JP2009292729A - Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element - Google Patents

Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
JP2009292729A
JP2009292729A JP2007049732A JP2007049732A JP2009292729A JP 2009292729 A JP2009292729 A JP 2009292729A JP 2007049732 A JP2007049732 A JP 2007049732A JP 2007049732 A JP2007049732 A JP 2007049732A JP 2009292729 A JP2009292729 A JP 2009292729A
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
ring
formulas
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007049732A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2007049732A priority Critical patent/JP2009292729A/en
Priority to EP08711626.5A priority patent/EP2116522B1/en
Priority to KR1020097017860A priority patent/KR101455428B1/en
Priority to US12/528,370 priority patent/US7951433B2/en
Priority to PCT/JP2008/052820 priority patent/WO2008105286A1/en
Priority to CN200880006097.XA priority patent/CN101631759B/en
Priority to JP2009501193A priority patent/JP5299265B2/en
Priority to TW097106508A priority patent/TWI458810B/en
Publication of JP2009292729A publication Critical patent/JP2009292729A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal compound having general physical properties required for the compound such as stability to heat, light, etc., low viscosity, suitable magnitude of the refractive index anisotropy value, suitable magnitude of the dielectric anisotropy value and a steep electrooptical character, a wide temperature range of nematic phase and an excellent compatibility with other liquid crystal compounds, and especially having the large refractive index anisotropy value and large dielectric anisotropy value. <P>SOLUTION: This liquid crystal compound is expressed by formula (1) [wherein, e.g. R<SP>1</SP>is a 1-20C alkyl; ring A<SP>1</SP>to ring A<SP>6</SP>are each 1,4-phenylene; Z<SP>1</SP>to Z<SP>6</SP>are each a single bond; L<SP>1</SP>to L<SP>4</SP>are each H or a halogen; X<SP>1</SP>is H or a halogen; l, m, n, o, p and q are each 0 or 1; and (l+m+n+o+p+q)=3]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は表示素子用の材料として有用な新規液晶化合物、液晶組成物に関する。詳しくは大きな屈折率異方性値および誘電率異方性値を有し、他の液晶化合物との良好な相溶性、低い粘性を持ち、加えて、液晶表示素子に使用した場合には急峻な電気光学特性を得ることができる新規液晶化合物およびこの組成物を含有する液晶表示素子に関する。   The present invention relates to a novel liquid crystal compound and liquid crystal composition useful as a material for a display element. Specifically, it has a large refractive index anisotropy value and dielectric anisotropy value, has good compatibility with other liquid crystal compounds, low viscosity, and in addition, it is steep when used in a liquid crystal display device. The present invention relates to a novel liquid crystal compound capable of obtaining electro-optical characteristics and a liquid crystal display device containing the composition.

液晶化合物(本願において、液晶化合物なる用語は、液晶相を示す化合物および液晶相を示さないが液晶組成物の構成成分として有用である化合物の総称として用いられる。)を用いた表示素子は、時計、電卓、ワ−プロなどのディスプレイに広く利用されている。これらの表示素子は液晶化合物の屈折率異方性、誘電率異方性などを利用したものである   A display element using a liquid crystal compound (in this application, the term liquid crystal compound is used as a general term for a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a constituent of a liquid crystal composition) Widely used in displays such as calculators, word processors, etc. These display elements utilize the refractive index anisotropy and dielectric anisotropy of liquid crystal compounds.

液晶表示素子において、液晶の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、BTN(Bistable twisted nematic)、ECB(electrically controlled birefringence)、OCB(opticallycompensated bend)、IPS(in-plane switching)、VA(vertical alignment)などである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PM(passive matrix)はスタティック(static)とマルチプレックス(multiplex)などに分類され、AMはTFT(thin film transistor)、MIM(metalinsulator metal)などに分類される。   In the liquid crystal display element, the classification based on the operation mode of the liquid crystal includes PC (phase change), TN (twisted nematic), STN (super twisted nematic), BTN (Bistable twisted nematic), ECB (electrically controlled birefringence), OCB ( optically compensated bend), IPS (in-plane switching), VA (vertical alignment), and the like. The classification based on the element driving method is PM (passive matrix) and AM (active matrix). PM (passive matrix) is classified into static and multiplex, and AM is classified into TFT (thin film transistor), MIM (metalinsulator metal), and the like.

これらの液晶表示素子は、適切な物性を有する液晶組成物を含有する。液晶表示素子の特性を向上させるには、この液晶組成物が適切な物性を有するのが好ましい。液晶組成物の成分である液晶化合物に必要な一般的物性は、次のとおりである。
(1)化学的に安定であること、および物理的に安定であること、
(2)高い透明点(液晶相−等方相の相転移温度)を有すること、
(3)液晶相(ネマチック相、スメクチック相等)の下限温度、特にネマチック相の下限温度が低いこと、
(4)他の液晶化合物との相溶性に優れること、
である。
These liquid crystal display elements contain a liquid crystal composition having appropriate physical properties. In order to improve the characteristics of the liquid crystal display element, the liquid crystal composition preferably has appropriate physical properties. General physical properties necessary for the liquid crystal compound which is a component of the liquid crystal composition are as follows.
(1) being chemically stable and physically stable;
(2) having a high clearing point (liquid crystal phase-isotropic phase transition temperature);
(3) The lower limit temperature of the liquid crystal phase (nematic phase, smectic phase, etc.), especially the lower limit temperature of the nematic phase is low,
(4) Excellent compatibility with other liquid crystal compounds,
It is.

(1)のように化学的、物理的に安定な液晶化合物を含む組成物を表示素子に用いると、電圧保持率を高くすることができる。
また、(2)および(3)のように、高い透明点、あるいは液晶相の低い下限温度を有する液晶化合物を含む組成物ではネマチック相の温度範囲を広げることが可能となり、幅広い温度領域で表示素子として使用することが可能となる。
When a composition containing a chemically and physically stable liquid crystal compound as in (1) is used for a display element, the voltage holding ratio can be increased.
In addition, as shown in (2) and (3), a composition containing a liquid crystal compound having a high clearing point or a low lower limit temperature of the liquid crystal phase can widen the temperature range of the nematic phase and display in a wide temperature range. It can be used as an element.

液晶化合物は、単一の化合物では発揮することが困難な特性を発現させるために、他の多くの液晶化合物と混合して調製した組成物として用いることが一般的である。したがって、表示素子に用いる液晶化合物は、(4)のように、他の液晶化合物等との相溶性が良好であることが好ましい。   In general, a liquid crystal compound is used as a composition prepared by mixing with many other liquid crystal compounds in order to develop characteristics that are difficult to achieve with a single compound. Therefore, it is preferable that the liquid crystal compound used for the display element has good compatibility with other liquid crystal compounds and the like as in (4).

近年は特に表示性能、例えばコントラスト、表示容量、応答時間等のより高い液晶表示素子が要求されている。さらに使用される液晶材料には駆動電圧の低いもの、すなわちしきい値電圧の低下を可能とする液晶化合物およびこれを含む低駆動電圧の液晶組成物が要求されている。 In recent years, there has been a demand for liquid crystal display elements having higher display performance, such as contrast, display capacity, response time, and the like. Furthermore, liquid crystal materials used are required to have a low driving voltage, that is, a liquid crystal compound capable of lowering the threshold voltage and a liquid crystal composition having a low driving voltage including the same.

しきい値電圧(Vth)はよく知られているように、下式により示される(H.J.Deuling, et al.,Mol.Cryst.Liq.Cryst.,27 (1975)81)。

th=π(K/εΔε)1/2

上式において、Kは弾性定数、εは真空の誘電率である。該式から判るように、Vthを低下させるには、Δε(誘電率異方性)の値を大きくするかまたはKを小さくするかの2通りの方法が考えられる。しかし、現在の技術では未だ実際にKをコントロールすることは困難であるため、通常はΔεの大きな液晶材料を用いて要求に対処しているのが現状であり、このような事情からΔεの大きな液晶化合物の開発が盛んに行われてきた。
As is well known, the threshold voltage (V th ) is expressed by the following equation (HJ Deuling, et al., Mol. Cryst. Liq. Cryst., 27 (1975) 81).

V th = π (K / ε 0 Δε) 1/2

In the above equation, K is an elastic constant, and ε 0 is a vacuum dielectric constant. As can be seen from the equation, there are two methods for decreasing Vth , either increasing the value of Δε (dielectric anisotropy) or decreasing K. However, since it is still difficult to actually control K with the current technology, the current situation is that the demand is usually dealt with using a liquid crystal material having a large Δε. Liquid crystal compounds have been actively developed.

さらに、良好な液晶表示を行うためにはそれを構成する液晶表示素子のセル厚みと使用される液晶材料のΔn(屈折率異方性)の値は一定であることが好ましい ( E.Jakeman, et al., Pyhs.Lett., 39A. 69 ( 1972 ) )。また、液晶表示素子の応答速度は用いられるセルの厚みの二乗に反比例する。それ故、動画等の表示にも応用できる高速応答可能な液晶表示素子を製造するには大きなΔnの値を有する液晶組成物を用いなくてはならない。したがってΔnの大きな液晶化合物が要求されている。   Furthermore, in order to perform a good liquid crystal display, it is preferable that the cell thickness of the liquid crystal display element constituting the liquid crystal display and the value of Δn (refractive index anisotropy) of the liquid crystal material used are constant (E. Jakeman, et al., Pyhs. Lett., 39A. 69 (1972)). The response speed of the liquid crystal display element is inversely proportional to the square of the thickness of the cell used. Therefore, a liquid crystal composition having a large Δn value must be used in order to manufacture a liquid crystal display element capable of high-speed response that can be applied to the display of moving pictures and the like. Therefore, a liquid crystal compound having a large Δn is required.

これまでに、大きなΔεおよびΔnの値を有する液晶化合物として、CFO結合基を有する化合物が種々合成されており、そのうちのいくつかは実用的に用いられている。例えば、特許文献1〜6にはCFO結合基を有する4環の化合物が示されている。しかし、これらの化合物はそれを液晶組成物にしたときのΔnが十分に大きくなく、また透明点も十分に高くない。 So far, various compounds having a CF 2 O bonding group have been synthesized as liquid crystal compounds having large values of Δε and Δn, and some of them have been practically used. For example, Patent Documents 1 to 6 show tetracyclic compounds having a CF 2 O bonding group. However, these compounds do not have a sufficiently large Δn when made into a liquid crystal composition, and the clearing point is not sufficiently high.

さらに、特許文献7〜10には、テトラヒドロピラン環を含有した、5環のCFO結合基を有した化合物(化合物(S−1)〜(S−3))が示されているが、これらの化合物もそれを液晶組成物にしたときのΔnが十分に大きくはなく、また透明点も十分に高くない。

Figure 2009292729
Further, Patent Documents 7 to 10 show compounds (compounds (S-1) to (S-3)) containing a tetrahydropyran ring and having a 5-ring CF 2 O bonding group. These compounds also do not have a sufficiently large Δn when made into a liquid crystal composition, and the clearing point is not sufficiently high.
Figure 2009292729

国際公開第96/11897パンフレットInternational Publication No. 96/11897 Pamphlet 特開平10−204016号公報Japanese Patent Laid-Open No. 10-204016 英国特許第2229438号明細書British Patent No. 2229438 独国特許出願公開第4023106号明細書German Patent Application No. 4023106 特開平10−251186号公報Japanese Patent Laid-Open No. 10-251186 国際公開第2004/035710パンフレットInternational Publication No. 2004/035710 Pamphlet 国際公開第2004/048501パンフレットInternational Publication No. 2004/048501 Pamphlet 特開2004−352721公報JP 2004-352721 A 国際公開第2005/019378パンフレットInternational Publication No. 2005/019378 Pamphlet 国際公開第2005/019381パンフレットInternational Publication No. 2005/019341 Pamphlet

本発明の第一の目的は、化合物に必要な一般的物性、熱、光などに対する安定性、大きな屈折率異方性値および誘電率異方性値、急峻な電気光学特性、液晶相の広い温度範囲、および他の液晶化合物との優れた相溶性を有する液晶化合物であり、特に大きな屈折率異方性値を有する液晶化合物を提供することである。第二の目的は、この化合物を含有し、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な屈折率異方性、および低いしきい値電圧を有する液晶組成物であり、特に大きな屈折率異方性値を有する液晶組成物を提供することである。第三の目的は、この組成物を含有し、使用できる広い温度範囲、短い応答時間、小さな消費電力、大きなコントラスト、および低い駆動電圧を有する液晶表示素子を提供することである。   The first object of the present invention is to provide general physical properties necessary for a compound, stability to heat, light, etc., large refractive index anisotropy value and dielectric anisotropy value, steep electro-optical characteristics, wide liquid crystal phase It is a liquid crystal compound having excellent compatibility with a temperature range and other liquid crystal compounds, and particularly to provide a liquid crystal compound having a large refractive index anisotropy value. The second purpose is a liquid crystal composition containing this compound and having a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable refractive index anisotropy, and a low threshold voltage. It is to provide a liquid crystal composition having a particularly large refractive index anisotropy value. A third object is to provide a liquid crystal display device containing this composition and having a wide temperature range that can be used, a short response time, a small power consumption, a large contrast, and a low driving voltage.

本発明は、以下のような液晶化合物、液晶組成物、および液晶組成物を含有する液晶表示素子等を提供する。また、以下に、式(1)で表わされる化合物における末端基、環および結合基等に関して好ましい例も述べる。   The present invention provides the following liquid crystal compound, liquid crystal composition, and liquid crystal display device containing the liquid crystal composition. In the following, preferred examples of the terminal group, ring and bonding group in the compound represented by the formula (1) will be described.

[1] 式(1)で表される化合物。

Figure 2009292729

式(1)において、Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく;環A、環A、環A、環A、環A、および環Aは独立して、1,4−フェニレン、または任意の水素がハロゲンにより置き換えられた1,4−フェニレンであり;Z、Z、Z、Z、Z、およびZは独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−OCO−、−CFO−、−OCF−、−CHO−、−OCH−、−CF=CF−、−(CH−、−(CHCFO−、−(CHOCF−、−CFO(CH−、−OCF(CH−、−CH=CH−(CH−、または−(CH−CH=CH−であり;L、L、L、およびLは独立して、水素またはハロゲンであり;Xは水素、ハロゲン、−C≡N、−N=C=S、−SF、または炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は、−O−、−S−または−CH=CH−により置き換えられてもよく、そして任意の水素はハロゲンにより置き換えられてもよく;l、m、n、o、p、およびqは独立して、0または1であり、l+m+n+o+p+q=3である。 [1] A compound represented by formula (1).

Figure 2009292729

In the formula (1), R 1 is alkyl having 1 to 20 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —S— or —CH═CH—; A 1 , Ring A 2 , Ring A 3 , Ring A 4 , Ring A 5 , and Ring A 6 are independently 1,4-phenylene, or 1,4-phenylene in which any hydrogen is replaced by halogen. Yes; Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —COO—. , —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 O—, —OCH 2 —, —CF═CF—, — (CH 2 ) 4 —, — (CH 2 ) 2 CF 2 O -, - (CH 2) 2 OCF 2 -, - CF 2 O (CH 2) 2 -, - OCF 2 (CH 2 ) 2 —, —CH═CH— (CH 2 ) 2 —, or — (CH 2 ) 2 —CH═CH—; L 1 , L 2 , L 3 , and L 4 are independently hydrogen Or X 1 is hydrogen, halogen, —C≡N, —N═C═S, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, any —CH 2 — is -O-, -S- or -CH = CH- may be replaced, and any hydrogen may be replaced by halogen; l, m, n, o, p, and q are independently 0 or 1 and l + m + n + o + p + q = 3.

[2] 式(1)においてZ、Z、Z、Z、Z、およびZが独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−CFO−、−CHO−、または−OCH−である項[1]に記載の化合物。 [2] In Formula (1), Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡. C -, - COO -, - CF 2 O -, - CH 2 O-, or -OCH 2 - the compound according to item [1] it is.

[3] 式(1−1)〜(1−4)のいずれか一つで表される項[2]に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく;Z、Z、Z、Z、Z、およびZは独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−CFO−、−CHO−、または−OCH−であり;L、L、Y、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xは水素、ハロゲン、−C≡N、−N=C=S、−SF、または炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく、そして任意の水素はハロゲンにより置き換えられてもよい。 [3] The compound according to item [2], which is represented by any one of formulas (1-1) to (1-4).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 20 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —S— or —CH═CH—; Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are each independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —COO—, —CF 2. O—, —CH 2 O—, or —OCH 2 —; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 are independently hydrogen or fluorine Yes; X 1 is hydrogen, halogen, —C≡N, —N═C═S, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, any —CH 2 — is —O—, -S- or -CH = CH- may be replaced, and any hydrogen may be halogenated It may be replaced by.

[4] 式(1−5)〜(1−8)のいずれか1つで表される項[2]に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり、このアルキルにおいて任意の−CH−は−CH=CH−により置き換えられてもよく;L、L、Y、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xはフッ素、塩素、−C≡N、−CF、−CHF、−CHF、−OCF、−OCHF、および−OCHFである。 [4] The compound according to item [2], which is represented by any one of formulas (1-5) to (1-8).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —CH═CH—; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 are independently hydrogen or fluorine; X 1 is fluorine, chlorine, —C≡N, —CF 3 , —CHF 2 , —CH 2 F, -OCF 3, -OCHF 2, and a -OCH 2 F.

[5] 以下の式(1−9)〜(1−11)のいずれか1つで表される項[2]に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり;L、L、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xはフッ素または−OCFである。 [5] The compound according to item [2], which is represented by any one of formulas (1-9) to (1-11) below.

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine; X 1 is fluorine or —OCF 3 .

[6] 式(1−12)〜(1−17)のいずれか1つで表される項[2]に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり;L、Y、Y、Y、Y、およびYは独立して、水素またはフッ素である。 [6] The compound according to item [2], which is represented by any one of formulas (1-12) to (1-17).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons; L 1 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine.

[7] 項[1]〜[6]のいずれか1項に記載の化合物を少なくとも1種類含有することを特徴とする、2成分以上からなる液晶組成物。 [7] A liquid crystal composition comprising two or more components, comprising at least one compound according to any one of items [1] to [6].

[8] 一般式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、項[7]に記載の液晶組成物。

Figure 2009292729

これらの式において、Rは炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;Xはフッ素、塩素、−OCF、−OCHF、−CF、−CHF、−CHF、−OCFCHF、または−OCFCHFCFであり;環B、環B、および環Bは、独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、テトラヒドロピラン−2,5−ジイル、1,4−フェニレン、または任意の水素がフッ素で置き換えられた1,4−フェニレンであり;ZおよびZは独立して、−(CH−、−(CH−、−COO−、−CFO−、−OCF−、−CH=CH−、−C≡C−、−CHO−または単結合であり;LおよびLは独立して、水素またはフッ素である。 [8] The liquid crystal composition according to item [7], containing as a component at least one compound selected from the group of compounds represented by each of general formulas (2), (3), and (4) .

Figure 2009292729

In these formulas, R 2 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — is — May be replaced by O—; X 2 may be fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 Yes; Ring B 1 , Ring B 2 , and Ring B 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, tetrahydropyran-2 , 5-diyl, 1,4-phenylene or arbitrary hydrogen is 1,4-phenylene which is replaced by fluorine,; Z 7 and Z 8 are each independently, - (CH 2) 2 - , (CH 2) 4 -, - COO -, - CF 2 O -, - OCF 2 -, - CH = CH -, - C≡C -, - CH 2 O- or a single bond; L 5 and L 6 Is independently hydrogen or fluorine.

[9] 一般式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項7に記載の液晶組成物。

Figure 2009292729

これらの式において、Rは炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;Xは−C≡Nまたは−C≡C−C≡Nであり;環C、環Cおよび環Cは独立して、1,4−シクロヘキシレン、1,4−フェニレン、任意の水素がフッ素で置き換えられた1,4−フェニレン、1,3−ジオキサン−2,5−ジイル、テトラヒドロピラン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Zは−(CH−、−COO−、−CFO−、−OCF−、−C≡C−、−CHO−、または単結合であり;LおよびLは独立して、水素またはフッ素であり;rは独立して0、1または2であり、sは独立して0または1であり、r+s=2である。 [9] The liquid crystal composition according to claim 7, further comprising at least one compound selected from the group of compounds represented by formula (5).

Figure 2009292729

In these formulas, R 3 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — is — X 3 is —C≡N or —C≡C—C≡N; Ring C 1 , Ring C 2 and Ring C 3 are independently 1,4-cyclohexylene 1,4-phenylene, 1,4-phenylene in which any hydrogen is replaced by fluorine, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, or pyrimidine-2,5- Z 9 is — (CH 2 ) 2 —, —COO—, —CF 2 O—, —OCF 2 —, —C≡C—, —CH 2 O—, or a single bond; L 7 and L 8 are independently hydrogen or Be Tsu containing; r are independently 0, 1 or 2, s is 0 or 1 independently r + s = 2.

[10] 一般式(6)、(7)、(8)、(9)および(10)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、項[7]に記載の液晶組成物。

Figure 2009292729

これらの式において中、RおよびRは独立して、炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;環D、環D、環D、および環Dは独立して、1,4−シクロヘキシレン、1,4−シクロヘキセニレン、1,4−フェニレン、任意の水素がフッ素で置き換えられた1,4−フェニレン、テトラヒドロピラン−2,5−ジイル、またはデカヒドロナフタレン−2,6−ジイルであり;Z10、Z11、Z12、およびZ13は独立して、−(CH−、−COO−、−CHO−、−OCF−、−OCF(CH−、または単結合であり;LおよびL10は独立して、フッ素または塩素であり;t、u、x、y、およびzは独立して0または1であり、u+x+y+zは1または2である。 [10] A term comprising at least one compound selected from the group of compounds represented by each of the general formulas (6), (7), (8), (9) and (10) as a component [ 7].

Figure 2009292729

In these formulas, R 4 and R 5 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and any hydrogen in alkyl and alkenyl may be replaced by fluorine, Any —CH 2 — may be replaced by —O—; Ring D 1 , Ring D 2 , Ring D 3 , and Ring D 4 are independently 1,4-cyclohexylene, 1,4-cyclohex Senylene, 1,4-phenylene, 1,4-phenylene in which arbitrary hydrogen is replaced by fluorine, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl; Z 10 , Z 11 , Z 12 , and Z 13 are each independently — (CH 2 ) 2 —, —COO—, —CH 2 O—, —OCF 2 —, —OCF 2 (CH 2 ) 2 —, or a single bond. Ah ; L 9 and L 10 are independently fluorine or chlorine; t, u, x, y, and z are independently 0 or 1, u + x + y + z is 1 or 2.

[11] 一般式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、項[7]に記載の液晶組成物。

Figure 2009292729

これらの式において、RおよびRは独立して、炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;環E、環E、および環Eは独立して、1,4−シクロヘキシレン、ピリミジン−2,5−ジイル、1,4−フェニレン、2−フルオロ−1,4−フェニレン、3−フルオロ−1,4−フェニレン、または2,5−ジフルオロ1,4−フェニレンであり;Z14およびZ15は独立して、−C≡C−、−COO−、−(CH−、−CH=CH−、または単結合である。 [11] The liquid crystal composition according to item [7], containing as a component at least one compound selected from the group of compounds represented by formulas (11), (12), and (13). .

Figure 2009292729

In these formulas, R 6 and R 7 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, in which any hydrogen may be replaced by fluorine, Any —CH 2 — may be replaced by —O—; ring E 1 , ring E 2 , and ring E 3 are independently 1,4-cyclohexylene, pyrimidine-2,5-diyl, 1 , 4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, or 2,5-difluoro1,4-phenylene; Z 14 and Z 15 are independently- C≡C—, —COO—, — (CH 2 ) 2 —, —CH═CH—, or a single bond.

[12] 項9記載の一般式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[8]に記載の液晶組成物。 [12] The liquid crystal composition according to item [8], further comprising at least one compound selected from the group of compounds represented by formula (5) according to item 9.

[13] 一般式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[8]に記載の液晶組成物。 [13] The liquid crystal composition according to item [8], further comprising at least one compound selected from the group of compounds represented by general formulas (11), (12), and (13).

[14] 一般式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[9]に記載の液晶組成物。 [14] The liquid crystal composition according to item [9], further comprising at least one compound selected from the group of compounds represented by formulas (11), (12) and (13).

[15] 一般式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[10]に記載の液晶組成物。 [15] The liquid crystal composition according to item [10], further comprising at least one compound selected from the group of compounds represented by general formulas (11), (12), and (13).

[16] 少なくとも1つの光学活性化合物をさらに含有する、項[7]〜[15]のいずれか1項に記載の液晶組成物。 [16] The liquid crystal composition according to any one of items [7] to [15], further comprising at least one optically active compound.

[17] 少なくとも1つの酸化防止剤および/または紫外線吸収剤を含む項[7]〜[16]のいずれか1項に記載の液晶組成物。 [17] The liquid crystal composition according to any one of items [7] to [16], comprising at least one antioxidant and / or ultraviolet absorber.

[18] 項[7]〜[17]のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 [18] A liquid crystal display device comprising the liquid crystal composition according to any one of items [7] to [17].

この明細書における用語の使い方は次のとおりである。液晶化合物は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有しないが液晶組成物の成分として有用な化合物の総称である。液晶化合物、液晶組成物、液晶表示素子をそれぞれ化合物、組成物、素子と略すことがある。液晶表示素子は液晶表示パネルおよび液晶表示モジュールの総称である。ネマチック相の上限温度はネマチック相−等方相の相転移温度であり、そして単に上限温度と略すことがある。ネマチック相の下限温度を単に下限温度と略すことがある。式(1)で表わされる化合物を化合物(1)と略すことがある。この略記は式(2)などで表される化合物にも適用することがある。式(1)から式(13)において、六角形で囲んだB、D、Eなどの記号はそれぞれ環B、環D、環Eなどに対応する。百分率で表した化合物の量は組成物の全重量に基づいた重量百分率(重量%)である。環A、Y、Bなど複数の同じ記号を同一の式または異なった式に記載したが、これらはそれぞれが同一であってもよいし、または異なってもよい。 Terms used in this specification are as follows. A liquid crystal compound is a generic term for a compound having a liquid crystal phase such as a nematic phase or a smectic phase and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition. A liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be abbreviated as a compound, a composition, and an element, respectively. A liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module. The upper limit temperature of the nematic phase is the phase transition temperature of the nematic phase-isotropic phase, and may simply be abbreviated as the upper limit temperature. The lower limit temperature of the nematic phase may simply be abbreviated as the lower limit temperature. The compound represented by formula (1) may be abbreviated as compound (1). This abbreviation may also apply to compounds represented by formula (2) and the like. In the formulas (1) to (13), symbols such as B, D, and E surrounded by hexagons correspond to the rings B, D, and E, respectively. The amount of the compound expressed as a percentage is a weight percentage (% by weight) based on the total weight of the composition. A plurality of the same symbols such as rings A 1 , Y 1 , and B are described in the same formula or different formulas, but these may be the same or different.

「任意の」は、位置だけでなく個数についても任意であることを示すが、個数が0である場合を含まない。任意のAがB、CまたはDで置き換えられてもよいという表現は、任意のAがBで置き換えられる場合、任意のAがCで置き換えられる場合および任意のAがDで置き換えられる場合に加えて、複数のAがB〜Dの少なくとも2つで置き換えられる場合をも含むことを意味する。例えば、任意の−CH−が−O−または−CH=CH−で置き換えられてもよいアルキルには、アルキル、アルケニル、アルコキシ、アルコキシアルキル、アルコキシアルケニル、アルケニルオキシアルキルなどが含まれる。なお、本発明においては、連続する2つの−CH−が−O−で置き換えられて、−O−O−のようになることは好ましくない。そして、アルキルにおける末端の−CH−が−O−で置き換えられることも好ましくない。以下に本発明をさらに説明する。 “Arbitrary” indicates that not only the position but also the number is arbitrary, but the case where the number is 0 is not included. The expression that any A may be replaced by B, C, or D is in addition to any A being replaced by B, any A being replaced by C, and any A being replaced by D. Thus, it is meant to include the case where a plurality of A are replaced by at least two of B to D. For example, alkyl in which any —CH 2 — may be replaced by —O— or —CH═CH— includes alkyl, alkenyl, alkoxy, alkoxyalkyl, alkoxyalkenyl, alkenyloxyalkyl, and the like. In the present invention, it is not preferable that two consecutive —CH 2 — are replaced with —O— to form —O—O—. In addition, it is not preferable that the terminal —CH 2 — in alkyl is replaced by —O—. The present invention is further described below.

本発明の化合物は、化合物に必要な一般的物性、熱、光などに対する安定性、大きな屈折率異方性値および誘電率異方性値、急峻な電気光学特性、液晶相の広い温度範囲および他の液晶化合物との優れた相溶性を有する。本発明の液晶組成物は、これらの化合物の少なくとも一つを含有し、そしてネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、大きな屈折率異方性値、低いしきい値電圧を有する。本発明の液晶表示素子は、この組成物を含有し、そして使用できる広い温度範囲、短い応答時間、小さな消費電力、大きなコントラスト比、および低い駆動電圧を有する。   The compound of the present invention has general physical properties necessary for the compound, stability to heat, light, etc., large refractive index anisotropy value and dielectric anisotropy value, steep electro-optical characteristics, wide temperature range of liquid crystal phase and Excellent compatibility with other liquid crystal compounds. The liquid crystal composition of the present invention contains at least one of these compounds, and has a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a large refractive index anisotropy value, and a low threshold voltage. Have The liquid crystal display element of the present invention contains this composition and has a wide temperature range that can be used, a short response time, a small power consumption, a large contrast ratio, and a low driving voltage.

1−1 本発明の化合物
本発明の第1の態様は、式(1)で表される化合物に関する。

Figure 2009292729
式(1)においてRは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよい。例えば、CH(CH−において任意の−CH−を−O−、−S−、または−CH=CH−で置き換えた基の例は、CH(CHO−、CH−O−(CH−、CH−O−CH−O−、CH(CHS−、CH−S−(CH−、CH−S−CH−S−、CH=CH−(CH−、CH−CH=CH−(CH−、CH−CH=CH−CHO−などである。 1-1 Compound of the Present Invention The first aspect of the present invention relates to a compound represented by the formula (1).

Figure 2009292729
In the formula (1), R 1 is alkyl having 1 to 20 carbon atoms, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —S— or —CH═CH—. For example, an example of a group in which any —CH 2 — in CH 3 (CH 2 ) 3 — is replaced by —O—, —S—, or —CH═CH— is CH 3 (CH 2 ) 2 O—, CH 3 -O- (CH 2) 2 -, CH 3 -O-CH 2 -O-, CH 3 (CH 2) 2 S-, CH 3 -S- (CH 2) 2 -, CH 3 -S- CH 2 -S-, CH 2 = CH- (CH 2) 3 -, CH 3 -CH = CH- (CH 2) 2 -, CH 3 -CH = CH-CH 2 O- and the like.

このようなRの例は、アルキル、アルコキシ、アルコキシアルキル、アルコキシアルコキシ、アルキルチオ、アルキルチオアルコキシ、アシル、アシルアルキル、アシルオキシ、アシルオキシアルキル、アルケニル、アルケニルオキシ、アルケニルオキシアルキル、アルコキシアルケニル、アルキニル、アルキニルオキシ等である。これらの基において分岐よりも直鎖の方が好ましい。Rが分岐の基であっても光学活性であるときは好ましい。アルケニルにおける−CH=CH−の好ましい立体配置は、二重結合の位置に依存する。−CH=CHCH、−CH=CHC、−CH=CHC、−CH=CHC、−CCH=CHCH、および−CCH=CHCのような奇数位に二重結合をもつアルケニルにおいてはトランス配置が好ましい。−CHCH=CHCH、−CHCH=CHC、および−CHCH=CHCのような偶数位に二重結合をもつアルケニルにおいてはシス配置が好ましい。好ましい立体配置を有するアルケニル化合物は、高い上限温度または液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109およびMol. Cryst. Liq. Cryst., 1985, 131, 327に詳細な説明がある。 Examples of such R 1 are alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylthio, alkylthioalkoxy, acyl, acylalkyl, acyloxy, acyloxyalkyl, alkenyl, alkenyloxy, alkenyloxyalkyl, alkoxyalkenyl, alkynyl, alkynyloxy Etc. In these groups, straight chain is preferable to branch. Even when R 1 is a branched group, it is preferable when it is optically active. The preferred configuration of —CH═CH— in alkenyl depends on the position of the double bond. -CH = CHCH 3, -CH = CHC 2 H 5, -CH = CHC 3 H 7, -CH = CHC 4 H 9, -C 2 H 4 CH = CHCH 3, and -C 2 H 4 CH = CHC 2 In alkenyl having a double bond at odd positions such as H 5 , the trans configuration is preferable. -CH 2 CH = CHCH 3, cis configuration in the alkenyl having an even position to the double bond, such as -CH 2 CH = CHC 2 H 5 , and -CH 2 CH = CHC 3 H 7 are preferred. An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase. Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.

アルキルとしては、直鎖、分枝鎖または環状のいずれでもよく、アルキルの具体的な例は、−CH、−C、−C、−C、−C11、−C13、−C15、−C17、−C19、−C1021、−C1123、−C1225、−C1327、−C1429、および−C1531である。 The alkyl may be linear, branched or cyclic, and specific examples of alkyl include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5. H 11, -C 6 H 13, -C 7 H 15, -C 8 H 17, -C 9 H 19, -C 10 H 21, -C 11 H 23, -C 12 H 25, -C 13 H 27 , -C 14 H 29, and -C are 15 H 31.

アルコキシの具体的な例は、−OCH、−OC、−OC、−OC、−OC11、−OC13および−OC15、−OC17、−OC19、−OC1021、−OC1123、−OC1225、−OC1327、および−OC1429、である。 Specific examples of the alkoxy, -OCH 3, -OC 2 H 5 , -OC 3 H 7, -OC 4 H 9, -OC 5 H 11, -OC 6 H 13 and -OC 7 H 15, -OC 8 H 17, -OC 9 H 19 , -OC 10 H 21, -OC 11 H 23, -OC 12 H 25, -OC 13 H 27, and -OC 14 H 29, is.

アルコキシアルキルとしては、直鎖でも分枝鎖でもよく、アルコキシアルキルの具体的な例は、−CHOCH、−CHOC、−CHOC、−(CH−OCH、−(CH−OC、−(CH−OC、−(CH−OCH、−(CH−OCH、および−(CH−OCHである。
アルケニルとしては、直鎖でも分枝鎖でもよく、アルケニルの具体的な例は、−CH=CH、−CH=CHCH、−CHCH=CH、−CH=CHC、−CHCH=CHCH、−(CH−CH=CH、−CH=CHC、−CHCH=CHC、−(CH−CH=CHCH、および−(CH−CH=CHである。
The alkoxyalkyl may be linear or branched, and specific examples of alkoxyalkyl include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ). 2 -OCH 3, - (CH 2 ) 2 -OC 2 H 5, - (CH 2) 2 -OC 3 H 7, - (CH 2) 3 -OCH 3, - (CH 2) 4 -OCH 3, and - a (CH 2) 5 -OCH 3.
The alkenyl may be linear or branched, and specific examples of alkenyl include —CH═CH 2 , —CH═CHCH 3 , —CH 2 CH═CH 2 , —CH═CHC 2 H 5 , — CH 2 CH = CHCH 3, - (CH 2) 2 -CH = CH 2, -CH = CHC 3 H 7, -CH 2 CH = CHC 2 H 5, - (CH 2) 2 -CH = CHCH 3, and - a (CH 2) 3 -CH = CH 2.

アルケニルオキシとしては、直鎖でも分枝鎖でもよく、アルケニルオキシの具体的な例は、−OCHCH=CH、−OCHCH=CHCH、および−OCHCH=CHCである。 The alkenyloxy may be linear or branched, and specific examples of alkenyloxy are —OCH 2 CH═CH 2 , —OCH 2 CH═CHCH 3 , and —OCH 2 CH═CHC 2 H 5 . is there.

は、炭素数1〜15のアルキル、または炭素数2〜16のアルケニルが好ましい。またRの最も好ましい例は、−CH、−C、−C、−C、−C11、−C13、−C15、−C17、−C19、−C1021−C1123、−C1225、−C1327、−C1429、および−C1531である。 R 1 is preferably alkyl having 1 to 15 carbons or alkenyl having 2 to 16 carbons. The most preferred examples of R 1 are -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 , -C 5 H 11 , -C 6 H 13, -C 7 H 15 ,- C 8 H 17, -C 9 H 19, -C 10 H 21 -C 11 H 23, -C 12 H 25, -C 13 H 27, -C 14 H 29, and -C are 15 H 31.

式(1)において環A、環A、環A、環A、環A、および環Aは独立して、1,4−フェニレン(14−1)または任意の水素がハロゲンにより置き換えられた1,4−フェニレンである。任意の水素がハロゲンにより置き換えられた1,4−フェニレンの例は、下記の式(14−2)〜(14−15)である。さらに好ましい例は、式(14−2)〜(14−7)、および式(14−11)〜(14−14)で表される基である。 In formula (1), ring A 1 , ring A 2 , ring A 3 , ring A 4 , ring A 5 , and ring A 6 are independently 1,4-phenylene (14-1) or any hydrogen atom is halogen 1,4-phenylene replaced by Examples of 1,4-phenylene in which arbitrary hydrogen is replaced by halogen are the following formulas (14-2) to (14-15). Further preferred examples are groups represented by formulas (14-2) to (14-7) and formulas (14-11) to (14-14).

Figure 2009292729
Figure 2009292729

環A、環A、環A、環A、環A、および環Aの好ましい例は、1,4−フェニレン(14−1)、2−フルオロ−1,4−フェニレン(14−2)(14−3)、2,3−ジフルオロ−1,4−フェニレン(14−4)、2,5−ジフルオロ−1,4−フェニレン(14−6)、2,6−ジフルオロ−1,4−フェニレン(14−5)(14−7)、2,3,5,6−テトラフルオロ−1,4−フェニレン(14−10)である。 Preferred examples of ring A 1 , ring A 2 , ring A 3 , ring A 4 , ring A 5 , and ring A 6 include 1,4-phenylene (14-1), 2-fluoro-1,4-phenylene ( 14-2) (14-3), 2,3-difluoro-1,4-phenylene (14-4), 2,5-difluoro-1,4-phenylene (14-6), 2,6-difluoro- 1,4-phenylene (14-5) (14-7), 2,3,5,6-tetrafluoro-1,4-phenylene (14-10).

環A、環A、環A、環A、環A、および環Aの最も好ましい例は、1,4−フェニレン、2−フルオロ−1,4−フェニレン、および2,6−ジフルオロ−1,4−フェニレンである。
Most preferred examples of ring A 1 , ring A 2 , ring A 3 , ring A 4 , ring A 5 , and ring A 6 are 1,4-phenylene, 2-fluoro-1,4-phenylene, and 2,6 -Difluoro-1,4-phenylene.

式(1)においてZ、Z、Z、Z、ZおよびZは独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−OCO−、−CFO−、−OCF−、−CHO−、−OCH−、−CF=CF−、−(CH−、−(CH−CFO−、−(CH−OCF−、−CFO−(CH−、−OCF(CH−、−CH=CH−(CH−または−(CH−CH=CH−である。 In the formula (1), Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, — COO -, - OCO -, - CF 2 O -, - OCF 2 -, - CH 2 O -, - OCH 2 -, - CF = CF -, - (CH 2) 4 -, - (CH 2) 2 - CF 2 O -, - (CH 2) 2 -OCF 2 -, - CF 2 O- (CH 2) 2 -, - OCF 2 (CH 2) 2 -, - CH = CH- (CH 2) 2 - or - (CH 2) a 2 -CH = CH-.

、Z、Z、Z、ZおよびZの好ましい例は、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−CFO−、−CHO−または−OCH−である。これらの結合において、−CH=CH−、−CF=CF−、−CH=CH−(CH−、および−(CH−CH=CH−のような結合基の二重結合に関する立体配置はシスよりもトランスが好ましい。最も好ましいZ、Z、Z、Z、ZおよびZは、単結合である。 Preferred examples of Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —COO—, —CF. 2 O—, —CH 2 O— or —OCH 2 —. In these bonds, double bonds of linking groups such as —CH═CH—, —CF═CF—, —CH═CH— (CH 2 ) 2 —, and — (CH 2 ) 2 —CH═CH— The configuration of is preferably trans rather than cis. Most preferred Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are single bonds.

式(1)においてL、L、LおよびLは独立して、水素またはハロゲンである。また、L、L、LおよびLは独立して水素またはフッ素であることが好ましく、LおよびLは共にフッ素であることがさらに好ましい。 In the formula (1), L 1 , L 2 , L 3 and L 4 are independently hydrogen or halogen. L 1 , L 2 , L 3 and L 4 are preferably independently hydrogen or fluorine, and both L 1 and L 2 are more preferably fluorine.

式(1)においてXは水素、ハロゲン、−C≡N、−N=C=S、−SF、または炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく、そして任意の水素はハロゲンにより置き換えられてもよい。 In Formula (1), X 1 is hydrogen, halogen, —C≡N, —N═C═S, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, any —CH 2 — is — O—, —S— or —CH═CH— may be replaced, and any hydrogen may be replaced by halogen.

任意の水素がハロゲンにより置き換えられたアルキルの具体的な例は、−CHF、−CHF、−CF、−(CH−F、−CFCHF、−CFCHF、−CHCF、−CFCF、−(CH−F、−(CF−CF、−CFCHFCF、−CHFCFCF、−(CH−F、−(CF−CF、−(CH−Fおよび−(CF−CF、である。 Specific examples of alkyl in which arbitrary hydrogen is replaced by halogen, -CH 2 F, -CHF 2, -CF 3, - (CH 2) 2 -F, -CF 2 CH 2 F, -CF 2 CHF 2, -CH 2 CF 3, -CF 2 CF 3, - (CH 2) 3 -F, - (CF 2) 2 -CF 3, -CF 2 CHFCF 3, -CHFCF 2 CF 3, - (CH 2) 4 -F, - (CF 2) 3 -CF 3, - (CH 2) 5 -F and - (CF 2) 4 -CF 3 , a.

任意の水素がハロゲンにより置き換えられたアルコキシの具体的な例は、−OCHF、−OCHF、−OCF、−O−(CH−F、−OCFCHF、−OCFCHF、−OCHCF、−O−(CH−F、−O−(CF−CF、−OCFCHFCF、−OCHFCFCF、−O−(CH−F、−O−(CF−CF、−O−(CH−Fおよび−O−(CF−CFである。 Specific examples of alkoxy in which arbitrary hydrogen is replaced by halogen, -OCH 2 F, -OCHF 2, -OCF 3, -O- (CH 2) 2 -F, -OCF 2 CH 2 F, -OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CH 2 ) 3 —F, —O— (CF 2 ) 2 —CF 3 , —OCF 2 CHFCF 3 , —OCHFCF 2 CF 3 , —O— (CH 2) 4 -F, -O- (CF 2) 3 -CF 3, is -O- (CH 2) 5 -F and -O- (CF 2) 4 -CF 3 .

任意の水素がハロゲンにより置き換えられたアルケニルの具体的な例は、−CH=CHF、−CH=CF、−CF=CHF、−CH=CHCHF、−CH=CHCF、−(CHCH=CF、−CHCH=CHCF、−CH=CHCFCF、である。 Specific examples of alkenyl in which arbitrary hydrogen is replaced by halogen, -CH = CHF, -CH = CF 2, -CF = CHF, -CH = CHCH 2 F, -CH = CHCF 3, - (CH 2 ) 2 CH═CF 2 , —CH 2 CH═CHCF 3 , —CH═CHCF 2 CF 3 .

の具体的な例は、水素、フッ素、塩素、−C≡N、−N=C=S、−SF、−CH、−C、−C、−C、−C11、−C13、−C15、−C17、−C19、−C1021、−CHF、−CHF、−CF、−(CH−F、−CFCHF、−CFCHF、−CHCF、−CFCF、−(CH−F、−(CF−CF、−CFCHFCF、−CHFCFCF、−(CH−F、−(CF−CF、−(CH−F、−(CF−CF、−OCH、−OC、−OC、−OC、−OC11、−OCHF、−OCHF、−OCF、−O−(CH−F、−OCFCHF、−OCFCHF、−OCHCF、−O−(CH−F、−O(CF−CF、−OCFCHFCF、−OCHFCFCF、−O(CHF、−O(CFCF、−O(CH−F、−O−(CF−CF、−CH=CH、−CH=CHCH、−CHCH=CH、−CH=CHC、−CHCH=CHCH、−(CH−CH=CH、−CH=CHC、−CHCH=CHC、−(CH−CH=CHCH、−(CH−CH=CH、−CH=CHF、−CH=CF、−CF=CHF、−CH=CHCHF、−CH=CHCF、−(CH−CH=CF、−CHCH=CHCF、および−CH=CHCFCFである。 Specific examples of X 1 are hydrogen, fluorine, chlorine, —C≡N, —N═C═S, —SF 5 , —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4. H 9, -C 5 H 11, -C 6 H 13, -C 7 H 15, -C 8 H 17, -C 9 H 19, -C 10 H 21, -CH 2 F, -CHF 2, -CF 3, - (CH 2) 2 -F, -CF 2 CH 2 F, -CF 2 CHF 2, -CH 2 CF 3, -CF 2 CF 3, - (CH 2) 3 -F, - (CF 2) 2 -CF 3, -CF 2 CHFCF 3 , -CHFCF 2 CF 3, - (CH 2) 4 -F, - (CF 2) 3 -CF 3, - (CH 2) 5 -F, - (CF 2) 4 -CF 3, -OCH 3, -OC 2 H 5, -OC 3 H 7, -OC 4 H 9, -OC 5 H 11, -OCH 2 F, -OCHF 2, -OCF 3, -O- (CH 2) 2 -F, -OCF 2 CH 2 F, -OCF 2 CHF 2, -OCH 2 CF 3, -O- (CH 2) 3 -F , —O (CF 2 ) 2 —CF 3 , —OCF 2 CHFCF 3 , —OCHFCF 2 CF 3 , —O (CH 2 ) 4 F, —O (CF 2 ) 3 CF 3 , —O (CH 2 ) 5 -F, -O- (CF 2) 4 -CF 3, -CH = CH 2, -CH = CHCH 3, -CH 2 CH = CH 2, -CH = CHC 2 H 5, -CH 2 CH = CHCH 3 , — (CH 2 ) 2 —CH═CH 2 , —CH═CHC 3 H 7 , —CH 2 CH═CHC 2 H 5 , — (CH 2 ) 2 —CH═CHCH 3 , — (CH 2 ) 3CH = CH 2, -CH = CHF , -CH = CF 2, -CF = C F, -CH = CHCH 2 F, -CH = CHCF 3, - (CH 2) 2 -CH = CF 2, -CH 2 CH = CHCF 3, and a -CH = CHCF 2 CF 3.

好ましいXの例は、フッ素、塩素、−C≡N、−CF、−CHF、−CHF、−OCF、−OCHFおよび−OCHFである。最も好ましいXの例は、フッ素、および−OCFである。 Preferred examples of X 1 are fluorine, chlorine, —C≡N, —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 and —OCH 2 F. The most preferred examples of X 1 are fluorine and —OCF 3 .

式(1)においてl、m、n、o、pおよびqは独立して0または1であり、l+m+n+o+p+q=3である。l、m、n、o、pおよびqの好ましい組み合わせは、(l=o=p=1,m=n=q=0)、(l=m=o=1,n=p=q=0)、および(l=m=n=1,o=p=q=0)である。 In the formula (1), l, m, n, o, p and q are independently 0 or 1, and l + m + n + o + p + q = 3. Preferred combinations of l, m, n, o, p and q are (l = o = p = 1, m = n = q = 0), (l = m = o = 1, n = p = q = 0) ), And (l = m = n = 1, o = p = q = 0).

1−2 本発明の化合物の性質およびその調整方法
本発明の化合物(1)をさらに詳細に説明する。化合物(1)はCFO結合基を有する5環の液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして他の液晶化合物との相溶性がよい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。この組成物を低い温度で保管しても、この化合物が結晶(またはスメクチック相)として析出することがない。この化合物は、5環化合物であり透明点が高く、環構造がすべて置換されていてもよい1,4−フェニレンからなるため屈折率異方性が大きい。よって高速応答可能な液晶表示素子を製造するのに適している。さらに誘電率異方性が大きく、組成物のしきい値電圧を下げるための成分として有用である。
1-2 Properties of Compound of the Present Invention and Preparation Method Thereof The compound (1) of the present invention will be described in more detail. Compound (1) is a pentacyclic liquid crystal compound having a CF 2 O bonding group. This compound is extremely physically and chemically stable under the conditions in which the device is normally used, and has good compatibility with other liquid crystal compounds. A composition containing this compound is stable under conditions in which the device is normally used. Even when the composition is stored at a low temperature, the compound does not precipitate as crystals (or a smectic phase). This compound is a pentacyclic compound, has a high clearing point, and has a large refractive index anisotropy because it consists of 1,4-phenylene which may be substituted for all ring structures. Therefore, it is suitable for manufacturing a liquid crystal display element capable of high-speed response. Furthermore, it has a large dielectric anisotropy and is useful as a component for lowering the threshold voltage of the composition.

化合物(1)の左末端基R、一番右側のベンゼン環上の基およびその置換位置(L、LおよびX)、あるいは結合基Z〜Zを適切に選択することによって、屈折率異方性、誘電率異方性などの物性を任意に調整することが可能である。左末端基R、右末端基X、結合基Z〜Z、LおよびLの種類が、化合物(1)の物性に与える効果を以下に説明する。 By appropriately selecting the left terminal group R 1 of the compound (1), the group on the rightmost benzene ring and its substitution position (L 1 , L 2 and X 1 ), or the linking groups Z 1 to Z 6 Further, physical properties such as refractive index anisotropy and dielectric anisotropy can be arbitrarily adjusted. The effects of the types of the left terminal group R 1 , the right terminal group X 1 , the linking groups Z 1 to Z 6 , L 1 and L 2 on the physical properties of the compound (1) will be described below.

が直鎖であるときは液晶相の温度範囲が広くそして粘度が小さい。Rが分岐鎖であるときは他の液晶化合物との相溶性がよい。Rが光学活性基である化合物は、キラルドーパントとして有用である。この化合物を組成物に添加することによって、素子に発生するリバース・ツイスト・ドメイン(Reverse twisted domain)を防止することができる。Rが光学活性基でない化合物は組成物の成分として有用である。Rがアルケニルであるとき、好ましい立体配置は二重結合の位置に依存する。好ましい立体配置を有するアルケニル化合物は、高い上限温度または液晶相の広い温度範囲を有する。 When R 1 is linear, the temperature range of the liquid crystal phase is wide and the viscosity is small. When R is a branched chain, the compatibility with other liquid crystal compounds is good. A compound in which R 1 is an optically active group is useful as a chiral dopant. By adding this compound to the composition, a reverse twisted domain generated in the device can be prevented. A compound in which R 1 is not an optically active group is useful as a component of the composition. When R 1 is alkenyl, the preferred configuration depends on the position of the double bond. An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.

結合基Z、Z、Z、Z、ZおよびZが単結合、−CHCH−、−CH=CH−、−CFO−、−OCF−、−CHO−、−OCH−、−CF=CF−、−(CH−O−、−O−(CH−、−(CH−CFO−、−OCF−(CH−、または−(CH−であるときは粘度が小さい。結合基が単結合、−(CH−、−CFO−、−OCF−、または−CH=CH−であるときは粘度がより小さい。結合基が−CH=CH−であるときは液晶相の温度範囲が広く、そして弾性定数比K33/K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)が大きい。結合基が−C≡C−のときは光学異方性が大きい。Z、Z、Z、Z、ZおよびZが単結合、−(CH−、−CHO−、−CFO−、−OCF−、−(CH−であるときは化学的に比較的安定であって、比較的劣化をおこしにくい。 The bonding groups Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are a single bond, —CH 2 CH 2 —, —CH═CH—, —CF 2 O—, —OCF 2 —, —CH 2. O -, - OCH 2 -, - CF = CF -, - (CH 2) 3 -O -, - O- (CH 2) 3 -, - (CH 2) 2 -CF 2 O -, - OCF 2 - When it is (CH 2 ) 2 — or — (CH 2 ) 4 —, the viscosity is small. When the bonding group is a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, or —CH═CH—, the viscosity is smaller. When the bonding group is —CH═CH—, the temperature range of the liquid crystal phase is wide, and the elastic constant ratio K 33 / K 11 (K 33 : bend elastic constant, K 11 : spray elastic constant) is large. When the bonding group is —C≡C—, the optical anisotropy is large. Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are a single bond, — (CH 2 ) 2 —, —CH 2 O—, —CF 2 O—, —OCF 2 —, — (CH 2 ) 4 - is when is a relatively chemically stable, not prone to relatively deteriorated.

右末端基Xがフッ素、塩素、−C≡N、−N=C=S、−SF、−CF、−CHF、−CHF、−OCF、−OCHFまたは−OCHFであるときは誘電率異方性が大きい。Xが−C≡N、−N=C=Sまたはアルケニルであるときは光学異方性が大きい。Xがフッ素、−OCF、またはアルキルであるときは、化学的に安定である。 The right terminal group X 1 is fluorine, chlorine, —C≡N, —N═C═S, —SF 5 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 or —OCH 2. When it is F, the dielectric anisotropy is large. When X 1 is —C≡N, —N═C═S or alkenyl, the optical anisotropy is large. When X 1 is fluorine, —OCF 3 , or alkyl, it is chemically stable.

およびLが共にフッ素であり、Xがフッ素、塩素、−C≡N、−N=C=S、−SF、−CF、−CHF、−CHF、−OCF、−OCHFまたは−OCHFであるときは、誘電率異方性が大きい。Lがフッ素でありXが−OCFであるとき、LおよびLが共にフッ素でありXが−OCFであるとき、またはL、LおよびXが全てフッ素であるときは誘電率異方性値が大きく、液晶相の温度範囲が広いうえ、化学的に安定であり劣化を起こしにくい。 L 1 and L 2 are both fluorine, X 1 is fluorine, chlorine, —C≡N, —N═C═S, —SF 5 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 or —OCH 2 F, the dielectric anisotropy is large. When L 1 is fluorine and X 1 is —OCF 3 , L 1 and L 2 are both fluorine and X 1 is —OCF 3 , or L 1 , L 2 and X 1 are all fluorine Sometimes, the dielectric anisotropy value is large, the temperature range of the liquid crystal phase is wide, and it is chemically stable and hardly deteriorates.

以上のように、末端基、結合基などの種類を適当に選択することにより目的の物性を有する化合物を得ることができる。したがって、化合物(1)はPC、TN、STN、ECB、OCB、IPS、VAなどの素子に用いられる組成物の成分として有用である。   As described above, a compound having desired physical properties can be obtained by appropriately selecting the type of terminal group, bonding group, and the like. Therefore, the compound (1) is useful as a component of a composition used for devices such as PC, TN, STN, ECB, OCB, IPS, and VA.

1−3 化合物(1)の具体例
化合物(1)の好ましい例は、項[4]に示した式(1−5)〜(1−8)である。より好ましい例は、項[5]に示した式(1−9)〜(1−11)である。さらに好ましい例は、項[6]に示した式(1−12)〜(1−17)である。

Figure 2009292729

(これらの式において、Rは炭素数1〜15のアルキルであり、このアルキルにおいて任意の−CH−は−CH=CH−により置き換えられてもよく;L、L、Y、Y、Y、Y、Y、およびYは独立して水素またはフッ素であり;Xはフッ素、塩素、−C≡N、−CF、−CHF、−CHF、−OCF、−OCHFおよび−OCHFである。) 1-3 Specific Example of Compound (1) Preferred examples of compound (1) are the formulas (1-5) to (1-8) shown in item [4]. More preferable examples are the formulas (1-9) to (1-11) shown in the item [5]. Further preferred examples are the formulas (1-12) to (1-17) shown in the item [6].

Figure 2009292729

(In these formulas, R 1 is alkyl having 1 to 15 carbon atoms, and in this alkyl, arbitrary —CH 2 — may be replaced by —CH═CH—; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 are independently hydrogen or fluorine; X 1 is fluorine, chlorine, —C≡N, —CF 3 , —CHF 2 , —CH 2 F, -OCF 3, is -OCHF 2 and -OCH 2 F.)

Figure 2009292729

(これらの式において、Rは炭素数1〜15のアルキルであり;L、L、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xはフッ素または−OCFである。)
Figure 2009292729

(In these formulas, R 1 is alkyl having 1 to 15 carbons; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine. X 1 is fluorine or —OCF 3 ;

Figure 2009292729

(これらの式において、Rは炭素数1〜15のアルキルであり;L、Y、Y、Y、Y、およびYは独立して水素またはフッ素である。)
Figure 2009292729

(In these formulas, R 1 is alkyl having 1 to 15 carbon atoms; L 1 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine.)

1−4 化合物(1)の合成
次に、化合物(1)の合成について説明する。化合物(1)は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニックシンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
1-4 Synthesis of Compound (1) Next, the synthesis of compound (1) will be described. Compound (1) can be synthesized by appropriately combining techniques in organic synthetic chemistry. Methods for introducing the desired end groups, rings and linking groups into the starting materials are Organic Syntheses (John Wiley & Sons, Inc), Organic Reactions (John Wiley & Sons, Inc), Comprehensive・ It is described in the organic synthesis (Comprehensive Organic Synthesis, Pergamon Press), new experimental chemistry course (Maruzen).

1−4−1 結合基Z 〜Z を生成する方法
化合物(1)における結合基Z〜Zを生成する方法の一例は、下記のスキームの通りである。このスキームにおいて、MSGまたはMSGは少なくとも一つの環を有する1価の有機基である。スキームで用いた複数のMSG(またはMSG)は、同一であってもよいし、または異なってもよい。化合物(1A)〜(1J)は、化合物(1)に相当する。

Figure 2009292729
An example of a method for forming the bonding group Z 1 to Z 6 in the 1-4-1 method for forming the bonding group Z 1 to Z 6 Compound (1) is as the following scheme. In this scheme, MSG 1 or MSG 2 is a monovalent organic group having at least one ring. A plurality of MSG 1 (or MSG 2 ) used in the scheme may be the same or different. Compounds (1A) to (1J) correspond to compound (1).

Figure 2009292729


Figure 2009292729

Figure 2009292729

次に、化合物(1)における結合基Z〜Zについて、各種の結合の生成方法について、以下の(I)〜(XI)項で説明する。 Next, regarding the bonding groups Z 1 to Z 6 in the compound (1), methods for generating various bonds will be described in the following (I) to (XI) items.

(I)単結合の生成
アリールホウ酸(15)と公知の方法で合成される化合物(16)とを、炭酸塩水溶液とテトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて化合物(1A)を合成する。この化合物(1A)は、公知の方法で合成される化合物(17)にn−ブチルリチウムを、次いで塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下で化合物(16)を反応させることによっても合成される。
(I) Formation of a single bond A compound obtained by reacting an arylboric acid (15) with a compound (16) synthesized by a known method in the presence of a catalyst such as an aqueous carbonate solution and tetrakis (triphenylphosphine) palladium. Synthesize (1A). This compound (1A) is obtained by reacting compound (17) synthesized by a known method with n-butyllithium and then with zinc chloride, and in the presence of a catalyst such as dichlorobis (triphenylphosphine) palladium. ) Is also reacted.

(II)−COO−と−OCO−の生成
化合物(17)にn−ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸(18)を得る。化合物(18)と、公知の方法で合成されるフェノール(19)とをDCC(1,3−ジシクロヘキシルカルボジイミド)とDMAP(4−ジメチルアミノピリジン)の存在下で脱水させて−COO−を有する化合物(1B)を合成する。この方法によって−OCO−を有する化合物も合成する。
(II) Formation of —COO— and —OCO— The compound (17) is reacted with n-butyllithium and subsequently with carbon dioxide to obtain a carboxylic acid (18). Compound (18) and phenol (19) synthesized by a known method are dehydrated in the presence of DCC (1,3-dicyclohexylcarbodiimide) and DMAP (4-dimethylaminopyridine) to have -COO- Synthesize (1B). A compound having —OCO— is also synthesized by this method.

(III)−CFO−と−OCF−の生成
化合物(1B)をローソン試薬のような硫黄化剤で処理して化合物(20)を得る。化合物(20)をフッ化水素ピリジン錯体とNBS(N−ブロモスクシンイミド)でフッ素化し、−CFO−を有する化合物(1C)を合成する。M. Kuroboshi et al., Chem. Lett., 1992,827.を参照。化合物(1C)は化合物(20)を(ジエチルアミノ)サルファートリフルオリド(DAST)でフッ素化しても合成される。W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768.を参照。この方法によって−OCF−を有する化合物も合成する。Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480.に記載の方法によってこれらの結合基を生成させることも可能である。
(III) Formation of —CF 2 O— and —OCF 2 — Compound (1B) is treated with a sulfurizing agent such as Lawesson's reagent to obtain compound (20). The compound (20) is fluorinated with a hydrogen fluoride pyridine complex and NBS (N-bromosuccinimide) to synthesize a compound (1C) having —CF 2 O—. See M. Kuroboshi et al., Chem. Lett., 1992, 827. Compound (1C) can also be synthesized by fluorinating compound (20) with (diethylamino) sulfur trifluoride (DAST). See WH Bunnelle et al., J. Org. Chem. 1990, 55, 768. A compound having —OCF 2 — is also synthesized by this method. These linking groups can also be generated by the method described in Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480.

(IV)−CH=CH−の生成
化合物(17)をn−ブチルリチウムで処理した後、N,N−ジメチルホルムアミド(DMF)などのホルムアミドと反応させてアルデヒド(22)を得る。公知の方法で合成されるホスホニウム塩(21)をカリウムtert−ブトキシドのような塩基で処理して発生させたリンイリドを、アルデヒド(22)に反応させて化合物(1D)を合成する。反応条件によってはシス体が生成するので、必要に応じて公知の方法によりシス体をトランス体に異性化する。
(IV) Formation of —CH═CH— Compound (17) is treated with n-butyllithium and then reacted with formamide such as N, N-dimethylformamide (DMF) to obtain aldehyde (22). A phosphoryl ylide generated by treating a phosphonium salt (21) synthesized by a known method with a base such as potassium tert-butoxide is reacted with an aldehyde (22) to synthesize a compound (1D). Since a cis isomer is generated depending on the reaction conditions, the cis isomer is isomerized to a trans isomer by a known method as necessary.

(V)−(CH−の生成
化合物(1D)をパラジウム炭素のような触媒の存在下で水素化することにより、化合物(1E)を合成する。
(V) Formation of — (CH 2 ) 2 — Compound (1E) is synthesized by hydrogenating compound (1D) in the presence of a catalyst such as palladium carbon.

(VI)−(CH−の生成
ホスホニウム塩(21)の代わりにホスホニウム塩(23)を用い、項(IV)の方法に従って−(CH−CH=CH−を有する化合物を得る。これを接触水素化して化合物(1F)を合成する。
(VI) Formation of — (CH 2 ) 4 — A compound having — (CH 2 ) 2 —CH═CH— is prepared by using the phosphonium salt (23) instead of the phosphonium salt (21) and according to the method of the item (IV). obtain. This is catalytically hydrogenated to synthesize compound (1F).

(VII)−C≡C−の生成
ジクロロパラジウムとハロゲン化銅との触媒存在下で、化合物(17)に2−メチル−3−ブチン−2−オールを反応させたのち、塩基性条件下で脱保護して化合物(24)を得る。ジクロロビストリフェニルホスフィンパラジウムとハロゲン化銅との触媒存在下、化合物(24)を化合物(16)と反応させて、化合物(1G)を合成する。
(VII) Formation of —C≡C— After reacting compound (17) with 2-methyl-3-butyn-2-ol in the presence of a catalyst of dichloropalladium and copper halide, under basic conditions Deprotection gives compound (24). Compound (1G) is synthesized by reacting compound (24) with compound (16) in the presence of a catalyst of dichlorobistriphenylphosphine palladium and copper halide.

(VIII)−CF=CF−の生成
化合物(17)をn−ブチルリチウムで処理したあと、テトラフルオロエチレンを反応させて化合物(25)を得る。化合物(16)をn−ブチルリチウムで処理したあと化合物(25)と反応させて化合物(1H)を合成する。
(VIII) Formation of —CF═CF— The compound (17) is treated with n-butyllithium and then reacted with tetrafluoroethylene to obtain the compound (25). Compound (16) is treated with n-butyllithium and then reacted with compound (25) to synthesize compound (1H).

(IX)−CHO−または−OCH−の生成
化合物(22)を水素化ホウ素ナトリウムなどの還元剤で還元して化合物(26)を得る。これを臭化水素酸などでハロゲン化して化合物(27)を得る。炭酸カリウムなどの存在下で、化合物(27)を化合物(19)と反応させて化合物(1I)を合成する。
(IX) Formation of —CH 2 O— or —OCH 2 — Compound (26) is obtained by reducing compound (22) with a reducing agent such as sodium borohydride. This is halogenated with hydrobromic acid or the like to obtain compound (27). Compound (27) is reacted with compound (19) in the presence of potassium carbonate or the like to synthesize compound (1I).

(X)−(CH23O−または−O(CH23−の生成
化合物(22)の代わりに化合物(28)を用いて、前項(IX)と同様な方法にて化合物(1J)を合成する。
Formation of (X)-(CH 2 ) 3 O— or —O (CH 2 ) 3 — Compound (1J) was prepared in the same manner as in (IX) above using Compound (28) instead of Compound (22). ).

1−4−2 環A 、環A 、環A 、環A 、環A および環A を合成する方法
1,4−フェニレン、2−フルオロ−1,4−フェニレン、2,3−ジフルオロ−1,4−フェニレン、2,5−ジフルオロ−1,4−フェニレン、2,6−ジフルオロ−1,4−フェニレン、2,3,5,6−テトラフルオロ−1,4−フェニレンなどの環に関しては出発物が市販されているか、または合成法がよく知られている。
1-4-2 Method for synthesizing ring A 1 , ring A 2 , ring A 3 , ring A 4 , ring A 5 and ring A 6 1,4-phenylene, 2-fluoro-1,4-phenylene, 2, 3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5,6-tetrafluoro-1,4-phenylene For rings such as, starting materials are commercially available or synthetic methods are well known.

1−4−3−1 化合物(1)を合成する方法
式(1)で表される化合物を合成する方法は複数あるが、ここにその例を示す。US6231785B1に記載された方法に従い、化合物(31)にn−ブチルリチウム、次いでジブロモジフルオロメタンを反応させて、ブロモジフルオロメタン誘導体(32)を得る。このブロモジフルオロメタン誘導体(32)とフェノール誘導体(33)とを炭酸カリウムなどの塩基の存在下で反応させて化合物(1)を合成することができる。
1-4-3-1 Method for synthesizing compound (1) There are a plurality of methods for synthesizing the compound represented by formula (1), and examples thereof are shown here. According to the method described in US Pat. No. 6,231,785 B1, n-butyllithium and then dibromodifluoromethane are reacted with compound (31) to obtain bromodifluoromethane derivative (32). Compound (1) can be synthesized by reacting this bromodifluoromethane derivative (32) with a phenol derivative (33) in the presence of a base such as potassium carbonate.

Figure 2009292729

(これらの式において、環A〜環A、Z〜Z、L〜L、R、X、l、m、n、o、p、およびqは前記と同一の意味である。)
Figure 2009292729

(In these formulas, ring A 1 to ring A 6 , Z 1 to Z 6 , L 1 to L 4 , R 1 , X 1 , l, m, n, o, p, and q are as defined above. .)

化合物(1)は、P. Kirsch et al., Angew. Chem. Int. Ed., 2001, 40, 1480.に記載された方法によっても合成できる。カルボン酸誘導体(34)にアルカンジチオールとトリフルオロメタンスルホン酸を反応させてジチアニリウム塩(35)を得る。フェノール誘導体(33)にジチアニリウム塩(35)、次いでEtN・3HFを反応させ、臭素で処理して化合物(1)を得る。 Compound (1) can also be synthesized by the method described in P. Kirsch et al., Angew. Chem. Int. Ed., 2001, 40, 1480. The carboxylic acid derivative (34) is reacted with alkanedithiol and trifluoromethanesulfonic acid to obtain a dithianilium salt (35). The phenol derivative (33) is reacted with a dithianilium salt (35) and then Et 3 N · 3HF, and treated with bromine to obtain the compound (1).

Figure 2009292729

(これらの式において、環A〜環A、Z〜Z、L〜L、R、X、l、m、n、o、p、およびqは前記と同一の意味である。)
Figure 2009292729

(In these formulas, ring A 1 to ring A 6 , Z 1 to Z 6 , L 1 to L 4 , R 1 , X 1 , l, m, n, o, p, and q are as defined above. .)

1−4−3−2 合成原料であるフェノール誘導体(33)を合成する方法
化合物(1)の合成原料であるフェノール誘導体(33)は、例えば以下の手法に従って合成する。式(33)において、o=p=q=0である場合はブロモベンゼン誘導体(36)から調製したグリニャール試薬にほう酸トリアルキルを作用させ得られるボロン酸エステル誘導体を過酢酸にて酸化するか(R.L. Kidwell等、オーガニックシンセシス、5巻、P918(1973))またはボロン酸エステルの酸加水分解にて容易に得られるボロン酸誘導体(37)を過酢酸にて酸化することにより、目的のフェノール誘導体(33−1)を容易に製造することができる。
1-4-3-2 Method for Synthesizing Phenol Derivative (33) as Synthetic Raw Material Phenol derivative (33) as a synthetic raw material for compound (1) is synthesized, for example, according to the following method. In the formula (33), when o = p = q = 0, is a boronic acid ester derivative obtained by reacting a trialkyl borate with a Grignard reagent prepared from a bromobenzene derivative (36) oxidized with peracetic acid? RL Kidwell et al., Organic Synthesis, Vol. 5, P918 (1973)) or boronic acid derivative (37) easily obtained by acid hydrolysis of boronic acid ester is oxidized with peracetic acid to give the desired phenol derivative ( 33-1) can be easily manufactured.

Figure 2009292729

(この式において、LおよびLは前記と同一の意味であり、Xは水素、フッ素、塩素、トリフルオロメチル、ジフルオロメチル、フルオロアルキル、またはトリフルオロメトキシである。)
Figure 2009292729

(In this formula, L 1 and L 2 have the same meaning as described above, and X 1 is hydrogen, fluorine, chlorine, trifluoromethyl, difluoromethyl, fluoroalkyl, or trifluoromethoxy.)

式(33)において、Z、Z5およびZ6が共に単結合であり、o=p=0、q=1である場合、o=0、p=q=1である場合、またはo=p=q=1である場合は、例えばボロン酸誘導体(37)に対し、テトラキストリフェニルホスフィンパラジウム(0)を触媒として塩基存在下アニソール誘導体(38)を作用させ、カップリングすることにより化合物(39)を得る(鈴木章等、有機合成化学協会誌、第46巻第9号、848(1988))。次いでこのものに三臭化ホウ素を作用させて脱メチル化することにより、目的のフェノール誘導体(33−2)を合成することができる。 In Formula (33), when Z 4 , Z 5 and Z 6 are all a single bond, o = p = 0, q = 1, o = 0, p = q = 1, or o = In the case of p = q = 1, for example, the boronic acid derivative (37) is reacted with the anisole derivative (38) in the presence of a base using tetrakistriphenylphosphine palladium (0) as a catalyst and coupled to the compound ( 39) (Suzuki, et al., Journal of Synthetic Organic Chemistry, Vol. 46, No. 9, 848 (1988)). Subsequently, the target phenol derivative (33-2) can be synthesized by allowing boron tribromide to act on this product and demethylating it.

Figure 2009292729

(この式において、環A〜環A、L、L、o、pおよびqは前記と同一の意味であり、Xは水素、フッ素、塩素、トリフルオロメチル、ジフルオロメチル、フルオロアルキル、またはトリフルオロメトキシである。)
Figure 2009292729

(In this formula, ring A 4 to ring A 6 , L 1 , L 2 , o, p and q have the same meaning as described above, and X 1 represents hydrogen, fluorine, chlorine, trifluoromethyl, difluoromethyl, fluoro Alkyl or trifluoromethoxy.)

式(33)において、Z、ZおよびZが共に単結合であり、o=p=q=0である場合は、以下の手法によっても合成することができる。ベンジルエーテル誘導体(40)に対しn−またはsec−ブチルリチウムをTHF中、−70℃以下で作用させ、次いでホウ酸トリアルキルを作用させ、得られるホウ酸エステル誘導体またはこのものを酸加水分解して得られるボロン酸誘導体を過酢酸で酸化することによりフェノール誘導体(41)を得て、これを水素化ナトリウムでフェノーラートとした後フルオロアルキルブロミドを作用させエーテル化した後、接触水素還元に付して脱保護することにより、目的のフェノール誘導体(33−3)を合成することができる。 In the formula (33), when Z 4 , Z 5 and Z 6 are all single bonds and o = p = q = 0, they can also be synthesized by the following method. N- or sec-butyllithium is allowed to act on benzyl ether derivative (40) in THF at −70 ° C. or lower, and then trialkyl borate is allowed to act on the resulting boric acid ester derivative or acid hydrolysis thereof. The resulting boronic acid derivative is oxidized with peracetic acid to obtain a phenol derivative (41), which is converted to phenolate with sodium hydride, etherified with fluoroalkyl bromide, and subjected to catalytic hydrogen reduction. Thus, the desired phenol derivative (33-3) can be synthesized by deprotection.

Figure 2009292729

(式中、LおよびLは前記と同一の意味を表し、Rfはトリフルオロメチル基を除くフルオロアルキル基を示す。)
Figure 2009292729

(In the formula, L 1 and L 2 represent the same meaning as described above, and Rf represents a fluoroalkyl group excluding a trifluoromethyl group.)

化合物(1)のうち、CFO結合基を挟んで右側の部位がビフェニル構造を有する誘導体、例えばl=m=q=1、n=o=p=0でZが単結合であるもの、ターフェニル構造を有する誘導体、例えばl=p=q=1でZおよびZが共に単結合であるもの、クオーターフェニル構造を有する誘導体、例えばo=p=q=1でZ、ZおよびZが共に単結合である誘導体(1−2)については、特に以下に示す方法により合成することができる。すなわち、前記の化合物(31)とフェノール誘導体(33−1)または(33−2)から一般式(1)で表される化合物を製造する方法と同様にして化合物(42)を得、これにn−またはsec−ブチルリチウムを作用させてリチオ化し、次いで塩化亜鉛を添加して有機金属化合物に変換した後、テトラキストリフェニルホスフィンパラジウム(0)等の触媒の存在下、前記のブロモベンゼン誘導体(36)またはブロモベンゼン誘導体(44)(化合物(43)とフルオロアルキルのエーテル化で得られる)を作用させることにより合成することができる。 Of the compound (1), a derivative having a biphenyl structure on the right side of the CF 2 O bonding group, for example, 1 = m = q = 1, n = o = p = 0 and Z 6 is a single bond A derivative having a terphenyl structure, for example, l = p = q = 1 and Z 5 and Z 6 are both single bonds, a derivative having a quarter phenyl structure, for example, Z 4 , Z having o = p = q = 1 The derivative (1-2) in which both 5 and Z 6 are single bonds can be synthesized by the method shown below. That is, the compound (42) was obtained in the same manner as in the method for producing the compound represented by the general formula (1) from the compound (31) and the phenol derivative (33-1) or (33-2). After lithiation with the action of n- or sec-butyllithium, followed by conversion to an organometallic compound by adding zinc chloride, the above bromobenzene derivative (in the presence of a catalyst such as tetrakistriphenylphosphine palladium (0)) 36) or a bromobenzene derivative (44) (obtained by etherification of compound (43) and fluoroalkyl).

Figure 2009292729

(この式において、環A〜環A、Z〜Z、L〜L、R、Xは前記と同一の意味を表し、YおよびYは水素またはフッ素であり、Rfはトリフルオロメチルを除くフルオロアルキルである。)
Figure 2009292729

(In this formula, ring A 1 to ring A 5 , Z 1 to Z 3 , L 1 to L 4 , R 1 and X 1 represent the same meaning as described above, and Y 1 and Y 2 are hydrogen or fluorine. , Rf is fluoroalkyl excluding trifluoromethyl.)

2 本発明の組成物
本発明の第2の態様は、式(1)で表される化合物を含む組成物であり、好ましくは、液晶材料に用いることのできる液晶組成物である。本発明の液晶組成物は、前記本発明の式(1)で示される化合物を成分Aとして含む必要がある。この成分Aのみの組成物、または成分Aと本明細書中で特に成分名を示していないその他の成分との組成物でもよいが、この成分Aに以下に示す成分B、C、DおよびEから選ばれた成分を加えることにより種々の特性を有する本発明の液晶組成物(a)、(b)、(c)、(d)、(e)などが提供できる。
2 Composition of the Present Invention The second aspect of the present invention is a composition containing a compound represented by the formula (1), and is preferably a liquid crystal composition that can be used for a liquid crystal material. The liquid crystal composition of the present invention needs to contain the compound represented by the formula (1) of the present invention as the component A. The composition of only component A or a composition of component A and other components not specifically indicated in the present specification may be used, but components B, C, D and E shown below for component A are as follows. The liquid crystal composition (a), (b), (c), (d), (e) of the present invention having various characteristics can be provided by adding a component selected from the above.

成分Aに加える成分として、前記式(2)、(3)および(4)からなる群から選ばれた少なくとも1種の化合物からなる成分B、または前記式(5)からなる群から選ばれた少なくとも1種の化合物からなる成分C、または前記式(6)、(7)、(8)、(9)、(10)からなる群から選ばれた少なくとも1種の化合物からなる成分Dを混合したものが好ましい〔前記液晶組成物(b)、(c)および(d)〕。
さらに式(11)、(12)および(13)からなる群から選ばれた少なくとも1種の化合物からなる成分Eを混合することによりしきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度等を調整することができる〔前記液晶組成物(e)〕。
The component added to Component A was selected from Component B consisting of at least one compound selected from the group consisting of Formulas (2), (3) and (4), or from the group consisting of Formula (5). Mixing component C consisting of at least one compound or component D consisting of at least one compound selected from the group consisting of formulas (6), (7), (8), (9) and (10) [The liquid crystal compositions (b), (c) and (d)] are preferred.
Further, by mixing component E consisting of at least one compound selected from the group consisting of formulas (11), (12) and (13), threshold voltage, liquid crystal phase temperature range, refractive index anisotropy value The dielectric anisotropy value and viscosity can be adjusted [the liquid crystal composition (e)].

また、本発明に使用される液晶組成物の各成分は、各元素の同位体元素からなる類縁体でもその物理特性に大きな差異がない。   In addition, each component of the liquid crystal composition used in the present invention is not greatly different in physical properties even if it is an analog composed of an isotope element of each element.

上記成分Bのうち、式(2)で示される化合物の好適例として式(2−1)〜(2−16)、式(3)で示される化合物の好適例として式(3−1)〜(3−112)、式(4)で示される化合物の好適例として式(4−1)〜(4−52)をそれぞれ挙げることができる。   Among the components B, formulas (2-1) to (2-16) are preferable examples of the compound represented by the formula (2), and formulas (3-1) to (2) are preferable examples of the compound represented by the formula (3). Formulas (4-1) to (4-52) can be cited as preferred examples of the compound represented by (3-112) and formula (4), respectively.

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
(式中、R、Xは前記と同じ意味を表す)
Figure 2009292729
(Wherein R 2 and X 2 represent the same meaning as described above)

これらの式(2)〜(4)で示される化合物すなわち成分Bは、誘電率異方性値が正であり、熱安定性や化学的安定性が非常に優れているので、TFT用の液晶組成物を調製する場合に用いられる。本発明の液晶組成物における成分Bの含有量は、液晶組成物の全重量に対して1〜99重量%の範囲が適するが、好ましくは10〜97重量%、より好ましくは40〜95重量%である。また式(11)〜(13)で表される化合物(成分E)をさらに含有させることにより粘度調整をすることができる。
前記、式(5)で示される化合物すなわち成分Cのうちの好適例として、式(5−1)〜(5−63)を挙げることができる。
Since the compounds represented by the formulas (2) to (4), that is, the component B, have a positive dielectric anisotropy value and are very excellent in thermal stability and chemical stability, a liquid crystal for TFT is used. Used when preparing a composition. The content of component B in the liquid crystal composition of the present invention is suitably in the range of 1 to 99% by weight with respect to the total weight of the liquid crystal composition, preferably 10 to 97% by weight, more preferably 40 to 95% by weight. It is. The viscosity can be adjusted by further containing a compound (component E) represented by formulas (11) to (13).
Preferred examples of the compound represented by formula (5), that is, component C, include formulas (5-1) to (5-63).

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729

(これらの式において、RおよびXは前記と同じ意味である)
Figure 2009292729

(In these formulas, R 3 and X 3 have the same meaning as above)

これらの式(5)で示される化合物すなわち成分Cは、誘電率異方性値が正でその値が非常に大きいのでSTN,TN用の液晶組成物を調製する場合に主として用いられる。この成分Cを含有させることにより、組成物のしきい値電圧を小さくすることができる。また、粘度の調整、屈折率異方性値の調整および液晶相温度範囲を広げることができる。さらに急峻性の改良にも利用できる。   These compounds represented by the formula (5), that is, the component C, are mainly used when preparing liquid crystal compositions for STN and TN because the dielectric anisotropy value is positive and the value is very large. By containing this component C, the threshold voltage of the composition can be reduced. Further, the viscosity, the refractive index anisotropy value, and the liquid crystal phase temperature range can be expanded. It can also be used to improve steepness.

STNまたはTN用の液晶組成物を調製する場合には、成分Cの含有量は0.1〜99.9重量%の範囲が適用できるが、好ましくは10〜97重量%、より好ましくは40〜95重量%である。また、後述の成分を混合することによりしきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度などを調整できる。   When preparing a liquid crystal composition for STN or TN, the content of component C can be in the range of 0.1 to 99.9% by weight, preferably 10 to 97% by weight, more preferably 40 to 40%. 95% by weight. Moreover, the threshold voltage, the liquid crystal phase temperature range, the refractive index anisotropy value, the dielectric anisotropy value, the viscosity, and the like can be adjusted by mixing the components described later.

式(6)〜(8)および式(10)からなる群から選ばれた少なくとも一種の化合物からなる成分Dは、垂直配向モ−ド(VAモ−ド)などに用いられる誘電率異方性が負の本発明の液晶組成物を調製する場合に、好ましい成分である。   Component D comprising at least one compound selected from the group consisting of formulas (6) to (8) and formula (10) is a dielectric anisotropy used in a vertical alignment mode (VA mode) and the like. Is a preferred component when preparing the liquid crystal composition of the present invention in which is negative.

この式(6)〜(8)および式(10)で示される化合物(成分D)の好適例として、それぞれ式(6−1)〜(6−5)、式(7−1)〜(7−9)、式(8−1)〜(8−3)および式(10−1)〜(10−11)を挙げることができる。   Preferable examples of the compound (component D) represented by formulas (6) to (8) and formula (10) are formulas (6-1) to (6-5) and formulas (7-1) to (7), respectively. -9), formulas (8-1) to (8-3), and formulas (10-1) to (10-11).

Figure 2009292729
(式中、R,Rは前記と同じ意味を表す)
Figure 2009292729
(Wherein R 4 and R 5 represent the same meaning as described above)

これら成分Dの化合物は主として誘電率異方性の値が負であるVAモ−ド用の液晶組成物に用いられる。その含有量を増加させると組成物のしきい値電圧が低くなるが、粘度が大きくなるので、しきい値電圧の要求値を満足している限り含有量を少なくすることが好ましい。しかしながら、誘電率異方性値の絶対値が5程度であるので、含有量が40重量%より少なくなると電圧駆動ができなくなる場合がある。   These compounds of component D are mainly used in liquid crystal compositions for VA mode having a negative dielectric anisotropy value. Increasing the content lowers the threshold voltage of the composition, but increases the viscosity. Therefore, it is preferable to reduce the content as long as the required value of the threshold voltage is satisfied. However, since the absolute value of the dielectric anisotropy value is about 5, if the content is less than 40% by weight, voltage driving may not be possible.

成分Dのうち式(6)で表される化合物は2環化合物であるので、主としてしきい値電圧の調整、粘度調整または屈折率異方性値の調整の効果がある。また、式(7)および式(8)で表される化合物は3環化合物であるので透明点を高くする、ネマチックレンジを広くする、しきい値電圧を低くする、屈折率異方性値を大きくするなどの効果が得られる。   Since the compound represented by the formula (6) among the component D is a bicyclic compound, there is mainly an effect of adjusting the threshold voltage, adjusting the viscosity, or adjusting the refractive index anisotropy value. Further, since the compounds represented by the formulas (7) and (8) are tricyclic compounds, the clearing point is increased, the nematic range is increased, the threshold voltage is decreased, and the refractive index anisotropy value is increased. The effect such as enlarging can be obtained.

成分Dの含有量は、VAモ−ド用の組成物を調製する場合には、組成物全量に対して好ましくは40重量%以上、より好ましくは50〜95重量%である。また、成分Dを混合することにより、弾性定数をコントロ−ルし、組成物の電圧透過率曲線を制御することが可能となる。成分Dを誘電率異方性値が正である組成物に混合する場合はその含有量が組成物全量に対して30重量%以下が好ましい。   When preparing the composition for VA mode, the content of component D is preferably 40% by weight or more, more preferably 50 to 95% by weight, based on the total amount of the composition. Further, by mixing the component D, it is possible to control the elastic constant and control the voltage transmittance curve of the composition. When component D is mixed with a composition having a positive dielectric anisotropy value, the content is preferably 30% by weight or less based on the total amount of the composition.

式(11)、(12)および(13)で表わされる化合物(成分E)の好適例として、それぞれ式(11−1)〜(11−11)、式(12−1)〜(12−18)および式(13−1)〜(13−6)を挙げることができる。   Preferable examples of the compound (component E) represented by the formulas (11), (12) and (13) are the formulas (11-1) to (11-11) and the formulas (12-1) to (12-18), respectively. ) And formulas (13-1) to (13-6).

Figure 2009292729
Figure 2009292729

Figure 2009292729

(式中、RおよびRは前記と同じ意味を表す)
Figure 2009292729

(Wherein R 6 and R 7 represent the same meaning as described above)

式(11)〜(13)で表される化合物(成分E)は、誘電率異方性値の絶対値が小さく、中性に近い化合物である。式(11)で表される化合物は主として粘度調整または屈折率異方性値の調整の効果があり、また式(12)および(13)で表される化合物は透明点を高くするなどのネマチックレンジを広げる効果、または屈折率異方性値の調整の効果がある。   The compound (component E) represented by the formulas (11) to (13) is a compound having a small absolute value of dielectric anisotropy and close to neutrality. The compound represented by the formula (11) is mainly effective in adjusting the viscosity or the refractive index anisotropy value, and the compounds represented by the formulas (12) and (13) are nematic such as increasing the clearing point. It has the effect of widening the range or adjusting the refractive index anisotropy value.

成分Eで表される化合物の含有量を増加させると液晶組成物のしきい値電圧が高くなり、粘度が低くなるので、液晶組成物のしきい値電圧の要求値を満たす限り、含有量は多いほうが望ましい。TFT用の液晶組成物を調製する場合に、成分Eの含有量は、組成物全量に対して好ましくは60重量%以下、より好ましくは40重量%以下である。また、STNまたはTN用の液晶組成物を調製する場合には、成分Eの含有量は、組成物全量に対して好ましくは70重量%以下より好ましくは60重量%以下である。
本発明の液晶組成物は、本発明の式(1)で示される化合物の少なくとも1種類を0.1〜99重量%の割合で含有することが、優良な特性を発現せしめるために好ましい。
Increasing the content of the compound represented by Component E increases the threshold voltage of the liquid crystal composition and decreases the viscosity. Therefore, as long as the required value of the threshold voltage of the liquid crystal composition is satisfied, the content is More is desirable. When preparing a liquid crystal composition for TFT, the content of component E is preferably 60% by weight or less, more preferably 40% by weight or less based on the total amount of the composition. When preparing a liquid crystal composition for STN or TN, the content of component E is preferably 70% by weight or less, more preferably 60% by weight or less, based on the total amount of the composition.
The liquid crystal composition of the present invention preferably contains at least one kind of the compound represented by the formula (1) of the present invention in a proportion of 0.1 to 99% by weight in order to develop excellent characteristics.

本発明の液晶組成物の調製は、公知の方法、例えば必要な成分を高温度下で溶解させる方法などにより一般に調製される。また、用途に応じて当業者によく知られている添加物を添加して、例えばつぎに述べるような光学活性化合物を含む本発明の液晶組成物(e)、染料を添加したGH型用の液晶組成物を調製することができる。通常、添加物は当該業者によく知られており、文献などに詳細に記載されている。   The liquid crystal composition of the present invention is generally prepared by a known method, for example, a method of dissolving necessary components at a high temperature. Further, an additive well known to those skilled in the art is added depending on the application, for example, the liquid crystal composition (e) of the present invention containing the optically active compound as described below, and the GH type to which a dye is added. A liquid crystal composition can be prepared. Usually, additives are well known to those skilled in the art and are described in detail in the literature.

本発明の液晶組成物(e)は、前述の本発明の液晶組成物にさらに1種以上の光学活性化合物を含有する。
光学活性化合物として、公知のキラルド−プ剤を添加する。このキラルド−プ剤は液晶のらせん構造を誘起して必要なねじれ角を調整し、逆ねじれを防ぐといった効果を有する。キラルド−プ剤の例として以下の光学活性化合物(Op−1)〜(Op−13)を挙げることができる。
The liquid crystal composition (e) of the present invention further contains one or more optically active compounds in addition to the liquid crystal composition of the present invention described above.
A known chiral dopant is added as an optically active compound. This chiral dopant has the effect of inducing the helical structure of the liquid crystal to adjust the necessary twist angle and preventing reverse twist. Examples of the chiral dopant include the following optically active compounds (Op-1) to (Op-13).

Figure 2009292729
Figure 2009292729

本発明の液晶組成物(e)は、通常これらの光学活性化合物を添加して、ねじれのピッチを調整する。ねじれのピッチはTFT用およびTN用の液晶組成物であれば40〜200μmの範囲に調整するのが好ましい。STN用の液晶組成物であれば6〜20μmの範囲に調整するのが好ましい。また、双安定TN(Bistable TN)モ−ド用の場合は、1.5〜4μmの範囲に調整するのが好ましい。また、ピッチの温度依存性を調整する目的で2種以上の光学活性化合物を添加しても良い。 In the liquid crystal composition (e) of the present invention, these optically active compounds are usually added to adjust the twist pitch. The twist pitch is preferably adjusted in the range of 40 to 200 μm in the case of a liquid crystal composition for TFT and TN. If it is the liquid crystal composition for STN, it is preferable to adjust to the range of 6-20 micrometers. In the case of the bistable TN (Bistable TN) mode, it is preferably adjusted to a range of 1.5 to 4 μm. Two or more optically active compounds may be added for the purpose of adjusting the temperature dependence of the pitch.

本発明の液晶組成物は、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などの二色性色素を添加すれば、GH型用の液晶組成物として使用することもできる。   The liquid crystal composition of the present invention can be obtained as a GH type liquid crystal composition by adding a dichroic dye such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine. It can also be used.

また、本発明の液晶組成物は、ネマチック液晶をマイクロカプセル化して作製したNCAPや、液晶中に三次元網目状高分子を形成して作製したポリマ−分散型液晶表示素子(PDLCD)例えばポリマ−ネットワ−ク液晶表示素子(PNLCD)用をはじめ、複屈折制御(ECB)型やDS型用の液晶組成物としても使用できる。   In addition, the liquid crystal composition of the present invention includes NCAP produced by encapsulating nematic liquid crystal, and polymer dispersed liquid crystal display element (PDLCD) produced by forming a three-dimensional network polymer in liquid crystal, for example, a polymer. It can be used as a liquid crystal composition for birefringence control (ECB) type and DS type as well as for network liquid crystal display elements (PNLCD).

[実施例]
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。なお特に断りのない限り、「%」は「重量%」を意味する。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these Examples. Unless otherwise specified, “%” means “% by weight”.

得られた化合物は、1H−NMR分析で得られる核磁気共鳴スペクトル、ガスクロマトグラフィー(GC)分析で得られるガスクロマトグラムなどにより同定したので、まず分析方法について説明をする。 Since the obtained compound was identified by a nuclear magnetic resonance spectrum obtained by 1 H-NMR analysis, a gas chromatogram obtained by gas chromatography (GC) analysis, etc., the analysis method will be described first.

1H−NMR分析:測定装置は、DRX−500(ブルカーバイオスピン(株)社製)を用いた。測定は、実施例等で製造したサンプルを、CDCl3等のサンプルが可溶な重水素化溶媒に溶解し、室温で、500MHz、積算回数24回の条件で行った。なお、得られた核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットであることを意味する。また、化学シフトδ値のゼロ点の基準物質としてはテトラメチルシラン(TMS)を用いた。 1 H-NMR analysis: DRX-500 (manufactured by Bruker Biospin Co., Ltd.) was used as a measurement apparatus. The measurement was carried out by dissolving the sample produced in Examples and the like in a deuterated solvent in which a sample such as CDCl 3 is soluble, and at room temperature under conditions of 500 MHz and 24 times of integration. In the description of the obtained nuclear magnetic resonance spectrum, s is a singlet, d is a doublet, t is a triplet, q is a quartet, and m is a multiplet. Tetramethylsilane (TMS) was used as a reference material for the zero point of the chemical shift δ value.

GC分析:測定装置は、島津製作所製のGC−14B型ガスクロマトグラフを用いた。カラムは、島津製作所製のキャピラリーカラムCBP1−M25−025(長さ25m、内径0.22mm、膜厚0.25μm);固定液相はジメチルポリシロキサン;無極性)を用いた。キャリアーガスとしてはヘリウムを用い、流量は1ml/分に調整した。試料気化室の温度を300℃、検出器(FID)部分の温度を300℃に設定した。   GC analysis: GC-14B type gas chromatograph made by Shimadzu Corporation was used as a measuring apparatus. As the column, a capillary column CBP1-M25-025 (length 25 m, inner diameter 0.22 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation; the fixed liquid phase was dimethylpolysiloxane; nonpolar) was used. Helium was used as the carrier gas, and the flow rate was adjusted to 1 ml / min. The temperature of the sample vaporizing chamber was set to 300 ° C., and the temperature of the detector (FID) portion was set to 300 ° C.

試料はトルエンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。
記録計としては島津製作所製のC−R6A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
The sample was dissolved in toluene to prepare a 1% by weight solution, and 1 μl of the resulting solution was injected into the sample vaporization chamber.
As a recorder, a C-R6A type Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used. The obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.

なお、試料の希釈溶媒としては、例えば、クロロホルム、ヘキサンを用いてもよい。また、カラムとしては、Agilent Technologies Inc.製のキャピラリカラムDB−1(長さ30m、内径0.32mm、膜厚0.25μm)、Agilent Technologies Inc.製のHP−1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx−1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty.Ltd製のBP−1(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。 As a sample dilution solvent, for example, chloroform or hexane may be used. In addition, as columns, Agilent Technologies Inc. capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), Agilent Technologies Inc. HP-1 (length 30 m, inner diameter 0) .32 mm, film thickness 0.25 μm), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), BP-1 from SGE International Pty. Ltd (length 30 m, inner diameter) 0.32 mm, film thickness of 0.25 μm) or the like may be used.

ガスクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶化合物における補正係数に大きな差異がないからである。ガスクロマトグラムにより液晶組成物中の液晶化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶化合物成分(被検成分)と基準となる液晶化合物(基準物質)を同時にガスクロ測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶化合物の組成比をガスクロ分析からより正確に求めることができる。 The area ratio of peaks in the gas chromatogram corresponds to the ratio of component compounds. In general, the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample. However, when the above-described column is used in the present invention, the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds. In order to obtain the composition ratio of the liquid crystal compound in the liquid crystal composition more accurately by the gas chromatogram, an internal standard method based on the gas chromatogram is used. The liquid crystal compound component (test component) weighed in a certain amount accurately and the reference liquid crystal compound (reference material) are simultaneously measured by gas chromatography, and the area ratio between the peak of the obtained test component and the peak of the reference material Is calculated in advance. When correction is performed using the relative intensity of the peak area of each component with respect to the reference substance, the composition ratio of the liquid crystal compound in the liquid crystal composition can be determined more accurately from gas chromatography analysis.

液晶化合物等の物性値の測定試料
液晶化合物の物性値を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
Samples for Measuring Physical Property Values of Liquid Crystal Compounds There are two types of samples for measuring the physical property values of liquid crystal compounds: when the compound itself is used as a sample, and when the compound is mixed with mother liquid crystals as a sample.

化合物を母液晶と混合した試料を用いる後者の場合には、以下の方法で測定を行う。まず、得られた液晶化合物15重量%と母液晶85重量%とを混合して試料を作製する。そして、得られた試料の測定値から、下記式に示す式に示す外挿法にしたがって、外挿値を計算する。この外挿値をこの化合物の物性値とする。 In the latter case using a sample in which a compound is mixed with mother liquid crystals, the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method shown in the following equation. This extrapolated value is taken as the physical property value of this compound.

〈外挿値〉=(100×〈試料の測定値〉−〈母液晶の重量%〉×〈母液晶の測定値〉)/〈液晶化合物の重量%〉 <Extrapolated value> = (100 × <Measured value of sample> − <Weight% of mother liquid crystal> × <Measured value of mother liquid crystal>) / <Weight% of liquid crystal compound>

液晶化合物と母液晶との割合がこの割合であっても、スメクチック相、または結晶が25℃で析出する場合には、液晶化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、スメクチック相、または結晶が25℃で析出しなくなった組成で試料の物性値を測定し上記式にしたがって外挿値を求めて、これを液晶化合物の物性値とする。   Even when the ratio between the liquid crystal compound and the mother liquid crystal is this ratio, when the smectic phase or crystal is precipitated at 25 ° C., the ratio between the liquid crystal compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight. %: 95% by weight, 1% by weight: 99% by weight, and the physical properties of the sample were measured with a composition in which the smectic phase or crystals did not precipitate at 25 ° C., and extrapolated according to the above formula. This is taken as the physical property value of the liquid crystal compound.

測定に用いる母液晶としては様々な種類が存在するが、例えば、母液晶Aの組成(重量%)は以下のとおりである。
母液晶A:

Figure 2009292729
There are various types of mother liquid crystals used for measurement. For example, the composition (% by weight) of the mother liquid crystals A is as follows.
Mother liquid crystal A:
Figure 2009292729

液晶化合物等の物性値の測定方法
物性値の測定は後述する方法で行った。これら測定方法の多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED−2521Aに記載された方法、またはこれを修飾した方法である。また、測定に用いたTN素子には、TFTを取り付けなかった。
Method for measuring physical property values of liquid crystal compounds, etc. The physical property values were measured by the method described later. Many of these measurement methods are the methods described in the Standard of Electric Industries Association of Japan EIAJ / ED-2521A or a modified method thereof. Moreover, TFT was not attached to the TN element used for the measurement.

測定値のうち、液晶化合物そのものを試料とした場合は、得られた値を実験データとして記載した。液晶化合物と母液晶との混合物を試料として用いた場合は、外挿法で得られた値を実験データとして記載した。   Among the measured values, when the liquid crystal compound itself was used as a sample, the obtained value was described as experimental data. When a mixture of a liquid crystal compound and mother liquid crystals was used as a sample, values obtained by extrapolation were described as experimental data.

相構造および相転移温度(℃):以下(1)、および(2)の方法で測定を行った。
(1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP−52型ホットステージ)に化合物を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、液晶相の種類を特定した。
(2)パーキンエルマー社製走査熱量計DSC−7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、相転移温度を決定した。
Phase structure and phase transition temperature (° C.): Measurement was performed by the following methods (1) and (2).
(1) A compound is placed on a hot plate (Mettler FP-52 type hot stage) equipped with a polarizing microscope, and the phase state and its change are observed with a polarizing microscope while heating at a rate of 3 ° C./min. , Identified the type of liquid crystal phase.
(2) Using a scanning calorimeter DSC-7 system or Diamond DSC system manufactured by PerkinElmer Inc., the temperature is raised and lowered at a rate of 3 ° C./min, and the end point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded. The phase transition temperature was determined by onset.

以下、結晶はCと表し、さらに結晶の区別がつく場合は、それぞれC1またはC2と表した。また、スメクチック相はS、ネマチック相はNと表した。液体(アイソトロピック)はIと表した。スメクチック相の中で、スメクチックB相、またはスメクチックA相の区別がつく場合は、それぞれS、またはSと表した。相転移温度の表記として、例えば、「C 50.0 N 100.0 I」とは、結晶からネマチック相への相転移温度(CN)が50.0℃であり、ネマチック相から液体への相転移温度(NI)が100.0℃であることを示す。他の表記も同様である。 Hereinafter, the crystal is expressed as C, and when the crystal can be distinguished, it is expressed as C 1 or C 2 , respectively. Further, the smectic phase is represented as S and the nematic phase is represented as N. The liquid (isotropic) was designated as I. In the smectic phase, when the smectic B phase or the smectic A phase can be distinguished, they are represented as S B or S A , respectively. As a representation of the phase transition temperature, for example, “C 50.0 N 100.0 I” means that the phase transition temperature (CN) from the crystal to the nematic phase is 50.0 ° C., and the phase from the nematic phase to the liquid The transition temperature (NI) is 100.0 ° C. The same applies to other notations.

ネマチック相の上限温度(TNI;℃):偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP−52型ホットステージ)に、試料(液晶化合物と母液晶との混合物)を置き、1℃/分の速度で加熱しながら偏光顕微鏡を観察した。試料の一部がネマチック相から等方性液体に変化したときの温度をネマチック相の上限温度とした。以下、ネマチック相の上限温度を、単に「上限温度」と略すことがある。 Maximum temperature of nematic phase (T NI ; ° C.): A sample (mixture of liquid crystal compound and mother liquid crystal) is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope. The polarizing microscope was observed while heating at a rate of ° C / min. The temperature at which a part of the sample changed from a nematic phase to an isotropic liquid was defined as the upper limit temperature of the nematic phase. Hereinafter, the upper limit temperature of the nematic phase may be simply abbreviated as “upper limit temperature”.

低温相溶性:母液晶と液晶化合物とを、液晶化合物が、20重量%、15重量%、10重量%、5重量%、3重量%、および1重量%の量となるように混合した試料を作製し、試料をガラス瓶に入れる。このガラス瓶を、−10℃または−20℃のフリーザー中に一定期間保管したあと、結晶もしくはスメクチック相が析出しているかどうか観察をした。   Low temperature compatibility: A sample in which a mother liquid crystal and a liquid crystal compound were mixed so that the liquid crystal compound was in an amount of 20% by weight, 15% by weight, 10% by weight, 5% by weight, 3% by weight, and 1% by weight. Make and place sample in glass bottle. The glass bottle was stored in a freezer at −10 ° C. or −20 ° C. for a certain period, and then it was observed whether a crystal or smectic phase was precipitated.

粘度(η;20℃で測定;mPa・s):液晶化合物と母液晶との混合物を、E型回転粘度計を用いて測定した。   Viscosity (η; measured at 20 ° C .; mPa · s): A mixture of a liquid crystal compound and a mother liquid crystal was measured using an E-type rotational viscometer.

屈折率異方性(Δn):測定は25℃の温度下で、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料(液晶化合物と母液晶との混合物)を主プリズムに滴下した。屈折率(n‖)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。屈折率異方性(Δn)の値は、Δn=n‖−n⊥の式から計算した。   Refractive index anisotropy (Δn): Measurement was performed at 25 ° C. using an Abbe refractometer using light with a wavelength of 589 nm and a polarizing plate attached to the eyepiece. After rubbing the surface of the main prism in one direction, a sample (mixture of liquid crystal compound and mother liquid crystal) was dropped onto the main prism. The refractive index (n‖) was measured when the direction of polarized light was parallel to the direction of rubbing. The refractive index (n⊥) was measured when the direction of polarized light was perpendicular to the direction of rubbing. The value of refractive index anisotropy (Δn) was calculated from the equation: Δn = n∥−n⊥.

誘電率異方性(Δε;25℃で測定):2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料(液晶化合物と母液晶との混合物)を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε‖)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε‖−ε⊥、の式から計算した。   Dielectric anisotropy (Δε; measured at 25 ° C.): Put a sample (mixture of liquid crystal compound and mother liquid crystal) into a liquid crystal cell with a gap (gap) between two glass substrates of about 9 μm and a twist angle of 80 degrees. It was. 20 volts was applied to the cell, and the dielectric constant (ε 率) in the major axis direction of the liquid crystal molecules was measured. 0.5 V was applied, and the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured. The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.

4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニル (No.1−4−5)の合成

Figure 2009292729
4- [Difluoro (3,4,5-trifluorophenoxy) methyl] -4 ′ ″-pentyl-2 ′, 2 ″, 3,5-tetrafluoro-1,1 ′, 4 ′, 1 ″ , 4 ″, 1 ′ ″-Quarterphenyl (No. 1-4-5)

Figure 2009292729

Figure 2009292729
Figure 2009292729

化合物(T−2)の合成
窒素雰囲気下、反応器へ1−ブロモ−4−ペンチルベンゼン(T−1) 50.0g、3−フルオロフェニルボロン酸 31.4g、炭酸カリウム 91.2g、Pd(PhP)Cl 4.63g、トルエン 150ml、ソルミックスA−11 150mlおよび水 150mlを加え、3時間加熱還流させた。反応液を25℃まで冷却後、水 500mlおよびトルエン 500mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにソルミックスA−11からの再結晶により精製し、乾燥させ、3−フルオロ−4’−ペンチルビフェニル(T−2) 45.2gを得た。化合物(T−1)からの収率は84.8%であった。
Synthesis of Compound (T-2) To a reactor under a nitrogen atmosphere, 50.0 g of 1-bromo-4-pentylbenzene (T-1), 31.4 g of 3-fluorophenylboronic acid, 91.2 g of potassium carbonate, Pd ( Ph 3 P) 2 Cl 2 4.63 g, toluene 150 ml, Solmix A-11 150 ml and water 150 ml were added and heated to reflux for 3 hours. The reaction solution was cooled to 25 ° C., poured into 500 ml of water and 500 ml of toluene, and mixed. Then, it left still and isolate | separated into two layers, an organic layer and an aqueous layer, and extraction operation to the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The product was further purified by recrystallization from Solmix A-11 and dried to obtain 45.2 g of 3-fluoro-4′-pentylbiphenyl (T-2). The yield based on the compound (T-1) was 84.8%.

化合物(T−3)の合成
窒素雰囲気下の反応器へ、化合物(T−2) 45.2gとTHF 300mlとを加えて、−74℃まで冷却した。そこへ、1.0M sec−ブチルリチウム, シクロヘキサン,n−ヘキサン溶液 222mlを−74℃から−68℃の温度範囲で滴下し、さらに120分攪拌した。続いてヨウ素 61.7gのTHF 350ml溶液を−75℃から−68℃の温度範囲で滴下し、さらに60分攪拌した。得られた反応混合物を25℃に戻した後、氷水 650mlに注ぎ込み、混合した。トルエン 500mlを加え有機層と水層とに分離させ抽出操作を行い、得られた有機層を分取しチオ硫酸ナトリウム水溶液、食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去し乾燥させ、3−フルオロ−4−ヨード−4’−ペンチルビフェニル(T−3) 58.7gを得た。化合物(T−2)からの収率は85.2%であった。
Synthesis of Compound (T-3) 45.2 g of Compound (T-2) and 300 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to -74 ° C. Thereto, 222 ml of a 1.0 M sec-butyllithium, cyclohexane, n-hexane solution was dropped in a temperature range of -74 ° C. to -68 ° C., and further stirred for 120 minutes. Subsequently, a solution of iodine (61.7 g) in THF (350 ml) was added dropwise in the temperature range of −75 ° C. to −68 ° C., and the mixture was further stirred for 60 minutes. The obtained reaction mixture was returned to 25 ° C. and then poured into 650 ml of ice water and mixed. 500 ml of toluene was added, and the organic layer and the aqueous layer were separated and extracted, and the resulting organic layer was separated, washed successively with an aqueous sodium thiosulfate solution and brine, and dried over anhydrous magnesium sulfate. The obtained solution was concentrated under reduced pressure, and the residue was purified by a fractionation operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The solvent was distilled off and the residue was dried to obtain 58.7 g of 3-fluoro-4-iodo-4′-pentylbiphenyl (T-3). The yield based on the compound (T-2) was 85.2%.

化合物(T−4)の合成
窒素雰囲気下、反応器へ3−フルオロ−4−ヨード−4’−ペンチルビフェニル(T−3) 30.0g、3−フルオロフェニルボロン酸 12.5g、炭酸カリウム 33.8g、Pd/C(NXタイプ) 0.175g、トルエン 100ml、ソルミックスA−11 100mlおよび水 100mlを加え、2時間加熱還流させた。反応液を25℃まで冷却後、水 300mlおよびトルエン 200mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、2',3−ジフルオロ−4''−ペンチル−1,1',4',1''−ターフェニル(T−4) 16.1gを得た。化合物(T−3)からの収率は58.8%であった。
Synthesis of Compound (T-4) To a reactor under a nitrogen atmosphere, 30.0 g of 3-fluoro-4-iodo-4′-pentylbiphenyl (T-3), 12.5 g of 3-fluorophenylboronic acid, potassium carbonate 33 .8 g, Pd / C (NX type) 0.175 g, toluene 100 ml, Solmix A-11 100 ml and water 100 ml were added and heated to reflux for 2 hours. The reaction solution was cooled to 25 ° C., poured into 300 ml of water and 200 ml of toluene, and mixed. Then, it left still and isolate | separated into two layers, an organic layer and an aqueous layer, and extraction operation to the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Further, it was purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, and 2 ′, 3-difluoro-4 ″ -pentyl-1,1 ′, 4 ′, 1 ″ -terphenyl ( T-4) 16.1 g was obtained. The yield based on the compound (T-3) was 58.8%.

化合物(T−5)の合成
窒素雰囲気下の反応器へ、化合物(T−4) 16.1gとTHF 200mlとを加えて、−74℃まで冷却した。そこへ、1.0M sec−ブチルリチウム, シクロヘキサン,n−ヘキサン溶液 57.5mlを−74℃から−68℃の温度範囲で滴下し、さらに120分攪拌した。続いてヨウ素 15.8gのTHF 100ml溶液を−75℃から−68℃の温度範囲で滴下し、さらに60分攪拌した。得られた反応混合物を25℃に戻した後、氷水 300mlに注ぎ込み、混合した。トルエン 200mlを加え有機層と水層とに分離させ抽出操作を行い得られた有機層を分取し、チオ硫酸ナトリウム水溶液、食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去し乾燥させ、2',3−ジフルオロ−4−ヨード−4''−ペンチル−1,1',4',1''−ターフェニル(T−5) 21.9gを得た。化合物(T−4)からの収率は99.1%であった。
Synthesis of Compound (T-5) 16.1 g of Compound (T-4) and 200 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to −74 ° C. Thereto, 57.5 ml of 1.0 M sec-butyllithium, cyclohexane, n-hexane solution was dropped in a temperature range of -74 ° C. to -68 ° C., and further stirred for 120 minutes. Subsequently, a solution of iodine 15.8 g in THF 100 ml was added dropwise in the temperature range of −75 ° C. to −68 ° C., and further stirred for 60 minutes. The obtained reaction mixture was returned to 25 ° C. and then poured into 300 ml of ice water and mixed. 200 ml of toluene was added to separate the organic layer from the aqueous layer and extraction was performed. The resulting organic layer was separated, washed successively with aqueous sodium thiosulfate solution and brine, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The solvent was distilled off and dried to obtain 21.9 g of 2 ′, 3-difluoro-4-iodo-4 ″ -pentyl-1,1 ′, 4 ′, 1 ″ -terphenyl (T-5). . The yield based on the compound (T-4) was 99.1%.

化合物(T−6)の合成
窒素雰囲気下、反応器へ2',3−ジフルオロ−4−ヨード−4''−ペンチル−1,1',4',1''−ターフェニル(T−5) 10.0g、3,5−ジフルオロフェニルボロン酸 3.76g、炭酸カリウム 8.96g、Pd/C(NXタイプ) 0.0460g、トルエン 70.0ml、ソルミックスA−11 70.0mlおよび水 70.0mlを加え、2時間加熱還流させた。反応液を25℃まで冷却後、水 200mlおよびトルエン 200mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニル(T−6) 6.89gを得た。化合物(T−5)からの収率は71.1%であった。
Synthesis of Compound (T-6) 2 ′, 3-Difluoro-4-iodo-4 ″ -pentyl-1,1 ′, 4 ′, 1 ″ -terphenyl (T-5) into a reactor under a nitrogen atmosphere ) 10.0 g, 3,5-difluorophenylboronic acid 3.76 g, potassium carbonate 8.96 g, Pd / C (NX type) 0.0460 g, toluene 70.0 ml, Solmix A-11 70.0 ml and water 70 0.0 ml was added and heated to reflux for 2 hours. The reaction solution was cooled to 25 ° C., poured into 200 ml of water and 200 ml of toluene, and mixed. Then, it left still and isolate | separated into two layers, an organic layer and an aqueous layer, and extraction operation to the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Further, it was purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, and 4 ′ ″-pentyl-2 ′, 2 ″, 3,5-tetrafluoro-1,1 ′, 4 ′. , 1 ″, 4 ″, 1 ′ ″-quarterphenyl (T-6) 6.89 g was obtained. The yield based on the compound (T-5) was 71.1%.

化合物(T−7)の合成
窒素雰囲気下の反応器へ、化合物(T−6) 5.00gとTHF 130mlとを加えて、−74℃まで冷却した。そこへ、1.60M n−ブチルリチウム,n−ヘキサン溶液 9.10mlを−74℃から−70℃の温度範囲で滴下し、さらに60分攪拌した。続いてジブロモジフルオロメタン 3.50gのTHF 20.0ml溶液を−75℃から−70℃の温度範囲で滴下し、25℃に戻しつつ60分攪拌した。得られた反応混合物を氷水 150mlに注ぎ込み、混合した。トルエン 150mlを加え有機層と水層とに分離させ抽出操作を行い得られた有機層を分取し、続いて食塩水で洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去し乾燥させ、4−ブロモジフルオロメチル−4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニル(T−7) 5.44gを得た。化合物(T−6)からの収率は84.9%であった。
Synthesis of Compound (T-7) 5.00 g of Compound (T-6) and 130 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to -74 ° C. Thereto, 9.10 ml of a 1.60 M n-butyllithium / n-hexane solution was dropped in a temperature range of −74 ° C. to −70 ° C., and further stirred for 60 minutes. Subsequently, a solution of dibromodifluoromethane (3.50 g) in THF (20.0 ml) was dropped in a temperature range of -75 ° C to -70 ° C, and the mixture was stirred for 60 minutes while returning to 25 ° C. The obtained reaction mixture was poured into 150 ml of ice water and mixed. 150 ml of toluene was added to separate the organic layer and the aqueous layer, and the extraction was carried out for extraction. The resulting organic layer was separated, washed with brine, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The solvent is distilled off and dried to give 4-bromodifluoromethyl-4 ′ ″-pentyl-2 ′, 2 ″, 3,5-tetrafluoro-1,1 ′, 4 ′, 1 ″, 4 ″. , 1 ′ ″-quarterphenyl (T-7) 5.44 g was obtained. The yield based on the compound (T-6) was 84.9%.

化合物(No.1−4−5)の合成
窒素雰囲気下の反応器へ、3,4,5−トリフルオロフェノール 1.23g、炭酸カリウム 2.87g、N,N−ジメチルホルムアミド(DMF) 25.0mlを加え、115℃で30分攪拌した。続いて化合物(T−7) 4.00gのDMF 75.0ml溶液を滴下し115℃で1時間攪拌した。反応混合物を25℃に戻した後、氷水 100mlに注ぎ込み混合させ、トルエン 150mlを加え有機層と水層とに分離させ抽出操作を行い得られた有機層を分取し、続いて飽和炭酸水素ナトリウム水溶液、0.5N水酸化ナトリウム水溶液、食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニル(No.1−4−5) 2.06gを得た。化合物(T−7)からの収率は46.1%であった。
Synthesis of compound (No. 1-4-5) To a reactor under a nitrogen atmosphere, 1.23 g of 3,4,5-trifluorophenol, 2.87 g of potassium carbonate, N, N-dimethylformamide (DMF) 25. 0 ml was added and it stirred at 115 degreeC for 30 minutes. Subsequently, 4.00 g of a DMF 75.0 ml solution was added dropwise to the compound (T-7), and the mixture was stirred at 115 ° C. for 1 hour. After returning the reaction mixture to 25 ° C., the mixture was poured into 100 ml of ice water and mixed, 150 ml of toluene was added to separate the organic layer from the aqueous layer, and the resulting organic layer was separated, followed by saturated sodium bicarbonate. The extract was washed successively with an aqueous solution, a 0.5N aqueous sodium hydroxide solution, and brine and dried over anhydrous magnesium sulfate. The obtained solution was concentrated under reduced pressure, and the residue was purified by a fractionation operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Further purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, 4- [difluoro (3,4,5-trifluorophenoxy) methyl] -4 ′ ″-pentyl-2 ′, 2.06 g of 2 ″, 3,5-tetrafluoro-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl (No. 1-4-5) was obtained. The yield based on the compound (T-7) was 46.1%.

得られた化合物(No.1−4−5)の相転移温度は以下の通りであった。
相転移温度 :C 87.1 S 181 N 255 I 。
The phase transition temperature of the obtained compound (No. 1-4-5) was as follows.
Phase transition temperature: C 87.1 S A 181 N 255 I.

1H−NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニルであることが同定できた。なお、測定溶媒はCDCl3である。 The chemical shift δ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound was 4- [difluoro (3,4,5-trifluorophenoxy) methyl] -4 ′ ″-pentyl- It could be identified as 2 ′, 2 ″, 3,5-tetrafluoro-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl. The measurement solvent is CDCl 3 .

化学シフトδ(ppm);7.58−7.39(m,8H),7.34−7.25(m,4H),7.07−6.95(m,2H),2.67(t,J=8.00Hz,2H),1.74−1.60(m,2H),1.44−1.31(m,4H),0.91(t,J=6.65Hz,3H).   Chemical shift δ (ppm): 7.58-7.39 (m, 8H), 7.34-7.25 (m, 4H), 7.07-6.95 (m, 2H), 2.67 ( t, J = 8.00 Hz, 2H), 1.74-1.60 (m, 2H), 1.44-1.31 (m, 4H), 0.91 (t, J = 6.65 Hz, 3H) ).

液晶化合物(No.1−4−5)の物性
前述した母液晶Aとして記載された4つの化合物を混合し、ネマチック相を有する母液晶Aを調製した。この母液晶Aの物性は以下のとおりであった。
上限温度(TNI)=71.7℃;屈折率異方性(Δn)=0.137;誘電率異方性(Δε)=11.0。
Physical Properties of Liquid Crystal Compound (No. 1-4-5) Four compounds described as the mother liquid crystal A described above were mixed to prepare a mother liquid crystal A having a nematic phase. The physical properties of the mother liquid crystal A were as follows.
Maximum temperature (T NI ) = 71.7 ° C .; refractive index anisotropy (Δn) = 0.137; dielectric anisotropy (Δε) = 11.0.

母液晶A 85重量%と、実施例1で得られた4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−4'''−ペンチル−2',2'',3,5−テトラフルオロ−1,1',4',1'',4'',1'''−クオーターフェニル(No.1−4−5)の15重量%とからなる液晶組成物Bを調製した。得られた液晶組成物Bの物性値を測定し、測定値を外挿することで液晶化合物(No.1−4−5 )の物性の外挿値を算出した。その値は以下のとおりであった。
上限温度(TNI)=169℃;屈折率異方性(Δn)=0.257;誘電率異方性(Δε)=36.7。
このことから液晶化合物(No.1−4−5 )は、上限温度(TNI)が高く、屈折率異方性(Δn)が大きく、誘電率異方性(Δε)が大きい化合物であることがわかった。
85% by weight of mother liquid crystals A and 4- [difluoro (3,4,5-trifluorophenoxy) methyl] -4 ′ ″-pentyl-2 ′, 2 ″, 3,5 obtained in Example 1 A liquid crystal composition B comprising 15% by weight of tetrafluoro-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl (No. 1-4-5) was prepared. . The physical property value of the obtained liquid crystal composition B was measured, and the extrapolated value of the physical property of the liquid crystal compound (No. 1-4-5) was calculated by extrapolating the measured value. The values were as follows:
Maximum temperature (T NI ) = 169 ° C .; refractive index anisotropy (Δn) = 0.257; dielectric anisotropy (Δε) = 36.7.
Accordingly, the liquid crystal compound (No. 1-4-5) is a compound having a high maximum temperature (T NI ), a large refractive index anisotropy (Δn), and a large dielectric anisotropy (Δε). I understood.

4−[ジフルオロ[(2,3',4',5'−テトラフルオロ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル (No.1−3−5)の合成

Figure 2009292729
4- [Difluoro [(2,3 ′, 4 ′, 5′-tetrafluoro [1,1′-biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5- Synthesis of trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1-3-5)

Figure 2009292729

Figure 2009292729
Figure 2009292729

化合物(T−8)の合成
窒素雰囲気下、反応器へ3−フルオロ−4−ヨード−4’−ペンチルビフェニル(T−3) 64.0g、3,5−ジフルオロフェニルボロン酸 30.3g、炭酸カリウム 73.0g、Pd/C(NXタイプ) 0.372g、トルエン 200ml、ソルミックスA−11 200mlおよび水 200mlを加え、2時間加熱還流させた。反応液を25℃まで冷却後、水 600mlおよびトルエン 400mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、2',3,5−トリフルオロ−4''−ペンチル−1,1',4',1''−ターフェニル(T−8) 40.2gを得た。化合物(T−3)からの収率は64.8%であった。
Synthesis of Compound (T-8) To a reactor under a nitrogen atmosphere, 64.0 g of 3-fluoro-4-iodo-4′-pentylbiphenyl (T-3), 30.3 g of 3,5-difluorophenylboronic acid, carbonic acid 73.0 g of potassium, 0.372 g of Pd / C (NX type), 200 ml of toluene, 200 ml of Solmix A-11 and 200 ml of water were added and heated to reflux for 2 hours. The reaction solution was cooled to 25 ° C., poured into 600 ml of water and 400 ml of toluene, and mixed. Then, it left still and isolate | separated into two layers, an organic layer and an aqueous layer, and extraction operation to the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Further, it was purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, and 2 ′, 3,5-trifluoro-4 ″ -pentyl-1,1 ′, 4 ′, 1 ″ −. 40.2 g of terphenyl (T-8) was obtained. The yield based on the compound (T-3) was 64.8%.

化合物(T−9)の合成
窒素雰囲気下の反応器へ、化合物(T−8) 5.00gとTHF 65mlとを加えて、−74℃まで冷却した。そこへ、1.60M n−ブチルリチウム,n−ヘキサン溶液 11.5mlを−74℃から−70℃の温度範囲で滴下し、さらに60分攪拌した。続いてジブロモジフルオロメタン 4.45gのTHF 25.0ml溶液を−75℃から−70℃の温度範囲で滴下し、25℃に戻しつつ60分攪拌した。得られた反応混合物を氷水 90.0mlに注ぎ込み、混合した。トルエン 70mlを加え有機層と水層とに分離させ抽出操作を行い得られた有機層を分取し、続いて食塩水で洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去し乾燥させ、4−ブロモジフルオロメチル−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル(T−9) 5.49gを得た。化合物(T−8)からの収率は80.6%であった。
Synthesis of Compound (T-9) To a reactor under a nitrogen atmosphere, 5.00 g of Compound (T-8) and 65 ml of THF were added and cooled to -74 ° C. Thereto, 11.5 ml of a 1.60 M n-butyllithium / n-hexane solution was dropped in a temperature range of −74 ° C. to −70 ° C., and further stirred for 60 minutes. Subsequently, a solution of 4.45 g of dibromodifluoromethane in 25.0 ml of THF was dropped in a temperature range of −75 ° C. to −70 ° C. and stirred for 60 minutes while returning to 25 ° C. The obtained reaction mixture was poured into 90.0 ml of ice water and mixed. 70 ml of toluene was added to separate an organic layer and an aqueous layer, and an extraction operation was performed. The resulting organic layer was separated, washed with brine, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The solvent was distilled off and dried to give 4-bromodifluoromethyl-4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (T-9) 5 .49 g was obtained. The yield based on the compound (T-8) was 80.6%.

化合物(T−11)の合成
窒素雰囲気下、反応器へ4−ブロモ−3−フルオロフェノール(T−10) 5.00g、3,4,5−トリフルオロフェニルボロン酸 5.07g、炭酸カリウム 10.9g、Pd(PhP)Cl 0.552g、2−プロパノールを加え5時間加熱還流させた。反応液を25℃まで冷却後、水 100mlおよびトルエン 100mlへ注ぎ込み、混合した。その後、静置して有機層と水層の2層に分離させて、有機層への抽出操作を行った。得られた有機層を分取して、水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた溶液を減圧下、濃縮し、残渣をトルエンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、4−ヒドキシ−2,3',4',5'−テトラフルオロ−1,1'−ビフェニル(T−11) 4.79gを得た。化合物(T−1)からの収率は74.4%であった。
Synthesis of Compound (T-11) To a reactor under a nitrogen atmosphere, 4-bromo-3-fluorophenol (T-10) 5.00 g, 3,4,5-trifluorophenylboronic acid 5.07 g, potassium carbonate 10 .9 g, Pd (Ph 3 P) 2 Cl 2 0.552 g, and 2-propanol were added, and the mixture was heated to reflux for 5 hours. The reaction solution was cooled to 25 ° C., poured into 100 ml of water and 100 ml of toluene, and mixed. Then, it left still and isolate | separated into two layers, an organic layer and an aqueous layer, and extraction operation to the organic layer was performed. The obtained organic layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by a fractionation operation by column chromatography using toluene as a developing solvent and silica gel as a filler. Further, it was purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, and 4-hydroxy-2,3 ′, 4 ′, 5′-tetrafluoro-1,1′-biphenyl (T-11). ) 4.79 g was obtained. The yield based on the compound (T-1) was 74.4%.

化合物(No.1−3−5)の合成
窒素雰囲気下の反応器へ、上記で得られた、化合物(T−11)2.10g、炭酸カリウム 3.00g、N,N−ジメチルホルムアミド(DMF) 30.0mlを加え、115℃で30分攪拌した。続いて化合物(T−9) 3.50gのDMF 55.0ml溶液を滴下し115℃で1時間攪拌した。反応混合物を25℃に戻した後、氷水 85.0mlに注ぎ込み混合させ、トルエン 100mlを加え有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、続いて飽和炭酸水素ナトリウム水溶液、0.5N水酸化ナトリウム水溶液、食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。さらにヘプタン/ソルミックスA−11の混合溶媒からの再結晶により精製し、乾燥させ、4−[ジフルオロ[(2,3',4',5'−テトラフルオロ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル(No.1−3−5) 2.30gを得た。化合物(T−9)からの収率は49.3%であった。
Synthesis of Compound (No. 1-3-5) To a reactor under a nitrogen atmosphere, 2.10 g of Compound (T-11) obtained above, 3.00 g of potassium carbonate, N, N-dimethylformamide (DMF) 30.0 ml was added and it stirred at 115 degreeC for 30 minutes. Subsequently, a compound (T-9) 3.50 g DMF 55.0 ml solution was added dropwise, and the mixture was stirred at 115 ° C. for 1 hour. After returning the reaction mixture to 25 ° C., the mixture was poured into 85.0 ml of ice water and mixed, and 100 ml of toluene was added to separate into an organic layer and an aqueous layer for extraction. The obtained organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate solution, 0.5N aqueous sodium hydroxide solution and brine, and dried over anhydrous magnesium sulfate. The obtained solution was concentrated under reduced pressure, and the residue was purified by a fractionation operation by column chromatography using heptane as a developing solvent and silica gel as a filler. Further, it was purified by recrystallization from a mixed solvent of heptane / Solmix A-11, dried, and 4- [difluoro [(2,3 ′, 4 ′, 5′-tetrafluoro [1,1′-biphenyl]- 4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1-3-5) 30 g was obtained. The yield based on the compound (T-9) was 49.3%.

得られた化合物(No.1−3−5)の相転移温度は以下の通りであった。
相転移温度 :C 79.4 S 138 N 223 I 。
The phase transition temperature of the obtained compound (No. 1-3-5) was as follows.
Phase transition temperature: C 79.4 S A 138 N 223 I.

1H−NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4−[ジフルオロ[(2,3',4',5'−テトラフルオロ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニルであることが同定できた。なお、測定溶媒はCDCl3である。 The chemical shift δ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4- [difluoro [(2,3 ′, 4 ′, 5′-tetrafluoro [1,1′- Biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl could be identified. The measurement solvent is CDCl 3 .

化学シフトδ(ppm);7.58−7.46(m,4H),7.46−7.35(m,2H),7.32−7.24(m,4H),7.24−7.13(m,4H),2.67(t,J=7.85Hz,2H),1.74−1.60(m,2H),1.44−1.31(m,4H),0.91(t,J=6.95Hz,3H).   Chemical shift δ (ppm); 7.58-7.46 (m, 4H), 7.46-7.35 (m, 2H), 7.32-7.24 (m, 4H), 7.24- 7.13 (m, 4H), 2.67 (t, J = 7.85 Hz, 2H), 1.74-1.60 (m, 2H), 1.44-1.31 (m, 4H), 0.91 (t, J = 6.95 Hz, 3H).

液晶化合物(No.1−3−5)の物性
母液晶A 85重量%と、実施例3で得られた4−[ジフルオロ[(2,3',4',5'−テトラフルオロ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル(No.1−3−5)の15重量%とからなる液晶組成物Cを調製した。得られた液晶組成物Cの物性値を測定し、測定値を外挿することで液晶化合物(No.1−3−5 )の物性の外挿値を算出した。その値は以下のとおりであった。
Physical property of liquid crystal compound (No. 1-3-5) 85% by weight of the liquid crystal A and 4- [difluoro [(2,3 ′, 4 ′, 5′-tetrafluoro [ 1,2] obtained in Example 3) 1′-biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1- A liquid crystal composition C comprising 15% by weight of 3-5) was prepared. The physical property value of the obtained liquid crystal composition C was measured, and the extrapolated value of the physical property of the liquid crystal compound (No. 1-3-5) was calculated by extrapolating the measured value. The values were as follows:

上限温度(TNI)=146℃;屈折率異方性(Δn)=0.237;誘電率異方性(Δε)=39.0。
このことから液晶化合物(No.1−3−5 )は、上限温度(TNI)が高く、屈折率異方性(Δn)が大きく、誘電率異方性(Δε)が大きい化合物であることがわかった。
Maximum temperature (T NI ) = 146 ° C .; refractive index anisotropy (Δn) = 0.237; dielectric anisotropy (Δε) = 39.0.
Therefore, the liquid crystal compound (No. 1-3-5) is a compound having a high maximum temperature (T NI ), a large refractive index anisotropy (Δn), and a large dielectric anisotropy (Δε). I understood.

4−[ジフルオロ[(2,3'−ジフルオロ−4'−トリフルオロメトキシ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル (No.1−3−145)の合成

Figure 2009292729
4- [Difluoro [(2,3′-difluoro-4′-trifluoromethoxy [1,1′-biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5- Synthesis of trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1-3-145)

Figure 2009292729

Figure 2009292729
Figure 2009292729

化合物(T−13)の合成
窒素雰囲気下の反応器へ、良く乾燥させたマグネシウム 3.05gとTHF 20.0mlとを加えて、55℃まで加熱した。そこへ、THF 100mlに溶解した1−ブロモ−3−フルオロ−4−トリフルオロメトキシベンゼン (T−12) 25.0gを、47℃から60℃の温度範囲でゆっくり滴下し、さらに60分攪拌した。得られたグリニャール試薬を、ホウ酸トリメチル 14.0gのTHF 100ml溶液に−74℃から−65℃の温度範囲で滴下し、25℃に戻しつつ、さらに180分攪拌した。続いて、反応混合物を−30℃に冷却し、6N塩酸 90mlをゆっくりと滴下し25℃に戻しつつ、さらに180分攪拌した。その後、反応混合物を氷水 250mlに3000mlとが入った容器中に注ぎ込み、混合した。酢酸エチル300mlを加えて、有機層と水層とに分離させ抽出操作を行った。得られた有機層を分取し、水、飽和炭酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。その後、減圧下、溶媒を留去し、3−フルオロ−4−トリフルオロメトキシフェニルボロン酸 (T−13) 11.7gを得た。化合物(T−12)からの収率は54.0%であった。
Synthesis of compound (T-13)
To the reactor under a nitrogen atmosphere, 3.05 g of well-dried magnesium and 20.0 ml of THF were added and heated to 55 ° C. Thereto, 25.0 g of 1-bromo-3-fluoro-4-trifluoromethoxybenzene (T-12) dissolved in 100 ml of THF was slowly dropped in a temperature range of 47 ° C. to 60 ° C., and further stirred for 60 minutes. . The obtained Grignard reagent was dropped into a solution of trimethyl borate (14.0 g) in THF (100 ml) in a temperature range of -74 ° C to -65 ° C, and the mixture was further stirred for 180 minutes while returning to 25 ° C. Subsequently, the reaction mixture was cooled to −30 ° C., 90 ml of 6N hydrochloric acid was slowly added dropwise, and the mixture was further stirred for 180 minutes while returning to 25 ° C. Thereafter, the reaction mixture was poured into a container containing 3000 ml of 250 ml of ice water and mixed. 300 ml of ethyl acetate was added, and an extraction operation was performed by separating the organic layer and the aqueous layer. The obtained organic layer was separated, washed successively with water, saturated aqueous sodium hydrogen carbonate solution and brine, and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 11.7 g of 3-fluoro-4-trifluoromethoxyphenylboronic acid (T-13). The yield based on the compound (T-12) was 54.0%.

化合物(T−14)の合成
上記で得られた化合物(T−13)を用い、実施例3に示した化合物(T−11)の合成と同様の手法により2,3'−ジフルオロ−4−ヒドロキシ−4'−トリフルオロメトキシ−1,1'−ビフェニル (T−14) 9.26gを合成した。化合物(T−10)からの収率は78.5%であった。
Synthesis of Compound (T-14) 2,3′-Difluoro-4-phenyl was synthesized in the same manner as the synthesis of Compound (T-11) shown in Example 3 using Compound (T-13) obtained above. 9.26 g of hydroxy-4′-trifluoromethoxy-1,1′-biphenyl (T-14) was synthesized. The yield based on the compound (T-10) was 78.5%.

化合物(No.1−3−145)の合成
上記で得られた化合物(T−14)を用い、実施例3、化合物(No.1−3−145)の合成と同様の手法により4−[ジフルオロ[(2,3'−ジフルオロ−4'−トリフルオロメトキシ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル (No.1−3−145) 2.86gを得た。化合物(T−9)からの収率は47.7%であった。
Synthesis of Compound (No. 1-3-145) Using compound (T-14) obtained above, 4- [4- [ Difluoro [(2,3′-difluoro-4′-trifluoromethoxy [1,1′-biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro- 1.86 g of 1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1-3-145) was obtained. The yield based on the compound (T-9) was 47.7%.

得られた化合物(No.1−3−145)の相転移温度は以下の通りであった。
相転移温度 :C 67.9 S 215 N 248 I 。
The phase transition temperature of the obtained compound (No. 1-3-145) was as follows.
Phase transition temperature: C 67.9 S A 215 N 248 I.

1H−NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4−[ジフルオロ[(2,3'−ジフルオロ−4'−トリフルオロメトキシ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニルであることが同定できた。なお、測定溶媒はCDCl3である。 The chemical shift δ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4- [difluoro [(2,3′-difluoro-4′-trifluoromethoxy [1,1′- Biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl could be identified. The measurement solvent is CDCl 3 .

化学シフトδ(ppm);7.57−7.46(m,4H),7.46−7.35(m,4H),7.35−7.25(m,5H),7.24−7.16(m,2H),2.67(t,J=7.70Hz,2H),1.74−1.60(m,2H),1.45−1.31(m,4H),0.91(t,J=7.00Hz,3H).   Chemical shift δ (ppm); 7.57-7.46 (m, 4H), 7.46-7.35 (m, 4H), 7.35-7.25 (m, 5H), 7.24- 7.16 (m, 2H), 2.67 (t, J = 7.70 Hz, 2H), 1.74-1.60 (m, 2H), 1.45-1.31 (m, 4H), 0.91 (t, J = 7.00 Hz, 3H).

液晶化合物(No.1−3−145)の物性
母液晶A 85重量%と、実施例5で得られた4−[ジフルオロ[(2,3'−ジフルオロ−4'−トリフルオロメトキシ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4''−ペンチル−2',3,5−トリフルオロ−1,1',4',1''−ターフェニル(No.1−3−145)の15重量%とからなる液晶組成物Dを調製した。得られた液晶組成物Dの物性値を測定し、測定値を外挿することで液晶化合物(No.1−3−145 )の物性の外挿値を算出した。その値は以下のとおりであった。
Physical property of liquid crystal compound (No. 1-3-145) 85 wt% of mother liquid crystal A and 4- [difluoro [(2,3′-difluoro-4′-trifluoromethoxy [1, 1′-biphenyl] -4-yl) oxy] methyl] -4 ″ -pentyl-2 ′, 3,5-trifluoro-1,1 ′, 4 ′, 1 ″ -terphenyl (No. 1- A liquid crystal composition D comprising 15% by weight of 3-145) was prepared. The physical property value of the obtained liquid crystal composition D was measured, and the extrapolated value of the physical property of the liquid crystal compound (No. 1-3-145) was calculated by extrapolating the measured value. The values were as follows:

上限温度(TNI)=155℃;屈折率異方性(Δn)=0.230;誘電率異方性(Δε)=30.9。
このことから液晶化合物(No.1−3−145 )は、上限温度(TNI)が高く、屈折率異方性(Δn)が大きい化合物であることがわかった。
Maximum temperature (T NI ) = 155 ° C .; refractive index anisotropy (Δn) = 0.230; dielectric anisotropy (Δε) = 30.9.
From this, it was found that the liquid crystal compound (No. 1-3-145) was a compound having a high maximum temperature (T NI ) and a large refractive index anisotropy (Δn).

4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニル (化合物No.1−4−19)の合成

Figure 2009292729
4- [difluoro (3,4,5-trifluorophenoxy) methyl] -2 ′, 2 ″, 3,5,6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, Synthesis of 1 ″, 4 ″, 1 ′ ″-quarterphenyl (Compound No. 1-4-19)

Figure 2009292729


Figure 2009292729

Figure 2009292729

化合物(T−15)の合成
窒素雰囲気下の反応器へ、化合物(T−8) 7.00gとTHF 85.0mlとを加えて、−74℃まで冷却した。そこへ、1.60M n−ブチルリチウム,n−ヘキサン溶液 45.0mlを−74℃から−70℃の温度範囲で滴下し、さらに60分攪拌した。続いてヨウ素 6.52gのTHF 45.0ml溶液を−75℃から−70℃の温度範囲で滴下し、さらに60分攪拌した。得られた反応混合物を25℃に戻した後、氷水 130mlに注ぎ込み、混合した。トルエン 150mlを加え有機層と水層とに分離させ抽出操作を行い得られた有機層を分取し、チオ硫酸ナトリウム水溶液、食塩水で順次洗浄して、無水硫酸マグネシウムで乾燥した。得られた溶液を、減圧下で濃縮し、残渣をヘプタンを展開溶媒、シリカゲルを充填剤として用いたカラムクロマトグラフィーによる分取操作で精製した。溶媒を留去し乾燥させ、4−ヨード−2',3,5−トリフルオロ−4''−ペンチル−1,1',4',1''−ターフェニル(T−15) 9.38gを得た。化合物(T−8)からの収率は98.6%であった。
Synthesis of Compound (T-15) 7.00 g of Compound (T-8) and 85.0 ml of THF were added to a reactor under a nitrogen atmosphere and cooled to -74 ° C. Thereto, 45.0 ml of a 1.60 M n-butyllithium / n-hexane solution was dropped in a temperature range of -74 ° C. to -70 ° C., and further stirred for 60 minutes. Subsequently, a solution of iodine (6.52 g) in THF (45.0 ml) was added dropwise in the temperature range of -75 ° C to -70 ° C, and the mixture was further stirred for 60 minutes. The obtained reaction mixture was returned to 25 ° C. and then poured into 130 ml of ice water and mixed. 150 ml of toluene was added to separate the organic layer and the aqueous layer and extraction was performed. The resulting organic layer was separated, washed successively with aqueous sodium thiosulfate solution and brine, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by a preparative operation by column chromatography using heptane as a developing solvent and silica gel as a filler. The solvent was distilled off and dried, and 9.38 g of 4-iodo-2 ′, 3,5-trifluoro-4 ″ -pentyl-1,1 ′, 4 ′, 1 ″ -terphenyl (T-15) Got. The yield based on the compound (T-8) was 98.6%.

化合物(T−16)の合成
化合物(T−15) 9.38gを原料として用い、実施例1の化合物(T−6)の合成と同様の手法により、2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニル(T−16) 7.77gを得た。化合物(T−15)からの収率は85.4%であった。
Synthesis of Compound (T-16) Using 9.38 g of Compound (T-15) as a raw material, 2 ′, 2 ″, 3, 5 by the same method as the synthesis of Compound (T-6) of Example 1 , 6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl (T-16) 7.77 g was obtained. The yield based on the compound (T-15) was 85.4%.

化合物(T−17)の合成
化合物(T−16) 5.00gを原料として用い、実施例1の化合物(T−7)の合成と同様の手法により、4−ブロモジフルオロメチル−2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニル(T−17)4.56gを得た。化合物(T−16)からの収率は71.6%であった。
Synthesis of Compound (T-17) 4-bromodifluoromethyl-2 ′, 2 was prepared in the same manner as in the synthesis of Compound (T-7) of Example 1 using 5.00 g of Compound (T-16) as a raw material. '', 3,5,6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl (T-17) 4. 56 g was obtained. The yield based on the compound (T-16) was 71.6%.

化合物(No.1−4−19)の合成
化合物(T−17) 4.00gを原料として用い、実施例1の化合物(No.1−4−5)の合成と同様の手法により、4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニル(No.1−4−19)1.81gを得た。化合物(T−17)からの収率は40.7%であった。
Synthesis of Compound (No. 1-4-19) Using 4.00 g of Compound (T-17) as a raw material, the same procedure as in the synthesis of Compound (No. 1-4-5) of Example 1 was performed. [Difluoro (3,4,5-trifluorophenoxy) methyl] -2 ′, 2 ″, 3,5,6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, 1 ′ 1.81 g of ', 4'',1'''-quarterphenyl (No. 1-4-19) was obtained. The yield based on the compound (T-17) was 40.7%.

得られた化合物(No.1−4−19)の相転移温度は以下の通りであった。
相転移温度 :C 125 S 167 N 240 I 。
The phase transition temperature of the obtained compound (No. 1-4-19) was as follows.
Phase transition temperature: C 125 S A 167 N 240 I.

1H−NMR分析の化学シフトδ(ppm)は以下の通りであり、得られた化合物が、4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニルであることが同定できた。なお、測定溶媒はCDCl3である。 The chemical shift δ (ppm) of 1 H-NMR analysis is as follows, and the obtained compound is 4- [difluoro (3,4,5-trifluorophenoxy) methyl] -2 ′, 2 ″, It was possible to identify 3,5,6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ″ ′-quarterphenyl. The measurement solvent is CDCl 3 .

化学シフトδ(ppm);7.58−7.41(m,5H),7.36−7.26(m,4H),7.26−7.19(d,J=10.3Hz,2H),7.06−6.98(m,2H),2.67(t,J=8.00Hz,2H),1.74−1.60(m,2H),1.45−1.31(m,4H),0.92(t,J=6.80Hz, 3H).   Chemical shift δ (ppm); 7.58-7.41 (m, 5H), 7.36-7.26 (m, 4H), 7.26-7.19 (d, J = 10.3 Hz, 2H ), 7.06-6.98 (m, 2H), 2.67 (t, J = 8.00 Hz, 2H), 1.74-1.60 (m, 2H), 1.45-1.31. (M, 4H), 0.92 (t, J = 6.80 Hz, 3H).

液晶化合物(No.1−4−19)の物性
母液晶A 95重量%と、実施例7で得られた4−[ジフルオロ(3,4,5−トリフルオロフェノキシ)メチル]−2',2'',3,5,6'−ペンタフルオロ−4'''−ペンチル−1,1',4',1'',4'',1'''−クオーターフェニル(No.1−4−19)の5重量%とからなる液晶組成物Eを調製した。得られた液晶組成物Eの物性値を測定し、測定値を外挿することで液晶化合物(No.1−4−19 )の物性の外挿値を算出した。その値は以下のとおりであった。
Physical property of liquid crystal compound (No. 1-4-19) 95% by weight of liquid crystal A and 4- [difluoro (3,4,5-trifluorophenoxy) methyl] -2 ′, 2 obtained in Example 7 ″, 3,5,6′-pentafluoro-4 ′ ″-pentyl-1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″-quarterphenyl (No. 1-4) A liquid crystal composition E comprising 5% by weight of 19) was prepared. The physical property value of the obtained liquid crystal composition E was measured, and the extrapolated value of the physical property of the liquid crystal compound (No. 1-4-19) was calculated by extrapolating the measured value. The values were as follows:

上限温度(TNI)=156℃;屈折率異方性(Δn)=0.257;誘電率異方性(Δε)=43.6。
このことから液晶化合物(No.1−4−19)は、上限温度(TNI)が高く、屈折率異方性(Δn)が大きく、誘電率異方性(Δε)が大きい化合物であることがわかった。
Maximum temperature (T NI ) = 156 ° C .; refractive index anisotropy (Δn) = 0.257; dielectric anisotropy (Δε) = 43.6.
Therefore, the liquid crystal compound (No. 1-4-19) is a compound having a high maximum temperature (T NI ), a large refractive index anisotropy (Δn), and a large dielectric anisotropy (Δε). I understood.

実施例1、3、5および7、さらに記載した合成法をもとに、以下に示す化合物(No.1−1−1)〜(No.1−1−518)、(No.1−2−1)〜(No.1−2−490)、(No.1−3−1)〜(No.1−3−623)および(No.1−4−1)〜(No.1−4−534)を合成することができる。付記したデータは前記した手法に従い、求めた値である。相転移温度は化合物自体の測定値である。上限温度(TNI)、誘電率異方性(Δε)、および光学異方性(Δn)は、実施例2、4、6および8に記載したように化合物を母液晶(A)に混合した試料の測定値を、外挿法に従って換算した外挿値である。 Based on Examples 1, 3, 5 and 7, and the synthesis method further described, the following compounds (No. 1-1-1) to (No. 1-1-518), (No. 1-2) -1) to (No. 1-2-490), (No. 1-3-1) to (No. 1-3-623) and (No. 1-4-1) to (No. 1-4) -534) can be synthesized. The appended data is a value obtained in accordance with the method described above. The phase transition temperature is a measured value of the compound itself. The maximum temperature (T NI ), dielectric anisotropy (Δε), and optical anisotropy (Δn) were mixed with the base liquid crystal (A) as described in Examples 2, 4, 6 and 8. It is an extrapolated value obtained by converting the measured value of the sample according to the extrapolation method.

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729
Figure 2009292729

Figure 2009292729

Figure 2009292729

[比較例]
比較例としてWO2005/019378A1に掲載されている、テトラヒドロピラン環を含有する5環液晶化合物の4−[ジフルオロ[(2,3',4',5'−テトラフルオロ[1,1'−ビフェニル]−4−イル)オキシ]メチル]−4'−(5−ペンチルテトラヒドロピラン−2−イル)−2',3,5,6'−テトラフルオロ−1,1'−ビフェニル(S−1−1)を合成した。

Figure 2009292729
[Comparative example]
As a comparative example, 4- [difluoro [(2,3 ′, 4 ′, 5′-tetrafluoro [1,1′-biphenyl]], a pentacyclic liquid crystal compound containing a tetrahydropyran ring, described in WO2005 / 019378A1. -4-yl) oxy] methyl] -4 '-(5-pentyltetrahydropyran-2-yl) -2', 3,5,6'-tetrafluoro-1,1'-biphenyl (S-1-1) ) Was synthesized.

Figure 2009292729

得られた比較例化合物(S−1−1)の相転移温度は以下の通りであった。
相転移温度:C 101 N 198 I 。
The phase transition temperature of the obtained comparative compound (S-1-1) was as follows.
Phase transition temperature: C 101 N 198 I.

母液晶A 85重量%と、比較例化合物(S−1−1)の15重量%とからなる液晶組成物Gを調製した。得られた液晶組成物 Gの物性値を測定し、測定値を外挿することで比較例化合物(S−11)の物性の外挿値を算出した。その値は以下のとおりであった。   A liquid crystal composition G composed of 85% by weight of the base liquid crystal A and 15% by weight of the comparative compound (S-1-1) was prepared. The physical property value of the obtained liquid crystal composition G was measured, and the extrapolated value of the physical property of the comparative compound (S-11) was calculated by extrapolating the measured value. The values were as follows:

上限温度(TNI)=118℃;屈折率異方性(Δn)=0.177;誘電率異方性(Δε)=52.3。 Maximum temperature (T NI ) = 118 ° C .; refractive index anisotropy (Δn) = 0.177; dielectric anisotropy (Δε) = 52.3.

比較例化合物(S−1−1)と実施例1〜実施例10に示した本発明の化合物(No.1−4−5、No.1−3−5、No.1−3−145、No.1−4−19およびNo.1−2−5)とを比較すると、化合物(No.1−4−5、No.1−3−5、No.1−3−145およびNo.1−4−19の方が液晶相の温度範囲が広く、高い透明点および大きな屈折率異方性を有する、優れた化合物であるといえる。   Comparative Example Compound (S-1-1) and the compounds of the present invention shown in Examples 1 to 10 (No. 1-4-5, No. 1-3-5, No. 1-3-145, No. 1-4-19 and No. 1-2-5) are compared with the compounds (No. 1-4-5, No. 1-3-5, No. 1-3-145 and No. 1). It can be said that -4-19 is an excellent compound having a wider temperature range of the liquid crystal phase, a high clearing point, and a large refractive index anisotropy.

さらに比較例化合物(S−1−1)と実施例3〜実施例6に示した本発明の化合物(No.1−3−5およびNo.1−3−145)とを比較する。両者ともにCFO結合基の右側にビフェニル構造を有している点で類似した化合物であるが、化合物(No.1−3−5およびNo.1−3−145)の方が液晶相の温度範囲が広く、高い透明点および大きな屈折率異方性を有する。また、比較例化合物(S−1−1)は他の液晶化合物との相溶性が十分に高くなく、低温相溶性は化合物(No.1−3−5およびNo.1−3−145)の方が優れていた。よって化合物(No.1−3−5およびNo.1−3−145)の方が、高い透明点および大きな屈折率異方性を有し、さらに他の化合物との高い相溶性を併せ持った、優れた化合物であるといえる。 Further, the comparative compound (S-1-1) and the compounds of the present invention (No. 1-3-5 and No. 1-3-145) shown in Examples 3 to 6 are compared. Both compounds are similar in that they have a biphenyl structure on the right side of the CF 2 O bonding group, but the compounds (No. 1-3-5 and No. 1-3-145) are more liquid crystalline. Wide temperature range, high clearing point and large refractive index anisotropy. Further, the comparative compound (S-1-1) is not sufficiently high in compatibility with other liquid crystal compounds, and the low-temperature compatibility is that of the compounds (No. 1-3-5 and No. 1-3-145). It was better. Therefore, the compounds (No. 1-3-5 and No. 1-3-145) have a high clearing point and a large refractive index anisotropy, and also have a high compatibility with other compounds. It can be said that it is an excellent compound.

さらに本発明の代表的な組成物を組成例1〜組成例14にまとめた。最初に、組成物の成分である化合物とその量(重量%)を示した。化合物は表1の取り決めに従い、左末端基、結合基、環構造、および右末端基の記号によって表示した。1,4−シクロヘキシレンおよび1,3−ジオキサン−2,5−ジイルの立体配置はトランスである。末端基の記号がない場合は、末端基が水素であることを意味する。次に組成物の物性値を示した。ここでの物性値は測定値そのままの値である。   Furthermore, representative compositions of the present invention are summarized in Composition Examples 1 to 14. First, compounds that are components of the composition and their amounts (% by weight) are shown. The compounds were indicated by the symbols of the left terminal group, linking group, ring structure, and right terminal group according to the conventions in Table 1. The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is trans. If there is no end group symbol, it means that the end group is hydrogen. Next, physical properties of the composition are shown. The physical property values here are measured values as they are.

Figure 2009292729
Figure 2009292729

特性値の測定は下記の方法にしたがって行うことができる。それらの多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED−2521Aに記載された方法、またはこれを修飾した方法である。測定に用いたTN素子には、TFTを取り付けなかった。   The characteristic value can be measured according to the following method. Many of them are the method described in the Standard of Electric Industries Association of Japan EIAJ ED-2521A or a modified method thereof. No TFT was attached to the TN device used for measurement.

ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。   Maximum temperature of nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid. The upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.

ネマチック相の下限温度(TC;℃):ネマチック相を有する試料を0℃、−10℃、−20℃、−30℃、および−40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が−20℃ではネマチック相のままであり、−30℃では結晶(またはスメクチック相)に変化したとき、TCを≦−20℃と記載する。ネマチック相の下限温度を「下限温度」と略すことがある。 Minimum temperature of nematic phase (T C ; ° C.): A sample having a nematic phase is stored in a freezer at 0 ° C., −10 ° C., −20 ° C., −30 ° C., and −40 ° C. Observed. For example, when the sample remains in a nematic phase at −20 ° C. and changes to a crystal (or smectic phase) at −30 ° C., T C is described as ≦ −20 ° C. The lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.

粘度(η;20℃で測定;mPa・s):測定にはE型回転粘度計を用いた。   Viscosity (η; measured at 20 ° C .; mPa · s): An E-type viscometer was used for measurement.

回転粘度(γ1;25℃で測定;mPa・s):
1)誘電率異方性が正である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。TN素子に16ボルトから19.5ボルトの範囲で0.5ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度の測定で使用した素子にて、下記の誘電率異方性の測定方法で求めた。
Rotational viscosity (γ1; measured at 25 ° C .; mPa · s):
1) Sample with positive dielectric anisotropy: Measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 μm. The voltage was applied to the TN device stepwise in the range of 16 to 19.5 volts every 0.5 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. The value of rotational viscosity was obtained from these measured values and the paper by M. Imai et al., Formula (8) on page 40. The value of dielectric anisotropy necessary for this calculation was obtained by the following dielectric anisotropy measurement method using the element used for the measurement of the rotational viscosity.

2)誘電率異方性が負である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に30ボルトから50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、下記の誘電率異方性で測定した値を用いた。   2) Sample with negative dielectric anisotropy: Measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a VA device having a distance (cell gap) between two glass substrates of 20 μm. This element was applied stepwise in increments of 1 volt in the range of 30 to 50 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. The value of rotational viscosity was obtained from these measured values and the paper by M. Imai et al., Formula (8) on page 40. As the dielectric anisotropy necessary for this calculation, a value measured by the following dielectric anisotropy was used.

光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビング(rubbing)したあと、試料を主プリズムに滴下した。屈折率(n‖)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n‖−n⊥、の式から計算した。試料が組成物のときはこの方法によって光学異方性を測定した。試料が化合物のときは、化合物を適切な組成物に混合したあと光学異方性を測定した。化合物の光学異方性は外挿値である。   Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): Measurement was performed with an Abbe refractometer using a light having a wavelength of 589 nm and a polarizing plate attached to an eyepiece. After rubbing the surface of the main prism in one direction, the sample was dropped on the main prism. The refractive index (n‖) was measured when the direction of polarized light was parallel to the direction of rubbing. The refractive index (n⊥) was measured when the direction of polarized light was perpendicular to the direction of rubbing. The value of optical anisotropy was calculated from the equation: Δn = n∥−n⊥. When the sample was a composition, the optical anisotropy was measured by this method. When the sample was a compound, the optical anisotropy was measured after mixing the compound with an appropriate composition. The optical anisotropy of the compound is an extrapolated value.

誘電率異方性(Δε;25℃で測定):試料が化合物のときは、化合物を適切な組成物に混合したあと誘電率異方性を測定した。化合物の誘電率異方性は外挿値である。
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε‖)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε‖−ε⊥、の式から計算した。
Dielectric Anisotropy (Δε; measured at 25 ° C.): When the sample was a compound, the dielectric anisotropy was measured after mixing the compound with an appropriate composition. The dielectric anisotropy of the compound is an extrapolated value.
1) Composition having a positive dielectric anisotropy: A sample was placed in a liquid crystal cell in which the distance (gap) between two glass substrates was about 9 μm and the twist angle was 80 degrees. 20 volts was applied to the cell, and the dielectric constant (ε 率) in the major axis direction of the liquid crystal molecules was measured. 0.5 V was applied, and the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured. The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.

2)誘電率異方性が負である組成物:ホメオトロピック配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε‖)を測定した。ホモジニアス配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε‖−ε⊥、の式から計算した。   2) Composition having a negative dielectric anisotropy: A sample was placed in a liquid crystal cell treated in a homeotropic alignment, and 0.5 volt was applied to measure the dielectric constant (ε ボ ル ト). A sample was put in a liquid crystal cell treated to homogeneous alignment, and a dielectric constant (ε⊥) was measured by applying 0.5 volts. The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.

しきい値電圧(Vth;25℃で測定;V):試料が化合物のときは、化合物を適切な組成物に混合したあとしきい値電圧を測定した。化合物のしきい値電圧は外挿値である。1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が(0.5/Δn)μmであり、ツイスト角が80度である、ノーマリーホワイトモード(normally white mode)の液晶表示素子に試料を入れた。Δnは上記の方法で測定した光学異方性の値である。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率が90%になったときの電圧の値を測定した。   Threshold voltage (Vth; measured at 25 ° C .; V): When the sample was a compound, the threshold voltage was measured after mixing the compound with an appropriate composition. The threshold voltage of the compound is an extrapolated value. 1) A composition having a positive dielectric anisotropy: a normally white mode (normally white mode) in which a distance (gap) between two glass substrates is (0.5 / Δn) μm and a twist angle is 80 degrees. A sample was put in a liquid crystal display element in white mode). Δn is a value of optical anisotropy measured by the above method. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was increased and the value of the voltage when the transmittance of light passing through the element reached 90% was measured.

2)誘電率異方性が負である組成物:2枚のガラス基板の間隔(ギャップ)が約9μmであり、ホメオトロピック配向に処理したノーマリーブラックモード(normally black mode)の液晶表示素子に試料を入れた。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率10%になったときの電圧の値を測定した。 2) Composition having a negative dielectric anisotropy: For a normally black mode liquid crystal display element in which the distance (gap) between two glass substrates is about 9 μm and is processed in a homeotropic alignment. A sample was placed. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was raised, and the value of the voltage when the transmittance of light passing through the element reached 10% was measured.

電圧保持率(VHR;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は6μmである。この素子は試料を入れたあと紫外線によって重合する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。   Voltage holding ratio (VHR; measured at 25 ° C .;%): The TN device used for measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 6 μm. This element was sealed with an adhesive polymerized by ultraviolet rays after putting a sample. The TN device was charged by applying a pulse voltage (60 microseconds at 5 V). The decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. The area B is an area when it is not attenuated. The voltage holding ratio is a percentage of the area A with respect to the area B.

らせんピッチ(20℃で測定;μm):らせんピッチの測定には、カノのくさび型セル法を用いた。カノのくさび型セルに試料を注入し、セルから観察されるディスクリネーションラインの間隔(a;単位はμm)を測定した。らせんピッチ(P)は、式P=2・a・tanθから算出した。θは、くさび型セルにおける2枚のガラス板の間の角度である。   Helical pitch (measured at 20 ° C .; μm): Kano's wedge cell method was used to measure the helical pitch. A sample was injected into a Kano wedge-shaped cell, and the distance (a; unit: μm) between disclination lines observed from the cell was measured. The helical pitch (P) was calculated from the formula P = 2 · a · tan θ. θ is the angle between the two glass plates in the wedge-shaped cell.

成分または液晶化合物の割合(百分率)は、液晶化合物の全重量に基づいた重量百分率(重量%)である。組成物は、液晶化合物などの成分の重量を測定してから混合することによって調製される。したがって、成分の重量%を算出するのは容易である。   The ratio (percentage) of the component or the liquid crystal compound is a weight percentage (% by weight) based on the total weight of the liquid crystal compound. The composition is prepared by measuring the weight of components such as a liquid crystal compound and then mixing them. Therefore, it is easy to calculate the weight percentage of the component.

[組成例1]
5−BB(F)B(F,F)XB(F)B(F,F)−F 5%
5−BB(F)B(F,F)XB(F)B(F)−OCF3 5%

2−BEB(F)−C 5%
3−BEB(F)−C 4%
4−BEB(F)−C 12%
1V2−BEB(F,F)−C 12%
3−HB−O2 10%
3−HH−4 3%
3−HHB−F 3%
3−HHB−1 4%
3−HHB−O1 4%
3−HBEB−F 4%
3−HHEB−F 6%
5−HHEB−F 6%
3−H2BTB−2 4%
3−H2BTB−3 4%
3−H2BTB−4 4%
3−HB(F)TB−2 5%
NI=94.4℃;Δn=0.154;Δε=28.7;Vth=1.02V.
[Composition Example 1]
5-BB (F) B (F, F) XB (F) B (F, F) -F 5%
5-BB (F) B (F, F) XB (F) B (F) -OCF3 5%

2-BEB (F) -C 5%
3-BEB (F) -C 4%
4-BEB (F) -C 12%
1V2-BEB (F, F) -C 12%
3-HB-O2 10%
3-HH-4 3%
3-HHB-F 3%
3-HHB-1 4%
3-HHB-O1 4%
3-HBEB-F 4%
3-HHEB-F 6%
5-HHEB-F 6%
3-H2BTB-2 4%
3-H2BTB-3 4%
3-H2BTB-4 4%
3-HB (F) TB-2 5%
NI = 94.4 ° C .; Δn = 0.154; Δε = 28.7; Vth = 1.02V.

[組成例2]
5−BB(F)B(F,F)XB(F)B(F,F)−F 5%
5−BB(F)B(F)B(F,F)XB(F,F)−F 5%

2−HB−C 5%
3−HB−C 10%
3−HB−O2 15%
2−BTB−1 3%
3−HHB−F 4%
3−HHB−1 8%
3−HHB−O1 5%
3−HHB−3 6%
3−HHEB−F 4%
5−HHEB−F 4%
2−HHB(F)−F 7%
3−HHB(F)−F 7%
5−HHB(F)−F 7%
3−HHB(F,F)−F 5%
NI=103.7℃;Δn=0.114;Δε=8.0;Vth=2.01V.
[Composition Example 2]
5-BB (F) B (F, F) XB (F) B (F, F) -F 5%
5-BB (F) B (F) B (F, F) XB (F, F) -F 5%

2-HB-C 5%
3-HB-C 10%
3-HB-O2 15%
2-BTB-1 3%
3-HHB-F 4%
3-HHB-1 8%
3-HHB-O1 5%
3-HHB-3 6%
3-HHEB-F 4%
5-HHEB-F 4%
2-HHB (F) -F 7%
3-HHB (F) -F 7%
5-HHB (F) -F 7%
3-HHB (F, F) -F 5%
NI = 103.7 ° C; Δn = 0.114; Δε = 8.0; Vth = 2.01 V.

[組成例3]
5−BB(F,F)XB(F)B(F)B(F,F)−F 5%
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 5%

3−BEB(F)−C 8%
3−HB−C 8%
V−HB−C 8%
1V−HB−C 8%
3−HB−O2 3%
3−HH−2V 11%
3−HH−2V1 7%
V2−HHB−1 8%
3−HHB−1 5%
3−HHEB−F 7%
3−H2BTB−2 6%
3−H2BTB−3 6%
3−H2BTB−4 5%
[Composition Example 3]
5-BB (F, F) XB (F) B (F) B (F, F) -F 5%
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 5%

3-BEB (F) -C 8%
3-HB-C 8%
V-HB-C 8%
1V-HB-C 8%
3-HB-O2 3%
3-HH-2V 11%
3-HH-2V1 7%
V2-HHB-1 8%
3-HHB-1 5%
3-HHEB-F 7%
3-H2BTB-2 6%
3-H2BTB-3 6%
3-H2BTB-4 5%

[組成例4]
5−BB(F)B(F,F)XB(F)B(F)−OCF3 6%
5−BB(F,F)XB(F)B(F)B(F,F)−F 6%

5−BEB(F)−C 5%
V−HB−C 11%
5−PyB−C 6%
4−BB−3 11%
3−HH−2V 10%
5−HH−V 11%
V−HHB−1 7%
V2−HHB−1 9%
3−HHB−1 9%
1V2−HBB−2 4%
3−HHEBH−3 5%
[Composition Example 4]
5-BB (F) B (F, F) XB (F) B (F) -OCF3 6%
5-BB (F, F) XB (F) B (F) B (F, F) -F 6%

5-BEB (F) -C 5%
V-HB-C 11%
5-PyB-C 6%
4-BB-3 11%
3-HH-2V 10%
5-HH-V 11%
V-HHB-1 7%
V2-HHB-1 9%
3-HHB-1 9%
1V2-HBB-2 4%
3-HHEBH-3 5%

[組成例5]
5−BB(F)B(F)B(F,F)XB(F,F)−F 4%
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 4%

1V2−BEB(F,F)−C 6%
3−HB−C 18%
2−BTB−1 10%
5−HH−VFF 22%
3−HHB−1 4%
VFF−HHB−1 8%
VFF2−HHB−1 11%
3−H2BTB−2 5%
3−H2BTB−3 4%
3−H2BTB−4 4%
[Composition Example 5]
5-BB (F) B (F) B (F, F) XB (F, F) -F 4%
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 4%

1V2-BEB (F, F) -C 6%
3-HB-C 18%
2-BTB-1 10%
5-HH-VFF 22%
3-HHB-1 4%
VFF-HHB-1 8%
VFF2-HHB-1 11%
3-H2BTB-2 5%
3-H2BTB-3 4%
3-H2BTB-4 4%

[組成例6]
5−BB(F)B(F,F)XB(F)B(F,F)−F 3%
5−BB(F)B(F,F)XB(F)B(F)−OCF3 3%
5−BB(F)B(F)B(F,F)XB(F,F)−F 3%

5−HB−CL 19%
3−HH−4 12%
3−HH−5 4%
3−HHB−F 4%
3−HHB−CL 3%
4−HHB−CL 4%
3−HHB(F)−F 6%
4−HHB(F)−F 6%
5−HHB(F)−F 6%
7−HHB(F)−F 6%
5−HBB(F)−F 4%
1O1−HBBH−5 3%
3−HHBB(F,F)−F 2%
4−HHBB(F,F)−F 3%
5−HHBB(F,F)−F 3%
3−HH2BB(F,F)−F 3%
4−HH2BB(F,F)−F 3%
NI=116.3℃;Δn=0.105;Δε=6.4;Vth=1.93V.
上記組成物100部に光学活性化合物(Op−5)を0.25部添加したときのピッチは61.5μmであった。
[Composition Example 6]
5-BB (F) B (F, F) XB (F) B (F, F) -F 3%
5-BB (F) B (F, F) XB (F) B (F) -OCF3 3%
5-BB (F) B (F) B (F, F) XB (F, F) -F 3%

5-HB-CL 19%
3-HH-4 12%
3-HH-5 4%
3-HHB-F 4%
3-HHB-CL 3%
4-HHB-CL 4%
3-HHB (F) -F 6%
4-HHB (F) -F 6%
5-HHB (F) -F 6%
7-HHB (F) -F 6%
5-HBB (F) -F 4%
1O1-HBBH-5 3%
3-HHBB (F, F) -F 2%
4-HHBB (F, F) -F 3%
5-HHBB (F, F) -F 3%
3-HH2BB (F, F) -F 3%
4-HH2BB (F, F) -F 3%
NI = 116.3 ° C; Δn = 0.105; Δε = 6.4; Vth = 1.93V.
When 0.25 part of optically active compound (Op-5) was added to 100 parts of the composition, the pitch was 61.5 μm.

[組成例7]
5−BB(F)B(F,F)XB(F)B(F,F)−F 5%
5−BB(F,F)XB(F)B(F)B(F,F)−F 5%

3−HHB(F,F)−F 9%
3−H2HB(F,F)−F 8%
4−H2HB(F,F)−F 8%
5−H2HB(F,F)−F 8%
3−HBB(F,F)−F 21%
5−HBB(F,F)−F 15%
3−H2BB(F,F)−F 5%
5−HHBB(F,F)−F 3%
5−HHEBB−F 3%
3−HH2BB(F,F)−F 2%
1O1−HBBH−4 4%
1O1−HBBH−5 4%
[Composition Example 7]
5-BB (F) B (F, F) XB (F) B (F, F) -F 5%
5-BB (F, F) XB (F) B (F) B (F, F) -F 5%

3-HHB (F, F) -F 9%
3-H2HB (F, F) -F 8%
4-H2HB (F, F) -F 8%
5-H2HB (F, F) -F 8%
3-HBB (F, F) -F 21%
5-HBB (F, F) -F 15%
3-H2BB (F, F) -F 5%
5-HHBB (F, F) -F 3%
5-HHEBB-F 3%
3-HH2BB (F, F) -F 2%
1O1-HBBH-4 4%
1O1-HBBH-5 4%

[組成例8]
5−BB(F)B(F,F)XB(F)B(F)−OCF3 5%
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 5%

5−HB−F 12%
6−HB−F 9%
7−HB−F 7%
2−HHB−OCF3 7%
3−HHB−OCF3 7%
4−HHB−OCF3 7%
5−HHB−OCF3 5%
3−HH2B−OCF3 4%
5−HH2B−OCF3 4%
3−HHB(F,F)−OCF2H 4%
3−HHB(F,F)−OCF3 5%
3−HH2B(F)−F 3%
3−HBB(F)−F 5%
5−HBB(F)−F 5%
5−HBBH−3 3%
3−HB(F)BH−3 3%
[Composition Example 8]
5-BB (F) B (F, F) XB (F) B (F) -OCF3 5%
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 5%

5-HB-F 12%
6-HB-F 9%
7-HB-F 7%
2-HHB-OCF3 7%
3-HHB-OCF3 7%
4-HHB-OCF3 7%
5-HHB-OCF3 5%
3-HH2B-OCF3 4%
5-HH2B-OCF3 4%
3-HHB (F, F) -OCF2H 4%
3-HHB (F, F) -OCF3 5%
3-HH2B (F) -F 3%
3-HBB (F) -F 5%
5-HBB (F) -F 5%
5-HBBH-3 3%
3-HB (F) BH-3 3%

[組成例9]
5−BB(F)B(F)B(F,F)XB(F,F)−F 4%
5−BB(F,F)XB(F)B(F)B(F,F)−F 4%

5−HB−CL 11%
3−HH−4 8%
3−HHB−1 5%
3−HHB(F,F)−F 8%
3−HBB(F,F)−F 20%
5−HBB(F,F)−F 7%
3−HHEB(F,F)−F 10%
4−HHEB(F,F)−F 3%
5−HHEB(F,F)−F 3%
2−HBEB(F,F)−F 3%
3−HBEB(F,F)−F 5%
5−HBEB(F,F)−F 3%
3−HHBB(F,F)−F 6%
[Composition Example 9]
5-BB (F) B (F) B (F, F) XB (F, F) -F 4%
5-BB (F, F) XB (F) B (F) B (F, F) -F 4%

5-HB-CL 11%
3-HH-4 8%
3-HHB-1 5%
3-HHB (F, F) -F 8%
3-HBB (F, F) -F 20%
5-HBB (F, F) -F 7%
3-HHEB (F, F) -F 10%
4-HHEB (F, F) -F 3%
5-HHEB (F, F) -F 3%
2-HBEB (F, F) -F 3%
3-HBEB (F, F) -F 5%
5-HBEB (F, F) -F 3%
3-HHBB (F, F) -F 6%

[組成例10]
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 5%

3−HB−CL 6%
5−HB−CL 4%
3−HHB−OCF3 5%
3−H2HB−OCF3 5%
5−H4HB−OCF3 15%
V−HHB(F)−F 5%
3−HHB(F)−F 5%
5−HHB(F)−F 5%
3−H4HB(F,F)−CF3 8%
5−H4HB(F,F)−CF3 10%
5−H2HB(F,F)−F 5%
5−H4HB(F,F)−F 7%
2−H2BB(F)−F 5%
3−H2BB(F)−F 5%
3−HBEB(F,F)−F 5%
[Composition Example 10]
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 5%

3-HB-CL 6%
5-HB-CL 4%
3-HHB-OCF3 5%
3-H2HB-OCF3 5%
5-H4HB-OCF3 15%
V-HHB (F) -F 5%
3-HHB (F) -F 5%
5-HHB (F) -F 5%
3-H4HB (F, F) -CF3 8%
5-H4HB (F, F) -CF3 10%
5-H2HB (F, F) -F 5%
5-H4HB (F, F) -F 7%
2-H2BB (F) -F 5%
3-H2BB (F) -F 5%
3-HBEB (F, F) -F 5%

[組成例11]
5−BB(F)B(F,F)XB(F)B(F,F)−F 5%
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 5%

5−HB−CL 17%
7−HB(F,F)−F 3%
3−HH−4 10%
3−HH−5 5%
3−HB−O2 15%
3−HHB−1 5%
3−HHB−O1 4%
2−HHB(F)−F 5%
3−HHB(F)−F 5%
5−HHB(F)−F 5%
3−HHB(F,F)−F 6%
3−H2HB(F,F)−F 5%
4−H2HB(F,F)−F 5%
[Composition Example 11]
5-BB (F) B (F, F) XB (F) B (F, F) -F 5%
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 5%

5-HB-CL 17%
7-HB (F, F) -F 3%
3-HH-4 10%
3-HH-5 5%
3-HB-O2 15%
3-HHB-1 5%
3-HHB-O1 4%
2-HHB (F) -F 5%
3-HHB (F) -F 5%
5-HHB (F) -F 5%
3-HHB (F, F) -F 6%
3-H2HB (F, F) -F 5%
4-H2HB (F, F) -F 5%

[組成例12]
5−BB(F)B(F,F)XB(F)B(F,F)−F 4%
5−BB(F)B(F,F)XB(F)B(F)−OCF3 4%

5−HB−CL 3%
7−HB(F)−F 7%
3−HH−4 9%
3−HH−EMe 23%
3−HHEB−F 6%
5−HHEB−F 6%
3−HHEB(F,F)−F 10%
4−HHEB(F,F)−F 5%
4−HGB(F,F)−F 5%
5−HGB(F,F)−F 6%
2−H2GB(F,F)−F 4%
3−H2GB(F,F)−F 5%
5−GHB(F,F)−F 3%
NI=83.7℃;Δn=0.077;Δε=7.4;Vth=1.40V.
[Composition Example 12]
5-BB (F) B (F, F) XB (F) B (F, F) -F 4%
5-BB (F) B (F, F) XB (F) B (F) -OCF3 4%

5-HB-CL 3%
7-HB (F) -F 7%
3-HH-4 9%
3-HH-EMe 23%
3-HHEB-F 6%
5-HHEB-F 6%
3-HHEB (F, F) -F 10%
4-HHEB (F, F) -F 5%
4-HGB (F, F) -F 5%
5-HGB (F, F) -F 6%
2-H2GB (F, F) -F 4%
3-H2GB (F, F) -F 5%
5-GHB (F, F) -F 3%
NI = 83.7 ° C .; Δn = 0.077; Δε = 7.4; Vth = 1.40V.

[組成例13]
5−BB(F)B(F)B(F,F)XB(F,F)−F 3%
5−BB(F,F)XB(F)B(F)B(F,F)−F 4%
5−BB(F)B(F,F)B(F,F)XB(F,F)−F 3%

3−HH−4 8%
3−HHB−1 6%
3−HHB(F,F)−F 10%
3−H2HB(F,F)−F 9%
3−HBB(F,F)−F 15%
3−BB(F,F)XB(F,F)−F 25%
1O1−HBBH−5 7%
2−HHBB(F,F)−F 3%
3−HHBB(F,F)−F 3%
3−HH2BB(F,F)−F 4%
[Composition Example 13]
5-BB (F) B (F) B (F, F) XB (F, F) -F 3%
5-BB (F, F) XB (F) B (F) B (F, F) -F 4%
5-BB (F) B (F, F) B (F, F) XB (F, F) -F 3%

3-HH-4 8%
3-HHB-1 6%
3-HHB (F, F) -F 10%
3-H2HB (F, F) -F 9%
3-HBB (F, F) -F 15%
3-BB (F, F) XB (F, F) -F 25%
1O1-HBBH-5 7%
2-HHBB (F, F) -F 3%
3-HHBB (F, F) -F 3%
3-HH2BB (F, F) -F 4%

[組成例14]
5−BB(F)B(F,F)XB(F)B(F)−OCF3 4%
5−BB(F)B(F)B(F,F)XB(F,F)−F 4%

5−HB−CL 13%
3−HB−O2 10%
3−PyB(F)−F 10%
5−PyB(F)−F 10%
3−HBB(F,F)−F 7%
3−PyBB−F 8%
4−PyBB−F 7%
5−PyBB−F 7%
5−HBB(F)B−2 10%
5−HBB(F)B−3 10%
NI=100.9℃;Δn=0.191;Δε=9.4;Vth=1.85V
[Composition Example 14]
5-BB (F) B (F, F) XB (F) B (F) -OCF3 4%
5-BB (F) B (F) B (F, F) XB (F, F) -F 4%

5-HB-CL 13%
3-HB-O2 10%
3-PyB (F) -F 10%
5-PyB (F) -F 10%
3-HBB (F, F) -F 7%
3-PyBB-F 8%
4-PyBB-F 7%
5-PyBB-F 7%
5-HBB (F) B-2 10%
5-HBB (F) B-3 10%
NI = 100.9 ° C .; Δn = 0.191; Δε = 9.4; Vth = 1.85V

Claims (18)

式(1)で表される化合物。

Figure 2009292729

式(1)において、Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく;環A、環A、環A、環A、環A、および環Aは独立して、1,4−フェニレン、または任意の水素がハロゲンにより置き換えられた1,4−フェニレンであり;Z、Z、Z、Z、Z、およびZは独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−OCO−、−CFO−、−OCF−、−CHO−、−OCH−、−CF=CF−、−(CH−、−(CHCFO−、−(CHOCF−、−CFO(CH−、−OCF(CH−、−CH=CH−(CH−、または−(CH−CH=CH−であり;L、L、L、およびLは独立して、水素またはハロゲンであり;Xは水素、ハロゲン、−C≡N、−N=C=S、−SF、または炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は、−O−、−S−または−CH=CH−により置き換えられてもよく、そして任意の水素はハロゲンにより置き換えられてもよく;l、m、n、o、p、およびqは独立して、0または1であり、l+m+n+o+p+q=3である。
The compound represented by Formula (1).

Figure 2009292729

In the formula (1), R 1 is alkyl having 1 to 20 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —S— or —CH═CH—; A 1 , Ring A 2 , Ring A 3 , Ring A 4 , Ring A 5 , and Ring A 6 are independently 1,4-phenylene, or 1,4-phenylene in which any hydrogen is replaced by halogen. Yes; Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —COO—. , —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 O—, —OCH 2 —, —CF═CF—, — (CH 2 ) 4 —, — (CH 2 ) 2 CF 2 O -, - (CH 2) 2 OCF 2 -, - CF 2 O (CH 2) 2 -, - OCF 2 (CH 2 ) 2 —, —CH═CH— (CH 2 ) 2 —, or — (CH 2 ) 2 —CH═CH—; L 1 , L 2 , L 3 , and L 4 are independently hydrogen Or X 1 is hydrogen, halogen, —C≡N, —N═C═S, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, any —CH 2 — is -O-, -S- or -CH = CH- may be replaced, and any hydrogen may be replaced by halogen; l, m, n, o, p, and q are independently 0 or 1 and l + m + n + o + p + q = 3.
式(1)においてZ、Z、Z、Z、Z、およびZが独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−CFO−、−CHO−、または−OCH−である請求項1に記載の化合物。 In formula (1), Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, The compound according to claim 1, which is —COO—, —CF 2 O—, —CH 2 O—, or —OCH 2 —. 式(1−1)〜(1−4)のいずれか一つで表される請求項2に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく;Z、Z、Z、Z、Z、およびZは独立して、単結合、−CHCH−、−CH=CH−、−C≡C−、−COO−、−CFO−、−CHO−、または−OCH−であり;L、L、Y、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xは水素、ハロゲン、−C≡N、−N=C=S、−SF、または炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−S−または−CH=CH−により置き換えられてもよく、そして任意の水素はハロゲンにより置き換えられてもよい。
The compound according to claim 2 represented by any one of formulas (1-1) to (1-4).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 20 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —S— or —CH═CH—; Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are each independently a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —COO—, —CF 2. O—, —CH 2 O—, or —OCH 2 —; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 are independently hydrogen or fluorine Yes; X 1 is hydrogen, halogen, —C≡N, —N═C═S, —SF 5 , or alkyl having 1 to 10 carbons, and in this alkyl, any —CH 2 — is —O—, -S- or -CH = CH- may be replaced, and any hydrogen may be halogenated It may be replaced by.
式(1−5)〜(1−8)のいずれか1つで表される請求項2に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり、このアルキルにおいて任意の−CH−は−CH=CH−により置き換えられてもよく;L、L、Y、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xはフッ素、塩素、−C≡N、−CF、−CHF、−CHF、−OCF、−OCHF、および−OCHFである。
The compound according to claim 2 represented by any one of formulas (1-5) to (1-8).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —CH═CH—; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 are independently hydrogen or fluorine; X 1 is fluorine, chlorine, —C≡N, —CF 3 , —CHF 2 , —CH 2 F, -OCF 3, -OCHF 2, and a -OCH 2 F.
式(1−9)〜(1−11)のいずれか1つで表される請求項2に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり;L、L、Y、Y、Y、Y、およびYは独立して、水素またはフッ素であり;Xはフッ素または−OCFである。
The compound according to claim 2 represented by any one of formulas (1-9) to (1-11).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons; L 1 , L 2 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine; X 1 is fluorine or —OCF 3 .
式(1−12)〜(1−17)のいずれか1つで表される請求項2に記載の化合物。

Figure 2009292729

これらの式において、Rは炭素数1〜15のアルキルであり;L、Y、Y、Y、Y、およびYは独立して、水素またはフッ素である。
The compound according to claim 2 represented by any one of formulas (1-12) to (1-17).

Figure 2009292729

In these formulas, R 1 is alkyl having 1 to 15 carbons; L 1 , Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently hydrogen or fluorine.
請求項1〜6のいずれか1項に記載の化合物を少なくとも1つ含有することを特徴とする、2成分以上からなる液晶組成物。   A liquid crystal composition comprising two or more components, comprising at least one compound according to any one of claims 1 to 6. 式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、請求項7に記載の液晶組成物。

Figure 2009292729

これらの式において、Rは炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;Xはフッ素、塩素、−OCF、−OCHF、−CF、−CHF、−CHF、−OCFCHF、または−OCFCHFCFであり;環B、環B、および環Bは、独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、テトラヒドロピラン−2,5−ジイル、1,4−フェニレン、または任意の水素がフッ素で置き換えられた1,4−フェニレンであり;ZおよびZは独立して、−(CH−、−(CH−、−COO−、−CFO−、−OCF−、−CH=CH−、−C≡C−、−CHO−または単結合であり;LおよびLは独立して、水素またはフッ素である。
The liquid crystal composition according to claim 7, comprising at least one compound selected from the group of compounds represented by formulas (2), (3) and (4) as one component.

Figure 2009292729

In these formulas, R 2 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — is — May be replaced by O—; X 2 may be fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 Yes; Ring B 1 , Ring B 2 , and Ring B 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, tetrahydropyran-2 , 5-diyl, 1,4-phenylene or arbitrary hydrogen is 1,4-phenylene which is replaced by fluorine,; Z 7 and Z 8 are each independently, - (CH 2) 2 - , (CH 2) 4 -, - COO -, - CF 2 O -, - OCF 2 -, - CH = CH -, - C≡C -, - CH 2 O- or a single bond; L 5 and L 6 Is independently hydrogen or fluorine.
式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項7に記載の液晶組成物。

Figure 2009292729

これらの式において、Rは炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;Xは−C≡Nまたは−C≡C−C≡Nであり;環C、環Cおよび環Cは独立して、1,4−シクロヘキシレン、1,4−フェニレン、任意の水素がフッ素で置き換えられた1,4−フェニレン、1,3−ジオキサン−2,5−ジイル、テトラヒドロピラン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Zは−(CH−、−COO−、−CFO−、−OCF−、−C≡C−、−CHO−、または単結合であり;LおよびLは独立して、水素またはフッ素であり;rは独立して0、1または2であり、sは独立して0または1であり、r+s=2である。
The liquid crystal composition according to claim 7, further comprising at least one compound selected from the group of compounds represented by formula (5).

Figure 2009292729

In these formulas, R 3 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — is — X 3 is —C≡N or —C≡C—C≡N; Ring C 1 , Ring C 2 and Ring C 3 are independently 1,4-cyclohexylene 1,4-phenylene, 1,4-phenylene in which any hydrogen is replaced by fluorine, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, or pyrimidine-2,5- Z 9 is — (CH 2 ) 2 —, —COO—, —CF 2 O—, —OCF 2 —, —C≡C—, —CH 2 O—, or a single bond; L 7 and L 8 are independently hydrogen or Be Tsu containing; r are independently 0, 1 or 2, s is 0 or 1 independently r + s = 2.
式(6)、(7)、(8)、(9)および(10)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、請求項7に記載の液晶組成物。

Figure 2009292729

これらの式において中、RおよびRは独立して、炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;環D、環D、環D、および環Dは独立して、1,4−シクロヘキシレン、1,4−シクロヘキセニレン、1,4−フェニレン、任意の水素がフッ素で置き換えられた1,4−フェニレン、テトラヒドロピラン−2,5−ジイル、またはデカヒドロナフタレン−2,6−ジイルであり;Z10、Z11、Z12、およびZ13は独立して、−(CH−、−COO−、−CHO−、−OCF−、−OCF(CH−、または単結合であり;LおよびL10は独立して、フッ素または塩素であり;t、u、x、y、およびzは独立して0または1であり、u+x+y+zは1または2である。
The composition according to claim 7, comprising at least one compound selected from the group of compounds represented by formulas (6), (7), (8), (9) and (10) as one component. Liquid crystal composition.

Figure 2009292729

In these formulas, R 4 and R 5 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and any hydrogen in alkyl and alkenyl may be replaced by fluorine, Any —CH 2 — may be replaced by —O—; Ring D 1 , Ring D 2 , Ring D 3 , and Ring D 4 are independently 1,4-cyclohexylene, 1,4-cyclohex Senylene, 1,4-phenylene, 1,4-phenylene in which arbitrary hydrogen is replaced by fluorine, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl; Z 10 , Z 11 , Z 12 , and Z 13 are each independently — (CH 2 ) 2 —, —COO—, —CH 2 O—, —OCF 2 —, —OCF 2 (CH 2 ) 2 —, or a single bond. Ah ; L 9 and L 10 are independently fluorine or chlorine; t, u, x, y, and z are independently 0 or 1, u + x + y + z is 1 or 2.
式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を1成分として含有する、請求項7に記載の液晶組成物。

Figure 2009292729

これらの式において、RおよびRは独立して、炭素数1〜10のアルキルまたは炭素数2〜10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の−CH−は−O−で置き換えられてもよく;環E、環E、および環Eは独立して、1,4−シクロヘキシレン、ピリミジン−2,5−ジイル、1,4−フェニレン、2−フルオロ−1,4−フェニレン、3−フルオロ−1,4−フェニレン、または2,5−ジフルオロ1,4−フェニレンであり;Z14およびZ15は独立して、−C≡C−、−COO−、−(CH−、−CH=CH−、または単結合である。
The liquid crystal composition according to claim 7, comprising at least one compound selected from the group of compounds represented by formulas (11), (12) and (13) as one component.

Figure 2009292729

In these formulas, R 6 and R 7 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, in which any hydrogen may be replaced by fluorine, Any —CH 2 — may be replaced by —O—; ring E 1 , ring E 2 , and ring E 3 are independently 1,4-cyclohexylene, pyrimidine-2,5-diyl, 1 , 4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, or 2,5-difluoro1,4-phenylene; Z 14 and Z 15 are independently- C≡C—, —COO—, — (CH 2 ) 2 —, —CH═CH—, or a single bond.
請求項9記載の式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項8に記載の液晶組成物。   The liquid crystal composition according to claim 8, further comprising at least one compound selected from the group of compounds represented by formula (5) according to claim 9. 請求項11記載の式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項8に記載の液晶組成物。   The liquid crystal composition according to claim 8, further comprising at least one compound selected from the group of compounds represented by formulas (11), (12) and (13) according to claim 11. 請求項11記載の式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項9に記載の液晶組成物。   The liquid crystal composition according to claim 9, further comprising at least one compound selected from the group of compounds represented by formulas (11), (12) and (13) according to claim 11. 請求項11記載の式(11)、(12)および(13)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項10に記載の液晶組成物。   The liquid crystal composition according to claim 10, further comprising at least one compound selected from the group of compounds represented by formulas (11), (12) and (13) according to claim 11. 少なくとも1つの光学活性化合物をさらに含有する、請求項7〜15のいずれか1項に記載の液晶組成物。   The liquid crystal composition according to claim 7, further comprising at least one optically active compound. 少なくとも1つの酸化防止剤および/または紫外線吸収剤を含む請求項7〜16のいずれか1項に記載の液晶組成物。   The liquid crystal composition according to any one of claims 7 to 16, comprising at least one antioxidant and / or ultraviolet absorber. 請求項7〜17のいずれか1項に記載の液晶組成物を含有する液晶表示素子。   The liquid crystal display element containing the liquid-crystal composition of any one of Claims 7-17.
JP2007049732A 2007-02-28 2007-02-28 Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element Pending JP2009292729A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007049732A JP2009292729A (en) 2007-02-28 2007-02-28 Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element
EP08711626.5A EP2116522B1 (en) 2007-02-28 2008-02-20 Pentacyclic liquid crystal compound having cf<sb>2</sb>o bonding group, liquid crystal composition and liquid crystal display
KR1020097017860A KR101455428B1 (en) 2007-02-28 2008-02-20 Pentacyclic liquid crystal compound having cf2o bonding group, liquid crystal composition and liquid crystal display
US12/528,370 US7951433B2 (en) 2007-02-28 2008-02-20 Five-ring liquid crystal compound having CF2O bonding group, liquid crystal composition, and liquid crystal display device
PCT/JP2008/052820 WO2008105286A1 (en) 2007-02-28 2008-02-20 Pentacyclic liquid crystal compound having cf2o bonding group, liquid crystal composition and liquid crystal display
CN200880006097.XA CN101631759B (en) 2007-02-28 2008-02-20 Pentacyclic liquid crystal compound having CF2O bonding group, liquid crystal composition and liquid crystal display
JP2009501193A JP5299265B2 (en) 2007-02-28 2008-02-20 Pentacyclic liquid crystal compound having CF2O bond group, liquid crystal composition, and liquid crystal display device
TW097106508A TWI458810B (en) 2007-02-28 2008-02-25 Pentacyclic liquid crystal compound having CF2O bonding group, liquid crystal composition, and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049732A JP2009292729A (en) 2007-02-28 2007-02-28 Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2009292729A true JP2009292729A (en) 2009-12-17

Family

ID=41541270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049732A Pending JP2009292729A (en) 2007-02-28 2007-02-28 Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element

Country Status (2)

Country Link
JP (1) JP2009292729A (en)
CN (1) CN101631759B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540733A (en) * 2007-10-05 2010-12-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid crystal medium and liquid crystal display
JP2012117062A (en) * 2010-11-29 2012-06-21 Merck Patent Gmbh Liquid crystal mixture
EP2735599A1 (en) 2012-11-27 2014-05-28 JNC Corporation Liquid crystal compound having CF2OCF3 at terminal, liquid crystal composition and liquid crystal display device
CN111244551A (en) * 2020-03-16 2020-06-05 电子科技大学 Electrolyte additive and application thereof in lithium ion battery
CN113072960A (en) * 2020-01-03 2021-07-06 北京八亿时空液晶科技股份有限公司 Liquid crystal composition containing 2-methyl-3, 4, 5 trifluorobenzene structure and application thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454856B2 (en) * 2007-08-29 2013-06-04 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN103717708B (en) * 2011-08-02 2017-03-22 Dic株式会社 Nematic liquid crystal composition
TWI518062B (en) * 2011-12-26 2016-01-21 迪愛生股份有限公司 Compound having 2-fluorophenyloxymethane structure
TWI570221B (en) * 2012-03-19 2017-02-11 Dainippon Ink & Chemicals Nematic liquid crystal composition
CN103906727B (en) * 2012-05-15 2015-11-25 Dic株式会社 There is the compound of 2-fluorophenyl oxygen methylmethane structure
CN103319444B (en) * 2012-06-20 2016-01-27 石家庄诚志永华显示材料有限公司 Liquid crystalline cpd containing 4-tetrahydropyrans structure and preparation method thereof and application
EP2703472B1 (en) * 2012-08-31 2018-07-04 Merck Patent GmbH Liquid crystalline medium
JP5534115B1 (en) * 2012-10-17 2014-06-25 Dic株式会社 Nematic liquid crystal composition
CN103664868A (en) * 2013-11-27 2014-03-26 石家庄诚志永华显示材料有限公司 Oxathiane derivative as well as preparation method and application thereof
US10174253B2 (en) 2013-12-26 2019-01-08 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN103694214A (en) * 2013-12-26 2014-04-02 石家庄诚志永华显示材料有限公司 Dioxane derivatives as well as preparation method and application thereof
CN103773386B (en) * 2014-01-27 2015-07-15 北京八亿时空液晶科技股份有限公司 Liquid crystal compound containing 1,4-dioxane and pentafluoro-allyloxy structure and liquid crystal composition thereof
CN104974765B (en) * 2014-04-03 2017-07-28 江苏和成显示科技股份有限公司 Liquid-crystal compounds and its liquid-crystal composition and liquid crystal display
CN104045527B (en) * 2014-04-23 2017-04-12 石家庄诚志永华显示材料有限公司 Difluoromethoxy-bridged derivative and preparation method and application
WO2016017614A1 (en) * 2014-07-31 2016-02-04 Dic株式会社 Nematic liquid crystal composition
KR20160082065A (en) * 2014-12-30 2016-07-08 주식회사 동진쎄미켐 Liquid crystal compound and liquid crystal composition comprising the same
CN110240587B (en) * 2018-03-08 2022-01-04 中国科学院上海药物研究所 Aryl difluoro benzyl ether compounds, preparation method and application
CN108690639A (en) * 2018-06-22 2018-10-23 烟台显华化工科技有限公司 A kind of liquid-crystal composition and its application
CN113698944B (en) * 2021-08-30 2023-02-28 Oppo广东移动通信有限公司 Composition, polymer dispersed liquid crystal, film and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW343232B (en) * 1994-10-13 1998-10-21 Chisso Corp Difluorooxymethane derivative and liquid crystal composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540733A (en) * 2007-10-05 2010-12-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid crystal medium and liquid crystal display
JP2012117062A (en) * 2010-11-29 2012-06-21 Merck Patent Gmbh Liquid crystal mixture
JP2016153486A (en) * 2010-11-29 2016-08-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal mixture
JP2018070892A (en) * 2010-11-29 2018-05-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal mixture
EP2735599A1 (en) 2012-11-27 2014-05-28 JNC Corporation Liquid crystal compound having CF2OCF3 at terminal, liquid crystal composition and liquid crystal display device
CN113072960A (en) * 2020-01-03 2021-07-06 北京八亿时空液晶科技股份有限公司 Liquid crystal composition containing 2-methyl-3, 4, 5 trifluorobenzene structure and application thereof
CN111244551A (en) * 2020-03-16 2020-06-05 电子科技大学 Electrolyte additive and application thereof in lithium ion battery
CN111244551B (en) * 2020-03-16 2022-05-03 电子科技大学 Electrolyte additive and application thereof in lithium ion battery

Also Published As

Publication number Publication date
CN101631759A (en) 2010-01-20
CN101631759B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5299265B2 (en) Pentacyclic liquid crystal compound having CF2O bond group, liquid crystal composition, and liquid crystal display device
JP5582035B2 (en) Pentacyclic liquid crystal compound having nitrogen-containing heterocycle, liquid crystal composition, and liquid crystal display device
JP5561162B2 (en) Pentacyclic liquid crystal compound having cyclohexane ring, liquid crystal composition, and liquid crystal display element
JP6213553B2 (en) Liquid crystalline compound having difluoromethyleneoxy, liquid crystal composition and liquid crystal display device
JP2009292729A (en) Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element
JP6213556B2 (en) Liquid crystal compound, liquid crystal composition, and liquid crystal display device
JP4244556B2 (en) Liquid crystalline compound having bis (trifluoromethyl) phenyl ring, liquid crystal composition and liquid crystal display device
JP5850023B2 (en) Liquid crystal compound, liquid crystal composition and liquid crystal display element having CF2OCF3 at terminal
JP5880832B2 (en) Liquid crystal compound, liquid crystal composition, and liquid crystal display device
JP5488628B2 (en) Tetrahydropyran compound, liquid crystal composition, and liquid crystal display device containing the liquid crystal composition
JP6455511B2 (en) Liquid crystal compound having CF2O bonding group and tolan skeleton, liquid crystal composition, and liquid crystal display device
JP4186493B2 (en) Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element
JP5140983B2 (en) Compound having alkadienyl group as side chain and liquid crystal composition using the same
JP2009292730A (en) Pentacyclic liquid crystal compound, liquid crystal composition, and liquid crystal display element
JP4492206B2 (en) Compound having perfluoropropenyl, liquid crystal composition, and liquid crystal display device
JP4513351B2 (en) Liquid crystal compound having fluorinated alkyl group as bonding group, liquid crystal composition, and liquid crystal display device
JP5422898B2 (en) Novel compound having 2,2,2-bicyclooctane bonded to halogenated alkyl group and liquid crystal composition using the same
JP2014019646A (en) Liquid crystal compound having fluorovinyl group, liquid crystal composition and liquid crystal display element
JP5544940B2 (en) Compound having indole ring, liquid crystal composition, and liquid crystal display device
JP4892853B2 (en) Liquid crystal compound having carbonate bond group, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition
JP2006232727A (en) Coumarin derivative, liquid crystal composition containing the same, and liquid crystal display element containing the liquid crystal composition
JP4423877B2 (en) 2-trifluoromethyldihydropyran derivative, liquid crystal composition and liquid crystal display device
JP4978017B2 (en) Benzodioxin derivative, liquid crystal composition containing the same, and liquid crystal display device
JP4774963B2 (en) Coumarin derivative, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition
JP2006193509A (en) Dihydrocoumarin derivative, and liquid crystal composition and liquid crystal displaying element containing the same