gel membranes from trimethoxysilylmethylstyrene and phenylvinylphosphonic acid
Sato et al. Synthesis of a Cross-Linked Polymer Electrolyte Membrane with an Ultra-High Density of Sulfonic Acid Groups
Oh et al. Synthesis of fluorinated amphiphilic triblock copolymer and its application in high temperature PEM fuel cells
Shimura et al. Poly (arylene ether) ionomers containing sulfofluorenyl groups: Effect of electron-withdrawing groups on the properties
Zhu et al. Novel fluorinated polymers bearing phosphonated side chains: synthesis, characterization and properties
JP2009292947A (en) Substituted polyacetylene, method for producing it, electrolyte membrane, electrolyte membrane-electrode assembly, electrochemical device, and fuel cell